KR0136600B1 - The structure of solar cell and the fabrication method thereof - Google Patents

The structure of solar cell and the fabrication method thereof

Info

Publication number
KR0136600B1
KR0136600B1 KR1019890013192A KR890013192A KR0136600B1 KR 0136600 B1 KR0136600 B1 KR 0136600B1 KR 1019890013192 A KR1019890013192 A KR 1019890013192A KR 890013192 A KR890013192 A KR 890013192A KR 0136600 B1 KR0136600 B1 KR 0136600B1
Authority
KR
South Korea
Prior art keywords
amorphous silicon
layer
silicon layer
solar cell
deposited
Prior art date
Application number
KR1019890013192A
Other languages
Korean (ko)
Other versions
KR910007168A (en
Inventor
박병우
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019890013192A priority Critical patent/KR0136600B1/en
Publication of KR910007168A publication Critical patent/KR910007168A/en
Application granted granted Critical
Publication of KR0136600B1 publication Critical patent/KR0136600B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

내용없음No content

Description

태양전지의 구조 및 그 제조방법Structure of solar cell and its manufacturing method

제1도는 본 발명의 제조방법에 다른 플로우 챠트.1 is a flow chart according to the manufacturing method of the present invention.

제2도는 본 발명에 의한 태양전지의 구조도.2 is a structural diagram of a solar cell according to the present invention.

제3도는 종래 태양전지의 구조도.3 is a structural diagram of a conventional solar cell.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 유리기판 2 : ITO1: glass substrate 2: ITO

3 : SiO2층 4 : n형 비정질실리콘층3: SiO 2 layer 4: n-type amorphous silicon layer

5 : 인트린식 비정질실리콘층 6 : p형 비정질실리콘층5: intrinsic amorphous silicon layer 6: p-type amorphous silicon layer

7 : 전극7: electrode

본 발명은 태양전지의 구조 및 그 제조방법에 관한 것으로, 특히, 광전변환효율 특성 유지가 용이하도록 한 것이다.The present invention relates to a structure of a solar cell and a manufacturing method thereof, and in particular, to facilitate the maintenance of photoelectric conversion efficiency characteristics.

종래의 비정질 실리콘 태양전지의 제조는 제3도와 같이 유리기판(1)위에 ITO(Indium Tin Oxide)(2)를 증착시키고 레이저 또는 메커니컬 스크라이빙(scribing)패터닝을 한 다음 n형 비정질 실리콘층(4)을 PH3가스를 CVD로 층착시키고 순수한 SiH4가스만을 사용하여 인트린식(intrinsic)비정질 실리콘(5)을 증착시켰다. 다음에 B2H6가스와 SiH4가스를 일정비율로 혼합하여 주입하면서 p형 비정질 실리콘층(6)을 증착시키고 메틸마스크를 사용하여 알루미늄(Al)을 증착시켜 개별전극(7)을 형성하였다.A conventional amorphous silicon solar cell is manufactured by depositing ITO (Indium Tin Oxide) 2 on a glass substrate 1 as shown in FIG. 3, and performing laser or mechanical scribing patterning, followed by an n-type amorphous silicon layer ( 4) was deposited with PH 3 gas by CVD and deposited intrinsic amorphous silicon (5) using pure SiH 4 gas only. Next, the p-type amorphous silicon layer 6 was deposited while mixing and injecting B 2 H 6 gas and SiH 4 gas at a constant ratio, and aluminum (Al) was deposited using a methyl mask to form individual electrodes 7. .

상기와 같은 종래 기술에 있어서는 투전도막을 통과한 빛이 비정질 실리콘층에 도달하면 빛이 지니고 있는 광자에너지가 비정질 실리콘이 지나는 특성 때문에 전자와 정공을 발생시켜 광학적 에너지가 전기적 에너지로 변환되었으며, 이때, 투명 전극은 일측 전극으로 작동하면서 빛을 투과시켜야 하기 때문에 가시광 영역에서 80%이상의 투과율을 보여야 하며 전기적 저항이 50Ω/sp이하 이어야 했다.In the prior art as described above, when the light passing through the transparent conductive film reaches the amorphous silicon layer, the photon energy of the light is generated by electrons and holes because of the characteristic that the amorphous silicon passes, and the optical energy is converted into electrical energy. Since the transparent electrode had to transmit light while operating as one electrode, the transparent electrode had to have a transmittance of 80% or more in the visible region and an electrical resistance of 50 Ω / sp or less.

그러나 , 종래 기술에서는 투명전극으로 사용되는 ITO(2)에서 인다움이 비정질 실리콘층으로 통과되어 디바이스 전체가 열화되므로 광전변환 효율이 저하되었고 디바이스 수명도 감소되는 결점이 있었다.However, in the prior art, since ITO (2) used as a transparent electrode passes through the amorphous silicon layer and the whole device is deteriorated, photoelectric conversion efficiency is lowered and device lifetime is also reduced.

