KR0125587B1 - Methed for the disposal of used ion-exchangers and/or absorber resins - Google Patents

Methed for the disposal of used ion-exchangers and/or absorber resins

Info

Publication number
KR0125587B1
KR0125587B1 KR1019930002887A KR930002887A KR0125587B1 KR 0125587 B1 KR0125587 B1 KR 0125587B1 KR 1019930002887 A KR1019930002887 A KR 1019930002887A KR 930002887 A KR930002887 A KR 930002887A KR 0125587 B1 KR0125587 B1 KR 0125587B1
Authority
KR
South Korea
Prior art keywords
ion
resin
exchange
inert atmosphere
exchange resin
Prior art date
Application number
KR1019930002887A
Other languages
Korean (ko)
Other versions
KR930017632A (en
Inventor
폰 블뤼허 핫소
Original Assignee
폰 블뤼허 핫소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6452779&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR0125587(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 폰 블뤼허 핫소 filed Critical 폰 블뤼허 핫소
Publication of KR930017632A publication Critical patent/KR930017632A/en
Application granted granted Critical
Publication of KR0125587B1 publication Critical patent/KR0125587B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor

Abstract

본 발명은 대부분 입상으로 존재하는 사용된 합성수지 이온교환체의 처리방법에 관한 것으로, 300℃ 내지 900℃ 온도의 실질적으로 불활성인 분위기에서 이온-교환체를 탄화시키는 단계 및 이어서 이온-교환체를 탄화하는 활성탄 구립으로 전환시키기 위해 동일물을 산화분위기에서 활성화시키는 단계로 이루어진다.The present invention relates to a process for treating used synthetic resin ion exchangers, which are mostly in the form of granules, comprising carbonizing the ion exchangers in a substantially inert atmosphere at temperatures between 300 ° C. and 900 ° C., followed by carbonization of the ion exchangers. It consists of activating the same in an oxidizing atmosphere to convert to activated carbon granules.

Description

사용된 이온교환체의 처리방법Treatment method of used ion exchanger

본 발명은 대부분 입상으로 존재하는 사용된 합성수지 이온교환체의 처리방법에 관한 것이다.The present invention relates to a method for treating used synthetic resin ion exchangers which are mostly in the form of granules.

합성수지 이온교환체는 교환가능한 이온을 가지는 수 많은 화학기를 갖고 있는 다공성 중합체이다. 일반적으로 그것은 스티렌 및 디비닐벤젠 또는 스티렌 및 아크릴산의 공중합체 골격으로 구성되는데, 상기의 골격이 양이온-교환체에서는 산기 특히 술폰산기를 보유하며 음이온-교환체에서는 염기성기(아민)를 보유한다. 그것의 작용기에 따라 양이온-또는 음이온-교환수지로서 존재할 수 있고, 흡착수지로서 존재할 수도 있고, 주로 폴리스티렌수지, 폴리아크릴수지, 폴리알킬아민 수지 또는 페놀-포름알데히드수지로 구성되는 군으로부터 선택되는 중합체 수지 매트릭스를 가지는 종류의 유기이온-교환체가 Ullmann's Encyclopedia df Industrial Chemistry, Fifth Edition, Volume A 14, VCH-Verlagsgesellschaft mbH, Weinheim, Germany 1989의 이온교환체 장 특히 페이지 394-398에 기술되어 있으며, 상품명 Lewatit, Dowex, Kastel, Diaion, Relite, Purolite, Amberlite, Duolite, Imac, Ionac, Wofatit 하에 상업적으로 구입가능하다. 또한 이온교환수지의 수 많은 응용이 상기 인용된 장(chapter)의 페이지 399-448에 기술되어 있다.Synthetic resin ion exchangers are porous polymers having numerous chemical groups with exchangeable ions. Generally it consists of a copolymer skeleton of styrene and divinylbenzene or styrene and acrylic acid, which have an acid group, in particular a sulfonic acid group, in the cation-exchange and a basic group (amine) in the anion-exchange. Depending on its functional group, it may be present as a cation- or anion-exchange resin, or may be present as an adsorbent, and may be a polymer selected from the group consisting mainly of polystyrene resins, polyacrylic resins, polyalkylamine resins or phenol-formaldehyde resins. Organic ion-exchangers of the kind having resin matrices are described in Ullmann's Encyclopedia df Industrial Chemistry, Fifth Edition, Volume A 14, VCH- Verlagsgesellschaft mbH, Ion exchanger chapters in Weinheim, Germany 1989, in particular on page 394-398. , Dowex, Kastel, Diaion, Relite, Purolite, Amberlite, Duolite, Imac, Ionac, Wofatit. Numerous applications of ion exchange resins are also described on pages 399-448 of the chapter cited above.

