JPWO2021220425A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021220425A5
JPWO2021220425A5 JP2022518511A JP2022518511A JPWO2021220425A5 JP WO2021220425 A5 JPWO2021220425 A5 JP WO2021220425A5 JP 2022518511 A JP2022518511 A JP 2022518511A JP 2022518511 A JP2022518511 A JP 2022518511A JP WO2021220425 A5 JPWO2021220425 A5 JP WO2021220425A5
Authority
JP
Japan
Prior art keywords
risk
diagram
degree
congestion
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022518511A
Other languages
Japanese (ja)
Other versions
JPWO2021220425A1 (en
JP7371769B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2020/018171 external-priority patent/WO2021220425A1/en
Publication of JPWO2021220425A1 publication Critical patent/JPWO2021220425A1/ja
Publication of JPWO2021220425A5 publication Critical patent/JPWO2021220425A5/ja
Application granted granted Critical
Publication of JP7371769B2 publication Critical patent/JP7371769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (10)

乗物および停車場の混雑度を算出する混雑度算出手段と、
ダイヤグラムの変更実績を含む業務履歴データを用いて学習された目的関数を最適化することにより、現在のダイヤグラムを修正した修正後ダイヤグラムを出力するダイヤグラム出力手段と、
現時点で発生するリスクである現リスクおよび前記ダイヤグラムの修正により生じるリスクである修正リスクを前記混雑度に基づいて算出するリスク算出手段と、
算出された前記現リスクおよび前記修正リスクを出力するリスク出力手段とを備えた
ことを特徴とする修正リスク出力装置。
Congestion degree calculation means for calculating the degree of congestion of vehicles and stops;
a diagram output means for outputting a modified diagram obtained by modifying the current diagram by optimizing the objective function learned using the business history data including the actual diagram modification;
risk calculation means for calculating a current risk, which is a risk occurring at the present time, and a corrected risk, which is a risk caused by correcting the diagram, based on the degree of congestion;
A modified risk output device, comprising risk output means for outputting the calculated current risk and the modified risk.
リスク算出手段は、各時刻および各停車場の混雑度により原因ごとに想定されるリスクの発生確率モデルに基づいて原因ごとのリスクを算出し、
リスク出力手段は、算出した原因ごとの現リスクおよび修正リスクを出力する
請求項1記載の修正リスク出力装置。
The risk calculation means calculates the risk for each cause based on the occurrence probability model of the risk assumed for each cause based on the congestion degree at each time and each stop,
2. The corrected risk output device according to claim 1, wherein the risk output means outputs the calculated current risk and corrected risk for each cause.
現在および将来における乗物および停車場において推定される状況を取得する状況取得手段を備え、
混雑度算出手段は、前記乗物および停車場において推定される状況に基づいて混雑度を算出する
請求項1または請求項2記載の修正リスク出力装置。
a situation acquisition means for acquiring the estimated situation of the current and future vehicles and stops;
3. The corrected risk output device according to claim 1, wherein the congestion degree calculation means calculates the congestion degree based on the estimated situation of the vehicle and the stop.
状況取得手段は、各停車場の乗客の乗降を模擬的に再現するシミュレータを実行するシミュレータ実行手段を含み、
前記シミュレータ実行手段は、現在および将来における各停車場と乗物の少なくとも一方における乗客の滞留度合い、または、乗物の運行状況を推定し、
混雑度算出手段は、前記乗客の滞留度合いまたは前記運行状況に基づいて、乗物および停車場の混雑度を算出する
請求項3記載の修正リスク出力装置。
The situation acquisition means includes simulator execution means for executing a simulator that simulates getting on and off of passengers at each stop,
The simulator execution means estimates the degree of stagnation of passengers at at least one of each stop and vehicle at present and in the future, or the operation status of the vehicle,
4. The corrected risk output device according to claim 3, wherein the congestion degree calculation means calculates congestion degrees of vehicles and stops based on the passenger retention degree or the operation status.
シミュレータ実行手段は、各時刻において第一の停車場から第二の停車場までの乗客数の分布をシミュレータに用いて、乗客の滞留度合いまたは運行状況を推定する
請求項4記載の修正リスク出力装置。
5. The modified risk output device according to claim 4, wherein the simulator execution means estimates the degree of passenger retention or operation status by using the distribution of the number of passengers from the first stop to the second stop at each time in the simulator.
状況取得手段は、逐次収集される各停車場における入出場実績データを取得する収集データ取得手段を含み、
前記収集データ取得手段は、現在の各停車場における乗客の滞留度合いを推定し、
混雑度算出手段は、前記乗客の滞留度合いに基づいて、乗物および停車場の混雑度を算出する
請求項3から請求項5のうちのいずれか1項に記載の修正リスク出力装置。
The status acquisition means includes collected data acquisition means for acquiring entry/exit performance data at each stop that is sequentially collected,
The collected data acquisition means estimates the current degree of stagnation of passengers at each stop,
6. The corrected risk output device according to any one of claims 3 to 5, wherein the congestion degree calculation means calculates congestion degrees of vehicles and stops based on the passenger retention degree.
ダイヤグラムを変更する状況別および目的別に準備された目的関数の中から、最適化に用いる目的関数の選択指示を受け付ける目的関数選択手段を備え、
ダイヤグラム出力手段は、選択された目的関数を最適化することにより修正後ダイヤグラムを出力する
請求項1から請求項6のうちのいずれか1項に記載の修正リスク出力装置。
Objective function selection means for receiving an instruction to select an objective function to be used for optimization from among objective functions prepared for each situation and purpose for changing the diagram,
The modified risk output device according to any one of claims 1 to 6, wherein the diagram output means outputs a modified diagram by optimizing the selected objective function.
乗物および停車場の混雑度を算出し、
ダイヤグラムの変更実績を含む業務履歴データを用いて学習された目的関数を最適化することにより、現在のダイヤグラムを修正した修正後ダイヤグラムを出力し、
現時点で発生するリスクである現リスクおよび前記ダイヤグラムの修正により生じるリスクである修正リスクを前記混雑度に基づいて算出し、
算出された前記現リスクおよび前記修正リスクを出力する
ことを特徴とする修正リスク出力方法。
Calculate the degree of congestion of vehicles and stops,
By optimizing the objective function learned using business history data including diagram change results, the current diagram is corrected to output a corrected diagram,
calculating a current risk, which is a risk occurring at the present time, and a corrected risk, which is a risk caused by correcting the diagram, based on the degree of congestion;
A modified risk output method, characterized by outputting the calculated current risk and the modified risk.
各時刻および各停車場の混雑度により原因ごとに想定されるリスクの発生確率モデルに基づいて原因ごとのリスクを算出し、
算出した原因ごとの現リスクおよび修正リスクを出力する
請求項8記載の修正リスク出力方法。
Calculate the risk for each cause based on the occurrence probability model of the risk assumed for each cause based on the congestion degree at each time and each stop,
9. The corrected risk output method according to claim 8, wherein the current risk and corrected risk for each calculated cause are output.
コンピュータに、
乗物および停車場の混雑度を算出する混雑度算出処理、
ダイヤグラムの変更実績を含む業務履歴データを用いて学習された目的関数を最適化することにより、現在のダイヤグラムを修正した修正後ダイヤグラムを出力するダイヤグラム出力処理、
現時点で発生するリスクである現リスクおよび前記ダイヤグラムの修正により生じるリスクである修正リスクを前記混雑度に基づいて算出するリスク算出処理、および、
算出された前記現リスクおよび前記修正リスクを出力するリスク出力処理
を実行させるための修正リスク出力プログラム。
to the computer,
Congestion degree calculation processing for calculating the degree of congestion of vehicles and stops;
A diagram output process for outputting a modified diagram obtained by modifying the current diagram by optimizing the objective function learned using the work history data including the diagram modification results,
A risk calculation process for calculating a current risk, which is a risk occurring at the present time, and a corrected risk, which is a risk caused by correcting the diagram, based on the degree of congestion;
A modified risk output program for executing risk output processing for outputting the calculated current risk and the modified risk.
JP2022518511A 2020-04-28 2020-04-28 Modified risk output device, modified risk output method, and modified risk output program Active JP7371769B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/018171 WO2021220425A1 (en) 2020-04-28 2020-04-28 Correction risk output device, correction risk output method, and correction risk output program

Publications (3)

Publication Number Publication Date
JPWO2021220425A1 JPWO2021220425A1 (en) 2021-11-04
JPWO2021220425A5 true JPWO2021220425A5 (en) 2022-11-25
JP7371769B2 JP7371769B2 (en) 2023-10-31

Family

ID=78332348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022518511A Active JP7371769B2 (en) 2020-04-28 2020-04-28 Modified risk output device, modified risk output method, and modified risk output program

Country Status (3)

Country Link
US (1) US20230166783A1 (en)
JP (1) JP7371769B2 (en)
WO (1) WO2021220425A1 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818080B2 (en) * 1992-09-29 1998-10-30 株式会社日立製作所 Train diagram making method and device
JP2002187551A (en) 2000-12-19 2002-07-02 Omron Corp Simulation device
US8370006B2 (en) * 2006-03-20 2013-02-05 General Electric Company Method and apparatus for optimizing a train trip using signal information
JP2009190473A (en) 2008-02-12 2009-08-27 Kozo Keikaku Engineering Inc Diagram restoring training system and method
JP2010018221A (en) 2008-07-14 2010-01-28 Railway Technical Res Inst Program, passenger flow estimation device, operation arrangement proposal preparation device, passenger flow estimation method, and operation arrangement proposal preparation method
JP6322048B2 (en) 2014-05-16 2018-05-09 株式会社日立製作所 Congestion prediction apparatus and congestion prediction method
US10977457B2 (en) * 2015-01-30 2021-04-13 Sony Corporation Information processing system and method, and information processing device and method
US9786173B2 (en) * 2015-08-18 2017-10-10 The Florida International University Board Of Trustees Dynamic routing of transit vehicles
JP6573568B2 (en) 2016-03-29 2019-09-11 株式会社日立製作所 Operation prediction system, operation prediction method, and operation prediction program
JP6272596B1 (en) * 2017-05-31 2018-01-31 三菱電機株式会社 Operation planning apparatus, operation planning method, and operation planning program
JP7066365B2 (en) 2017-10-16 2022-05-13 株式会社日立製作所 Timetable creation device and automatic train control system
JP2019093906A (en) 2017-11-22 2019-06-20 株式会社東芝 Operation management support device and operation control system
JP6951996B2 (en) * 2018-03-22 2021-10-20 株式会社日立製作所 Train operation management system and train operation management method
US20210107543A1 (en) * 2019-10-11 2021-04-15 Progress Rail Services Corporation Artificial intelligence based ramp rate control for a train

Similar Documents

Publication Publication Date Title
CN104504460A (en) Method and device for predicating user loss of car calling platform
CN106796533B (en) System and method for adaptively selecting execution mode
CN104076809B (en) Data processing equipment and data processing method
CN103544351A (en) Method and device for adjusting parameters of simulation model
Nyhuis et al. Applying simulation and analytical models for logistic performance prediction
CN104239194A (en) Task completion time prediction method based on BP (Back Propagation) neural network
DE102016224207A1 (en) Method and control device for controlling a technical system
JP4405520B2 (en) Computer program, computer apparatus and method for adjusting project progress schedule
CN110825522A (en) Spark parameter self-adaptive optimization method and system
CN113544604A (en) Assembly error correction for a flow line
CN113379168B (en) Time series prediction processing method, device and equipment
JP2022510667A (en) Methods and equipment for predicting energy consumption
CN115453356A (en) Power equipment running state monitoring and analyzing method, system, terminal and medium
JPWO2021220425A5 (en)
JP2009289266A (en) Method of executing task for calculating signal to be simulated in real time
CN110717141A (en) Lane line optimization method and device and storage medium
US20110313736A1 (en) Method and Algorithm for Modeling and Simulating A Discrete-Event Dynamic System
JP5687122B2 (en) Software evaluation device, software evaluation method, and system evaluation device
JP7251955B2 (en) Detection device and machine learning method
US20200090429A1 (en) Methods for improved delta velocity determination using machine learning and devices thereof
CN104537224A (en) Multi-state system reliability analysis method and system based on self-adaptive learning algorithm
Cichos et al. Integration of a physical model into the realization of engineering changes in manufacturing systems
WO2023021208A4 (en) Support tools for av testing
EP4024286A1 (en) Computing method and apparatus for convolutional neural network model
US20220353161A1 (en) Demand prediction apparatus, demand prediction method and program