본 발명은 이와 같은 종래의 결점을 감안하여 안출한 것으로 이를 첨부된 도면 제1도와 제2도에 의하여 상세히 설명하면 다음과 같다.The present invention has been made in view of the above conventional drawbacks and will be described in detail with reference to FIGS. 1 and 2 of the accompanying drawings.

본 발명은 크리닝 공정을 끝낸 유리기판(1)위에 ITO(2)투명전극을 증착시키고 레이저로 패터닝을 한 다음 순수한 SiH4가스를 약 200Å정고 CVD방법으로 증착시킨다.The present invention deposits an ITO (2) transparent electrode on the glass substrate (1) after the cleaning process, patterned with a laser, and then purified SiH 4 gas by about 200 mV and deposited by CVD.

이후, 증착이 끝난 동일 진공실 내에서 SiH4가스장비를 다운시킨 후 산소를 일정량 통하게 하면서 13.56 MHz의 리디오파 전원을 인가하여 플라즈마 방전을 유도하므로 기 증착된 박막실리콘층이 SiO2층(3) 또는 SiOx(여기서 1X2)층으로 형성되게 한다.Thereafter, the SiH 4 gas equipment is turned down in the same vacuum chamber after the deposition is completed, and then a predetermined amount of oxygen is applied to the plasma wave by applying a 13.56 MHz radio wave power so that the pre-deposited thin silicon layer is a SiO 2 layer (3) or To form a SiOx (where 1 × 2) layer.

다음에 PH3가스와 SiH4가스를 혼합하여 PE-CVD방법으로 n형 비정질 실리콘층(4)을 형성하고 이에 인트린식 비정질 실리콘층(5)을 순수한 SiH4를 사용하여 증착시킨 후 B2H6가스와 SiH4가스를 혼합하여 p형 비정질 실리콘층(6)을 증착시킨 다음 종래와 동일한 방법으로 알루미늄전극(7)을 증착시킨다.Next, PH 3 gas and SiH 4 gas are mixed to form an n-type amorphous silicon layer 4 by PE-CVD method, and the intrinsic amorphous silicon layer 5 is deposited using pure SiH 4 , followed by B 2 H 6 gas and SiH 4 gas are mixed to deposit the p-type amorphous silicon layer 6, and then the aluminum electrode 7 is deposited in the same manner as in the prior art.

이와같은 방법으로 제조되는 본 발명은 기본적으로 광전변환 원리를 이용하는 것은 종래와 동일하나 ITO(2)내의 인디움을 산소 플라즈마를 이용하여 형성한 SiO2층(3)이 막아주기 때문에 이 인디움이 비정질 실리콘층으로 통과되지 못하여 디바이스의 광전변환 효율을 유지시켜 주고 디바이스의 열화가 방지돨수 있다.In the present invention manufactured by the above method, the photoelectric conversion principle is basically the same as the conventional one, but the indium is prevented because the SiO 2 layer 3 formed by the oxygen plasma blocks the indium in the ITO 2. It can not pass through the amorphous silicon layer to maintain the photoelectric conversion efficiency of the device can be prevented deterioration of the device.

이와같이 산소 플라즈마를 이용하여 SiO2층(3)을 형성하는 경우에 자연(대기)속에서 자연산화(Natural Oxidation)시키는 경우보다 SiO2층의 두께를 인위적으로 조절할 수 있고 비정질 실리콘을 이용한 다이오드가 진공실 밖으로 나오지 않은 상태에서 산소의 증착이 가능하기 때문에 다이오드 특성을 향상시킬 수 있다.As described above, in the case of forming the SiO 2 layer 3 using oxygen plasma, the thickness of the SiO 2 layer can be controlled artificially than in the case of natural oxidation in the atmosphere (atmosphere). Oxygen can be deposited without coming out, thus improving diode characteristics.

또한, 상소 플라즈마를 이용하는 경우 실리콘 층으로 깊숙히 산소의 침투가 가능하기 때문에 비정질 실리콘층 두께가 두꺼워도 산소의 흡입이 가능하다.In addition, in the case of using an ordinary plasma, oxygen can be penetrated deeply into the silicon layer so that oxygen can be sucked even if the amorphous silicon layer is thick.

한편, 산소 플라즈마로 SiO2층(3)을 형성하는 경우 산소와 실리콘과의 접착력을 증가시킬 수 있어 절연막의 열적 안정화를 가져올 수 있다.On the other hand, in the case of forming the SiO 2 layer 3 by the oxygen plasma can increase the adhesion between oxygen and silicon can lead to thermal stabilization of the insulating film.

본 발명은 SiO2층(3)이 ITO(2)내의 인디움을 막아주므로 광전변환 효율을 유지시켜 태양전지의 효율을 향상시킬 수 있음은 물론 태양전지의 열적 안정화를 가져와 디바이스의 수명을 연장시킬 수 있는 효과가 있다.According to the present invention, since the SiO 2 layer 3 prevents the indium in the ITO 2, the photoelectric conversion efficiency can be maintained to improve the efficiency of the solar cell, as well as thermal stabilization of the solar cell, thereby extending the life of the device. It can be effective.