이온교환체 이용의 주요 목적은 물에 존재하는 바람직하지 않은 이온을 덜 해로운 이온으로 교환하고, 이온을 완전히 제거하는 것이다. 경도를 생성하는 이온-기본적으로 Ca2+및 Mg2+가 Na+이온으로 교환되면 경수가 연수가 된다. 양이온 및 음이온을 제거하면 탈이온수가 얻어진다. 연수는 예컨대 섬유산업에 필요하며 탈이온수는 증기발생 특히 고압보일러에서 필요하다.The main purpose of using ion exchangers is to exchange undesirable ions present in water with less harmful ions and to remove ions completely. Ions that generate hardness—basically, Ca 2+ and Mg 2+ are exchanged with Na + ions for hard water. Removal of cations and anions results in deionized water. Soft water is required, for example, in the textile industry and deionized water is needed in steam generation, especially in high pressure boilers.

일반적으로 이온교환체는 방해물, 즉 부유입자 또는 철화합물 따위의 무기잔류물에 의해 그것의 구멍(pore)이 막히게 되어 효과적이지 못하게 된다. 후자는 규칙적으로 씻겨나가지만 시간에 따라 보다 많은 구멍이 점차적으로 차단되어 결국 베드를 대체해야 한다. 이때에 처리문제가 발생한다. 환경을 오염시키는 이온이 존재하지 않기만 하면 사용된 이온교환체가 쓰레기 더미속에 처리될 수 있다.In general, ion exchangers are not effective because their pores are blocked by obstacles, i.e., inorganic particles such as suspended particles or iron compounds. The latter is washed off regularly, but over time more holes are gradually blocked, eventually replacing the bed. At this point, processing problems occur. As long as there are no ions polluting the environment, the used ion exchangers can be disposed of in the waste heap.

불활성 입자성 유기이온-교환체 수지는 모든 종류의 부유입자, 슬러지, 미생물, 조류 및 다양한 양이온, 예컨대 나트륨, 칼륨, 철, 및 칼슘 이온 따위의 다량의 무기 또는 유기외부 물질로 오염된다. 이러한 불순물의 양은 대개 건조물질에 기초한 20중량%에 달한다. 처리되는 입자성 이온교환수지는 대부분의 경우 50중량%까지 달할 수 있는 물함량을 가진다.Inert particulate organic ion-exchanger resins are contaminated with large amounts of inorganic or organic external substances such as all kinds of suspended particles, sludges, microorganisms, algae and various cations such as sodium, potassium, iron, and calcium ions. The amount of these impurities usually amounts to 20% by weight based on dry matter. Particulate ion exchange resins to be treated have a water content which can reach up to 50% by weight in most cases.

본 발명의 요지는 상기에서 언급한 종류의 사용된 입자성 유기이온 교환체의 처리방법으로서, 주로 불활성 분위기에서 300℃ 내지 900℃의 온도에서 탄화시키고 다음에 산화분위기에서 활성화시키고, 그리하여 상기 이온교환체를 활성탄 구립(spherulet)으로 전환시키는 것으로 이루어진다.The subject matter of the present invention is a method of treating the used particulate organic ion exchanger of the kind mentioned above, which is mainly carbonized at a temperature of 300 ° C. to 900 ° C. in an inert atmosphere and then activated in an oxidizing atmosphere, and thus the ion exchange. Converting the sieve to activated carbon spherulet.

특이적으로 정의되고 폴리술폰화 마크로다공성 교차-결합된 비닐방향족 중합체를 공지되었다(US-PS 4,957,897). 술폰산기가 열분해 동안에 방출되고, 라디칼 부위가 생성되는데 이것은 용해할 수 없고 거의 휘발성 탄소를 포함하지 않는 강하게 교차-결합된 구조로 이끈다.Specifically defined and polysulfonated macroporous cross-linked vinylaromatic polymers are known (US-PS 4,957,897). Sulphonic acid groups are released during pyrolysis and radical sites are produced which lead to a strongly cross-linked structure that is insoluble and contains almost no volatile carbon.

그러나 양질의 마모-내성 활성탄 구립이 심하게 오염된 사용된 합성수지 이온교환체로부터 열분해에 의하여 생성될 수 있고 다양한 외부물질이 흡착제의 질 및 안정성을 손상하지 않는다는 것은 놀랍다. 충분히 놀랍게도, 공급원료의 마크로- 및 메소(meso)다공구조가 불순물의 분해 및 탄화동안 유지된다. 축적된 유기 및 생물학적 생성물이 특히 탄화가 약산화 분위기에서 수행되면 어떤 현저한 탄소잔류물을 형성하지 않고 파괴되거나 또는 사라진다.It is surprising, however, that high quality wear-resistant activated carbon granules can be produced by pyrolysis from heavily contaminated used resin ion exchangers and that various foreign materials do not impair the quality and stability of the adsorbent. Surprisingly enough, the macro- and mesoporous structure of the feedstock is maintained during the decomposition and carbonization of the impurities. Accumulated organic and biological products are destroyed or disappear without forming any significant carbon residues, especially if carbonization is carried out in a weak oxidizing atmosphere.

사용된 양이온-교환수지에서는 양이온이 대개 술폰산기에 결합되고 400℃에 달하는 온도에서 황산으로 본질적으로 전한된다. 보다 높은 온도에서는 그것들이 탄소에 의해 환원되어 상당한 양의 황화물로 된다. 따라서 탄화전에 먼저 양이온-교환수지를 H+ 형태로 전환시키는 것이 유용하다. 이것은 바람직하게는 건조전에 정지한 젖은 물질을 산으로 세척함으로써 행해진다.In the cation-exchange resins used, cations are usually bound to sulfonic acid groups and are essentially transferred to sulfuric acid at temperatures up to 400 ° C. At higher temperatures they are reduced by carbon to a significant amount of sulfides. Therefore, it is useful to first convert the cation-exchange resin into H + form before carbonization. This is preferably done by washing the acidic wetted material before drying.

이미 언급한 것처럼 입자성 유기이온-교환수지의 50%까지 될 수 있는 물함유량을 제거하기 위하여 처리되는 사용된 입자성 수지를 바람직하게는 회전식 건조기에서 또는 유체화된 베드에서 건조시키는 것이 추천된다. 연화점에 도달하기 전에 그리고 대개는 건조후에, 합성수지 이온-교환체가 불활성 무기분말, 바람직하게는 탄소분말과 바람직하게는 분말화되는데, 이것에 의해 응집을 방지하고 전체 처리 동안 입자성 구조를 유지하게 된다.As already mentioned, it is recommended to dry the used particulate resin which is treated in order to remove water content which can be up to 50% of the particulate organic ion-exchange resin, preferably in a tumble dryer or in a fluidized bed. Before reaching the softening point and usually after drying, the resin ion-exchanger is preferably powdered with an inert inorganic powder, preferably carbon powder, thereby preventing agglomeration and maintaining the particulate structure during the entire treatment. .

400℃ 온도까지, 바람직하게는 약 300℃ 내지 350℃까지, 탄화단계의 불활성 분위기는 0.2 내지 4체적% 산소를 포함할 수 있다. 산소함량은 바람직하게는 공기의 첨가에 의해 조절된다. 이 전(前) 산화는 유기불순물의 파괴의 견지에서, 뿐만아니라 분말화 및/또는 느린 온도 상승과 함께 산소 브리지(bridges) 및 라디칼 부위에 의한 휘발성 탄소의 환원의 견지에서, 및 융해 또는 함께 달라붙는 것을 방지하는 것에서 추천된다. 특히 수지가 술폰산기 예컨대 음이온-교환수지 또는 흡착제수지를 포함하지 않을 때 전 산화가 매우 중요하다. 이러한 수지유형을 술폰산기를 포함하는 양이온-교환수지와 함께 처리하는 것이 추전된다.To temperatures up to 400 ° C., preferably from about 300 ° C. to 350 ° C., the inert atmosphere of the carbonization step may comprise 0.2 to 4 volume percent oxygen. The oxygen content is preferably controlled by the addition of air. This pre-oxidation differs in terms of destruction of organic impurities, as well as in terms of reduction of volatile carbon by oxygen bridges and radical sites with powdering and / or slow temperature rise, and melting or together Recommended in preventing sticking. Particular oxidation is very important when the resin does not contain sulfonic acid groups such as anion-exchange resins or adsorbent resins. It is recommended to treat this resin type with a cation-exchange resin containing sulfonic acid groups.

