KR0126773B1 - Method for working hole by varying the amount of retraction of tool - Google Patents

Method for working hole by varying the amount of retraction of tool

Info

Publication number
KR0126773B1
KR0126773B1 KR1019950006218A KR19950006218A KR0126773B1 KR 0126773 B1 KR0126773 B1 KR 0126773B1 KR 1019950006218 A KR1019950006218 A KR 1019950006218A KR 19950006218 A KR19950006218 A KR 19950006218A KR 0126773 B1 KR0126773 B1 KR 0126773B1
Authority
KR
South Korea
Prior art keywords
escape
amount
point
cycle
hole
Prior art date
Application number
KR1019950006218A
Other languages
Korean (ko)
Other versions
KR960033651A (en
Inventor
박산헌
Original Assignee
김광호
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자주식회사 filed Critical 김광호
Priority to KR1019950006218A priority Critical patent/KR0126773B1/en
Publication of KR960033651A publication Critical patent/KR960033651A/en
Application granted granted Critical
Publication of KR0126773B1 publication Critical patent/KR0126773B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining

Abstract

Disclosed is a hole machining method with variable escape. The method comprises a central processing unit(1), ROM(2), RAM(3), program logic controller(4), and input device(7). The process comprises an establishing process of the norm number of time of escape, an escaping process with a certain quantity of escape after cutting, a returning process to the start position if the number of escape exceeds the norm, and a process for repeating the escape process and the returning process. After confirming the application of the variable escape cycle, it drills the hole to the desired depth; compares the actual depth with the desired depth; returns to the 2nd cycle after escaping the predetermined quantity if the number of escape does not exceed the norm; or returns to the starting position to accomplish the 2nd cycle if the number of escape exceeds the norm.

Description

가변적인 도피량을 갖는 구멍 가공방법Hole processing method with variable escaping amount

제 1도는 일반적으로 수치제어장치에 대한 개괄적 블럭도.1 is a general block diagram of a numerical controller in general.

제2도는 종래의 도피식 구멍 가공방법을 도해한 개략도.2 is a schematic diagram illustrating a conventional escape hole processing method.

제3도는 종래의 복귀식 구멍 가공방법을 도해한 개략도.3 is a schematic diagram illustrating a conventional return hole processing method.

제4도는 본 발명에 따른 구멍 가공방법을 나타낸 흐름도.4 is a flow chart showing a hole processing method according to the present invention.

제5도는 본 발명에 따른 구멍 가공방법을 도해한 개략도.5 is a schematic diagram illustrating a hole processing method according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 중앙처리장치 2 : RAM,1: CPU 2: RAM,

3: ROM 4 : 프로그램용 논리제어기,3: ROM 4: logic controller for program,

5 : 입력장치 6 : 운동제어장치,5: input device 6: motion control device,

7 : 표시장치7 display device

본 발명은 가변적인 도피량을 갖는 구멍 가공방법에 관한 것으로서, 특히 수치제어장치에 있어서 깊은 구멍의 가공방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a hole processing method having a variable escape amount, and more particularly, to a deep hole processing method in a numerical control device.

제1도는 일반적인 수치제어장치에 대한 개괄적 블럭도이다. 제1도에서 1은 중앙처리장치(CPU)이고, 2는 시스템 전반을 제어하는 프로그램이 저장된 RAM(Read only Memory)이다. 3은 운용되는 프로그램 및 데이터가 저장된 RAM(Random Acces Memory)이고, 4는 기계측과의 입출력을 제어하는 프로그램용 논리제어기(PLC : Programmable Logic Controller)이다. 5는 입력장치이고, 6은 기계의 각 축(軸)을 구동시키고 제어하는 운동제어장치이다. 그리고 7은 수치제어장치의 각 상태를 표시하는 표시장치이다.1 is a schematic block diagram of a general numerical control device. In FIG. 1, 1 is a central processing unit (CPU), and 2 is a RAM (Read Only Memory) in which a program for controlling the entire system is stored. 3 is a RAM (Random Acces Memory) in which operating programs and data are stored, and 4 is a programmable logic controller (PLC) that controls input / output with a machine. 5 is an input device, and 6 is a motion control device for driving and controlling each axis of the machine. And 7 is a display device for displaying each state of the numerical controller.

상기와 같은 수치제어장치에서 통상적으로 적용되는 변수에는, 평면상 기공 구멍의 위치, 가공 깊이, 가공 시작점의 위치, 초기 절입량, 절입 감소량, 그리고 도피량 등이 있다. 공지된 이론에 의거하여 대부분의 수치제어장치는 다음과 같은 구멍 절입방식을 갖는다. 즉, 초기 절입량을 I, 절입감소량을 J라 한다면, 단계별로 절입되는 양은 I-αJ가 된다. 여기서 a는 1,2,3,4…이다. 제 1단계의 정립량이 1이라면, 제2단걔의 절입량은 I-J, 제3단계의 절입량은 I-2J, 제4단걔의 절입량은 I-3J이다, 따라서, 구멍 가공이 완료될 때까지 단계별 절입량은 점차 감소하게 된다. 수치제어장치에서 적용되는 종래의 구멍 가공방식은 도피식과 복귀식의 두 가지로 분류된다. 다음은 종래의 구멍 가공 방식에 대하여 설명하기로 한다.Variables commonly applied in the numerical control apparatus as described above include the position of the pore hole in the plane, the depth of machining, the position of the starting point of processing, the initial infeed amount, the infeed reduction amount, and the escape amount. Based on the known theory, most numerical control devices have the following hole cutting methods. That is, if the initial depth of cut is I and the depth of cut is J, the amount of cut-in steps is I-αJ. Where a is 1,2,3,4... to be. If the amount of sizing in the first stage is 1, the infeed amount of the second stage is IJ, the infeed amount of the third stage is I-2J, and the infeed amount of the fourth stage is I-3J, therefore, until the hole processing is completed. The depth of cut gradually decreases. Conventional hole processing methods applied in the numerical control device are classified into two types: escape type and return type. Next, a conventional hole processing method will be described.

제2도는 종래의 도피식 구멍 가공방법을 도해한 개략도이다. 제2도에서 R점은 가공 시작점의 위치이고, I는 초기 절입량을 나타낸다. d는 도피량이고, J는 절입감소량을 나타낸다. 제2도에 도시된 바와 같이 제2단계에서도 도피된 A시점에서부터 절입이 시작되고, 실제(I-J)만큼 절입한 후 소정의 도피량 d만큼 빠른 속도로 후진(後進)한다. 제3단계에서는 도피된 β지점에서부터 절입이 시작되고, 실제(I-2J)만큼 절입한 후 소정의 d만큼 빠른 속도로 후진(後進)한다.2 is a schematic view illustrating a conventional escape hole processing method. In FIG. 2, the R point is the position of the machining start point, and I represents the initial infeed amount. d is the amount of escape and J represents the amount of cut-in. As shown in FIG. 2, in the second step, the infeed is started from the escaped time A, the incision is made in the actual (I-J), and then reversed at a speed as fast as the predetermined escape amount d. In the third step, the plunging starts from the escaped β point, plunges by the actual (I-2J), and then reverses at a speed as fast as a predetermined d.

상기와 같은 과정을 반복하여 구멍 바닥 Z점까지 가공이 완료되면, 공구는 가공 시작점 R점으로 복귀된다.When the machining is completed by repeating the above process to the hole bottom Z point, the tool is returned to the machining start point R point.

제3도는 종래의 복귀식 구멍 가공방법을 도해한 개략도이다. 제3도에 도시된 바와 같은 제1단계에서는 초기 절입량 I만큼 절입한 후, 가공 시작점 R점으로 복귀된다. 제2단계에서는 복귀된 R점에서부터 절입이 시작되고, 실제(I-J)만큼 절입한 후 가공 시작점 R으로 다시 복귀된다. 제3단계에서는 복귀된 R점에서부터 다시 절입이 시작되고, 실제(I-2J)만큼 절입한 후 가공 시작점 R점으로 복귀된다. 상기와 같은 과정을 반복하여 구멍 바닥 Z점가지 가공이 완료되면, 공구는 가공 시작점 R점으로 복귀된다.3 is a schematic diagram illustrating a conventional return hole processing method. In the first step as shown in FIG. 3, after cutting by the initial infeed amount I, the process returns to the machining starting point R point. In the second step, plunging is started from the returned R point, and after plunging by actual (I-J), it is returned to the machining start point R again. In the third step, plunging is started again from the returned R point, and after plunging as much as actual (I-2J), it is returned to the machining start point R point. When the hole bottom Z point processing is completed by repeating the above process, the tool returns to the machining start point R point.

제2도와 같은 종래의 도피식 구멍 가공방법은 빠른 속도로 구멍을 가공할 수 있는 장점이 있는 데반하여, 칩(chip)의 배출이 용이하지 않는 단점이 있다. 한편 제3도와 같은 종래의 복귀식 구멍 가공방법은 가공 속도가 느리다는 단점이 있는데 반하여, 칩(chip)의 배출이 용이하다는 장점이 있다.Conventional escape hole processing method as shown in FIG. 2 has the advantage that the hole can be processed at a high speed, but there is a disadvantage that the discharge of the chip (chip) is not easy. On the other hand, while the conventional return hole processing method as shown in FIG. 3 has a disadvantage in that the processing speed is slow, there is an advantage in that the chip is easily discharged.

본 발명은 상기와 같은 두 가지 방법의 장단점을 상호 보완하여, 가변적인 도피량을 갖는 구멍 가공방법을 제공하는 데 그 목적이 있다.The present invention aims to provide a hole processing method having a variable coating amount by complementing the advantages and disadvantages of the two methods as described above.

상기 목적을 달성하기 위한 본 발명은, 도피회수의 기준값을 설정하는 단계, 소정의 절입량만큼 절입할 후, 소정의 도피량만큼 도피하는 단계, 상기 도피회수가 상기 기준값을 초과하면 가공 시작점으로 복귀하는 단계, 그리고 상기 도피하는 단걔와 복귀하는 단계를 반복하는 단계를 포함한 것을 그 특징으로 한다.The present invention for achieving the above object, the step of setting the reference value of the number of escapes, the step of plunging by a predetermined amount of cut, the step of escaping by a predetermined amount of escape, if the number of escapes exceeds the reference value returns to the machining start point And repeating the step of returning and the step of escaping.

다음은 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 설명하기로 한다.Next, a preferred embodiment according to the present invention will be described with reference to the accompanying drawings.

제4도는 본 발명에 따른 구멍 가공방법을 나타낸 흐름도이다. 제4도에 도시된 바와같이 먼저 가변도피식 사이클(cycle)의 적용여부를 확인한 후, 소정의 절입량 I-α만큼 구멍을 가공한다. 여기서 I는 초기 절입량이고 J는 절입감소량이다. α는 1,2,3,4…로써, 제1사이클의 절입량이 I라면, 제2사이클의 절입량은 I-J, 제3사이클의 절입량은 I-2J, 제4사이클의 절입량은 I-3J이다. 소정의 절입량만큼 구멍이 가공되면, 실제 절입된 양이 가공 깊이 Z에 도달하였는지를 비교 판단한다. 실제 절입된 위치가 가공깊이 Z에 도달하지 않으면, 시작 후의 도피 회수가 소정의 기준값을 초과했는지를 비교 판단한다. 상기 도피회수가 기준값을 초과하지 않았으면 소정의 도피량 d만큼 도피한 후 제2사이클로 들어간다. 또한, 상기 도피 회수가 기준값을 초과하였으면 가공 시작점 R으로 복귀한 후 제2사이클로 들어간다.4 is a flowchart showing a hole processing method according to the present invention. As shown in FIG. 4, first, it is confirmed whether the variable escape cycle is applied, and the hole is machined by a predetermined cutting amount I-α. Where I is the initial depth of cut and J is the depth of cut. α is 1,2,3,4... Therefore, if the cut amount of the first cycle is I, the cut amount of the second cycle is I-J, the cut amount of the third cycle is I-2J, and the cut amount of the fourth cycle is I-3J. When the hole is processed by the predetermined cutting amount, it is judged by comparison whether the actual cut amount has reached the processing depth Z. If the actual plunged position does not reach the machining depth Z, it is judged by comparison whether the number of escapes after the start exceeds a predetermined reference value. If the number of evacuations does not exceed the reference value, the evacuation is carried out by a predetermined escape amount d and then enters the second cycle. If the number of escapes exceeds the reference value, the process returns to the machining start point R and then enters the second cycle.

제5도는 본 발명에 따른 구멍 가공방법을 도해한 개략도이다. 여기서 도피회수의 기준값은 2로 설정되었다. 제5도의 가공 과정을 단계적으로 설명하기로 한다.5 is a schematic diagram illustrating a hole processing method according to the present invention. Here, the reference value of the number of escapes was set to two. The machining process of FIG. 5 will be described step by step.

제1단계에서는, 가공이 시작됨에 따라 공구는 가공 시작점 R점에서 초기 절입량 I만큼 절입을 수향한다. 절입 후, 절입된 위치가 가공 깊이 Z에 도달하지 않았음을 비교 확인한다. 또한 도피회수(1)가 기준값(2)를 초과하지 않음을 확인한 후, 소정의 도피값 d만큼 도피한다.In the first step, as the machining starts, the tool is oriented by the initial infeed amount I at the machining starting point R. After infeed, the comparison confirms that the infeed position has not reached the machining depth Z. In addition, after confirming that the number of escapes 1 does not exceed the reference value 2, the evacuation number 1 escapes by a predetermined escape value d.

제2단계에서는 도피된 위치 즉, A 지점에서 다시 절입이 시작되고, 실제 추가되는 절입량은(I-J)가 된다. 여기서 J는 하나의 파라메터(parameter)로서, 절입감소량을 나타낸다. 절입 후, 절입된 위치가 가공 깊이 Z에 도달하지 않았음을 비교 확인한다. 또한 도피회수(2)가 기준값(2)를 초과하지 않음을 확인한 후, 소정의 도피값 d만큼 도피한다.In the second step, plunging is started again at the escaped position, that is, point A, and the actually added plunging amount is (I-J). Where J is a parameter and represents the amount of cut-off. After infeed, the comparison confirms that the infeed position has not reached the machining depth Z. Further, after confirming that the number of escapes 2 does not exceed the reference value 2, the escape is carried out by a predetermined escape value d.

제3단계에서는 도피된 위치 즉, B지점에서 다시 절입이 시작되고, 실제 추가되는 절입량은 (I-2J)가 된다. 절입후, 절입된 위치가 가공 깊이 Z에 도달하지 않았음을 비교확인한다. 또한 도피회수(3)가 기준값(2)를 초과하였음을 확인한 후, 가공시각점인 R점으로 복귀한다.In the third step, plunging is started again at the escaped position, that is, point B, and the actually added plunging amount is (I-2J). After plunging, check that the plunged position has not reached the machining depth Z. Further, after confirming that the number of escapes 3 has exceeded the reference value 2, the process returns to the point R, which is a machining time point.

제4단계에서 복귀된 위치 즉, R점에서 다시 절입이 시작되고, 실제 추가되는 절입량은(I-3J)가 된다. 절립 후, 절입된 위치가 가동 깊이 Z에 도달하지 않았음을 비교 확인한다. 또한 도피회수(1)가 기준값(2)를 초과하지 않음을 확인한 후, 소정의 도피값 d만큼 도피한다.Infeed is started again at the position returned in the fourth step, that is, R point, and the actually added infeed amount becomes (I-3J). After cutting, compare and confirm that the cut in position did not reach the running depth Z. In addition, after confirming that the number of escapes 1 does not exceed the reference value 2, the evacuation number 1 escapes by a predetermined escape value d.

제5단계에서는 도피된 위치 즉, C지점에서 다시 절입이 시작되고, 실제 추가되는 절입량은 (I-4J)가 된다. 절입후, 절입된 위치가 가공 깊이 Z에 도달하지 않았음을 비교 확인한다. 또한 도피회수(2)가 기준값(2)를 초과하지 않음을 확인한 후, 소정의 도피값 d만큼 도피한다.In the fifth step, plunging is started again at the escaped position, that is, point C, and the actually added plunging amount is (I-4J). After plunging, it is compared and confirmed that the plunged position has not reached the machining depth Z. Further, after confirming that the number of escapes 2 does not exceed the reference value 2, the escape is carried out by a predetermined escape value d.

제6단계에서는 도피된 위치 즉, D지점에서 다시 절입이 시작되고, 실제 추가되는 절립량은(I-5J)가 된다. 절입 후, 절입된 위치가 가공 깊이 Z에 도달하지 않았음을 비교 확인한다. 또한 도피회수(3)가 기준값(2)를 초과하였음을 확인후, 가공시작점인 R점으로 복귀한다.In the sixth step, plunging is started again at the escaped position, that is, point D, and the actually added cutting amount is (I-5J). After infeed, the comparison confirms that the infeed position has not reached the machining depth Z. In addition, after confirming that the number of escapes 3 has exceeded the reference value 2, the process returns to the point R which is the starting point of processing.

제7단계에서는 복귀된 위치 즉, R지점에서 다시 절입이 시작되고, 실제 추가되는 절입량은 (I-6J)가 된다. 절입 후, 절입된 위치가 가공 깊이 Z에 도달하였음이 확인됨에 따라 가공 시작점 R점으로 복귀함으로써 가공이 완료된다.In the seventh step, plunging is started again at the returned position, that is, R point, and the actually added plunging amount is (I-6J). After the cutting, the machining is completed by returning to the machining starting point R point as it is confirmed that the cut position reaches the machining depth Z.

이상 설명된 바와같이 본 발명에 따른 구멍 가공방법에 의하면, 종래의 두 가지 방식을 상호 보완하여, 칩(chip)의 배출이 용이할 뿐 아니라 빠른 속도로 구멍을 가공할 수 있다.As described above, according to the hole processing method according to the present invention, the two conventional methods are complementary to each other, so that the chip can be easily discharged and the hole can be processed at a high speed.

Claims (2)

도피 회수의 기준값을 설정하는 단계, 소정의 절입량만큼 절입한 후, 소정의 도피량만큼 도피하는 단계, 상기 도피 회수가 상기 기준값을 초과하면 가공 시작점으로 복귀하는 단계, 그리고 상기 도피하는 단계와 복귀하는 단계를 반복하는 단계를 포함한 것을 그 특징으로 하는 구멍 가공방법.Setting a reference value of the number of escapes, intruding by a predetermined infeed amount, escaping by a predetermined amount of escape, returning to the starting point of processing when the number of escapes exceeds the reference value, and escaping and returning Hole processing method characterized in that it comprises the step of repeating the step. 제1항에 있어서, 상기 기준값이 수치제어장치의 한 파라메터인 것을 특징으로 하는 구멍 가공 방법.The hole drilling method according to claim 1, wherein the reference value is a parameter of the numerical controller.
KR1019950006218A 1995-03-23 1995-03-23 Method for working hole by varying the amount of retraction of tool KR0126773B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950006218A KR0126773B1 (en) 1995-03-23 1995-03-23 Method for working hole by varying the amount of retraction of tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950006218A KR0126773B1 (en) 1995-03-23 1995-03-23 Method for working hole by varying the amount of retraction of tool

Publications (2)

Publication Number Publication Date
KR960033651A KR960033651A (en) 1996-10-22
KR0126773B1 true KR0126773B1 (en) 1998-04-07

Family

ID=19410430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950006218A KR0126773B1 (en) 1995-03-23 1995-03-23 Method for working hole by varying the amount of retraction of tool

Country Status (1)

Country Link
KR (1) KR0126773B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058833A (en) * 2015-10-13 2018-06-01 산드빅 인터렉츄얼 프로퍼티 에이비 Process monitoring and adaptive control of machine tools

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058833A (en) * 2015-10-13 2018-06-01 산드빅 인터렉츄얼 프로퍼티 에이비 Process monitoring and adaptive control of machine tools

Also Published As

Publication number Publication date
KR960033651A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
EP1063061B1 (en) Method for determining optimum screw joint tightening parameter values by process simulation
CN105843172B (en) Have the function of automatically changing the lathe of machining condition
CA2231308A1 (en) Adaptive feedrates from geometry modeling for nc machining
EP0592682A4 (en) Machining condition generation method for numerically controlled machine tool
EP0506968A4 (en) Method of working with laser beam
KR950701262A (en) Tool life management method by estimating disturbance load
JPH11277371A (en) Processing program producing support device
WO2002025388A1 (en) Numeric control lathe and method for controlling the same
KR0126773B1 (en) Method for working hole by varying the amount of retraction of tool
JPH03294149A (en) Tool abnormality detecting device
KR910011378A (en) Thread cutting method by numerical control for good finish of thread surface
CN107807526B (en) Method for intelligently inhibiting machining chatter vibration based on stability simulation
US10248100B2 (en) Numerical controller
KR840006456A (en) Numerical Control Machining Method
KR0176487B1 (en) Hole processing method
KR0164998B1 (en) Method and device of screw cutting work
KR100206135B1 (en) Works cutting control method
KR100440155B1 (en) A selecting method of drilling process of a computer aided manufacturing system containing numerical control
JPH03163603A (en) Numerical controller
KR0175555B1 (en) Cutting control method of work
JP2000105606A (en) Numerical controller
JP3152053B2 (en) Cutting condition setting method and apparatus
KR19990074236A (en) Turning system and its toolpath generation method
KR910004286A (en) Corner processing control method of numerically controlled (MC) electric discharge machine
JPS63250709A (en) Method for determining cutting direction

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee