JPWO2021220425A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2021220425A5 JPWO2021220425A5 JP2022518511A JP2022518511A JPWO2021220425A5 JP WO2021220425 A5 JPWO2021220425 A5 JP WO2021220425A5 JP 2022518511 A JP2022518511 A JP 2022518511A JP 2022518511 A JP2022518511 A JP 2022518511A JP WO2021220425 A5 JPWO2021220425 A5 JP WO2021220425A5
- Authority
- JP
- Japan
- Prior art keywords
- risk
- diagram
- degree
- congestion
- corrected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010586 diagram Methods 0.000 claims 17
- 238000000034 method Methods 0.000 claims 4
- 230000014759 maintenance of location Effects 0.000 claims 3
- 230000004048 modification Effects 0.000 claims 2
- 238000012986 modification Methods 0.000 claims 2
- 238000005457 optimization Methods 0.000 claims 1
Claims (10)
ダイヤグラムの変更実績を含む業務履歴データを用いて学習された目的関数を最適化することにより、現在のダイヤグラムを修正した修正後ダイヤグラムを出力するダイヤグラム出力手段と、
現時点で発生するリスクである現リスクおよび前記ダイヤグラムの修正により生じるリスクである修正リスクを前記混雑度に基づいて算出するリスク算出手段と、
算出された前記現リスクおよび前記修正リスクを出力するリスク出力手段とを備えた
ことを特徴とする修正リスク出力装置。 Congestion degree calculation means for calculating the degree of congestion of vehicles and stops;
a diagram output means for outputting a modified diagram obtained by modifying the current diagram by optimizing the objective function learned using the business history data including the actual diagram modification;
risk calculation means for calculating a current risk, which is a risk occurring at the present time, and a corrected risk, which is a risk caused by correcting the diagram, based on the degree of congestion;
A modified risk output device, comprising risk output means for outputting the calculated current risk and the modified risk.
リスク出力手段は、算出した原因ごとの現リスクおよび修正リスクを出力する
請求項1記載の修正リスク出力装置。 The risk calculation means calculates the risk for each cause based on the occurrence probability model of the risk assumed for each cause based on the congestion degree at each time and each stop,
2. The corrected risk output device according to claim 1, wherein the risk output means outputs the calculated current risk and corrected risk for each cause.
混雑度算出手段は、前記乗物および停車場において推定される状況に基づいて混雑度を算出する
請求項1または請求項2記載の修正リスク出力装置。 a situation acquisition means for acquiring the estimated situation of the current and future vehicles and stops;
3. The corrected risk output device according to claim 1, wherein the congestion degree calculation means calculates the congestion degree based on the estimated situation of the vehicle and the stop.
前記シミュレータ実行手段は、現在および将来における各停車場と乗物の少なくとも一方における乗客の滞留度合い、または、乗物の運行状況を推定し、
混雑度算出手段は、前記乗客の滞留度合いまたは前記運行状況に基づいて、乗物および停車場の混雑度を算出する
請求項3記載の修正リスク出力装置。 The situation acquisition means includes simulator execution means for executing a simulator that simulates getting on and off of passengers at each stop,
The simulator execution means estimates the degree of stagnation of passengers at at least one of each stop and vehicle at present and in the future, or the operation status of the vehicle,
4. The corrected risk output device according to claim 3, wherein the congestion degree calculation means calculates congestion degrees of vehicles and stops based on the passenger retention degree or the operation status.
請求項4記載の修正リスク出力装置。 5. The modified risk output device according to claim 4, wherein the simulator execution means estimates the degree of passenger retention or operation status by using the distribution of the number of passengers from the first stop to the second stop at each time in the simulator.
前記収集データ取得手段は、現在の各停車場における乗客の滞留度合いを推定し、
混雑度算出手段は、前記乗客の滞留度合いに基づいて、乗物および停車場の混雑度を算出する
請求項3から請求項5のうちのいずれか1項に記載の修正リスク出力装置。 The status acquisition means includes collected data acquisition means for acquiring entry/exit performance data at each stop that is sequentially collected,
The collected data acquisition means estimates the current degree of stagnation of passengers at each stop,
6. The corrected risk output device according to any one of claims 3 to 5, wherein the congestion degree calculation means calculates congestion degrees of vehicles and stops based on the passenger retention degree.
ダイヤグラム出力手段は、選択された目的関数を最適化することにより修正後ダイヤグラムを出力する
請求項1から請求項6のうちのいずれか1項に記載の修正リスク出力装置。 Objective function selection means for receiving an instruction to select an objective function to be used for optimization from among objective functions prepared for each situation and purpose for changing the diagram,
The modified risk output device according to any one of claims 1 to 6, wherein the diagram output means outputs a modified diagram by optimizing the selected objective function.
ダイヤグラムの変更実績を含む業務履歴データを用いて学習された目的関数を最適化することにより、現在のダイヤグラムを修正した修正後ダイヤグラムを出力し、
現時点で発生するリスクである現リスクおよび前記ダイヤグラムの修正により生じるリスクである修正リスクを前記混雑度に基づいて算出し、
算出された前記現リスクおよび前記修正リスクを出力する
ことを特徴とする修正リスク出力方法。 Calculate the degree of congestion of vehicles and stops,
By optimizing the objective function learned using business history data including diagram change results, the current diagram is corrected to output a corrected diagram,
calculating a current risk, which is a risk occurring at the present time, and a corrected risk, which is a risk caused by correcting the diagram, based on the degree of congestion;
A modified risk output method, characterized by outputting the calculated current risk and the modified risk.
算出した原因ごとの現リスクおよび修正リスクを出力する
請求項8記載の修正リスク出力方法。 Calculate the risk for each cause based on the occurrence probability model of the risk assumed for each cause based on the congestion degree at each time and each stop,
9. The corrected risk output method according to claim 8, wherein the current risk and corrected risk for each calculated cause are output.
乗物および停車場の混雑度を算出する混雑度算出処理、
ダイヤグラムの変更実績を含む業務履歴データを用いて学習された目的関数を最適化することにより、現在のダイヤグラムを修正した修正後ダイヤグラムを出力するダイヤグラム出力処理、
現時点で発生するリスクである現リスクおよび前記ダイヤグラムの修正により生じるリスクである修正リスクを前記混雑度に基づいて算出するリスク算出処理、および、
算出された前記現リスクおよび前記修正リスクを出力するリスク出力処理
を実行させるための修正リスク出力プログラム。 to the computer,
Congestion degree calculation processing for calculating the degree of congestion of vehicles and stops;
A diagram output process for outputting a modified diagram obtained by modifying the current diagram by optimizing the objective function learned using the work history data including the diagram modification results,
A risk calculation process for calculating a current risk, which is a risk occurring at the present time, and a corrected risk, which is a risk caused by correcting the diagram, based on the degree of congestion;
A modified risk output program for executing risk output processing for outputting the calculated current risk and the modified risk.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/018171 WO2021220425A1 (en) | 2020-04-28 | 2020-04-28 | Correction risk output device, correction risk output method, and correction risk output program |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2021220425A1 JPWO2021220425A1 (en) | 2021-11-04 |
JPWO2021220425A5 true JPWO2021220425A5 (en) | 2022-11-25 |
JP7371769B2 JP7371769B2 (en) | 2023-10-31 |
Family
ID=78332348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022518511A Active JP7371769B2 (en) | 2020-04-28 | 2020-04-28 | Modified risk output device, modified risk output method, and modified risk output program |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230166783A1 (en) |
JP (1) | JP7371769B2 (en) |
WO (1) | WO2021220425A1 (en) |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2818080B2 (en) * | 1992-09-29 | 1998-10-30 | 株式会社日立製作所 | Train diagram making method and device |
JP2002187551A (en) | 2000-12-19 | 2002-07-02 | Omron Corp | Simulation device |
US8370006B2 (en) * | 2006-03-20 | 2013-02-05 | General Electric Company | Method and apparatus for optimizing a train trip using signal information |
JP2009190473A (en) | 2008-02-12 | 2009-08-27 | Kozo Keikaku Engineering Inc | Diagram restoring training system and method |
JP2010018221A (en) | 2008-07-14 | 2010-01-28 | Railway Technical Res Inst | Program, passenger flow estimation device, operation arrangement proposal preparation device, passenger flow estimation method, and operation arrangement proposal preparation method |
JP6322048B2 (en) | 2014-05-16 | 2018-05-09 | 株式会社日立製作所 | Congestion prediction apparatus and congestion prediction method |
US10977457B2 (en) * | 2015-01-30 | 2021-04-13 | Sony Corporation | Information processing system and method, and information processing device and method |
US9786173B2 (en) * | 2015-08-18 | 2017-10-10 | The Florida International University Board Of Trustees | Dynamic routing of transit vehicles |
JP6573568B2 (en) | 2016-03-29 | 2019-09-11 | 株式会社日立製作所 | Operation prediction system, operation prediction method, and operation prediction program |
JP6272596B1 (en) * | 2017-05-31 | 2018-01-31 | 三菱電機株式会社 | Operation planning apparatus, operation planning method, and operation planning program |
JP7066365B2 (en) | 2017-10-16 | 2022-05-13 | 株式会社日立製作所 | Timetable creation device and automatic train control system |
JP2019093906A (en) | 2017-11-22 | 2019-06-20 | 株式会社東芝 | Operation management support device and operation control system |
JP6951996B2 (en) * | 2018-03-22 | 2021-10-20 | 株式会社日立製作所 | Train operation management system and train operation management method |
US20210107543A1 (en) * | 2019-10-11 | 2021-04-15 | Progress Rail Services Corporation | Artificial intelligence based ramp rate control for a train |
-
2020
- 2020-04-28 WO PCT/JP2020/018171 patent/WO2021220425A1/en active Application Filing
- 2020-04-28 US US17/920,885 patent/US20230166783A1/en active Pending
- 2020-04-28 JP JP2022518511A patent/JP7371769B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104504460A (en) | Method and device for predicating user loss of car calling platform | |
CN106796533B (en) | System and method for adaptively selecting execution mode | |
CN104076809B (en) | Data processing equipment and data processing method | |
CN103544351A (en) | Method and device for adjusting parameters of simulation model | |
Nyhuis et al. | Applying simulation and analytical models for logistic performance prediction | |
CN104239194A (en) | Task completion time prediction method based on BP (Back Propagation) neural network | |
DE102016224207A1 (en) | Method and control device for controlling a technical system | |
JP4405520B2 (en) | Computer program, computer apparatus and method for adjusting project progress schedule | |
CN110825522A (en) | Spark parameter self-adaptive optimization method and system | |
CN113544604A (en) | Assembly error correction for a flow line | |
CN113379168B (en) | Time series prediction processing method, device and equipment | |
JP2022510667A (en) | Methods and equipment for predicting energy consumption | |
CN115453356A (en) | Power equipment running state monitoring and analyzing method, system, terminal and medium | |
JPWO2021220425A5 (en) | ||
JP2009289266A (en) | Method of executing task for calculating signal to be simulated in real time | |
CN110717141A (en) | Lane line optimization method and device and storage medium | |
US20110313736A1 (en) | Method and Algorithm for Modeling and Simulating A Discrete-Event Dynamic System | |
JP5687122B2 (en) | Software evaluation device, software evaluation method, and system evaluation device | |
JP7251955B2 (en) | Detection device and machine learning method | |
US20200090429A1 (en) | Methods for improved delta velocity determination using machine learning and devices thereof | |
CN104537224A (en) | Multi-state system reliability analysis method and system based on self-adaptive learning algorithm | |
Cichos et al. | Integration of a physical model into the realization of engineering changes in manufacturing systems | |
WO2023021208A4 (en) | Support tools for av testing | |
EP4024286A1 (en) | Computing method and apparatus for convolutional neural network model | |
US20220353161A1 (en) | Demand prediction apparatus, demand prediction method and program |