Claims (2)

유리기판(1)위에 ITO(2)와 n형 비정질 실리콘층(4), 인트린식(intrinsic)비정질 실리콘층(5), p형 비정질 실리콘층(6), 알루미늄으로 증착된 전극층(7)이 순차적으로 형성된 태양전지에 있어서, 상기 ITD(2)와, n형 비정질 실리콘층(4)사이에 SiO2층(3)이 형성됨을 특징으로 하는 태양전지의 구조.On the glass substrate 1, an ITO 2 and an n-type amorphous silicon layer 4, an intrinsic amorphous silicon layer 5, a p-type amorphous silicon layer 6, and an electrode layer 7 made of aluminum are deposited. In the solar cell formed sequentially, the structure of the solar cell, characterized in that the SiO 2 layer (3) is formed between the ITD (2) and the n-type amorphous silicon layer (4). 유리기판(1)위에 ITO(2)투명전극을 증착시키고 레이저로 패터닝한 다음 n형 비정질 실리콘층(4), 인트린식 비정질 실리콘층(5), p형 비정질 실리콘층(6), 알루미늄으로 증착된 전극층(7)이 순차적으로형성시키는 것에 있어서, n형 비정질 실리콘(4) 형성전(前) 단계로서 레이저로 패터닝한 다음 진공실내에서 SiH4가스를 CVD 방법으로하여 실리콘(Si)을 증착시키고, 동일진공실 내에서 상기한 SiH4가스 제거후 산소를 주입하면서 라디오파 전원을 인가하여 기증착된 상기 실리콘(Si)층에 SiO2층(3)이 형성되게 함을 특징으로 하는 태양전지의 제조방법.After depositing an ITO (2) transparent electrode on the glass substrate (1) and patterning with a laser, the n-type amorphous silicon layer (4), the intrinsic amorphous silicon layer (5), the p-type amorphous silicon layer (6), and aluminum were deposited. In order to form the formed electrode layer 7 sequentially, before the formation of the n-type amorphous silicon 4, laser patterning was carried out, and then, in a vacuum chamber, silicon (Si) was deposited using a SiH 4 gas by a CVD method. Fabrication of a solar cell, characterized in that the SiO 2 layer (3) is formed on the vapor-deposited silicon (Si) layer by applying a radio wave power while injecting oxygen after removing the SiH 4 gas in the same vacuum chamber Way.
KR1019890013192A 1989-09-12 1989-09-12 The structure of solar cell and the fabrication method thereof KR0136600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890013192A KR0136600B1 (en) 1989-09-12 1989-09-12 The structure of solar cell and the fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890013192A KR0136600B1 (en) 1989-09-12 1989-09-12 The structure of solar cell and the fabrication method thereof

Publications (2)

Publication Number Publication Date
KR910007168A KR910007168A (en) 1991-04-30
KR0136600B1 true KR0136600B1 (en) 1998-09-15

Family

ID=19289866

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890013192A KR0136600B1 (en) 1989-09-12 1989-09-12 The structure of solar cell and the fabrication method thereof

Country Status (1)

Country Link
KR (1) KR0136600B1 (en)

Also Published As

Publication number Publication date
KR910007168A (en) 1991-04-30

Similar Documents

Publication Publication Date Title
JP3722326B2 (en) Manufacturing method of solar cell
US20100224241A1 (en) Solar Cell and Solar Cell Manufacturing Method
JP2002057359A (en) Laminated solar battery
KR890003148B1 (en) Semiconductor with fiber structure and manufacture thereof
US4781765A (en) Photovoltaic device
CN111416013A (en) Heterojunction solar cell with hydrogenated amorphous silicon oxynitride film as passivation layer
KR910007465B1 (en) Making method of solar cell of amorphous silicon
JP4486622B2 (en) Manufacturing method of solar cell
JP2009117463A (en) Thin-film photoelectric conversion device
KR0136600B1 (en) The structure of solar cell and the fabrication method thereof
JP2003282902A (en) Thin film solar cell
JPH0473305B2 (en)
JPH0125235B2 (en)
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPH0346377A (en) Solar cell
JPH10200143A (en) Amorphous silicon solar battery
JPH05175529A (en) Amorphous silicon solar cell
KR20080114080A (en) Bulk silicon solar cell and method for producing same
JP2737111B2 (en) Photovoltaic element and method for manufacturing the same
JPS5975679A (en) Photoelectromotive force generating device
JP3061338B2 (en) Solar cell and method of manufacturing the same
JP5285331B2 (en) Thin film photoelectric converter
JP2815688B2 (en) Manufacturing method of thin film solar cell
JPS6154680A (en) Thin-film solar cell
JPH0612836B2 (en) Method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111220

Year of fee payment: 15

EXPY Expiration of term