KR0141343B1 - Impedance mismatched non-biased optical bistable logic device - Google Patents
Impedance mismatched non-biased optical bistable logic deviceInfo
- Publication number
- KR0141343B1 KR0141343B1 KR1019940029926A KR19940029926A KR0141343B1 KR 0141343 B1 KR0141343 B1 KR 0141343B1 KR 1019940029926 A KR1019940029926 A KR 1019940029926A KR 19940029926 A KR19940029926 A KR 19940029926A KR 0141343 B1 KR0141343 B1 KR 0141343B1
- Authority
- KR
- South Korea
- Prior art keywords
- seed
- afp
- optical
- voltage
- mqw
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 55
- 230000000694 effects Effects 0.000 claims description 6
- 230000005684 electric field Effects 0.000 abstract description 8
- 230000001965 increasing effect Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 abstract description 2
- MHKLKWCYGIBEQF-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-ylsulfanyl)morpholine Chemical compound C1COCCN1SC1=NC2=CC=CC=C2S1 MHKLKWCYGIBEQF-UHFFFAOYSA-N 0.000 description 15
- 230000031700 light absorption Effects 0.000 description 15
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035236—Superlattices; Multiple quantum well structures
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
본 발명은 외부 전압 인가 없이도 광 쌍안정 특성이 가능한 ESQW S-SEED, ACQW S-SEED, SMQW S-SEED 등의 무전압 광 쌍안정 논리장치의 제작에 있어 기존의 구조를 이용할 경우 쌍안정 특성이 충분치 못한 점을 비대칭 페브리-패로(AFP) 공명 구조를 이용하여 극복함에 있어, 광 입력 저항 불일치된(impedance-mismatched) AFP 구조를 이용하여 무전압 광 쌍안정 특성을 향상시키는 방법에 관한 것이다.The present invention is bi-stable characteristics when using the conventional structure in the fabrication of voltage-free optical bistable logic devices such as ESQW S-SEED, ACQW S-SEED, SMQW S-SEED without the application of external voltage The present invention relates to a method of improving the voltage-free optical bistable characteristics by using an optical input resistance-mismatched AFP structure in overcoming the insufficient points using an asymmetric Fabry-Faro (AFP) resonance structure.
일반적으로 사용하는 광 입력 저항 일치된(impedance-matched) AFP 구조에서는 ON/OFF 강도비가 매우 큰 장점이 있으나, 광 시스템에서 더욱 중요한 반사율의 차이(△1R) 와 광 쌍안정 폭(△1)이 비교적 작다는 단점이 있었다.In the commonly used optical-impedance-matched AFP structure, the ON / OFF intensity ratio has a great advantage, but the difference in reflectance (Δ1R) and optical bistable width (Δ1), which are more important in optical systems, are significant. There was a disadvantage of being relatively small.
이를 해결하는 방법으로 MQW로 이루어진 진성 영역의 두께를 MQW의 주기수를 적절히 줄여 감소시키면 광 시스템에서 필요로 하는 적절한 ON/OFF 강도비를 유지하면서도 △1R과 △1를 크게 증가시킬 수 있는 저항 불일치된 AFP 구조를 제시한다.As a solution to this problem, reducing the thickness of the intrinsic region of the MQW by appropriately reducing the number of cycles of the MQW may result in a resistance mismatch that can greatly increase Δ1R and Δ1 while maintaining the proper ON / OFF intensity ratio required by the optical system. AFP structure is presented.
또한 본 발명의 구조에서는, 진성 영역의 두께가 저항 일치된 AFP 구조보다 더욱 감소되므로, PIN 다이오드를 이루는 물질에 의해 결정되는 주어진 내재 전압에 의한 내재 전계가 증가하여 광 쌍안정 특성을 더욱 크게 할 수 있는 구조이기도 하다.In addition, in the structure of the present invention, since the thickness of the intrinsic region is further reduced than that of the resist-matched AFP structure, the intrinsic electric field due to the given intrinsic voltage determined by the material of the PIN diode is increased, thereby making the optical bistable characteristic larger. It is also a structure.
Description
제 1a 도는 일반적인 반사형 SEED(Self Electro-optic Effect Device)구조를 나타낸 단면도.Figure 1a is a cross-sectional view showing a typical reflective self-optic effect device (SEED) structure.
제 1b 도는 AFP(Asymmetric Fabry-Perot)-SEED 구조를 나타낸 단면도Figure 1b is a cross-sectional view showing an Asymmetric Fabry-Perot (SFP) -SEED structure
제 2a 도는 동작파장인 여기자(exiton)파장에서의 반사형 SEED의 광흡수 계수와 광 흡수층 두께의 곱에 대한 반사율 특성을 나타낸 곡선.FIG. 2a is a curve showing reflectance characteristics of the product of the light absorption coefficient of the reflective SEED and the thickness of the light absorption layer at an exciton wavelength, which is an operating wavelength.
제 2b 도는 비선형 광 흡수 특성을 갖는 다중 양자 우물의 여기자 파장에서의 수직 전계에 대한 광 흡수 계수의 변화.2b is a change in light absorption coefficient with respect to the vertical field at the exciton wavelength of a multi-quantum well having nonlinear light absorption characteristics.
제 3a 도는 AFP-SEED의 광 쌍안정 특성에서의 ON/OFF강도비의 광 흡수 계수와 광 흡수층 두께의 곱에 대한 특성을 나타내는 곡선의 일예로서, 점 A1은 저항 일치 AFP-SEED, 점 B1은 저항불일치 AFP-SEED의 일례.Figure 3a is an example of a curve showing the characteristic of the product of the light absorption coefficient of the ON / OFF intensity ratio and the light absorption layer thickness in the optical bistable characteristics of the AFP-SEED, the point A1 is the resistance match AFP-SEED, the point B1 is Example of resistance mismatch AFP-SEED.
제 3b 도는 AFP-SEED의 광 쌍안정 특성에서의 ON/OFF 반사율 차이의 광 흡수층 두께의 곱에 대한 특성을 나타낸 곡선의 일예로서, 점 A1은 저항 일치 AFP-SEED, 점 B1은 저항 불일치 AFP-SEED의 일례.Figure 3b is an example of a curve showing the characteristic of the product of the light absorption layer thickness of the ON / OFF reflectance difference in the optical bistable characteristics of the AFP-SEED, the point A1 is the resistance match AFP-SEED, the point B1 is the resistance mismatch AFP- An example of SEED.
제 4a 도는 무전압 광 쌍안정을 가능케 하는 S(Symmetric)-SEED의 회로도.Figure 4a is a circuit diagram of a symmetric (S) -SEED to enable voltage-free optical bistable.
제 4b 도는 무전압 광쌍안정을 가능케 하는 S-SEED의 부하 곡선.4b is a load curve of S-SEED that enables voltageless photo bistable.
제 5 도는 저항 불일치 AFP-NOBS(Nonbiased Optical Bistable S-SEED)와 본 발명에 따른 저항 불일치 AFP-NOBS의 광 쌍안정 특성의 일예.5 is an example of optical bistable characteristics of resistance mismatch AFP-NOBS (Nonbiased Optical Bistable S-SEED) and resistance mismatch AFP-NOBS according to the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
1 : 반도체 기판1: semiconductor substrate
2 : 도우핑 안된 높은 굴절율의 λ/4n 층2: undoped, high refractive index λ / 4n layer
3 : 도우핑 안된 낮은 굴절율의 λ/4n 층3: low λ / 4n layer of undoped low refractive index
4 : N+의 캐소우드 접촉층(또는, P+애노우드 접촉층)4: cathode contact layer of N + (or P + anode contact layer)
5 : 도우핑 안된 완충층5: undoped buffer layer
6 : 도우핑 안된 다중 양자 우물을 이루는 장벽층6: barrier layer forming an undoped multiple quantum well
7 : 도우핑 안된 다중 양자 우물을 이루는 우물층7: well layer forming an undoped multiple quantum well
8 : P+애노우드 접촉층(또는, N+캐소우드 접촉층)8: P + anode contact layer (or N + cathode contact layer)
SEED : self electro-optic effect deviceSEED: self electro-optic effect device
S-SEED : 두 개의 PIN다이오드 SEED가 직렬로 연결된 대칭형 SEEDS-SEED: Symmetrical SEED with two PIN diode SEEDs connected in series
NOBS : nonbiased optical bistable S-SEED(무전압 광 쌍안정 S-SEED)NOBS: nonbiased optical bistable S-SEED
Rb : 하부 거울의 반사율Rb: reflectance of the lower mirror
Rf : 상부 거울의 반사율Rf: reflectance of the upper mirror
MQW : 다중 양자 우물(multiple quantum well)MQW: multiple quantum wells
ESQW : 얕은 양자 우물(extremely shallow quantum well)ESQW: extremely shallow quantum well
ACQW : 비대칭 양자 우물(asymmetric coupled quantum well)ACQW: asymmetric coupled quantum well
SMQW : 긴장된 양자 우물(strained MQW)SMQW: strained MQW
CR : 강도비(ON/OFF contrast ratio)CR: ON / OFF contrast ratio
△R : ON/OFF 반사율의 차이ΔR: Difference between ON / OFF reflectance
△ : 광 쌍안정 폭△: light bistable width
αon: ON-상태에서의 광 흡수 계수α on : light absorption coefficient in ON-state
αoff: OFF-상태에서의 광 흡수 계수α off : light absorption coefficient in OFF state
D : 광 흡수층(우물층)의 총 두께D: total thickness of the light absorbing layer (well layer)
±Vop: 무전압 광 쌍안정 특성에서의 동작 전압± V op : Operating voltage at no-voltage optical bistable
Vbi: PIN 다이오드 SEED의 내재 전압(built-in voltage)V bi : Built-in voltage of PIN diode SEED
Iph: PIN 다이오드 SEED의 광전류I ph : Photocurrent of PIN Diode SEED
D1 : S-SEED를 구성하는 첫 번째 다이오드D1: the first diode that makes up S-SEED
D2 : S-SEED를 구성하는 두 번째 다이오드D2: second diode constituting S-SEED
Pin: 입사광 세기P in : incident light intensity
Pout: 출력광 세기P out : Output light intensity
본 발명은 외부 전압 인가 없이도 광 쌍안정 특성을 크게 증가 시킬 수 있는 비대칭 패브리-페로(Asymmetric Fabry-Perot : 이하, 'AFP'라 함) 공명 구조를 이용한 무전압 광 쌍안정 대칭형 시드(Nonbiased Optical Bistable Symmetric self electro-optic effect device : 이하, 'NOBS'라 함)에 관한 것으로, 더 구체적으로는 기존의 광 입력 저항이 일치된(impedance matched) 구조에서의 상대적으로 작은 ON/OFF 반사율 차이(△R)와 광 쌍안정 폭(△)을 극대화시킬 수 있는 NOBS 구조에 관한 것이다.The present invention is a non-voltage optical bistable symmetric seed (Nonbiased Optical Bistable) using an asymmetric Fabry-Perot (hereinafter referred to as 'AFP') resonance structure that can greatly increase the optical bistable characteristics without applying an external voltage Symmetric self electro-optic effect device (hereinafter referred to as 'NOBS'), and more specifically, relatively small ON / OFF reflectance difference (ΔR) in an existing matched structure of optical input resistance. ) And the optical bistable width (△).
광 쌍안정 특성(optical bistability)은 광 신호 처리에 있어 매우 중요한 특성이다.Optical bistability is a very important property in optical signal processing.
다중 양자 우물(Multiple Quantum Well : 이하 'MQW'라 함)을 이용한 시드(Self Electro-optic Effect Device : 이하,'SEED'라 함)는 이러한 광 쌍안정 특성을 보이는 대표적인 소자이다.A seed using a multiple quantum well (hereinafter referred to as 'MQW') (Self Electro-optic Effect Device (hereinafter referred to as 'SEED')) is a representative device exhibiting such optical bistable characteristics.
특히, SEED는 일반적인 반도체 공정을 이용하여 2차원의 광 쌍안정 소자를 구현하기 용이하여 병렬 광 신호 처리에 매우 적합한 장치로 알려져 있다.In particular, SEED is known to be a device suitable for parallel optical signal processing because it is easy to implement a two-dimensional optical bistable device using a general semiconductor process.
SEED는 일반적으로 MQW를 진성 영역(intrinsic region)으로 하는 PIN 다이오드 구조를 이루고 있다. 광 쌍안정 특성을 보이기 위해서는 두 개의 PIN 다이오드 SEED를 직렬로 연결한 대칭형 SEED(Symmetric Self Electro-optic Effect Device : 이하, 'S-SEED'라 함)를 구성하여 역방향의 전압을 인가하여야 한다.SEED generally has a PIN diode structure in which MQW is an intrinsic region. In order to show the optical bistable characteristic, a symmetrical SEED (hereinafter referred to as 'S-SEED') in which two PIN diode SEEDs are connected in series must be configured to apply reverse voltage.
따라서, 반도체 제작시 역방향 전압 인가를 위한 금속선, S-SEED소자가 간 연결을 위한 금속선, 와이어 본딩(wire bonding)에 의한 전선 등이 필요하게 된다.Therefore, when manufacturing a semiconductor, a metal wire for applying reverse voltage, a metal wire for connecting between S-SEED devices, a wire by wire bonding, and the like are required.
이와 같은 기판 상의 전선 배열과 외부 전선은 전선간 상호 유도 작용(inductive coupling), 전자장에 의한 상호 간섭(electromagnetic interference) 및, 누화(crosstalk) 등을 초래하기도 한다.Such an arrangement of wires and external wires on the substrate may cause inductive coupling between the wires, electromagnetic interference by electromagnetic fields, crosstalk, and the like.
특히, 2차원 S-SEED 배열을 형성할 경우에는 전원과 연결되는 각 S-SEED의 캐소우드(cathode)들이 모두 연결되어야 하므로(전원과 연결되는 애노우드(anode)도 마찬가지임) 각 S-SEED들은 전기적으로 분리되어 질 수 없게 된다.In particular, when forming a two-dimensional S-SEED array, all the cathodes of each S-SEED connected to the power supply must be connected (as is the anode connected to the power supply). They cannot be separated electrically.
따라서, 2차원 배열을 이루는 S-SEED의 수가 증가하게 되면 상기한 문제들이 더욱 심각하게 되어 소자의 수율이 떨어지고 그 집적도도 낮아지게 된다.Therefore, as the number of S-SEEDs forming a two-dimensional array increases, the above problems become more serious, resulting in a lower yield of devices and lower integration.
또한, 기판 상의 금속선과 와이어 본딩에 의한 전선은 SEED 광 변조기(modulator) 및 S-SEED회로를 형성할 때 기생적인(parasitic) 수동소자(passive element) 성분으로서 작용되기 때문에 고속 스위칭에 있어 적합하지 못한 단점도 있다.In addition, wires by wire bonding with metal wires on a substrate are not suitable for high-speed switching because they act as parasitic passive element components when forming SEED modulators and S-SEED circuits. There are also disadvantages.
일반적인 역 방향 전압을 필요로 하는 S-SEED 및 S-SEED 배열들이 갖는 상기한 문제점들은 전압 인가 없이도 광 쌍안정 논리 기능을 할 수 있는 무전압 광 쌍안정 S-SEED(이하, 'NOBS'라 함)가 가능하면 제거될 수 있게 된다.The above problems with S-SEED and S-SEED arrays, which require a general reverse voltage, are known as voltage-free optical bistable S-SEEDs (hereinafter referred to as 'NOBS') that can function as optical bistable logic without voltage application. ) Can be removed if possible.
기존의 전압 없이도 광 쌍안정을 가질 수 있는 NOBS로는 MQW를 얕은 양자 우물(Extremely Shallow Quantum Well : 이하, 'ESQW'라 함), 비대칭 양자 우물(Asymmetric Coupled Quantum Well : 이하, 'ACQW'라 함), 긴장된 MQW(Strained MQW : 이하, 'SMQW'라 함) 등을 이용한 구조가 가능한 것으로 알려져 있다. 그러나 이들을 기존의 일반적인 반사형의 SEED구조에 적용할 경우에는 즉, 많은 양의 광 흡수를 위하여 전성 영역을 이루는 MQW의 총 두께를 1㎛ 정도로 크게 하였을 경우에는 무전압 광 쌍안정 특성이 매우 작다는 결점이 있게 된다.NOBS that can have optical bistable without conventional voltage includes MQW as a shallow quantum well (Extremely Shallow Quantum Well: 'ESQW'), Asymmetric Coupled Quantum Well (hereinafter, 'ACQW') It is known that a structure using strained MQW (hereinafter referred to as SMQW) is possible. However, when they are applied to the conventional reflective SEED structure, that is, when the total thickness of the MQW constituting the malleable region is increased to about 1 μm for a large amount of light absorption, the voltage-free optical bistable characteristics are very small. There is a flaw.
이는 NOBS를 가능케 하는 PIN 다이오드의 내재 전압에 의한 내재 전계가 일반적인 1㎛의 진성 영역 두께를 갖는 SEED 구조에서는 작기 때문이다.This is because the intrinsic electric field due to the intrinsic voltage of the PIN diode which enables NOBS is small in a SEED structure having a typical intrinsic region thickness of 1 mu m.
이러한 NOBS의 문제점을 해결하고, 특히 ON/OFF 강도비(ON/OFF Contrast Ratio : 이하, 'CR'라 함)들 증가시키기 위해 제시된 방법으로는, 광 입력 저항이 일치된(impedance matched) AFP 공명 구조를 이용하는 것이 제시된 바 있다.In order to solve this problem of NOBS and in particular to increase the ON / OFF Contrast Ratio (hereinafter referred to as 'CR'), the AFP resonance of the optical input impedance matched (impedance matched) The use of structures has been suggested.
이는 MQW의 광 흡수 정도를 고려할 때, 광 입력 저항이 일치된 AFP 공명 구조를 구성하기 위해서는 필요한 광 흡수 양자우물의 총 두께가 줄어들어 일반적인 구조보다 주어진 내재 전압(built-in voltage)에 대한 내재 전계를 크게 증가 시킬 수 있기 때문이다.Considering the degree of light absorption of the MQW, the total thickness of the light-absorbing quantum wells required to construct an AFP resonance structure with a matched optical input resistance is reduced, which results in an intrinsic electric field for a given built-in voltage rather than the general structure. Because it can increase greatly.
그러나, OFF-상태의 반사율을 0(zero)으로 하는 광입력 저항이 일치된 AFP를 사용할 경우에는 CR이 매우 크다(이론적으로는 무한대 임)는 장점이 있으나, ON-상태와 OFF-상태의 반사율 차이(△R)와 광 쌍안정 폭(△)이 상대적으로 작다는 단점이 있게 된다.However, there is an advantage in that the CR is very large (theoretical infinity) in the case of using an AFP whose optical input resistance is set to zero (0) in the OFF-state, but the reflectance in the ON-state and the OFF-state is advantageous. There is a disadvantage that the difference ΔR and the light bistable width Δ are relatively small.
본 발명의 목적은 외부 전압 인가 없이도 광 쌍안정 특성을 크게 증가시킬 수 있는 AFP 공명 구조를 이용한 NOBS의 제작에 있어서 CR을 적절히 유지하면서 △R과 △를 극대화 시키는 구조를 제공하는 것이다.It is an object of the present invention to provide a structure that maximizes ΔR and Δ while properly maintaining CR in the fabrication of NOBS using an AFP resonance structure capable of greatly increasing optical bistable characteristics without applying an external voltage.
제 1a도는 일반적인 반사형의 SEED 구조의 일 예를 보이고 있다.Figure 1a shows an example of a typical reflective SEED structure.
기판(1)위에 광학 두께가 MQW 여기자 동작 파장의 1/4이 되는 큰 굴절율을 갖는 제 1의 QWL(Quarter-Wave Layer)(2)과 작은 굴정율을 갖는 제 2의 QWL(3)을 주기적으로 성장시킨 하부 거울층 위에 MQW를 진성 영역으로 하는 PIN 다이오드가 형성되어 있고, 일반적으로 최상위의 층에 무반사(antireflection) 처리를 하여 소자의 광 흡수 효율을 증가시키도록 되어 있다.Periodically, a first QWL (Quarter-Wave Layer) 2 having a large refractive index and a second QWL 3 having a small refractive index are formed on the substrate 1 with an optical thickness of 1/4 of an MQW exciton operating wavelength. A PIN diode having an MQW as an intrinsic region is formed on the lower mirror layer grown by using the anti-reflection treatment to increase the light absorption efficiency of the device.
PIN 다이오드의 형성에 있어서, 층(4)를 n+층으로, 층(8)을 p+층으로 형성하여도 되고, 반대로 층(4)를 p+층으로, 층(8)을 n+층으로 형성하여도 된다.In the formation of a PIN diode, the layer 4 may be formed of an n + layer, the layer 8 may be formed of a p + layer, on the contrary, the layer 4 may be a p + layer, and the layer 8 may be an n + layer. It may be formed as.
양자 우물 층을 제외한 p층, n층, 장벽층, 완충층, 거울층은 모두 동작 파장에 대해 광 흡수가 없는 물질이어야 한다.Except for the quantum well layer, the p layer, the n layer, the barrier layer, the buffer layer, and the mirror layer should all be light absorbing materials for the operating wavelength.
한편, 제 1b 도와 같이, QWL을 상부에 적층하여 상부 거울층을 이루고, 하부 거울부터 상부 거울까지의 두께(L)인 광학거리(optical length)가 동작 파장의 1/4의 정수배가 되도록 조절하면 AFP의 모드와 여기자의 공명 파장이 일치되는(phase-matched) AFP 구조를 이루게 된다.Meanwhile, as shown in FIG. 1B, when the QWL is stacked on top to form an upper mirror layer, the optical length, which is the thickness L from the lower mirror to the upper mirror, is adjusted to be an integer multiple of 1/4 of the operating wavelength. The mode of the AFP and the resonant wavelength of the excitons form a phase-matched AFP structure.
이때, 상부 거울층을 위한 QWL을 적층시키지 않더라도 공기/반도체의 계면에 의한 상부 거울의 반사율(Rf)이 0.32인 AFP 구조를 얻는 것이 가능하게 된다.At this time, it is possible to obtain an AFP structure in which the reflectance Rf of the upper mirror by the interface of the air / semiconductor is 0.32 even without stacking the QWL for the upper mirror layer.
제 2a 도는 상기한 반사형 SEED의 MQW의 광 흡수 계수(α)와 광 흡수층의 총 두께(D)의 곱에 따른 반사율의 일 예를 나타낸 것으로, 무반사층이 입혀진 일반적인 반사형 SEED 구조, 상부 거울의 반사율(Rf)가 각각 0.32, 0.5인 AFP-SEED의 구조에 관한 것이다Figure 2a shows an example of the reflectance according to the product of the light absorption coefficient (α) of the MQW of the reflective SEED described above and the total thickness (D) of the light absorbing layer, a general reflective SEED structure with an antireflective layer, upper mirror Is related to the structure of AFP-SEED whose reflectance Rf is 0.32 and 0.5, respectively.
제 2a 도에서, A1과 A2는 각각 Rf = 0.32 인 AFP-SEED와 Rf = 0.5인 AFP-SEED의 광 입력 저항 일치(impedance-matching)조건을 만족하는 αD의 값을 표시하고 있다.In FIG. 2A, A1 and A2 denote values of αD satisfying the optical input resistance-matching conditions of AFP-SEED with Rf = 0.32 and AFP-SEED with Rf = 0.5, respectively.
MQW의 광 흡수 계수(α)는 MQW의 구조에 의해 결정되는 것이므로, 일반적으로, 제 2b도에 나타낸 것과 같이, MQW의 여기자 공명 파장에서 전계의 증가에 따라 감소하게 된다.Since the light absorption coefficient? Of the MQW is determined by the structure of the MQW, it generally decreases with the increase of the electric field at the exciton resonance wavelength of the MQW, as shown in FIG.
그러므로 전계 증가에 따른 α의 감소는 제 2a 도에서 보이는 바와 같이 반사율(R)의 증가를 유도하게 되어 노멀리-오프(normally-off) 즉, 전계의 증가에 따라 반사율이 증가하는, 조건을 만족하게 되어 광 쌍안정 특성을 갖게 되는 것이다. 이와 같은 노멀리-오프 조건은 AFP-SEED의 경우 제 2a 도에서 광 입력 저항 일치를 만족하는 지점 A1과 A2의 왼쪽 영역에서 가능하다.Therefore, the decrease of α as the electric field increases leads to an increase in the reflectance R as shown in FIG. 2A, and satisfies the condition that the reflectivity increases as the electric field increases normally-off. Thus, the optical bistable characteristics will be obtained. Such a normally-off condition is possible in the left region of the points A1 and A2 satisfying the optical input resistance match in FIG. 2A for AFP-SEED.
일 예로서, 무반사층이 입혀진 SEED와 Rf = 3.2인 AFP-SEED의 αoff(OFF-상태의 α)와 D의 곱에 대한 ON-상태와 OFF-상태의 반사율의 비율(CR)과 차이(△R)를 αon/αoff의 값이 0.35인 경우를 고려하여 각각 제 3a 및 제 3b 도에서 보이고 있다.As an example, the ratio (CR) of the reflectance of the ON-state and the OFF-state to the product of α off (α of OFF-state) and D of an AFP-SEED having an anti-reflective layer and Rf = 3.2 ( ΔR) is shown in FIGS. 3A and 3B, respectively, considering the case where the value of α on / α off is 0.35.
AFP-SEED에 있어서, 광 입력 저항이 일치된 조건을 만족하는 점 A1에서는 제 3a 도에서 보이듯이 CR의 값이 매우 클 수 있으나 제 3b도의 △R값은 0.2 이하로 작은 값이 된다.In AFP-SEED, at the point A1 where the optical input resistance satisfies the matched condition, the value of CR may be very large as shown in FIG. 3a, but the ΔR value of FIG. 3b is less than 0.2.
한편, 광 입력 저항 불일치 조건을 만족하는 점 B1에서는 CR의 값은 10정도로 충분한 값을 유지하면서 △R의 값을 0.3정도로 유지할 수 있게 된다.On the other hand, at the point B1 that satisfies the optical input resistance mismatch condition, the value of CR can be maintained at about 0.3 while maintaining a sufficient value of about 10.
특히, NOBS에 있어서는 외부 인가 전압 없이 내재 전압에 의해서만 α의 값을 변화시키므로, αon/αoff의 값이 0.35보다 다소 작게 될 수 있어서 △R의 값이 상대적으로 작게 되고, CR이 필요한 최소치를 유지하도록 하며 △R의 값을 극대화시키는 것이 더욱 필요하게 된다. 여기서 광입력 저항이 불일치된 AFP-SEED는 페이즈 매칭(phase-matching) 즉, AFP의 모드와 여기자의 공명 파장이 일치되는 조건을 만족하는 하부거울과 상부거울의 거리(L)를 유지하며, MQW의 주기수를 감소시켜 쉽게 구현할 수 있다.In particular, in NOBS, since the value of α is changed only by the intrinsic voltage without externally applied voltage, the value of α on / α off may be somewhat smaller than 0.35, so that the value of ΔR is relatively small and the minimum required CR is required. It is more necessary to maintain and maximize the value of ΔR. Here, AFP-SEED with mismatched optical input resistance maintains phase-matching, that is, the distance between the lower mirror and the upper mirror (L) that satisfies the condition that the AFP mode matches the resonance wavelength of the excitons. It can be easily implemented by reducing the number of cycles.
제 4a 도는 NOBS를 이루는 회로도를 보이고 있다.Figure 4a shows a circuit diagram forming a NOBS.
인가 전압이 없는 상태이므로 점 V1 과 V2 사이의 전압은 제 4b도의 NOBS의 부하 곡선에 나타나 있는 것과 같이 안정된 동작점의 전압 Vop와 -Vop로 생각할 수 있다.Since there is no applied voltage, the voltage between points V1 and V2 can be considered as the voltages V op and -V op at stable operating points as shown in the load curve of NOBS in FIG. 4b.
이는 NOBS가 광 쌍안정성을 보일 때 각 다이오드에 걸리는 전계가 (Vbi-Vop)/ti와 (Vbi+Vop)/ti 이란 뜻이다.This means that the electric field across each diode is (V bi -V op ) / ti and (V bi + V op ) / ti when NOBS shows optical bistable.
ti는 진성 영역의 총 두께이다.ti is the total thickness of the intrinsic region.
따라서 두 다이오드 사이의 전계 차이를 인가 전압이 없는 상태에서 크게 하기 위해서는 될 수 있는 데로 ti를 줄이는 것이 유리하기도 하다.Therefore, it is advantageous to reduce ti as much as possible to increase the electric field difference between two diodes in the absence of applied voltage.
광 입력 저항이 불일치(impedance-mismatching)된 AFP-SEED는 광 입력 저항이 일치(impedance -matching) 된 AFP-SEED보다 작은 광흡수층의 총두께(D)에 의하여 구성되므로 ti를 더욱 감소시킬 수도 있는 것이다.AFP-SEED with impedance-mismatching optical input resistance is made up of the total thickness (D) of the light absorption layer smaller than AFP-SEED with impedance-matching optical input resistance, which may further reduce ti. will be.
상기한 NOBS의 원리를 바탕으로 하는 NOBS의 광 쌍안정 특성의 일 예가 제 5 도에 나타내었다.An example of the optical bistable properties of NOBS based on the principle of NOBS described above is shown in FIG.
저항 일치와 불일치된 AFP-NOBS의 차이점을 확실히 알 수 있게 된다. 저항 일치된 AFP- NOBS는 저항 불일치된 AFP-NOBS보다 OFF-상태의 값이 0(zero)에 가깝기 때문에 CR은 확실히 크나, △R와 광 쌍안정 폭(△)은 상대적으로 작은 값을 갖게 된다.The difference between AFP-NOBS and resistance match is obvious. The resistance matched AFP-NOBS has a larger CR because the OFF-state value is closer to zero than the resistance mismatched AFP-NOBS, but ΔR and optical bistable width (△) are relatively small. .
특히, NOBS의 경우에는 ON-상태의 반사율의 값이 저항 일치된 경우에는 매우 작은 편이어서 광 시스템에 응용하기엔 다소 부적합하다.In particular, in the case of NOBS, the value of the reflectance in the ON-state is very small when the resistance is matched, which is somewhat unsuitable for the application in the optical system.
따라서, 본 발명에서 제시하는 광 입력 저항 불일치의 개념을 이용하여 AFP-SEED의 구조를 설계하면 광 시스템에서 필요로 하는 적절한 CR을 유지하며, 광 시스템 응용에 있어 필요한 정도의 △R과 광 쌍안정 폭(△)을 갖는 NOBS의 실현이 가능한 효과가 있다.Therefore, designing the structure of the AFP-SEED using the concept of optical input resistance mismatch proposed in the present invention maintains the appropriate CR required for the optical system, and the degree of ΔR and optical bistable required for the optical system application. There is an effect that the realization of a NOBS having a width Δ is possible.
Claims (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940029926A KR0141343B1 (en) | 1994-11-15 | 1994-11-15 | Impedance mismatched non-biased optical bistable logic device |
JP30108394A JP2641705B2 (en) | 1993-12-03 | 1994-12-05 | Logic device exhibiting optical bistability without externally applied voltage and method of manufacturing the same |
US08/451,059 US5623140A (en) | 1994-11-15 | 1995-05-25 | Nonbiased bistable optical device having a lower mirror having a plurality of reflective layers repeatedly formed on a substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019940029926A KR0141343B1 (en) | 1994-11-15 | 1994-11-15 | Impedance mismatched non-biased optical bistable logic device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR960019808A KR960019808A (en) | 1996-06-17 |
KR0141343B1 true KR0141343B1 (en) | 1998-06-01 |
Family
ID=19397944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940029926A KR0141343B1 (en) | 1993-12-03 | 1994-11-15 | Impedance mismatched non-biased optical bistable logic device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0141343B1 (en) |
-
1994
- 1994-11-15 KR KR1019940029926A patent/KR0141343B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR960019808A (en) | 1996-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100236314B1 (en) | Fabry-perot modulator | |
US5909303A (en) | Optical modulator and optical modulator array | |
US5101293A (en) | Electrooptic device for modulation of intensity and phase of transmitted or reflected light at discrete operating wavelengths | |
Gourley et al. | Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1− xAs for use as optical interferometric elements | |
US4518934A (en) | Optical bistable device | |
US4900134A (en) | Optical device | |
CA1293794C (en) | Apparatus comprising a monolithic nonlinear fabry-perot etalon, and method for producing same | |
KR0141343B1 (en) | Impedance mismatched non-biased optical bistable logic device | |
US7532379B2 (en) | Optical modulator with side access | |
JP2641705B2 (en) | Logic device exhibiting optical bistability without externally applied voltage and method of manufacturing the same | |
US5623140A (en) | Nonbiased bistable optical device having a lower mirror having a plurality of reflective layers repeatedly formed on a substrate | |
KR970006606B1 (en) | Optical self electro-optic effective device and method of manufacturing the same | |
Jennings et al. | Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity | |
Kwon et al. | Large non‐biased all‐optical bistability in an electroabsorption modulator using p‐i‐n‐i‐p diode and asymmetric Fabry–Perot cavity structure | |
KR0170191B1 (en) | Non-biased optical bistable device | |
Kwon et al. | A novel all-optical bistable device in a noninterferometric double pi (ESQW's)-n diode structure | |
WO1989006369A1 (en) | Electrooptic modulator | |
Noharet et al. | Multiple quantum-well spatial light modulators for optical signal processing | |
AU652479B2 (en) | Electrooptic modulator | |
Obeidat et al. | Active antireflection coating electrooptic modulator | |
US5093746A (en) | Current injection modulator | |
AU653261B2 (en) | Current injection modulator | |
CA2017971C (en) | Semiconductor mesa structured optical processing devices, with added side- surface recombination centers to improve the speed of operation | |
KR0170481B1 (en) | High efficiency nonbiased optical bistable with full reflection thin film | |
Choi et al. | Impedance-Mismatched Asymmetric Fabry-Perot S-SEED for Noniased Optical Bistability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080307 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |