KR0136600B1 - The structure of solar cell and the fabrication method thereof - Google Patents
The structure of solar cell and the fabrication method thereofInfo
- Publication number
- KR0136600B1 KR0136600B1 KR1019890013192A KR890013192A KR0136600B1 KR 0136600 B1 KR0136600 B1 KR 0136600B1 KR 1019890013192 A KR1019890013192 A KR 1019890013192A KR 890013192 A KR890013192 A KR 890013192A KR 0136600 B1 KR0136600 B1 KR 0136600B1
- Authority
- KR
- South Korea
- Prior art keywords
- amorphous silicon
- layer
- silicon layer
- solar cell
- deposited
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000000034 method Methods 0.000 title description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
내용없음No content
Description
제1도는 본 발명의 제조방법에 다른 플로우 챠트.1 is a flow chart according to the manufacturing method of the present invention.
제2도는 본 발명에 의한 태양전지의 구조도.2 is a structural diagram of a solar cell according to the present invention.
제3도는 종래 태양전지의 구조도.3 is a structural diagram of a conventional solar cell.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
1 : 유리기판 2 : ITO1: glass substrate 2: ITO
3 : SiO2층 4 : n형 비정질실리콘층3: SiO 2 layer 4: n-type amorphous silicon layer
5 : 인트린식 비정질실리콘층 6 : p형 비정질실리콘층5: intrinsic amorphous silicon layer 6: p-type amorphous silicon layer
7 : 전극7: electrode
본 발명은 태양전지의 구조 및 그 제조방법에 관한 것으로, 특히, 광전변환효율 특성 유지가 용이하도록 한 것이다.The present invention relates to a structure of a solar cell and a manufacturing method thereof, and in particular, to facilitate the maintenance of photoelectric conversion efficiency characteristics.
종래의 비정질 실리콘 태양전지의 제조는 제3도와 같이 유리기판(1)위에 ITO(Indium Tin Oxide)(2)를 증착시키고 레이저 또는 메커니컬 스크라이빙(scribing)패터닝을 한 다음 n형 비정질 실리콘층(4)을 PH3가스를 CVD로 층착시키고 순수한 SiH4가스만을 사용하여 인트린식(intrinsic)비정질 실리콘(5)을 증착시켰다. 다음에 B2H6가스와 SiH4가스를 일정비율로 혼합하여 주입하면서 p형 비정질 실리콘층(6)을 증착시키고 메틸마스크를 사용하여 알루미늄(Al)을 증착시켜 개별전극(7)을 형성하였다.A conventional amorphous silicon solar cell is manufactured by depositing ITO (Indium Tin Oxide) 2 on a glass substrate 1 as shown in FIG. 3, and performing laser or mechanical scribing patterning, followed by an n-type amorphous silicon layer ( 4) was deposited with PH 3 gas by CVD and deposited intrinsic amorphous silicon (5) using pure SiH 4 gas only. Next, the p-type amorphous silicon layer 6 was deposited while mixing and injecting B 2 H 6 gas and SiH 4 gas at a constant ratio, and aluminum (Al) was deposited using a methyl mask to form individual electrodes 7. .
상기와 같은 종래 기술에 있어서는 투전도막을 통과한 빛이 비정질 실리콘층에 도달하면 빛이 지니고 있는 광자에너지가 비정질 실리콘이 지나는 특성 때문에 전자와 정공을 발생시켜 광학적 에너지가 전기적 에너지로 변환되었으며, 이때, 투명 전극은 일측 전극으로 작동하면서 빛을 투과시켜야 하기 때문에 가시광 영역에서 80%이상의 투과율을 보여야 하며 전기적 저항이 50Ω/sp이하 이어야 했다.In the prior art as described above, when the light passing through the transparent conductive film reaches the amorphous silicon layer, the photon energy of the light is generated by electrons and holes because of the characteristic that the amorphous silicon passes, and the optical energy is converted into electrical energy. Since the transparent electrode had to transmit light while operating as one electrode, the transparent electrode had to have a transmittance of 80% or more in the visible region and an electrical resistance of 50 Ω / sp or less.
그러나 , 종래 기술에서는 투명전극으로 사용되는 ITO(2)에서 인다움이 비정질 실리콘층으로 통과되어 디바이스 전체가 열화되므로 광전변환 효율이 저하되었고 디바이스 수명도 감소되는 결점이 있었다.However, in the prior art, since ITO (2) used as a transparent electrode passes through the amorphous silicon layer and the whole device is deteriorated, photoelectric conversion efficiency is lowered and device lifetime is also reduced.
본 발명은 이와 같은 종래의 결점을 감안하여 안출한 것으로 이를 첨부된 도면 제1도와 제2도에 의하여 상세히 설명하면 다음과 같다.The present invention has been made in view of the above conventional drawbacks and will be described in detail with reference to FIGS. 1 and 2 of the accompanying drawings.
본 발명은 크리닝 공정을 끝낸 유리기판(1)위에 ITO(2)투명전극을 증착시키고 레이저로 패터닝을 한 다음 순수한 SiH4가스를 약 200Å정고 CVD방법으로 증착시킨다.The present invention deposits an ITO (2) transparent electrode on the glass substrate (1) after the cleaning process, patterned with a laser, and then purified SiH 4 gas by about 200 mV and deposited by CVD.
이후, 증착이 끝난 동일 진공실 내에서 SiH4가스장비를 다운시킨 후 산소를 일정량 통하게 하면서 13.56 MHz의 리디오파 전원을 인가하여 플라즈마 방전을 유도하므로 기 증착된 박막실리콘층이 SiO2층(3) 또는 SiOx(여기서 1X2)층으로 형성되게 한다.Thereafter, the SiH 4 gas equipment is turned down in the same vacuum chamber after the deposition is completed, and then a predetermined amount of oxygen is applied to the plasma wave by applying a 13.56 MHz radio wave power so that the pre-deposited thin silicon layer is a SiO 2 layer (3) or To form a SiOx (where 1 × 2) layer.
다음에 PH3가스와 SiH4가스를 혼합하여 PE-CVD방법으로 n형 비정질 실리콘층(4)을 형성하고 이에 인트린식 비정질 실리콘층(5)을 순수한 SiH4를 사용하여 증착시킨 후 B2H6가스와 SiH4가스를 혼합하여 p형 비정질 실리콘층(6)을 증착시킨 다음 종래와 동일한 방법으로 알루미늄전극(7)을 증착시킨다.Next, PH 3 gas and SiH 4 gas are mixed to form an n-type amorphous silicon layer 4 by PE-CVD method, and the intrinsic amorphous silicon layer 5 is deposited using pure SiH 4 , followed by B 2 H 6 gas and SiH 4 gas are mixed to deposit the p-type amorphous silicon layer 6, and then the aluminum electrode 7 is deposited in the same manner as in the prior art.
이와같은 방법으로 제조되는 본 발명은 기본적으로 광전변환 원리를 이용하는 것은 종래와 동일하나 ITO(2)내의 인디움을 산소 플라즈마를 이용하여 형성한 SiO2층(3)이 막아주기 때문에 이 인디움이 비정질 실리콘층으로 통과되지 못하여 디바이스의 광전변환 효율을 유지시켜 주고 디바이스의 열화가 방지돨수 있다.In the present invention manufactured by the above method, the photoelectric conversion principle is basically the same as the conventional one, but the indium is prevented because the SiO 2 layer 3 formed by the oxygen plasma blocks the indium in the ITO 2. It can not pass through the amorphous silicon layer to maintain the photoelectric conversion efficiency of the device can be prevented deterioration of the device.
이와같이 산소 플라즈마를 이용하여 SiO2층(3)을 형성하는 경우에 자연(대기)속에서 자연산화(Natural Oxidation)시키는 경우보다 SiO2층의 두께를 인위적으로 조절할 수 있고 비정질 실리콘을 이용한 다이오드가 진공실 밖으로 나오지 않은 상태에서 산소의 증착이 가능하기 때문에 다이오드 특성을 향상시킬 수 있다.As described above, in the case of forming the SiO 2 layer 3 using oxygen plasma, the thickness of the SiO 2 layer can be controlled artificially than in the case of natural oxidation in the atmosphere (atmosphere). Oxygen can be deposited without coming out, thus improving diode characteristics.
또한, 상소 플라즈마를 이용하는 경우 실리콘 층으로 깊숙히 산소의 침투가 가능하기 때문에 비정질 실리콘층 두께가 두꺼워도 산소의 흡입이 가능하다.In addition, in the case of using an ordinary plasma, oxygen can be penetrated deeply into the silicon layer so that oxygen can be sucked even if the amorphous silicon layer is thick.
한편, 산소 플라즈마로 SiO2층(3)을 형성하는 경우 산소와 실리콘과의 접착력을 증가시킬 수 있어 절연막의 열적 안정화를 가져올 수 있다.On the other hand, in the case of forming the SiO 2 layer 3 by the oxygen plasma can increase the adhesion between oxygen and silicon can lead to thermal stabilization of the insulating film.
본 발명은 SiO2층(3)이 ITO(2)내의 인디움을 막아주므로 광전변환 효율을 유지시켜 태양전지의 효율을 향상시킬 수 있음은 물론 태양전지의 열적 안정화를 가져와 디바이스의 수명을 연장시킬 수 있는 효과가 있다.According to the present invention, since the SiO 2 layer 3 prevents the indium in the ITO 2, the photoelectric conversion efficiency can be maintained to improve the efficiency of the solar cell, as well as thermal stabilization of the solar cell, thereby extending the life of the device. It can be effective.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019890013192A KR0136600B1 (en) | 1989-09-12 | 1989-09-12 | The structure of solar cell and the fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019890013192A KR0136600B1 (en) | 1989-09-12 | 1989-09-12 | The structure of solar cell and the fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR910007168A KR910007168A (en) | 1991-04-30 |
KR0136600B1 true KR0136600B1 (en) | 1998-09-15 |
Family
ID=19289866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019890013192A KR0136600B1 (en) | 1989-09-12 | 1989-09-12 | The structure of solar cell and the fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0136600B1 (en) |
-
1989
- 1989-09-12 KR KR1019890013192A patent/KR0136600B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR910007168A (en) | 1991-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3722326B2 (en) | Manufacturing method of solar cell | |
US20100224241A1 (en) | Solar Cell and Solar Cell Manufacturing Method | |
JP2002057359A (en) | Laminated solar battery | |
KR890003148B1 (en) | Semiconductor with fiber structure and manufacture thereof | |
US4781765A (en) | Photovoltaic device | |
CN111416013A (en) | Heterojunction solar cell with hydrogenated amorphous silicon oxynitride film as passivation layer | |
KR910007465B1 (en) | Making method of solar cell of amorphous silicon | |
JP4486622B2 (en) | Manufacturing method of solar cell | |
JP2009117463A (en) | Thin-film photoelectric conversion device | |
KR0136600B1 (en) | The structure of solar cell and the fabrication method thereof | |
JP2003282902A (en) | Thin film solar cell | |
JPH0473305B2 (en) | ||
JPH0125235B2 (en) | ||
JP2003188400A (en) | Crystalline silicon carbide film and manufacturing method thereof, and solar cell | |
JPH0346377A (en) | Solar cell | |
JPH10200143A (en) | Amorphous silicon solar battery | |
JPH05175529A (en) | Amorphous silicon solar cell | |
KR20080114080A (en) | Bulk silicon solar cell and method for producing same | |
JP2737111B2 (en) | Photovoltaic element and method for manufacturing the same | |
JPS5975679A (en) | Photoelectromotive force generating device | |
JP3061338B2 (en) | Solar cell and method of manufacturing the same | |
JP5285331B2 (en) | Thin film photoelectric converter | |
JP2815688B2 (en) | Manufacturing method of thin film solar cell | |
JPS6154680A (en) | Thin-film solar cell | |
JPH0612836B2 (en) | Method for manufacturing photoelectric conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20111220 Year of fee payment: 15 |
|
EXPY | Expiration of term |