나트륨, 칼륨등 또는 칼슘으로 구성되는 군에서 선택되는 알칼리금속 및 알칼리토금속이온 따위의 소량의 양이온들은 열분해 초기에 이미 황산으로 전환되는데, 이것들은 충분히 놀랍게도 탄화 및 활성화를 방해하지 않고 심지어는 활성화 단계를 촉진시킨다. 약 700℃에서의 탄화에 탄화된 물질의 활성화 단계가 뒤따른다. 탄화와 유사하게 그것은 회전식 건조기에서 또는 더 양호하게는 유체화된 베드에서 수행될 수 있다. 물질을 활성화시키기위해 본질적으로 불활성인 분위기에 증기 및/또는 이산화탄소를 3 내지 50, 바람직하게는 3 내지 15체적%의 양으로 첨가한다. 활성화온도는 900℃까지 일 수 있다. 에너지를 절약하기 위하여 활성화를 탄화후 똑같은 장치에서 수행할 수 있다. 그러나, 특이적인 기술적 및 처리상 이유 때문에 활성화를 독립적인 별도의 단계로 수행하는 것이 유용할 수 있는데, 그것은 약 500℃의 온도까지의 탄화단계는 이미 60 내지 90%의 원료물질의 중량상실 및 상당한 수축을 수반하기 때문이다. 활성화 단계후 활성탄 구립의 탄소함량은 90중량% 이상이다.Small amounts of cations, such as alkali and alkaline earth metal ions, selected from the group consisting of sodium, potassium, or calcium, are already converted to sulfuric acid at the beginning of pyrolysis, which surprisingly enough does not interfere with carbonization and activation and even initiate the activation step. Promote Carbonization at about 700 ° C. is followed by an activation step of the carbonized material. Similar to carbonization it may be carried out in a tumble dryer or more preferably in a fluidized bed. Steam and / or carbon dioxide is added in an amount of 3 to 50, preferably 3 to 15 volume percent, to an essentially inert atmosphere to activate the material. The activation temperature may be up to 900 ° C. In order to save energy, activation can be carried out in the same device after carbonization. However, for specific technical and processing reasons it may be useful to perform the activation in a separate and independent step, which means that the carbonization step up to a temperature of about 500 ° C. has already lost 60 to 90% of the weight loss and significant It is accompanied by contraction. The carbon content of the activated carbon granules after the activation step is 90% by weight or more.

[실시예 1]Example 1

H+ 형태로 존재하며 연료첨가물(MTBE) 합성에 사용되며 불활성화된 주로 스티렌 및 디비닐벤젠으로 구성되는 마크로다공성 이온-교환체 1kg을 110℃에서 회전식 건조기에서 건조시켰다. 탄화수소 및 일부 습기의 증발에 의해 야기되는 중량 상실은 대략 13%였다. 그후 80% 불활성가스 및 15% 공기로 구성되는 대기에서 300℃까지 가열되었고 그 상태에서 1시간동안 유지되었다. 중량 증가는 약 8%였다. 거기서 3시간내에 불활성 분위기에서 온도가 700℃로 증가되었다.1 kg of macroporous ion-exchangers, present in H + form, used for fuel additive (MTBE) synthesis and composed mainly of styrene and divinylbenzene inactivated, were dried in a tumble dryer at 110 ° C. The weight loss caused by the evaporation of hydrocarbons and some moisture was approximately 13%. It was then heated to 300 ° C. in an atmosphere consisting of 80% inert gas and 15% air and maintained for 1 hour. The weight increase was about 8%. There, the temperature increased to 700 ° C. in an inert atmosphere within 3 hours.

700℃ 내지 900℃의 범위에서 5% 증기가 첨가되었다.5% steam was added in the range of 700 ° C to 900 ° C.

700℃에서 820℃까지 온도증가가 30분동안 지속되었고, 추가의 10분내에 900℃에 도달하였다. 수율은 공급원료에 ;근거하여 28%였다. 구립의 응집은 어느 시기에도 일어나지 않았다. 대략 0.8㎜에서 0.6 내지 0.7㎜의 직경 감소가 관찰되었다. 구립의 겉보기 밀도는 0.9㎖/g 이상의 구멍부피에서 1.08g/㎤이고, 그중 0.55㎖/g은 미세 구멍이었다. 1088㎡/g의 비표면적(specific surface)을 BET 방법으로 결정하였다. 0.5㎜ 구립은 파손되지 않고 300g의 점상하중으로 적하될 수 있다.The temperature increase lasted for 30 minutes from 700 ° C. to 820 ° C. and reached 900 ° C. within an additional 10 minutes. The yield was 28% based on the feedstock. Aggregation of the municipalities did not occur at any time. A diameter reduction of 0.6 to 0.7 mm was observed at approximately 0.8 mm. The apparent density of the granules was 1.08 g / cm 3 at a hole volume of 0.9 ml / g or more, of which 0.55 ml / g was micropores. The specific surface of 1088 m 2 / g was determined by the BET method. The 0.5 mm grains can be loaded with a 300 g point load without breaking.

[실시예 2]Example 2

물의 연화에 사용되고 충분한 활성이 없는 겔-타입 양이온-교환체 1㎏을 염산 용액을 이용하여 H+로 전환시켰다. 표면의 공기건조 후, 수분은 50%였다. 110℃에서 건조시킨 후, 300℃에서 6시간동안 산화시켰다. 이어서 실시예 1의 방법을 적용시켰다. 수율은 공급원료에 비해 31%였다. 구립은 부분적으로 응집되었다.1 kg of the gel-type cation exchanger used for softening water and lacking sufficient activity was converted to H + using hydrochloric acid solution. After air drying of the surface, the moisture was 50%. After drying at 110 ° C., it was oxidized at 300 ° C. for 6 hours. The method of Example 1 was then applied. The yield was 31% relative to the feedstock. The granules were partially aggregated.

[실시예 3]Example 3

실시예 2의 방법을 동일한 방식으로 동일한 공급원료에 적용시켰다. 그러나, 300℃에서 산화시킨 후, 5% 탄소 분말과 함께 분말화를 수행하였고 온도를 6시간 이내에 700℃까지 증가시켰다. 그래서 구립의 응집 및 부풀린 구조의 형성이 방지되었다. 얻어진 활성화된 탄소 입자의 내면은 대략 1000㎡/g(BET)에 달했고 수율은 공급원료에 비해 40%였다. 평균 파열압은 0.5㎜의 직경에서 250g였다. 또한 주로 디비닐벤젠-공중합체로 이루어지는 큰 구멍의 흡착수지를 동일한 방식으로 처리하였으며, 상기 수지는 이미 다 소모되었고 계속해서 흡착된 유기물을 포함하였다. 이들 생성물은 어떠한 황산기도 포함하지 않기 때문에, 전(pre) 산화는 특히 중요하다.The method of Example 2 was applied to the same feedstock in the same manner. However, after oxidation at 300 ° C., powdering was performed with 5% carbon powder and the temperature was increased to 700 ° C. within 6 hours. Thus, aggregation of the granules and formation of an inflated structure were prevented. The inner surface of the obtained activated carbon particles reached approximately 1000 m 2 / g (BET) and the yield was 40% relative to the feedstock. The average burst pressure was 250 g at a diameter of 0.5 mm. In addition, a large pore adsorbent resin, mainly consisting of divinylbenzene-copolymers, was treated in the same manner, and the resin contained organics that had already been exhausted and subsequently adsorbed. Since these products do not contain any sulfate groups, pre oxidation is particularly important.

Claims (13)

사용된 입자성 유기 이온-교환체의 처리방법에 있어서, 300℃ 내지 900℃ 온도의 실질적으로 불활성인 분위기에서 상기의 이온-교환체를 탄화시키는 단계 및 이어서 상기의 이온-교환체를 활성탄 구립으로 전환시키기 위해 동일물을 산화분위기에서 활성화시키는 단계로 이루어지는 것을 특징으로 하는 방법.In the method of treating the particulate organic ion-exchanger used, carbonizing the ion-exchange body in a substantially inert atmosphere at a temperature of 300 ° C. to 900 ° C., and then converting the ion-exchange body into activated carbon granules. Activating the same in an oxidizing atmosphere to convert it. 제1항에 있어서, 이온-교환체로서 양이온-교환체, 술폰화 스티렌-디비닐벤젠 공중합체 또는 스티렌-아크릴산 공중합체로 이루어진 것을 사용하는 것을 특징으로 하는 방법.The method according to claim 1, wherein the ion-exchanger comprises a cation-exchange, a sulfonated styrene-divinylbenzene copolymer or a styrene-acrylic acid copolymer. 제 1항 또는 제 2항에 있어서, 사용된 양이온-교환체는 H+ 형태인 것을 특징으로 하는 방법.The method according to claim 1 or 2, wherein the cation-exchanger used is in the H + form. 제 1항에 있어서, 이온-교환체로서 음이온-교환수지, 3차 또는 4차 아민기를 지니는 폴리아크릴 수지 또는 폴리스티렌 수지로 이루어진 것을 사용하는 것을 특징으로 하는 방법.2. The method according to claim 1, wherein an ion-exchange resin, an anion-exchange resin, a polyacrylic resin or a polystyrene resin having a tertiary or quaternary amine group is used. 제 1항에 있어서, 사용된 이온-교환수지는 탄화이전에 건조되는 것을 특징으로 하는 방법.The method of claim 1 wherein the ion-exchange resin used is dried prior to carbonization. 제 1항에 있어서, 탄화되는 동안에 불활성 분위기는 300℃ 내지 400℃의 온도, 0.2 내지 4체적%의 산소를 포함하는 것을 특징으로 하는 방법.The method of claim 1 wherein the inert atmosphere during carbonization comprises a temperature of 300 ° C.-400 ° C., 0.2-4% by volume of oxygen. 제 6항에 있어서, 이온-교환수지는 부분적 또는 전체적으로 입자상의 유기흡착수지로 대체되는 것을 특징으로 하는 방법.7. The method of claim 6, wherein the ion-exchange resin is replaced in part or in whole with particulate organic sorbent resin. 제 1항에 있어서, 700℃ 내지 900℃에서 탄화된 물질을 활성화시키기 위해, 증기를 3 내지 50체적%의 양으로 실질적으로 불활성인 분위기에 공급하는 것을 특징으로 하는 방법.The process according to claim 1, wherein steam is supplied to a substantially inert atmosphere in an amount of 3 to 50% by volume to activate the carbonized material at 700 ° C to 900 ° C. 제 1항에 있어서, 탄화되는 동안에 700℃ 내지 900℃에서 이산화탄소를 실질적으로 불활성인 분위기에 공급하는 것을 특징으로 하는 방법.The method of claim 1 wherein the carbon dioxide is fed to a substantially inert atmosphere at 700 ° C. to 900 ° C. during carbonization. 제 1항에 있어서, 활성화는 분리된 단계로 수행되는 것을 특징으로 하는 방법.The method of claim 1 wherein the activation is performed in a separate step. 제 1항에 있어서, 연화점에 도달하기전에 입자상이 이온-교환수지가 불활성 분말과 함께 분말화되는 것을 특징으로 하는 방법.2. A method according to claim 1, wherein the particulate ion-exchange resin is powdered together with the inert powder before reaching the softening point. 제 1항에 있어서, 처리는 유체화된 베드 또는 회전 건조기에서 수행되는 것을 특징으로 하는 방법.The method of claim 1 wherein the treatment is performed in a fluidized bed or a tumble dryer. 제 1항에 따라 제조한 높은 안정성의 활성탄 구립.Activated carbon granules of high stability prepared according to claim 1.
KR1019930002887A 1992-02-28 1993-02-27 Methed for the disposal of used ion-exchangers and/or absorber resins KR0125587B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FRP4206132.6 1992-02-28
DEP4206132.6 1992-02-28
DE4206132 1992-02-28

Publications (2)

Publication Number Publication Date
KR930017632A KR930017632A (en) 1993-09-20
KR0125587B1 true KR0125587B1 (en) 1998-04-11

Family

ID=6452779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930002887A KR0125587B1 (en) 1992-02-28 1993-02-27 Methed for the disposal of used ion-exchangers and/or absorber resins

Country Status (7)

Country Link
JP (1) JP2626956B2 (en)
KR (1) KR0125587B1 (en)
CA (1) CA2090649C (en)
DE (1) DE4304026B4 (en)
FR (1) FR2687941B1 (en)
GB (1) GB2265143B (en)
IT (1) IT1264353B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042142A (en) * 2018-10-15 2020-04-23 이동희 Recycling method of deodorant using waste cation exchange resin.

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1273678B (en) * 1993-08-12 1997-07-09 Bluecher Hasso Von ACTIVATED CARBON PRODUCTION PROCESS
NL1000078C2 (en) * 1994-04-19 1996-04-22 Bluecher Hasso Von Odor filter for vacuum cleaners.
SE515506C2 (en) * 1994-06-17 2001-08-20 Mhb Filtration Gmbh & Co Kg Odor filter for ventilation outlet hoods
SE509743C2 (en) * 1994-06-17 1999-03-01 Bluecher Hasso Von Adsorptionsfilterskikt
DE4446253A1 (en) * 1994-12-23 1996-06-27 Hasso Von Bluecher Textile material of active carbon for adsorption air filters
JPH11501606A (en) * 1995-01-11 1999-02-09 ブリュッヒャー,ハッソ フォン Manufacturing method of granular activated carbon
DE59706726D1 (en) * 1996-06-22 2002-05-02 Mhb Filtration Gmbh & Co Kg Process for the production of granular activated carbon
DE19650414A1 (en) * 1996-08-20 1998-02-26 Bluecher Gmbh High grade spherical adsorbents production from ion exchanger or precursor
DE19653238A1 (en) * 1996-12-05 1998-06-25 Bluecher Gmbh High-grade granular activated charcoal production without sulphur di:oxide emission
DE19752593C5 (en) * 1997-11-27 2005-02-17 Helsa-Werke Helmut Sandler Gmbh & Co. Kg Process for the preparation of activated carbon from polymers with aromatic nuclei
US6277933B1 (en) 1998-04-03 2001-08-21 Solutia Inc. Polyacrylonitrile particles by surfmer polymerization and sodium removal by chemical exchange
US6143835A (en) * 1998-04-03 2000-11-07 Solutia Inc. Polyacrylonitrile polymer treatment
DE19912153B4 (en) * 1999-03-18 2004-08-19 Carbotex Produktions-Und Veredelungsbetriebe Gmbh Process for the production of shaped high-performance adsorbents
DE19930732A1 (en) * 1999-07-05 2001-01-18 Sandler Helmut Helsa Werke Process for the controlled production of spherical activated carbon
JP3777123B2 (en) 2000-04-28 2006-05-24 ブリュッヒャー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing spherical activated carbon
EP1289883B1 (en) * 2000-05-24 2006-01-04 Carbotex Produktions- und Veredelungsbetriebe GmbH Method for the production of moulded activated charcoal
JP2006273772A (en) * 2005-03-30 2006-10-12 Japan Organo Co Ltd Orally administered drug and method for producing the same
DE102005062160A1 (en) 2005-12-19 2007-06-21 BLüCHER GMBH Activated charcoal for medical use
DE102006010862B4 (en) * 2005-12-20 2010-01-14 BLüCHER GMBH Activated carbon with catalytic activity
WO2008043982A2 (en) 2006-10-09 2008-04-17 British American Tobacco (Investments) Limited Carbonising and/or activating carbonaceous material
DE202006016898U1 (en) 2006-10-12 2007-11-22 BLüCHER GMBH High performance adsorbents based on activated carbon with high microporosity
DE202007014890U1 (en) 2007-03-14 2008-04-17 BLüCHER GMBH High performance adsorbents based on activated carbon with high meso- and macroporosity
DE102009032810A1 (en) 2009-07-10 2011-01-13 BLüCHER GMBH Plant and process for the production of activated carbon
WO2012171656A1 (en) 2011-06-17 2012-12-20 BLüCHER GMBH Mixed metal oxide-based porous materials and the production and use thereof
EP2720789B1 (en) 2011-06-17 2020-04-08 Blücher GmbH Production of titanium oxide- and/or vanadium oxide-based porous materials
DE202011106028U1 (en) 2011-08-14 2012-08-17 BLüCHER GMBH New concepts for gas treatment and gas purification
DE202011106025U1 (en) 2011-08-14 2012-08-17 BLüCHER GMBH Activated carbon with metal-based component
DE102012007392A1 (en) 2011-11-07 2013-05-08 BLüCHER GMBH Nitrogen-modified or -functionalized activated carbon, preferably activated coal with nitrogen as catalytically active heteroatom obtained by surface oxidation of activated carbon using oxidizing reagent, useful to produce e.g. filter
DE202012003232U1 (en) 2011-12-30 2013-01-07 BLüCHER GMBH Self-detoxifying and / or self-cleaning absorbent material
DE102013105471A1 (en) 2013-04-06 2014-10-09 BLüCHER GMBH Activated carbon impregnated with metal-organic framework material, preferably in the form of activated carbon with reactive, catalytic activity, useful in protection material for civilian or military areas
DE102014103351A1 (en) 2013-12-09 2015-06-11 BLüCHER GMBH Catalyst system and its use
DE102014107489A1 (en) 2014-04-17 2015-10-22 BLüCHER GMBH Adsorptive filter unit with extended service and / or service life
DE102014110791A1 (en) 2014-07-11 2016-01-14 BLüCHER GMBH Protective clothing unit with preferably textile splinter protection equipment
DE202015004869U1 (en) 2015-07-03 2016-07-06 BLüCHER GMBH Protective material with splinter, stitch, cut, weft and / or shock protection function
DE102015113213A1 (en) 2015-07-25 2017-01-26 BLüCHER GMBH Novel textile protective material and method for its production
DE102016100159A1 (en) 2015-11-30 2017-06-01 BLüCHER GMBH Functional footwear unit
DE202016100320U1 (en) 2015-12-10 2016-12-28 BLüCHER GMBH Activated carbon, in particular particulate activated carbon, in particular with defined porosity properties
DE102016101213A1 (en) 2015-12-22 2017-06-22 BLüCHER GMBH Apparatus and method for modifying porous solids
EP3487588B1 (en) 2016-10-01 2020-04-22 Blücher GmbH Protective material having catalytic and/or reactive properties and the production and use of same
DE202017100965U1 (en) 2016-12-23 2018-01-02 BLüCHER GMBH Protective clothing unit
DE102017126118A1 (en) 2017-09-27 2019-03-28 BLüCHER GMBH Process and installation for the treatment and / or purification of water
DE202018100242U1 (en) 2017-11-28 2018-12-07 BLüCHER GMBH Air-permeable surface filter material
DE202020100520U1 (en) 2019-09-03 2020-12-10 Blücher Gesellschaft mit beschränkter Haftung Textile surface material with splinter, stab and / or cut protection
WO2021047789A1 (en) 2019-09-09 2021-03-18 BLüCHER GMBH Head covering, in particualr a hood or balaclava, for use as protective clothing
DE102021102078A1 (en) 2020-09-25 2022-03-31 Blücher Gesellschaft mit beschränkter Haftung Process for preparing supported catalysts
DE102020134238A1 (en) 2020-11-27 2022-06-02 Blücher Gesellschaft mit beschränkter Haftung Blasting media based on granular activated carbon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621724B2 (en) * 1973-12-27 1981-05-21
US4040990A (en) * 1975-02-18 1977-08-09 Rohm And Haas Company Partially pyrolyzed macroporous polymer particles having multimodal pore distribution with macropores ranging from 50-100,000 angstroms
US4839331A (en) * 1988-01-29 1989-06-13 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers
US4957897A (en) * 1988-01-29 1990-09-18 Rohm And Haas Company Carbonaceous adsorbents from pyrolyzed polysulfonated polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200042142A (en) * 2018-10-15 2020-04-23 이동희 Recycling method of deodorant using waste cation exchange resin.

Also Published As

Publication number Publication date
DE4304026B4 (en) 2005-02-17
FR2687941B1 (en) 1995-07-21
CA2090649A1 (en) 1993-08-29
CA2090649C (en) 1999-02-02
FR2687941A1 (en) 1993-09-03
ITMI930386A0 (en) 1993-02-26
ITMI930386A1 (en) 1994-08-26
JP2626956B2 (en) 1997-07-02
GB2265143A (en) 1993-09-22
IT1264353B1 (en) 1996-09-23
KR930017632A (en) 1993-09-20
GB2265143B (en) 1995-08-16
JPH0692615A (en) 1994-04-05
GB9303956D0 (en) 1993-04-14
DE4304026A1 (en) 1993-09-02

Similar Documents

Publication Publication Date Title
KR0125587B1 (en) Methed for the disposal of used ion-exchangers and/or absorber resins
Shiao et al. Phosphate removal from aqueous solution from activated red mud
US6184177B1 (en) Method of producing activated carbon particles from spent granular organic ion-exchange resin
US7288504B2 (en) Method for producing spherical activation carbon
US10118154B2 (en) Particulate sorption medium prepared from partially decomposed organic matter
KR950005742A (en) Activated Carbon Spheres Generated from Ion Exchangers
US8685884B2 (en) Production of multifunctional granular medium by partial activation of partially decomposed organic matter
Srivastava et al. Studies on the efficiency of a local fertilizer waste as a low cost adsorbent
EP2969970A2 (en) Particulate sorption medium prepared from partially decomposed organic matter
KR100214444B1 (en) Complex molecular sieve granules for deodorizer and their preparations
EP0814056B1 (en) Process for manufacturing activated carbon
DE19625069A1 (en) Preparing granular activated charcoal with very high bulk density
WO2017147384A1 (en) Particulate medium prepared from partially decomposed organic matter for selective sorption between competing metal ions in aqueous solutions
US4587953A (en) Sweetener solution purification process
Patel et al. Study of KOH impregnated jack fruit leaf based carbon as adsorbent for treatment of wastewater contaminated with nickel
US2471213A (en) Treatment of aqueous liquids
Barbooti et al. Optimization of oxytetracycline sorption onto iron modified montmorillonite
JP2016020884A (en) Decontamination method for soil contaminated with radioactive substance
Thomas et al. A comparative study on the efficiency of KOH impregnated and H3PO4 impregnated jackfruit leaf based carbon as adsorbent for removal of Ni from its aqueous solution
JP3915179B2 (en) Ion exchanger, method for producing the same, and method for removing polyvalent anions using the same
JP2000254488A (en) Treating agent and treating method of trihalomethane precursor containing water
JP2008155193A (en) Treating agent suitable for removing minute amount of endocrine disturbing substance and method for removing minute amount of endocrine disturbing substance by using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee