KR0144640B1 - Liquid indium sources - Google Patents

Liquid indium sources

Info

Publication number
KR0144640B1
KR0144640B1 KR1019940013089A KR19940013089A KR0144640B1 KR 0144640 B1 KR0144640 B1 KR 0144640B1 KR 1019940013089 A KR1019940013089 A KR 1019940013089A KR 19940013089 A KR19940013089 A KR 19940013089A KR 0144640 B1 KR0144640 B1 KR 0144640B1
Authority
KR
South Korea
Prior art keywords
indium
trimethyl indium
trimethyl
bubbler
solution
Prior art date
Application number
KR1019940013089A
Other languages
Korean (ko)
Other versions
KR950003196A (en
Inventor
칸졸리아 라빈드라
휴이 벤자민 씨
Original Assignee
제럴드 케이. 화이트
씨 브이 디, 인코오포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제럴드 케이. 화이트, 씨 브이 디, 인코오포레이티드 filed Critical 제럴드 케이. 화이트
Publication of KR950003196A publication Critical patent/KR950003196A/en
Application granted granted Critical
Publication of KR0144640B1 publication Critical patent/KR0144640B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • C23C16/4482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material by bubbling of carrier gas through liquid source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

C3-C5트리알킬인듐 용매중에 트리메틸인듐을 용해하여 용액을 얻고, 그 용액으로부터 트리메틸 인듐을 담체 가스에 비말 동반시키는 것을 포함하는 중 기상 트리메틸 인듐을 제공하는 방법.A process for providing medium gaseous trimethyl indium comprising dissolving trimethylindium in a C 3 -C 5 trialkylindium solvent to obtain a solution and entraining trimethyl indium from the solution in a carrier gas.

Description

액체 인듐 공급원Liquid indium source

제 1 도는 하기 실시예의 증기화된 트리메틸 인듐을 전달하는데 사용되는 장치의 개략도이다.1 is a schematic of an apparatus used to deliver vaporized trimethyl indium of the following examples.

제 2 도는 하기 실시예의 전달 시간에 대해 하전되어 전달된 트리메틸 인듐의 g 수를 보여주는 그래프이다.2 is a graph showing the number of g of trimethyl indium delivered charged charged versus the delivery time of the following examples.

본 발명은 유기금속 화학적 증기석출(MOCVD)과 같이 적층 성장 과정에 있어서, 증기상 트리메틸 인듐의 균일한 방사선 측정법을 제공하는 방법에 관한 것이다.The present invention relates to a method for providing a uniform radiometric method of vapor phase trimethyl indium in a lamination growth process such as organometallic chemical vapor deposition (MOCVD).

MOCVD 또는 기타 적층 석출 과정에 가장 일반적으로 사용되는 인듐 화합물은 트리메틸 인듐이다. 인듐공급원으로서 트리메틸 인듐을 사용하는 적층 성장에 의해 생성된 물질의 예로는 InP, InGaAs, InGaAlP, InGaAsP, InGaAs/GaAs/AlGaAs, InAs, InSb 및 InAsBi 가 있다.The indium compound most commonly used for MOCVD or other deposition precipitation processes is trimethyl indium. Examples of materials produced by stack growth using trimethyl indium as the indium source are InP, InGaAs, InGaAlP, InGaAsP, InGaAs / GaAs / AlGaAs, InAs, InSb and InAsBi.

인듐공급원으로서 트리메틸 인듐을 사용하는데 있어 잘 알려진 단점으로는 그것이 실온에서 고체라는 사실이다. 유기 금속 증기의 액체공급원이 고체공급원에 비해 더 바람직한 데, 왜냐하면 거의 일정한 부분압을 지닌 유기금속 증기의 가스 스트림은 일정속도로 상기 액체를 통해 담체 가스를 버블링함으로써만 생성될 수 있기 때문이다. 한편, 고체를 사용하는 경우에는, 유기 금속공급원이 증발됨에 따라 그 표면적이 계속 변화한다. 또한, 트리메틸 인듐과 같은 고체는 가스 통로의 표면상에 재응축하는 경향이 있기 때문에 유기 금속 화합물을 균일한 부분압을 제공하는 데 있어서 어려움을 추가시킨다.A well known disadvantage of using trimethyl indium as the source of indium is the fact that it is a solid at room temperature. A liquid source of organometallic vapor is more preferred than a solid source, because a gas stream of organometallic vapor with an almost constant partial pressure can only be produced by bubbling a carrier gas through the liquid at a constant rate. On the other hand, in the case of using solids, the surface area continues to change as the organic metal source evaporates. In addition, solids, such as trimethyl indium, tend to recondense on the surface of the gas passages, which adds difficulty in providing an even partial pressure of the organometallic compound.

고체인 트리메틸 인듐은, 기타 트리알킬 인듐 즉 C2-C5알킬 인듐이 실온에서 액체인데 비해 예외적이다. 이 같은 예외성은 트리메틸 인듐은 실온에서 사량체로 존재하는 반면, 기타 트리알킬 인듐들은 단량체이기 때문일 것이다. 그러나 적층 성장에 사용될 때 충분히 높은 증기압이 제공되어야 한다는 것을 고려하면, 비교적 높은 증기압을 갖는 트리메틸 인듐을 사용하는 것이 더 좋다.Trimethyl indium as a solid is exceptional compared to other trialkyl indium ie C 2 -C 5 alkyl indium being liquid at room temperature. This exception may be because trimethyl indium is present as a tetramer at room temperature, while other trialkyl indium are monomers. However, considering that a sufficiently high vapor pressure should be provided when used for stack growth, it is better to use trimethyl indium with a relatively high vapor pressure.

트리메틸 인듐을 사용할 때 불균일한 질량 흐름에 기인한 복잡성을 제거하기 위해 몇가지 접근이 시도되어 왔다. 이들중 몇가지 접근 방법은 버블러(bubbler)를 통해 담체 가스를 역류시키는 것 ; 버블러내에서 Tefion 비이드와 같은 비활성 물질중에 트리메틸 인듐을 충전시키는 것 ; 두 개 또는 그 이상의 트리메틸 인듐 버블러를 연속적으로 사용하는 것 ; 및 고비점 아민 또는 탄화수소중에 트리메틸 인듐을 용해 및/또는 현탁시킨 용액 트리메틸 인듐을 사용하는 것을 포함한다.Several approaches have been attempted to eliminate the complexity due to non-uniform mass flow when using trimethyl indium. Some of these approaches include backflowing the carrier gas through a bubbler; Filling trimethyl indium in an inert material such as Tefion beads in a bubbler; Using two or more trimethyl indium bubblers in succession; And using a solution trimethyl indium in which trimethyl indium is dissolved and / or suspended in high boiling amines or hydrocarbons.

트리메틸 인듐이 고체상태로 유지되는 이들 접근 방법은 불균일한 질량 흐름을 감소시키기는 하나, 제거하지는 못한다.These approaches, in which trimethyl indium remains solid, reduce but do not eliminate non-uniform mass flow.

트리메틸 인듐을 아민중에 용해시킬 수 있기는 하나. 그것의 용해도는 낮아서 (전형적으로는 약 20%), 큰 부피의 트리메틸 인듐공급원을 필요로 한다. 아민은 트리메틸 인듐과 착물을 형성하는 바, 사량체를 해체시키는 잇점이 있으나 트리메틸 인듐을 묶어두는 단점이 있다. 이같이 적층 성장의 용도로는 고증기압 불순물만을 극소량 갖는 공급원을 필요로 하기 때문에, 고도로 정제된, 특히 휘발성 불순물에 관하여 고도로 정제된 아민 용매을 사용한다. 그럼에도 불구하고, 불순물이 존재한다면 그것들이 트리메틸 인듐과 반응하여 새로운 휘발성 불순물을 더많이 생성하게 된다. 또한 고융점 아민일지라도 어느정도까지는 가스 스트림에 비말동반(entrainment)되어, 생성하고자 하는 물질내에 질소를 도입시키는 바람직하지 못한 현상을 낳는다.Trimethyl indium can be dissolved in amines. Its solubility is low (typically about 20%), requiring a large volume of trimethyl indium source. Since amines form a complex with trimethyl indium, there is an advantage in dissolving the tetramer, but there is a disadvantage in that trimethyl indium is bound. Since the use of lamination growth requires a source having only a small amount of high vapor pressure impurities, a highly purified, especially highly purified amine solvent is used with respect to volatile impurities. Nevertheless, if impurities are present they will react with trimethyl indium to produce more new volatile impurities. In addition, even high melting point amines are, to some extent, entrained in the gas stream, creating an undesirable phenomenon of introducing nitrogen into the material to be produced.

고비점 탄화수소는 이러한 질소의 문제를 배제한다. 그러나, 트리메틸 인듐은 아민보다 탄화수소중에 현저히 덜 용해되므로 트리메틸 인듐은 탄화수소 매질중에 용해되는 것보다 아민중에서 더 많이 분산된다. 왜냐하면 탄화수소는 사량체를 해체 시키지 못하기 때문에, 가스 경로중에서의 트리메틸 인듐의 석출과 관련한 문제가 제기된다. 또한, 아민을 사용하면, 불순물이 트리메틸 인듐과 반응하여 휘발성 불순물을 생성할 가능성이 있다.High boiling hydrocarbons rule out this nitrogen problem. However, trimethyl indium is significantly less soluble in hydrocarbons than amines, so trimethyl indium is more dispersed in amines than is dissolved in hydrocarbon media. Because hydrocarbons do not dissolve the tetramers, problems arise with the precipitation of trimethyl indium in the gas pathway. In addition, when amine is used, impurities may react with trimethyl indium to generate volatile impurities.

미합중국 특허 제 4,720,560 호는 트리메틸 인듐 2 몰과 트리에틸 인듐 1 몰을 혼합하여 가역 반응에 의해 에틸디메틸 인듐을 생성하는 문제에 접근하고 있다 :U.S. Patent No. 4,720,560 approaches a problem of producing ethyldimethyl indium by reversible reaction by mixing 2 mol of trimethyl indium and 1 mol of triethyl indium:

2Me3In + Et3In → 3EtMe2In2Me 3 In + Et 3 In → 3EtMe 2 In

이 방법에서 바람직한 인듐공급원은 트리메틸 인듐이 아니라 에틸디메틸 인듐이다. 반응 평형 상태는 더 낮은 온도에서 오른쪽으로 이동하는 것과 같이 온도에 좌우되므로 실온 이하 예, 약 10℃ 에서 상기 혼합물을 유지하는 것이 바람직하다. 만약 결정의 성장에 높은 증기압이 요구된다면, 상기한 낮은 온도는 불리할 것이다. 온도를 증가시키면 상기 평형 상태가 왼쪽으로 이동하게 되어 에틸디메틸 인듐이 덜 생성될 것이다.The preferred source of indium in this process is ethyldimethyl indium, not trimethyl indium. Since the reaction equilibrium depends on the temperature, such as shifting to a right at lower temperatures, it is desirable to maintain the mixture at or below room temperature, eg at about 10 ° C. If a high vapor pressure is required for the growth of the crystal, such low temperatures will be disadvantageous. Increasing the temperature will shift the equilibrium to the left and produce less ethyldimethyl indium.

본 발명에 있어서, 인듐의 액체공급원은 C3-C5트리알킬 인듐 또는 C3-C5트리알킬 인듐들의 혼합물중에 용해시킨 트리메틸 인듐을 포함한다. 이 공급원을 통해 버블링된 수소 또는 헬륨과 같은 가스는 단량체 형태의 트리메틸 인듐을 비말동반한다.In the present invention, the liquid source of indium includes trimethyl indium dissolved in a mixture of C 3 -C 5 trialkyl indium or C 3 -C 5 trialkyl indium. Gases, such as hydrogen or helium, bubbled through this source entrain the trimethyl indium in monomeric form.

트리메틸 인듐은 C3-C5트리알킬 인듐과 같은 고융점의 트리알킬 인듐에 잘 녹는다. 트리메틸 인듐/트리에틸 인듐 시스템을 사용하는 경우와 같이, 트리메틸 인듐이 고급 트리알킬인듐내에 도입될 때 가역 반응이 일어난다고 생각된다 :Trimethyl indium is well soluble in high melting point trialkyl indium such as C 3 -C 5 trialkyl indium. As with the trimethyl indium / triethyl indium system, it is thought that a reversible reaction occurs when trimethyl indium is introduced into higher trialkylindium:

Me3In + (C3-C5알킬)3In → MeX(C3-C5알킬)(3-X)InMe 3 In + (C 3 -C 5 alkyl) 3 In → Me X (C 3 -C 5 alkyl) (3-X ) In

상기 식증 x = 1 또는 2 이다.The expression x = 1 or 2 above.

그후 트리메틸 인듐을 2 몰까지1 몰의 C3-C5트리알킬인듐내에 용해시킬 수 있다. 예를 들면 트리메틸인듐 320 g 을 286 g 의 트리부틸 인듐내에 용해시킬 수 있다.Trimethyl indium can then be dissolved in up to 2 moles of 1 mole of C 3 -C 5 trialkylindium. For example, 320 g of trimethylindium can be dissolved in 286 g of tributyl indium.

트리프로필 인듐이 용매로서 사용될 수는 있지만, 트리 n-부틸 인듐(b.p. 85-86℃/0.1 mmHg) 및 트리이소부틸 인듐(b.p. 71-72℃/0.05 mmHg)과 같은 부틸인듐(또는 이것들과 등부피의 트리부틸 인듐의 혼합물)은 그것의 높은 융점으로 인해서 더 바람직하다. 용매는 고도로 정화시키는 것이 바람직하다 (에; 99.999 의 순도). 트리메틸 인듐에 대한 용매로서 트리알킬 인듐을 사용하는 것은 트리메틸 인듐과 반응하여 휘발성 불순물을 생성하는 아민 또는 탄화수소에 비해, 소량의 불순물이라도 먼저 고급 트리알킬 인듐과 반응하여 정화과정중 제거되어지는 비-휘발성 불순물 또는 휘발성 불순물을 생성한다는 잇점을 갖는다. 또한, 석출되는 물질내에 질소를 혼입시키는 아민과는 달리, 고급 트리알킬은 트리메틸 인듐중에 존재하는 것외에는 어떤 원소도 혼입시키지 않는다. 아민 용매처럼, 트리알킬 인듐 용매는 사량체 트리메틸 인듐을 단량체 형태로 분쇄하는 데, 이는 증발된 형태이다.Tripropyl indium may be used as the solvent, but butyl indium (or equivalents thereof) such as tri n-butyl indium (bp 85-86 ° C./0.1 mmHg) and triisobutyl indium (bp 71-72 ° C./0.05 mmHg) Blood mixture of tributyl indium) is more preferred due to its high melting point. The solvent is preferably highly purified (eg; purity of 99.999). The use of trialkyl indium as a solvent for trimethyl indium is less volatile than amines or hydrocarbons that react with trimethyl indium to produce volatile impurities, even when small amounts of impurities are first reacted with higher trialkyl indium to be removed during purification. It has the advantage of producing impurities or volatile impurities. In addition, unlike amines that incorporate nitrogen in the precipitated material, higher trialkyl does not incorporate any elements other than those present in trimethyl indium. Like amine solvents, trialkyl indium solvents mill tetramer trimethyl indium in monomeric form, which is in evaporated form.

미합중국 특허 제 4,720,560 호에 기술된 트리메틸 인듐/트리에틸 인듐 시스템과는 달리, 오로지 휘발성 성분은 주로 트리메틸 인듐이다. 또한, 트리메틸 인듐의 더 큰 증기압이 얻어지는 더 높은온도에서는 평형이 좌측으로 이동하여 담체 가스에 위해 비말동반하는데 유용한 트리메틸 인듐의 양을 향상시킨다. 그 결과, 버블러를 더 높은 온도, 즉 버블러용으로 적정 온도인 17-40℃에서 유지시킬 수 있다. 반응의 평형에 의해 단일의 휘발성 성분이 계속 보충됨에 따라 담체 가스에 의해 비말동반되는 트리메틸인듐의 양은 시간이 경과함에 따라 매우 일정하다가 트리메틸 인듐이 거의 고갈되었을 때 다소 급격한 급강하 현상을 보여준다. 트리메틸 인듐의 질량 흐름이 일정한 트리메틸인듐 농도 범위에서 트리메틸 인듐을 석출시킴으로써 더 균일한 적층 성장을 이루어낼 수 있다.Unlike the trimethyl indium / triethyl indium system described in US Pat. No. 4,720,560, the only volatile component is mainly trimethyl indium. In addition, at higher temperatures where a greater vapor pressure of trimethyl indium is obtained, the equilibrium shifts to the left to improve the amount of trimethyl indium useful for entraining the carrier gas. As a result, the bubbler can be maintained at a higher temperature, 17-40 ° C., which is a suitable temperature for the bubbler. As a single volatile component is continuously replenished by the equilibrium of the reaction, the amount of trimethylindium entrained by the carrier gas is very constant over time, showing a rather sharp dip when trimethyl indium is almost depleted. More uniform lamination growth can be achieved by precipitating trimethyl indium in a range of concentrations of trimethyl indium where the mass flow of trimethyl indium is constant.

트리메틸 인듐의 가장 일정한 질량 흐름을 제공하기 위해서는, 트리메틸 인듐이 포화되거나 거의 포화된 용액을 처음에 제공하는 것이 유리하다.In order to provide the most constant mass flow of trimethyl indium, it is advantageous to initially provide a solution that is saturated or nearly saturated with trimethyl indium.

적당한 담체 가스로는 트리메틸 인듐 또는 트리알킬 인듐 용매와 반응하지 않는 것들이 있다. 수소는 바람직한 담체 가스이나 헬륨 또는 아르곤과 같은 기타 가스들을 사용할 수도 있다.Suitable carrier gases include those that do not react with trimethyl indium or trialkyl indium solvents. Hydrogen may also be the preferred carrier gas or other gases such as helium or argon.

[실시예]EXAMPLE

본 발명을 예시하기 위하여, 다음의 실험을 수행하였다. 질소를 채운 장갑상자의 내부에 18 g 의 트리메틸 인듐(0.11 몰)을 스테인레스 스틸 버블러내에서 트리 n-부틸 인듐 15 g(0.05 몰)중에 용해시켰다. NMR 에 의해 BuMe2In 조성물인 것으로 보이는 무색 투명한 용액을 얻었다. 그 용액이 가라앉기 시작하면 트리메틸 인듐(TMI)의 추가 용해는 불가능하다. 이 용액의 밀도는 실온에서 약 2 g/mL 였다.In order to illustrate the invention, the following experiment was performed. 18 g of trimethyl indium (0.11 mol) was dissolved in 15 g (0.05 mol) of tri n-butyl indium in a stainless steel bubbler in a nitrogen filled glove compartment. NMR yielded a colorless transparent solution which appeared to be a BuMe 2 In composition. Once the solution begins to sink, further dissolution of trimethyl indium (TMI) is not possible. The density of this solution was about 2 g / mL at room temperature.

상기 실험에서 이 용액의 흐름 형태를 측정하는데 사용되는 장치는 제 1 도에 도시하였다. Bu3In/Me3In 용액을 포함하는 스테인레스 스틸(SS) 버블러 (공급원)(10)의 유입구(9)를 라인(12)을 통해 질량 흐름 조절기(16)를 거쳐 반도체 등급 N2 의 탱크(14)에 연결시켰다. 버블러(10)의 출구(17)를 라인(18)을 통해 또 다른 스테인레스 스틸 버블러(수용기)(20)의 출구(19)에 연결시켰다 (두번째 버블러(20)은 본 실험에서 표준인 것과 반대 방향으로 사용하며 ; 그 결과, 버블러(10)의 출구(17)로부터 버블러(20)의 출구(19)로 흐른다). 수용기 버블러(20)를 -15℃ 내지 -20℃ 로 유지시킨 코일 냉각기(22)에 의해 냉각시켰다. 이 수용기의 유입구(24)를 라인(26)을 통해 드라이 아이스- 냉각된 트랩(28)에 연결하여 상기 수용기(20)로부터 나온 불안정 증기를 냉각시켰다. 라인(29)을 통해 트랩(28)을 미네랄 오일 버블러(30)에 연결하여 N2 가스의 바이-패스를 유지하였다.The apparatus used to measure the flow pattern of this solution in the above experiment is shown in FIG. Inlet 9 of stainless steel (SS) bubbler (source) 10 containing Bu 3 In / Me 3 In solution via line 12 to mass flow regulator 16 via a tank of semiconductor grade N2 ( 14). The outlet 17 of the bubbler 10 was connected via line 18 to the outlet 19 of another stainless steel bubbler (receptor) 20 (the second bubbler 20 is the standard in this experiment). In the opposite direction as a result: from the outlet 17 of the bubbler 10 to the outlet 19 of the bubbler 20). The receiver bubbler 20 was cooled by a coil cooler 22 maintained at -15 ° C to -20 ° C. The inlet 24 of this receiver was connected via line 26 to a dry ice-cooled trap 28 to cool the unstable vapor from the receiver 20. Trap 28 was connected to mineral oil bubbler 30 via line 29 to maintain bypass of the N 2 gas.

상기 장치의 또 다른 특성은 질소 버블러(10)의 유입구 밸브(34a) 사이의 공간을 배기시키기 위해 사용되는 라인(12)내 세 방향 밸브, 조립용인 상기 라인을 통과하는 몇 개의 밸브인 (34a), (34b), (34c), (34d), (34e) 및 라인(29)에 연결된 진공부분(이 연결이 이루어진 후에 수용기 밸브(34e) 상부의 공간과 트랩(30)을 배기시킴)을 포함하는 것이다.Another feature of the device is a three-way valve in line 12 used to vent the space between inlet valves 34a of nitrogen bubbler 10, several valves through the line for assembly (34a). ), (34b), (34c), (34d), (34e) and the vacuum section connected to the line 29 (after this connection is made, the space above the receiver valve 34e and the trap 30 are exhausted). It is to include.

상기 공급원 버블러(10)를 이를 통해 담체 가스를 500 SCCM 의 속도로 통과시키는 동안 약 20℃ 에서 유지하였다. 비교적 짧은 시간내에 버블러(10)의 내용물을 고갈시키기 위해 상기와 같이 높은 유동 속도를 택하였다. TMIn 으로 담체 가스의 포화도가 약 40% 임이 관찰되었다. 아마도 이것은 높은 유동 속도 및 다소 낮은 공급원의 온도에 기인한 것이라 여겨진다. 유동 속도를 낮추고 공급원의 온도를 30-40℃ 로 증가시킴으로써 담체 가스의 포화도를 쉽게 80% 이상으로 증가시킬 수 있다.The source bubbler 10 was maintained at about 20 ° C. while passing the carrier gas through it at a rate of 500 SCCM. A high flow rate was chosen as above to deplete the contents of the bubbler 10 in a relatively short time. TMIn was observed to be about 40% saturation of carrier gas. Perhaps this is due to the high flow rate and rather low temperature of the source. By lowering the flow rate and increasing the temperature of the source to 30-40 ° C., the saturation of the carrier gas can easily be increased above 80%.

운반된 트리메틸 인듐의 양을 공급원의 버블러내 중량 손실에 의해 모니터하였다. 공급원 버블러 및 수용기 버블러내의 물질을 확인하기 위해 주기적으로 NMR 스펙트럼을 찍어보았다. 그 데이타는 마지막까지 계속 트리메틸 인듐만이 운반되었다는 것을 보여주었다. 이것은 공급원의 버블러내에 메티피크들이 점차적으로 감소하는 것으로써 확인하였다. 수용기는 그것의 NMR 에 의해 입증된 대로 백색 고체인 트리메틸 인듐을 포함하고 있었다.The amount of trimethyl indium conveyed was monitored by the weight loss in the bubbler of the source. NMR spectra were taken periodically to identify material in the source bubbler and the receptor bubbler. The data showed that only trimethyl indium was carried until the end. This was confirmed by the gradual decrease of the methi peaks in the source bubbler. The receptor contained trimethyl indium, a white solid, as evidenced by its NMR.

트리메틸 인듐의 방사선 측정 결과를 제 2 도에 나타내었다. 선형 관계가 110 시간까지 존재하였으며 말기에는 TMIn 의 운반이 느리게 감소하였다. 이 실험에서 TMIn 총 15 g(NMR 샘플에 대해 3.0 g 이 소모됨)중 약 13 g 이 매우 균일한 방법으로 최초의 TMIn 량의 85% 에 상응하여 이동되었다. TMIn 의 이동은 이 단계에서도 급감하지 않았으며 불규칙한 이동 형태를 보이지 않았다. NMR 스펙트럼은 n-Bu3In 이 풍부한 용액은 최초 혼합물보다 TMIn 이 80% 이상 더 적은 것을 보여준다. 이 데이타들은 TMIn 이 균일한 속도로 연장된 시간에 걸쳐서 시종 일관 이동될 수 있다는 것을 입증한다. 또한, 이 같이 균일한 이동은 이 용액중에 있는 추가적인 TMIn 을 현탁시킴으로써 추가로 강화될 수 있다고 여겨진다.Radiation measurement results of trimethyl indium are shown in FIG. The linear relationship existed for up to 110 hours and slowed the transport of TMIn at the end. In this experiment, about 13 g of a total of 15 g TMIn (3.0 g consumed for NMR samples) were moved in a very uniform manner, corresponding to 85% of the original TMIn amount. The movement of TMIn did not drop sharply at this stage and did not show irregular movement patterns. NMR spectra show that n-Bu 3 In rich solutions have at least 80% less TMIn than the original mixture. These data demonstrate that TMIn can be consistently shifted over extended periods of time at a uniform rate. It is also believed that this uniform migration can be further enhanced by suspending additional TMIn in this solution.

Claims (5)

C3-C5트리알킬인듐 용매중에 트리메틸인듐을 용해하여 용액을 얻고, 그 용액으로부터 트리메틸 인듐을 담체 가스에 비말 동반시키는 것을 포함하는 증기상 트리메틸 인듐을 제공하는 방법.A method of providing a vaporized trimethyl indium comprising dissolving trimethylindium in a C 3 -C 5 trialkylindium solvent to obtain a solution, and entraining trimethyl indium with the carrier gas from the solution. 제 1 항에 있어서, 용매가 트리 n-부틸 인듐, 트리이소부틸 인듐 및 그 혼합물들로 이루어진 군으로부터 선택되는 방법.The method of claim 1 wherein the solvent is selected from the group consisting of tri n-butyl indium, triisobutyl indium and mixtures thereof. 제 1 항에 있어서, 트리메틸 인듐을 상기 용매에 대해 약 0.05 이상의 몰비로 용해시키는 방법.The method of claim 1 wherein trimethyl indium is dissolved in a molar ratio of at least about 0.05 to said solvent. C3-C5트리알킬 인듐 용매 및 그중에 용해된 트리메틸 인듐을 포함하는 용액A solution comprising a C 3 -C 5 trialkyl indium solvent and trimethyl indium dissolved therein 제 4 항에 있어서, 트리메틸 인듐이 상기 용매에 대해 약 0.05 이상의 몰비로 용해되어 있는 용액.The solution of claim 4 wherein trimethyl indium is dissolved in a molar ratio of about 0.05 or greater with respect to said solvent.
KR1019940013089A 1993-07-27 1994-06-10 Liquid indium sources KR0144640B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/097,821 US5502227A (en) 1993-07-27 1993-07-27 Liquid indium source
US8/097,821 1993-07-27

Publications (2)

Publication Number Publication Date
KR950003196A KR950003196A (en) 1995-02-16
KR0144640B1 true KR0144640B1 (en) 1998-07-15

Family

ID=22265288

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940013089A KR0144640B1 (en) 1993-07-27 1994-06-10 Liquid indium sources

Country Status (7)

Country Link
US (1) US5502227A (en)
EP (1) EP0640610B1 (en)
JP (1) JP2596713B2 (en)
KR (1) KR0144640B1 (en)
CA (1) CA2124052C (en)
DE (1) DE69424007T2 (en)
TW (1) TW253888B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783716A (en) * 1996-06-28 1998-07-21 Advanced Technology Materials, Inc. Platinum source compositions for chemical vapor deposition of platinum
DE60301152T8 (en) * 2002-01-17 2006-04-27 Shipley Co., L.L.C., Marlborough Organoindium compounds for use in chemical vapor deposition
JP4714422B2 (en) * 2003-04-05 2011-06-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Method for depositing germanium-containing film and vapor delivery device
JP4689969B2 (en) * 2003-04-05 2011-06-01 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Preparation of Group IVA and Group VIA compounds
JP4954448B2 (en) * 2003-04-05 2012-06-13 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Organometallic compounds
RU2384652C2 (en) * 2004-05-20 2010-03-20 Акцо Нобель Н.В. Bubbler for constant delivery of vapour of solid chemical
US20060121192A1 (en) * 2004-12-02 2006-06-08 Jurcik Benjamin J Liquid precursor refill system
EP3173507A1 (en) * 2015-11-25 2017-05-31 Umicore AG & Co. KG Method for the organometallic gas phase deposition under use of solutions of indiumalkyl compounds in hydrocarbons

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4720560A (en) * 1984-10-25 1988-01-19 Morton Thiokol, Inc. Hybrid organometallic compounds, particularly for metal organic chemical vapor deposition
US4847399A (en) * 1987-01-23 1989-07-11 Morton Thiokol, Inc. Process for preparing or purifying Group III-A organometallic compounds
GB9116381D0 (en) * 1991-07-30 1991-09-11 Shell Int Research Method for deposition of a metal

Also Published As

Publication number Publication date
JP2596713B2 (en) 1997-04-02
EP0640610A3 (en) 1995-04-12
DE69424007T2 (en) 2000-09-14
JPH07150357A (en) 1995-06-13
CA2124052C (en) 1996-11-26
KR950003196A (en) 1995-02-16
EP0640610A2 (en) 1995-03-01
TW253888B (en) 1995-08-11
EP0640610B1 (en) 2000-04-19
CA2124052A1 (en) 1995-01-28
US5502227A (en) 1996-03-26
DE69424007D1 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
JP4874618B2 (en) Method for depositing film and vapor delivery apparatus
KR100468281B1 (en) Reagents for supplying metal complexes for chemical vapor deposition
Zanella et al. Organometallic precursors in the growth of epitaxial thin films of III-V semiconductors by metal-organic chemical vapor deposition (MOCVD)
Cowley et al. The single-source precursor concept. A case study of gallium arsenide
KR0144640B1 (en) Liquid indium sources
WO2004108985A2 (en) Methods for forming aluminum containing films utilizing amino aluminum precursors
Lee et al. Pyrolysis of 1, 1 dimethylhydrazine for OMVPE growth
Larsen et al. GaAs growth using tertiarybutylarsine and trimethylgallium
EP1335415B1 (en) Organoindium compounds for use in chemical vapour deposition processes
US20180127272A1 (en) Removal of moisture from hydrazine
US20110206863A1 (en) Organometallic compounds having sterically hindered amides
US4740606A (en) Gallium hydride/trialkylamine adducts, and their use in deposition of III-V compound films
Miller et al. Pyrolysis studies of the single-source gallium arsenide precursors [Me2Ga (. mu.-As-i-Pr2)] 3,[Me2Ga (. mu.-AsMe2)] 3,[Me2Ga (. mu.-As-t-Bu2)] 2, and [Et2Ga (. mu.-As-t-Bu2)] 2
Kuech Metal organic vapor phase epitaxy chemical kinetics
JPH01252776A (en) Formation of aluminum film by vapor growth
Beach Design of low-temperature thermal chemical vapor deposition processes
EP0443815B1 (en) Vapor deposition of arsenic-containing films
Speckman et al. Triethylarsenic and arsine as co-reagents: The novel manipulation of in-situ GaAs OMCVD growth chemistry to improve growth efficiency and safety
Lee et al. Pyrolysis of monomethylhydrazine for organometallic vapor-phase epitaxy (OMVPE) growth
JPH07300398A (en) Synthesis of group iiib-vb compound
US5250135A (en) Reagent source
JPH02230722A (en) Vapor growth method of compound semiconductor
JPS60500954A (en) Tetramethyltin dopant source for MOCVD grown epitaxial semiconductor layers
JP2023554569A (en) Trialkylaluminum compound and method for producing trialkylaluminum
WO2023122471A1 (en) Homoleptic bismuth precursors for depositing bismuth oxide containing thin films

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050414

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee