JPWO2021202264A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2021202264A5 JPWO2021202264A5 JP2022558234A JP2022558234A JPWO2021202264A5 JP WO2021202264 A5 JPWO2021202264 A5 JP WO2021202264A5 JP 2022558234 A JP2022558234 A JP 2022558234A JP 2022558234 A JP2022558234 A JP 2022558234A JP WO2021202264 A5 JPWO2021202264 A5 JP WO2021202264A5
- Authority
- JP
- Japan
- Prior art keywords
- wells
- image
- cell
- well
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 claims description 45
- 238000012634 optical imaging Methods 0.000 claims description 31
- 238000005286 illumination Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 17
- 239000012472 biological sample Substances 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 6
- 238000002073 fluorescence micrograph Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims description 2
- 239000013553 cell monolayer Substances 0.000 claims 2
- 238000003384 imaging method Methods 0.000 claims 2
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079156 Proteasome inhibitor Drugs 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002952 image-based readout Methods 0.000 description 1
- 239000003207 proteasome inhibitor Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
Description
[実施例4]
[細胞基質インピーダンスと光学撮像の同時監視による薬効の定量化]
実施例II~IVに提示されたインピーダンスおよび画像ベースの読み出しを使用して、MG132のEC50を計算した。薬剤添加時から薬剤添加後60時間までにわたる曲線下面積をMG132濃度の関数としてプロットし、図16に見られる用量応答曲線を得た。R2値が0.96~0.98の範囲で、4つの異なる読み取り値のフィッティングの質は非常に良好である。計算されたEC50値は0.86~3.0μmの範囲であり、文献で報告されている値と一致している。Han, Y. H.他、The Effect of MG132, a Proteasome Inhibitor on HeLa Cells in Relation to Cell Growth, Reactive Oxygen Species and GSH. Oncol. Rep. 2009, 22(1), 215-21を参照されたい。
なお、出願当初の特許請求の範囲の記載は以下の通りである。
請求項1:
複数の生物学的サンプルを受容するように構成された複数のウェルを有するマルチウェルプレートであって、前記ウェルのそれぞれが一組の電極、電極のない前記ウェルの底面上の透明窓とを含むマルチウェルプレートと、
前記ウェルを照明するように構成された照明モジュールと、
前記ウェルの前記透明窓を露出させるように構成された前記底部に開口部を有し、前記マルチウェルプレートを受け入れるように構成されたクレードルと、
前記露出した窓を通して画像を取り込むために、同じマルチウェルプレートの異なるウェル間で移動可能な光学撮像モジュールと
を備える、生物学的サンプルを電子的および光学的に監視するためのシステム。
請求項2:
前記生物学的サンプルが細胞、任意選択的に癌細胞を含む、請求項1に記載のシステム。
請求項3:
前記照明モジュールが、前記ウェルのうちの1つまたは複数を独立して照明するように構成された複数のライトを備える、請求項1に記載のシステム。
請求項4:
前記照明モジュールが発光ダイオード(LED)アレイを備え、各LEDが単一のウェルを照明するように配置される、請求項1に記載のシステム。
請求項5:
前記照明モジュールが明視野照明モジュールである、請求項1に記載のシステム。
請求項6:
前記クレードルがヒンジ付きカバーをさらに備え、前記照明モジュールが前記カバーに接合される、請求項1に記載のシステム。
請求項7:
前記クレードルは、前記一組の電極と電子的に通信するための前記マルチウェルプレートと、照明命令を通信するための前記照明モジュールとの両方に電気的に係合する、請求項1に記載のシステム。
請求項8:
前記光学撮像モジュールが、一度に単一のウェルから1つまたは複数の画像を取り込むように構成されている、請求項1に記載のシステム。
請求項9:
前記光学撮像モジュールが前記クレードルの下にある、請求項1に記載のシステム。
請求項10:
前記光学撮像システムは、1つまたは複数の分子を励起するように構成された励起光源をさらに含み、前記励起光源は、紫外光、紫光、青色光、緑色光、黄色光、橙色光、および赤色光からなる群から選択される1つまたは複数の光を任意選択的に含む、請求項1に記載のシステム。
請求項11:
前記光学撮像モジュールがカメラを含む、請求項1に記載のシステム。
請求項12:
前記光学撮像モジュールが、カメラと、バンドパスフィルタと、チューブレンズと、対物レンズとを備える、請求項1に記載のシステム。
請求項13:
1つまたは複数のウェル内の細胞基質インピーダンスを電子的に監視するための前記一組の電極セットのそれぞれを選択的に操作するための前記クレードルと、
前記1つまたは複数のウェルを選択的に照明するための前記照明モジュールと、
前記1つまたは複数のウェルからの画像の取り込みおよび受信と選択的な動きのための前記光学撮像モジュールと
に通信可能に結合されたコンピュータプロセッサをさらに備える、請求項1に記載のシステム。
請求項14:
前記コンピュータプロセッサは、前記1つまたは複数のウェルが電子的監視から設定されたインピーダンスベースの値またはインピーダンスベースのパラメータに到達または追従することに応答して、前記光学撮像モジュールを介して前記1つまたは複数のウェルから画像を取り込むようにプログラムされている、請求項13に記載のシステム。
請求項15:
前記プロセッサが、細胞基質インピーダンスを電子的に監視し、同じウェルを光学的に監視するようにプログラムされ、表示または分析のためにインピーダンスと光学データとを対にするように構成されている、請求項13に記載のシステム。
請求項16:
それぞれが複数のサンプルを受け取るように構成された複数のウェルを有し、前記ウェルのそれぞれが一組の電極と、電極のない前記ウェルの底面上の透明窓とを含む2つの追加のマルチウェルプレートと、
前記2つの追加のマルチウェルプレートの前記ウェルを照明するように構成された2つの追加の照明モジュールと、
それぞれが前記ウェルの前記透明窓を露出させる開放底を有し、前記2つの追加のマルチウェルプレートを受け入れるように構成された2つの追加のクレードルと
をさらに備え、
前記光学撮像モジュールは、すべての窓を通して画像を取り込むために、すべてのウェルにわたって移動可能である、請求項1に記載のシステム。
請求項17:
電子監視用に構成されていない細胞または組織培養容器をさらに備え、前記光学撮像モジュールは、前記細胞または組織培養容器内の画像を取り込むように構成されている、請求項1に記載のシステム。
請求項18:
マルチウェルプレートのウェル内の細胞を、連続監視間の特定の時間間隔で、ある期間にわたって連続的に電子的に監視するステップであって、前記ウェルのそれぞれが、一組の細胞基質インピーダンス監視電極と、電極のない前記ウェルの底面上の透明窓とを含むステップと、
電子的に監視されている少なくとも1つのウェルから前記透明窓を通して画像を取り込むステップと
を含む、細胞を監視する方法。
請求項19:
前記画像は、前記電子監視期間内の期間にわたって定期的または不定期に取り込まれ、前記方法は、前記細胞の電子測定を実行すると同時に前記画像を取り込むステップを任意選択的に含む、請求項18に記載の方法。
請求項20:
前記少なくとも1つのウェルから画像を取り込む前記ステップの前に、前記電子監視ステップが、設定値を満たす前記少なくとも1つのウェルからの結果を出力し、前記光学撮像モジュールに前記少なくとも1つのウェルから前記画像を取り込むように指示する、請求項18に記載の方法。
請求項21:
前記取得される画像が細胞の明視野画像を含み、前記明視野画像から細胞コンフルエンス数またはパラメータを決定し、任意選択的に細胞を計数するステップをさらに含む請求項18に記載の方法。
請求項22:
前記取り込まれた画像が細胞の蛍光画像を含み、総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から任意選択的に選択される画像から蛍光パラメータを決定するステップをさらに含む請求項18に記載の方法。
請求項23:
前記取得された画像は、前記細胞の明視野画像および前記細胞の蛍光画像を含み、
前記明視野画像から細胞コンフルエンス数またはパラメータを導出し、任意選択的に前記明視野画像から細胞を計数するステップと、
総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から任意選択的に選択される、蛍光画像からの蛍光パラメータを決定するステップと、
任意選択的に、前記明視野画像および蛍光画像、または同じウェルの1つまたは複数の色を重ね合わせるステップと
をさらに含む請求項18に記載の方法。
請求項24:
ある期間にわたってマルチウェルプレートのウェル内の細胞を電子的に監視するステップであって、前記ウェルのそれぞれが、一組の細胞基質インピーダンス監視電極と、電極のない前記ウェルの底面上の透明窓とを構成するステップと、
前記マルチウェルプレートの少なくとも1つのウェルから、前記透明窓を通して、電子的監視の前記期間内の期間にわたって画像を取り込むステップと
を含む細胞を監視する方法。
請求項25:
前記取得される画像は前記細胞の明視野画像であり、前記明視野画像から細胞を計数するステップ、または細胞コンフルエンス数またはパラメータを決定するステップを任意選択的に含み、
前記取得される画像は、前記細胞の蛍光画像であり、総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から任意選択的に選択される、前記画像からある蛍光パラメータを任意選択的に決定するステップを含み、
前記取得される画像は、前記細胞の明視野画像と前記細胞の蛍光画像とを含むもので、
前記明視野画像から細胞を計数することと、任意選択的に前記明視野画像から細胞コンフルエンス数またはパラメータを導き出すことと、任意選択的に、総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から選択される、前記蛍光画像からの蛍光パラメータを決定することと、任意選択的に、1つまたは複数の前記ウェルについて、1つまたは複数の色の前記明視野画像と蛍光画像とを重ね合わせることとをさらに含む請求項24に記載の方法。
[Example 4]
Quantifying drug efficacy by simultaneous monitoring of cell-substrate impedance and optical imaging
Using the impedance and image-based readouts presented in Examples II-IV, the EC50 of MG132 was calculated. The area under the curve from the time of drug addition to 60 hours after drug addition was plotted as a function of MG132 concentration, resulting in the dose-response curve seen in FIG. 16. The quality of the fit of the four different readouts is very good, with R2 values ranging from 0.96 to 0.98. The calculated EC50 values range from 0.86 to 3.0 μm, which is consistent with values reported in the literature. See Han, YH et al., The Effect of MG132, a Proteasome Inhibitor on HeLa Cells in Relation to Cell Growth, Reactive Oxygen Species and GSH. Oncol. Rep. 2009, 22(1), 215-21.
The claims as originally filed are as follows:
Claim 1:
a multiwell plate having a plurality of wells configured to receive a plurality of biological samples, each of the wells including a set of electrodes, a transparent window on a bottom surface of the well that is free of electrodes;
an illumination module configured to illuminate the well;
a cradle configured to receive the multiwell plate, the cradle having an opening at the bottom configured to expose the transparent windows of the wells;
an optical imaging module movable between different wells of the same multiwell plate to capture images through the exposed windows;
A system for electronically and optically monitoring a biological sample comprising:
Claim 2:
The system of claim 1 , wherein the biological sample comprises cells, optionally cancer cells.
Claim 3:
The system of claim 1 , wherein the illumination module comprises a plurality of lights configured to independently illuminate one or more of the wells.
Claim 4:
10. The system of claim 1, wherein the illumination module comprises an array of light emitting diodes (LEDs), each LED positioned to illuminate a single well.
Claim 5:
The system of claim 1 , wherein the illumination module is a bright field illumination module.
Claim 6:
The system of claim 1 , wherein the cradle further comprises a hinged cover, the lighting module being joined to the cover.
Claim 7:
10. The system of claim 1, wherein the cradle electrically engages both the multiwell plate for electronic communication with the set of electrodes and the illumination module for communicating illumination commands.
Claim 8:
The system of claim 1 , wherein the optical imaging module is configured to capture one or more images from a single well at a time.
Claim 9:
The system of claim 1 , wherein the optical imaging module is located below the cradle.
Claim 10:
10. The system of claim 1, wherein the optical imaging system further comprises an excitation light source configured to excite one or more molecules, the excitation light source optionally comprising one or more lights selected from the group consisting of ultraviolet light, violet light, blue light, green light, yellow light, orange light, and red light.
Claim 11:
The system of claim 1 , wherein the optical imaging module comprises a camera.
Claim 12:
The system of claim 1 , wherein the optical imaging module comprises a camera, a bandpass filter, a tube lens, and an objective lens.
Claim 13:
the cradle for selectively manipulating each of the set of electrodes for electronically monitoring cell-substrate impedance in one or more wells;
the illumination module for selectively illuminating the one or more wells;
said optical imaging module for selective movement and capture and reception of images from said one or more wells;
The system of claim 1 , further comprising a computer processor communicatively coupled to the
Claim 14:
14. The system of claim 13, wherein the computer processor is programmed to capture images from the one or more wells via the optical imaging module in response to the one or more wells reaching or following a set impedance-based value or impedance-based parameter from electronic monitoring.
Claim 15:
14. The system of claim 13, wherein the processor is programmed to electronically monitor cell substrate impedance and optically monitor the same wells and configured to pair impedance and optical data for display or analysis.
Claim 16:
two additional multi-well plates each having a plurality of wells configured to receive a plurality of samples, each of the wells including a set of electrodes and a transparent window on a bottom surface of the well that does not include electrodes;
two additional illumination modules configured to illuminate the wells of the two additional multiwell plates;
two additional cradles, each having an open bottom exposing the transparent windows of the wells, configured to receive the two additional multiwell plates;
Further equipped with
The system of claim 1 , wherein the optical imaging module is movable across all wells to capture images through all windows.
Claim 17:
10. The system of claim 1, further comprising a cell or tissue culture vessel not configured for electronic monitoring, wherein the optical imaging module is configured to capture images within the cell or tissue culture vessel.
Claim 18:
Continuously electronically monitoring cells in wells of a multi-well plate over a period of time with specific time intervals between successive monitoring, each of said wells containing a set of cell substrate impedance monitoring electrodes and a transparent window on the bottom of said well that is devoid of electrodes;
capturing an image through said transparent window from at least one well being electronically monitored;
A method for monitoring a cell, comprising:
Claim 19:
20. The method of claim 18, wherein the images are captured periodically or irregularly over a period of time within the electronic monitoring period, the method optionally including the step of capturing the images simultaneously with performing electronic measurements of the cells.
Claim 20:
20. The method of claim 18, wherein prior to the step of capturing an image from the at least one well, the electronic monitoring step outputs a result from the at least one well that meets a set value and instructs the optical imaging module to capture the image from the at least one well.
Claim 21:
20. The method of claim 18, wherein the acquired images include brightfield images of cells, further comprising determining a cell confluence number or parameter from the brightfield images and optionally counting cells.
Claim 22:
20. The method of claim 18, wherein the captured images include fluorescent images of cells, further comprising determining a fluorescent parameter from the images optionally selected from one or more of the group consisting of: total fluorescent count, total fluorescent intensity, and mean fluorescent intensity.
Claim 23:
the acquired images include a bright field image of the cell and a fluorescent image of the cell;
Deriving a cell confluence number or parameter from said brightfield image and optionally counting cells from said brightfield image;
determining a fluorescence parameter from the fluorescence image, optionally selected from one or more of the group consisting of: total fluorescence count, total fluorescence intensity, and mean fluorescence intensity;
Optionally, overlaying the bright field image and the fluorescent image, or one or more colors, of the same well.
20. The method of claim 18 further comprising:
Claim 24:
electronically monitoring cells in wells of a multi-well plate over a period of time, each of said wells comprising a set of cell substrate impedance monitoring electrodes and a transparent window on the bottom of said well that is devoid of electrodes;
capturing images from at least one well of said multi-well plate through said transparent window for a period within said period of electronic monitoring;
A method for monitoring cells comprising:
Claim 25:
the acquired image is a brightfield image of the cells, optionally comprising counting cells or determining a cell confluence number or parameter from the brightfield image;
the acquired image is a fluorescent image of the cells, optionally comprising determining a fluorescent parameter from the image, optionally selected from one or more of the group consisting of: total fluorescent count, total fluorescent intensity, and mean fluorescent intensity;
the acquired images include a bright field image of the cell and a fluorescent image of the cell;
25. The method of claim 24, further comprising counting cells from the brightfield image, optionally deriving a cell confluence number or parameter from the brightfield image, optionally determining a fluorescence parameter from the fluorescence image selected from one or more of the group consisting of total fluorescence count, total fluorescence intensity, and mean fluorescence intensity, and optionally overlaying the brightfield image and fluorescence image of one or more colors for one or more of the wells.
Claims (35)
前記ウェルを照明するように構成された照明モジュールと、
前記ウェルの前記透明窓を露出させるように構成された前記底部に開口部を有し、前記マルチウェルプレートを受け入れるように構成されたクレードルと、
前記露出した窓を通して画像を取り込むために、同じマルチウェルプレートの異なるウェル間で移動可能な光学撮像モジュールと、
1つまたは複数のウェル内の細胞基質インピーダンスを電子的に監視する前記一組の電極のそれぞれを選択的に操作するコンピュータプロセッサと
を備え、
前記照明モジュールは、1つまたは複数のウェルを選択的に照明するためであり、前記光学撮像モジュールは、選択的な動きならびに1つまたは複数のウェルからの画像の取り込みおよび受信のためであり、
前記コンピュータプロセッサは、1つまたは複数のウェルが電子的監視から設定されたインピーダンスベースの値またはパラメータに到達または追従することに応答して、光学撮像モジュールを介して1つまたは複数のウェルから画像を取り込むようにプログラムされている、生物学的サンプルを電子的および光学的に監視するためのシステム。 a multiwell plate having a plurality of wells configured to receive a plurality of biological samples, each of the wells including a set of electrodes, a transparent window on a bottom surface of the well that is free of electrodes;
an illumination module configured to illuminate the well;
a cradle configured to receive the multiwell plate, the cradle having an opening at the bottom configured to expose the transparent windows of the wells;
an optical imaging module movable between different wells of the same multi-well plate to capture images through the exposed windows ;
a computer processor for selectively operating each of said set of electrodes to electronically monitor cell-substrate impedance within one or more wells;
Equipped with
the illumination module is for selectively illuminating one or more wells, and the optical imaging module is for selectively moving and capturing and receiving images from one or more wells;
A system for electronically and optically monitoring a biological sample, wherein the computer processor is programmed to capture images from one or more wells via the optical imaging module in response to the one or more wells reaching or following a set impedance-based value or parameter from the electronic monitoring.
前記1つまたは複数のウェルを選択的に照明するための前記照明モジュールと、
前記1つまたは複数のウェルからの画像の取り込みおよび受信と選択的な動きのための前記光学撮像モジュールと
に通信可能に結合されたコンピュータプロセッサをさらに備える、請求項1に記載のシステム。 the cradle for selectively manipulating each of the set of electrodes for electronically monitoring cell-substrate impedance in one or more wells;
the illumination module for selectively illuminating the one or more wells;
10. The system of claim 1, further comprising a computer processor communicatively coupled to the optical imaging module for selective movement and for capturing and receiving images from the one or more wells.
前記2つの追加のマルチウェルプレートの前記ウェルを照明するように構成された2つの追加の照明モジュールと、
それぞれが前記ウェルの前記透明窓を露出させる開放底を有し、前記2つの追加のマルチウェルプレートを受け入れるように構成された2つの追加のクレードルと
をさらに備え、
前記光学撮像モジュールは、すべての窓を通して画像を取り込むために、すべてのウェルにわたって移動可能である、請求項1に記載のシステム。 two additional multi-well plates each having a plurality of wells configured to receive a plurality of samples, each of the wells including a set of electrodes and a transparent window on a bottom surface of the well that does not include electrodes;
two additional illumination modules configured to illuminate the wells of the two additional multiwell plates;
and two additional cradles, each having an open bottom exposing the transparent windows of the wells, configured to receive the two additional multiwell plates;
The system of claim 1 , wherein the optical imaging module is movable across all wells to capture images through all windows.
電子的に監視されている少なくとも1つのウェルから前記透明窓を通して画像を取り込むステップであって、前記少なくとも1つのウェルから画像を取り込む前記ステップの前に、前記電子監視ステップが、設定値を満たす前記少なくとも1つのウェルからの結果を出力し、前記光学撮像モジュールに前記少なくとも1つのウェルから前記画像を取り込むように指示する、画像を取り込むステップと
を含む、細胞を監視する方法。 Continuously electronically monitoring cells in wells of a multi-well plate over a period of time with specific time intervals between successive monitoring, each of said wells containing a set of cell substrate impedance monitoring electrodes and a transparent window on the bottom of said well that is devoid of electrodes;
and capturing an image through the transparent window from at least one well that is being electronically monitored , wherein prior to the step of capturing an image from the at least one well, the electronic monitoring step outputs a result from the at least one well that meets a set value and instructs the optical imaging module to capture the image from the at least one well .
前記明視野画像から細胞コンフルエンス数またはパラメータを導出し、任意選択的に前記明視野画像から細胞を計数するステップと、
総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から任意選択的に選択される、前記蛍光画像からの蛍光パラメータを決定するステップと、
任意選択的に、前記明視野画像および蛍光画像、または同じウェルの1つまたは複数の色を重ね合わせるステップと
をさらに含む請求項18に記載の方法。 the acquired images include a bright field image of the cell and a fluorescent image of the cell;
Deriving a cell confluence number or parameter from said brightfield image and optionally counting cells from said brightfield image;
determining a fluorescence parameter from the fluorescence image, optionally selected from one or more of the group consisting of: total fluorescence count, total fluorescence intensity, and mean fluorescence intensity;
20. The method of claim 18, further comprising optionally overlaying the bright field image and the fluorescent image, or one or more colors, of the same well.
前記マルチウェルプレートの少なくとも1つのウェルから、前記透明窓を通して、電子的監視の前記期間内または前記期間外の期間にわたって画像を取り込むステップと
を含み、
細胞を電子的に監視する前記ステップおよび画像を取り込む前記ステップは、
i)細胞基質インピーダンスを電子的に監視し、前記同じウェルの画像を取り込み、表示または分析のためにインピーダンスと光学データを対にすることと、
ii)1つまたは複数のウェルが前記電子的監視から設定されたインピーダンスベースの値またはパラメータに到達または追従することに応答して、前記少なくとも1つのウェルから画像を取り込むことと、
iii)2つの連続する電子インピーダンス監視間の特定の時間間隔を含む期間にわたって細胞基質インピーダンスを電子的に監視し、電子的監視の前記期間内の期間、または電子的監視とは異なる期間にわたって前記同じウェルの画像を取り込むことと
のうちの1つまたは複数により結合される、細胞を監視する方法。 electronically monitoring cells in wells of a multi-well plate over a period of time, each of said wells comprising a set of cell substrate impedance monitoring electrodes and a transparent window on the bottom of said well that is devoid of electrodes;
capturing images from at least one well of said multi-well plate through said transparent window for periods during and outside said period of electronic monitoring ;
The steps of electronically monitoring the cells and capturing images include:
i) electronically monitoring cell-substrate impedance and capturing images of the same wells and pairing impedance and optical data for display or analysis;
ii) capturing an image from one or more wells in response to said at least one well reaching or following a set impedance-based value or parameter from said electronic monitoring;
iii) electronically monitoring cell substrate impedance over a period of time that includes a specific time interval between two successive electronic impedance monitors, and capturing images of the same well over a period of time within the period of electronic monitoring or over a period of time that is different from the electronic monitoring.
The method of claim 1, wherein the cell is bound by one or more of the following :
前記取得される画像は、前記細胞の蛍光画像であり、総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から任意選択的に選択される、前記画像からある蛍光パラメータを任意選択的に決定するステップを含み、
前記取得される画像は、前記細胞の明視野画像と前記細胞の蛍光画像とを含むもので、
前記明視野画像から細胞を計数し、任意選択的に前記明視野画像から細胞コンフルエンス数またはパラメータを導き出すことと、任意選択的に、総蛍光計数と、総蛍光強度と、平均蛍光強度とからなる群のうちの1つまたは複数から選択される前記蛍光画像からの蛍光パラメータを決定することと、任意選択的に、1つまたは複数の前記ウェルについて、1つまたは複数の色の前記明視野画像と蛍光画像とを重ね合わせることとをさらに含む請求項23に記載の方法。 the acquired image is a brightfield image of the cells, optionally comprising counting cells or determining a cell confluence number or parameter from the brightfield image;
the acquired image is a fluorescent image of the cells, optionally comprising determining a fluorescent parameter from the image, optionally selected from one or more of the group consisting of: total fluorescent count, total fluorescent intensity, and mean fluorescent intensity;
the acquired images include a bright field image of the cell and a fluorescent image of the cell;
24. The method of claim 23, further comprising counting cells from the brightfield image, and optionally deriving a cell confluence number or parameter from the brightfield image, optionally determining a fluorescence parameter from the fluorescence image selected from one or more of the group consisting of total fluorescence count, total fluorescence intensity, and mean fluorescence intensity, and optionally overlaying the brightfield image and fluorescence image of one or more colors for one or more of the wells.
前記ウェルを撮像する光学撮像モジュールと、an optical imaging module for imaging the well;
前記ウェルを照明するように構成された照明モジュールと、an illumination module configured to illuminate the well;
細胞基質インピーダンスを電子的に監視し、同じウェルを光学的に監視するようにプログラムされるコンピュータプロセッサであって、a computer processor programmed to electronically monitor cell substrate impedance and optically monitor the same wells,
i)細胞基質インピーダンスを電子的に監視し、前記同じウェルの画像を取り込み、表示または分析のためにインピーダンスと光学データを対にすることと、i) electronically monitoring cell-substrate impedance and capturing images of the same wells and pairing impedance and optical data for display or analysis;
ii)1つまたは複数のウェルが前記電子的監視から設定されたインピーダンスベースの値またはパラメータに到達または追従することに応答して、前記少なくとも1つのウェルから画像を取り込むことと、ii) capturing an image from one or more wells in response to said at least one well reaching or following a set impedance-based value or parameter from said electronic monitoring;
iii)2つの連続する電子インピーダンス監視間の特定の時間間隔を含む期間にわたって細胞基質インピーダンスを電子的に監視し、電子的監視の前記期間内の期間、または電子的監視とは異なる期間にわたって前記同じウェルの画像を取り込むこととiii) electronically monitoring cell substrate impedance over a period of time that includes a specific time interval between two successive electronic impedance monitors, and capturing images of the same well over a period of time within the period of electronic monitoring or over a period of time that is different from the electronic monitoring.
のうちの1つまたは複数により結合されるように、インピーダンスと光学データとを結合するように構成されている、コンピュータプロセッサとa computer processor configured to combine the impedance and optical data such that the impedance and optical data are coupled by one or more of the following:
を備える、生物学的サンプルを電子的および光学的に監視するためのシステム。A system for electronically and optically monitoring a biological sample comprising:
前記コンピュータプロセッサは、前記光学撮像モジュールと前記照明モジュールとに通信可能に結合されて、1つまたは複数のウェル内の細胞基質インピーダンスを電子的に監視するための前記一組の電極セットのそれぞれを選択的に操作し、前記1つまたは複数のウェルを選択的に照明し、1つまたは複数のウェルからの画像の取り込みおよび受信のための前記光学撮像モジュールを選択的に操作する、請求項30に記載のシステム。31. The system of claim 30, wherein the computer processor is communicatively coupled to the optical imaging module and the illumination module to selectively operate each of the sets of electrodes for electronically monitoring cell substrate impedance in one or more wells, selectively illuminate the one or more wells, and selectively operate the optical imaging module for capturing and receiving images from one or more wells.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/833,651 US20210301245A1 (en) | 2020-03-29 | 2020-03-29 | Systems and methods for electronically and optically monitoring biological samples |
US16/833,651 | 2020-03-29 | ||
PCT/US2021/024305 WO2021202264A1 (en) | 2020-03-29 | 2021-03-26 | Systems and methods for electronically and optically monitoring biological samples |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023519337A JP2023519337A (en) | 2023-05-10 |
JPWO2021202264A5 true JPWO2021202264A5 (en) | 2024-04-09 |
Family
ID=77854411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022558234A Pending JP2023519337A (en) | 2020-03-29 | 2021-03-26 | Systems and methods for electronic and optical monitoring of biological samples |
Country Status (5)
Country | Link |
---|---|
US (2) | US20210301245A1 (en) |
EP (1) | EP4126366A1 (en) |
JP (1) | JP2023519337A (en) |
CN (1) | CN115397556A (en) |
WO (1) | WO2021202264A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210301245A1 (en) | 2020-03-29 | 2021-09-30 | Agilent Technologies, Inc. | Systems and methods for electronically and optically monitoring biological samples |
CN114210377B (en) * | 2021-12-21 | 2023-01-06 | 哈尔滨工业大学 | Portable multifunctional visual microfluid equipment based on electric field regulation and control |
US20230256435A1 (en) | 2022-02-03 | 2023-08-17 | Agilent Technologies, Inc. | Apparatuses and methods for analyzing live cells |
WO2023177751A2 (en) * | 2022-03-16 | 2023-09-21 | Zig Therapeutics, Inc. | Sputum image processing assembly and system, method of processing sputum contained in a sputum sample container, and method of processing a plurality of sputum samples over time |
WO2023195493A1 (en) * | 2022-04-06 | 2023-10-12 | 富士フイルム株式会社 | Assessment system, information processing device, and information processing method |
WO2024116670A1 (en) * | 2022-11-30 | 2024-06-06 | コニカミノルタ株式会社 | Microarray device, method for manufacturing microarray device, inspection kit, inspection system, and inspection method |
Family Cites Families (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2656508A (en) | 1949-08-27 | 1953-10-20 | Wallace H Coulter | Means for counting particles suspended in a fluid |
US3259842A (en) | 1959-08-19 | 1966-07-05 | Coulter Electronics | Particle analyzing device |
US3742581A (en) | 1971-09-20 | 1973-07-03 | Laser Alignment | Method for laying a pipeline |
US3890201A (en) | 1974-09-26 | 1975-06-17 | Bactomatic Inc | Multi-chamber impedance measuring module-cap combination |
US4067951A (en) | 1975-11-19 | 1978-01-10 | Bactomatic Inc. | Process for making impedance measuring module |
US4225410A (en) | 1978-12-04 | 1980-09-30 | Technicon Instruments Corporation | Integrated array of electrochemical sensors |
US4559310A (en) | 1983-05-20 | 1985-12-17 | Dana Farber Cancer Institute | Assay methods and systems utilizing mast cell clones |
US4686190A (en) | 1986-02-19 | 1987-08-11 | The Research Foundation Of State University Of New York | Device useful for growing and/or testing biological materials |
US5001048A (en) | 1987-06-05 | 1991-03-19 | Aurthur D. Little, Inc. | Electrical biosensor containing a biological receptor immobilized and stabilized in a protein film |
US4920047A (en) | 1988-05-20 | 1990-04-24 | General Electric Company | Electrical detection of the immune reaction |
US5218312A (en) | 1988-07-20 | 1993-06-08 | Ricardo Moro | Measurement apparatus for measuring a biological substance within a fluid substrate |
US5278048A (en) | 1988-10-21 | 1994-01-11 | Molecular Devices Corporation | Methods for detecting the effect of cell affecting agents on living cells |
US5766934A (en) | 1989-03-13 | 1998-06-16 | Guiseppi-Elie; Anthony | Chemical and biological sensors having electroactive polymer thin films attached to microfabricated devices and possessing immobilized indicator moieties |
US5491097A (en) | 1989-06-15 | 1996-02-13 | Biocircuits Corporation | Analyte detection with multilayered bioelectronic conductivity sensors |
US5643742A (en) | 1990-04-03 | 1997-07-01 | Cellstat Technologies, Inc. | System for electronically monitoring and recording cell cultures |
US5134070A (en) | 1990-06-04 | 1992-07-28 | Casnig Dael R | Method and device for cell cultivation on electrodes |
US5284753A (en) | 1991-03-20 | 1994-02-08 | Neuro Probe, Inc. | Multiple-site chemotactic test apparatus and method |
US5187096A (en) | 1991-08-08 | 1993-02-16 | Rensselaer Polytechnic Institute | Cell substrate electrical impedance sensor with multiple electrode array |
US6017696A (en) | 1993-11-01 | 2000-01-25 | Nanogen, Inc. | Methods for electronic stringency control for molecular biological analysis and diagnostics |
US5247827A (en) | 1992-04-14 | 1993-09-28 | Bell Communications Research, Inc. | Resistive measurement of airborne contaminants |
US5514555A (en) | 1993-03-12 | 1996-05-07 | Center For Blood Research, Inc. | Assays and therapeutic methods based on lymphocyte chemoattractants |
US5810725A (en) | 1993-04-16 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Planar electrode |
FR2704151B1 (en) | 1993-04-21 | 1995-07-13 | Klotz Antoine Olivier | Electronic device intended for the adrenergic stimulation of the sympathetic system relating to the venous media. |
IL109492A (en) | 1994-05-01 | 1999-06-20 | Sirotech Ltd | Method and apparatus for evaluating bacterial populations |
DE4417079C2 (en) | 1994-05-17 | 1998-06-10 | Fraunhofer Ges Forschung | Slides for observing biological material |
US5563067A (en) | 1994-06-13 | 1996-10-08 | Matsushita Electric Industrial Co., Ltd. | Cell potential measurement apparatus having a plurality of microelectrodes |
US5658413A (en) | 1994-10-19 | 1997-08-19 | Hewlett-Packard Company | Miniaturized planar columns in novel support media for liquid phase analysis |
US5601997A (en) | 1995-02-03 | 1997-02-11 | Tchao; Ruy | Chemotaxis assay procedure |
DE19512117A1 (en) | 1995-04-04 | 1996-10-10 | Itt Ind Gmbh Deutsche | Measuring device |
JP2930181B2 (en) | 1995-06-20 | 1999-08-03 | 松下電器産業株式会社 | Two-dimensional sensor for measuring nerve cell activity and measuring device using the same |
US5626734A (en) | 1995-08-18 | 1997-05-06 | University Technologies International, Inc. | Filter for perfusion cultures of animal cells and the like |
US6573063B2 (en) | 1995-10-04 | 2003-06-03 | Cytoscan Sciences, Llc | Methods and systems for assessing biological materials using optical and spectroscopic detection techniques |
EP0876601B1 (en) | 1995-12-01 | 2004-07-14 | Innogenetics N.V. | Impedimetric detection system and method of production thereof |
US5800467A (en) | 1995-12-15 | 1998-09-01 | Pacesetter, Inc. | Cardio-synchronous impedance measurement system for an implantable stimulation device |
US6355436B1 (en) | 1996-05-17 | 2002-03-12 | L'ecole Centrale De Lyon | Method for analyzing biological substances in a conductive liquid medium |
US5954915A (en) | 1996-05-24 | 1999-09-21 | Voorwood Company | Surface finishing apparatus |
AU3508197A (en) | 1996-06-27 | 1998-01-14 | Cellstat Technologies, Inc | High-throughput screening method and apparatus |
US7381525B1 (en) | 1997-03-07 | 2008-06-03 | Clinical Micro Sensors, Inc. | AC/DC voltage apparatus for detection of nucleic acids |
DE19646505A1 (en) | 1996-11-12 | 1998-05-14 | Itt Ind Gmbh Deutsche | Device for carrying out tests on cell samples and the like |
US5972694A (en) * | 1997-02-11 | 1999-10-26 | Mathus; Gregory | Multi-well plate |
US5981268A (en) | 1997-05-30 | 1999-11-09 | Board Of Trustees, Leland Stanford, Jr. University | Hybrid biosensors |
US5801055A (en) | 1997-09-10 | 1998-09-01 | Becton Dickinson And Company | Multi-well culture dish assembly |
US6132683A (en) | 1998-12-23 | 2000-10-17 | Matsushita Electric Industrial Co., Ltd. | Cell potential measuring electrode and measuring apparatus using the same |
USRE37977E1 (en) | 1997-12-25 | 2003-02-04 | Matsushita Electric Industrial Co., Ltd. | Cell potential measuring electrode and measuring apparatus using the same |
JPH11187865A (en) | 1997-12-25 | 1999-07-13 | Matsushita Electric Ind Co Ltd | Electrode for measuring cell potential and measuring apparatus by using the same |
CN1292087A (en) | 1998-02-02 | 2001-04-18 | 西格雷特生物科学有限公司 | Method and apparatus for detecting molecular binding events |
US6485905B2 (en) | 1998-02-02 | 2002-11-26 | Signature Bioscience, Inc. | Bio-assay device |
US6287874B1 (en) | 1998-02-02 | 2001-09-11 | Signature Bioscience, Inc. | Methods for analyzing protein binding events |
DE19841337C1 (en) | 1998-05-27 | 1999-09-23 | Micronas Intermetall Gmbh | Intracellular manipulation of biological cell contents, assisting injection or removal of substances or cell components |
GB9812783D0 (en) | 1998-06-12 | 1998-08-12 | Cenes Ltd | High throuoghput screen |
FR2781886B1 (en) | 1998-07-31 | 2001-02-16 | Commissariat Energie Atomique | MULTIPLE POINT CHEMICAL OR BIOLOGICAL ANALYSIS MICROSYSTEM |
US6169394B1 (en) | 1998-09-18 | 2001-01-02 | University Of The Utah Research Foundation | Electrical detector for micro-analysis systems |
US6477479B1 (en) | 1998-12-11 | 2002-11-05 | Symyx Technologies | Sensor array for rapid materials characterization |
DE19859459A1 (en) | 1998-12-22 | 2000-06-29 | Evotec Biosystems Ag | Microsystems for cell permeation and fusion |
US6377057B1 (en) | 1999-02-18 | 2002-04-23 | The Board Of Trustees Of The Leland Stanford Junior University | Classification of biological agents according to the spectral density signature of evoked changes in cellular electric potential |
US20030166015A1 (en) | 1999-04-15 | 2003-09-04 | Zarowitz Michael A. | Multiplexed analysis of cell-substrate interactions |
DE19920811B4 (en) | 1999-05-06 | 2004-08-19 | Micronas Gmbh | Device for carrying out tests on cell cultures |
AU4847600A (en) | 1999-05-14 | 2000-12-05 | Repliscent, Inc. | G-protein coupled receptor (gpcr) based biosensors and sense replication systems |
US6998249B1 (en) | 1999-09-27 | 2006-02-14 | Pharmacia & Upjohn Company | Toxicity screening method |
IL148650A0 (en) | 1999-10-01 | 2002-09-12 | Sophion Bioscience As | Substrate and a method for determining and/or monitoring electrophysiological properties of ion channels |
US6852525B1 (en) | 1999-11-02 | 2005-02-08 | Advanced Sensor Technologies | Mammalian cell culture chamber |
US6670115B1 (en) | 1999-11-24 | 2003-12-30 | Biotronic Technologies, Inc. | Devices and methods for detecting analytes using electrosensor having capture reagent |
US20020090649A1 (en) | 1999-12-15 | 2002-07-11 | Tony Chan | High density column and row addressable electrode arrays |
US6448030B1 (en) | 2000-02-18 | 2002-09-10 | University Of Nevada-Las Vegas | Method for predicting the efficacy of anti-cancer drugs |
US6810286B2 (en) | 2000-03-06 | 2004-10-26 | Medtronic, Inc | Stimulation for delivery of molecular therapy |
CN1319761A (en) | 2000-03-15 | 2001-10-31 | 清华大学 | Apparatus and method for high-flux electric rotation detection |
ATE351900T1 (en) | 2000-03-27 | 2007-02-15 | Nte Sa | PROBE, CELL AND METHOD FOR MEASURING BIOMASS CONCENTRATION AND COMPOSITION |
US6626902B1 (en) | 2000-04-12 | 2003-09-30 | University Of Virginia Patent Foundation | Multi-probe system |
WO2001079554A1 (en) | 2000-04-13 | 2001-10-25 | Georgetown University | Genetic diagnosis for qt prolongation related adverse drug reactions |
US6716620B2 (en) | 2000-04-17 | 2004-04-06 | Purdue Research Foundation | Biosensor and related method |
US7306924B2 (en) | 2000-04-17 | 2007-12-11 | Purdue Research Foundation | Biosensor and related method |
JP2004514417A (en) | 2000-07-07 | 2004-05-20 | ブリストル−マイヤーズ スクイブ カンパニー | Electrophysiological configurations suitable for high-throughput screening of drug discovery compounds |
US6969449B2 (en) | 2000-07-10 | 2005-11-29 | Vertex Pharmaceuticals (San Diego) Llc | Multi-well plate and electrode assemblies for ion channel assays |
US6740501B2 (en) | 2000-09-27 | 2004-05-25 | Becton, Dickinson And Company | Coated membrane for assessing the invasive capacity of a cell |
US20030072549A1 (en) | 2000-10-26 | 2003-04-17 | The Trustees Of Princeton University | Method and apparatus for dielectric spectroscopy of biological solutions |
AU2002239501A1 (en) | 2000-10-26 | 2002-06-03 | University Of Connecticut | A system and method for investigating the effect of chemical and other factors on cell movement |
US6835552B2 (en) | 2000-12-14 | 2004-12-28 | The Regents Of The University Of California | Impedance measurements for detecting pathogens attached to antibodies |
US7208279B2 (en) | 2001-03-14 | 2007-04-24 | Caden Biosciences, Inc. | Method for identifying inhibitors of G protein coupled receptor signaling |
US20050009004A1 (en) | 2002-05-04 | 2005-01-13 | Jia Xu | Apparatus including ion transport detecting structures and methods of use |
US20040146849A1 (en) | 2002-01-24 | 2004-07-29 | Mingxian Huang | Biochips including ion transport detecting structures and methods of use |
US6627461B2 (en) | 2001-04-18 | 2003-09-30 | Signature Bioscience, Inc. | Method and apparatus for detection of molecular events using temperature control of detection environment |
US7011814B2 (en) | 2001-04-23 | 2006-03-14 | Sicel Technologies, Inc. | Systems, methods and devices for in vivo monitoring of a localized response via a radiolabeled analyte in a subject |
US20060161073A1 (en) | 2001-05-03 | 2006-07-20 | Singer Michael G | In vitro and in vivo assessment of organs and tissue and use, transplant, freshness and tissue conditions |
WO2002098287A2 (en) | 2001-06-06 | 2002-12-12 | The Trustees Of Columbia University In The City Of New York | A high throughput biological heart rate monitor that is molecularly determined |
US6461808B1 (en) | 2001-06-12 | 2002-10-08 | Signature Bioscience, Inc. | Pipette-loaded bioassay assembly for detecting molecular or cellular events |
US6649402B2 (en) | 2001-06-22 | 2003-11-18 | Wisconsin Alumni Research Foundation | Microfabricated microbial growth assay method and apparatus |
DK2420824T3 (en) | 2001-06-29 | 2019-03-25 | Meso Scale Technologies Llc | Multi-well plate with an array of wells and kit for use in performing an ECL assay |
KR101073411B1 (en) | 2001-07-12 | 2011-10-17 | 제론 코포레이션 | Cells of the cardiomyocyte lineage produced from human pluripotent stem cells |
US20030032000A1 (en) | 2001-08-13 | 2003-02-13 | Signature Bioscience Inc. | Method for analyzing cellular events |
US6814844B2 (en) | 2001-08-29 | 2004-11-09 | Roche Diagnostics Corporation | Biosensor with code pattern |
US8980568B2 (en) | 2001-10-11 | 2015-03-17 | Aviva Biosciences Corporation | Methods and compositions for detecting non-hematopoietic cells from a blood sample |
US20030082153A1 (en) | 2001-10-22 | 2003-05-01 | The Government Of The United States Of America | Stem cells that transform to beating cardiomyocytes |
US20030116447A1 (en) | 2001-11-16 | 2003-06-26 | Surridge Nigel A. | Electrodes, methods, apparatuses comprising micro-electrode arrays |
US20030104512A1 (en) | 2001-11-30 | 2003-06-05 | Freeman Alex R. | Biosensors for single cell and multi cell analysis |
US6637257B2 (en) | 2002-01-02 | 2003-10-28 | Integrated Sensing Systems | Micromachined fluid analysis device and method |
US7148059B1 (en) | 2002-02-22 | 2006-12-12 | Ionoptix Corporation | Myocyte culture pacing apparatus |
KR20050013592A (en) | 2002-06-20 | 2005-02-04 | 아이젠인터내셔널인코포레이티드 | Electrochemiluminescence flow cell and flow cell components |
US7470533B2 (en) | 2002-12-20 | 2008-12-30 | Acea Biosciences | Impedance based devices and methods for use in assays |
US8206903B2 (en) | 2002-12-20 | 2012-06-26 | Acea Biosciences | Device and method for electroporation-based delivery of molecules into cells and dynamic monitoring of cell responses |
US8263375B2 (en) | 2002-12-20 | 2012-09-11 | Acea Biosciences | Dynamic monitoring of activation of G-protein coupled receptor (GPCR) and receptor tyrosine kinase (RTK) in living cells using real-time microelectronic cell sensing technology |
US7732127B2 (en) | 2002-12-20 | 2010-06-08 | Acea Biosciences, Inc. | Dynamic monitoring of cell adhesion and spreading using the RT-CES system |
JP2005537498A (en) | 2002-07-20 | 2005-12-08 | アセア バイオサイエンシーズ,インク. | Measuring device and method using impedance |
US7468255B2 (en) | 2002-12-20 | 2008-12-23 | Acea Biosciences | Method for assaying for natural killer, cytotoxic T-lymphocyte and neutrophil-mediated killing of target cells using real-time microelectronic cell sensing technology |
US7560269B2 (en) | 2002-12-20 | 2009-07-14 | Acea Biosciences, Inc. | Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays |
JP2005533518A (en) | 2002-07-26 | 2005-11-10 | ウイスコンシン アラムニ リサーチ ファンデーション | Functional cardiomyocytes derived from human embryonic stem cells |
US20040091397A1 (en) | 2002-11-07 | 2004-05-13 | Corning Incorporated | Multiwell insert device that enables label free detection of cells and other objects |
US10551371B2 (en) | 2003-11-10 | 2020-02-04 | Acea Biosciences, Inc. | System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function |
US10539523B2 (en) | 2002-12-20 | 2020-01-21 | Acea Biosciences, Inc. | System and method for monitoring cardiomyocyte beating, viability, morphology, and electrophysiological properties |
US9612234B2 (en) | 2008-05-05 | 2017-04-04 | Acea Biosciences, Inc. | Data analysis of impedance-based cardiomyocyte-beating signals as detected on real-time cell analysis (RTCA) cardio instruments |
US10215748B2 (en) | 2002-12-20 | 2019-02-26 | Acea Biosciences, Inc. | Using impedance-based cell response profiling to identify putative inhibitors for oncogene addicted targets or pathways |
US7510699B2 (en) | 2003-02-19 | 2009-03-31 | Sicel Technologies, Inc. | In vivo fluorescence sensors, systems, and related methods operating in conjunction with fluorescent analytes |
US7641643B2 (en) | 2003-04-15 | 2010-01-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
JP2005009876A (en) * | 2003-06-16 | 2005-01-13 | Aisin Cosmos R & D Co Ltd | Excitation light irradiation device for fluorescence analysis |
WO2005005979A1 (en) | 2003-07-14 | 2005-01-20 | Mds Inc. , Doing Business As Mds Sciex | Label-free method for classification and characterization of cellular events |
US20050014130A1 (en) | 2003-07-14 | 2005-01-20 | Vivian Liu | Label-free method for classification and characterization of cellular events |
US20050051723A1 (en) * | 2003-07-23 | 2005-03-10 | Neagle Bradley D. | Examination systems for biological samples |
US7010347B2 (en) | 2004-02-14 | 2006-03-07 | Pacesetter, Inc. | Optimization of impedance signals for closed loop programming of cardiac resynchronization therapy devices |
US7399631B2 (en) | 2003-09-10 | 2008-07-15 | Applied Biophysics, Inc. | Real-time impedance assay to follow the invasive activities of metastatic cells in culture |
WO2005036127A2 (en) | 2003-10-02 | 2005-04-21 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for identifying target cell cytolytic lymphocytes in a sample |
EP1692258A4 (en) | 2003-11-12 | 2007-03-21 | Xiao Xu | Real time electronic cell sensing systems and applications for cell-based assays |
EP1749203A4 (en) | 2004-02-09 | 2009-05-06 | Xiao Xu | Real-time electronic cell sensing system and applications for cytotoxicity profiling and compound assays |
WO2005080991A1 (en) | 2004-02-20 | 2005-09-01 | Erasmus Universiteit Rotterdam | Method to detect antigen-specific cytolytic activity |
US7501301B2 (en) | 2004-03-10 | 2009-03-10 | The Board Of Trustees Of The Leland Stanford Junior University | Low cost fabrication of microelectrode arrays for cell-based biosensors and drug discovery methods |
USD515220S1 (en) | 2004-04-13 | 2006-02-14 | Bioveris Corporation | Detection apparatus |
GB0414546D0 (en) | 2004-06-29 | 2004-08-04 | Oxford Biosensors Ltd | Electrode for electrochemical sensor |
CA2575297C (en) | 2004-08-04 | 2014-09-23 | Acea Biosciences, Inc. | Method for assaying for natural killer, cytotoxic t-lymphocyte and neutrophil-mediated killing of target cells using real-time microelectronic cell sensing technology |
WO2006051387A1 (en) | 2004-11-09 | 2006-05-18 | University Of Stellenbosch | Method of producing a carnitine-synthesising micro-organism |
US20060216203A1 (en) | 2005-03-28 | 2006-09-28 | Mds Sciex (Us) A Division Of Mds Pharma Services (Us) Inc. | Multiwell sample plate with integrated impedance electrodes and connection scheme |
CN103983772A (en) | 2005-04-05 | 2014-08-13 | 康宁股份有限公司 | Method for measuring effects of stimulating incidents on cells |
RU2409816C2 (en) | 2006-01-04 | 2011-01-20 | Новартис Аг | Antibody-dependent cellular cytotoxicity assay |
ITBO20060267A1 (en) | 2006-04-12 | 2007-10-13 | Roberto Gambari | DIAGNOSTIC AND THERAPEUTIC APPLICATION OF CELLS CTL AND NK FUNCTIONAL SELECTED |
WO2007139775A2 (en) | 2006-05-23 | 2007-12-06 | University Of Connecticut | N-methanocarba derivatives to treat cardiac diseases |
US8041515B2 (en) | 2006-09-20 | 2011-10-18 | Acea Biosciences, Inc. | Use of impedance-based cytological profiling to classify cellular response profiles upon exposure to biologically active agents |
JP2010509577A (en) * | 2006-11-09 | 2010-03-25 | ナノアイデント テクノロジーズ アクチェンゲゼルシャフト | Titer plate with thin film photosensor |
US8702922B2 (en) | 2007-09-18 | 2014-04-22 | Reprocell, Inc. | Cell measuring vessel, extracellular potential measuring method, and chemical testing method |
US8549934B2 (en) | 2008-03-25 | 2013-10-08 | Flownamics Analytical Instruments, Inc. | Segmented online sampling apparatus and method of use |
EP2291645B1 (en) | 2008-05-05 | 2015-09-09 | Acea Biosciences, Inc. | Label-free monitoring of excitation-contraction coupling and excitable cells using impedance based systems with millisecond time resolution |
GB0821636D0 (en) | 2008-11-26 | 2008-12-31 | Ucl Business Plc | Device |
CA2760941C (en) | 2009-05-05 | 2019-07-23 | Acea Biosciences, Inc. | System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function |
USD631976S1 (en) | 2009-08-25 | 2011-02-01 | Hitachi High-Technologies Corporation | Sampler unit for clinical analyzer |
US20110231103A1 (en) | 2010-03-19 | 2011-09-22 | Ye Fang | Methods for determining molecular pharmacology using label-free integrative pharmacology |
EP2626411B1 (en) | 2010-09-30 | 2020-01-01 | National University Corporation Tokyo Medical and Dental University | Method and device for myocardial cell evaluation and myocardial toxicity inspection |
US8673628B2 (en) | 2011-06-10 | 2014-03-18 | Essen Instruments, Inc. | Methods and apparatus for improving in vitro measurements using boyden chambers |
US9027384B2 (en) | 2011-07-28 | 2015-05-12 | Agilent Technologies, Inc. | Gas chromatograph providing semi-automatic identification of connected sample flow components, and method of operating same |
US9200246B2 (en) * | 2011-12-01 | 2015-12-01 | Acea Biosciences, Inc. | Co-culture device assembly |
USD684270S1 (en) | 2012-02-03 | 2013-06-11 | Cepheid | Analysis system |
US20130330761A1 (en) | 2012-06-12 | 2013-12-12 | Celcuity, LLC | Whole cell assays and methods |
AU2013329415A1 (en) * | 2012-10-08 | 2015-04-23 | University of Virginia Patent Foundation, d/b/a University of Virginia Licensing & Ventures Group | Miniaturized multiwell plate reader for phenotypic screening |
WO2014085727A1 (en) | 2012-11-27 | 2014-06-05 | Acea Biosceinces, Inc | System and method for monitoring cardiomyocyte beating, viability, morphology and electrophysilogical properties |
USD717968S1 (en) | 2012-12-03 | 2014-11-18 | Life Technologies Corporation | Multi-block PCR thermal cycler device |
US20150177236A1 (en) | 2013-03-15 | 2015-06-25 | Gold Standard Diagnostics | Combined chemiluminescence and elisa automated sample reader |
WO2015029674A1 (en) | 2013-09-02 | 2015-03-05 | 株式会社日立ハイテクノロジーズ | Automated analyzer |
WO2015073908A1 (en) | 2013-11-15 | 2015-05-21 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Method for selecting cancer treatment regimen |
US10087436B2 (en) | 2014-02-06 | 2018-10-02 | The Regents Of The University Of California | Electrophysiologically mature cardiomyocytes and methods for making same |
WO2015192089A1 (en) * | 2014-06-12 | 2015-12-17 | Axion Biosystems, Inc. | Multiwell microelectrode array with optical stimulation |
JP6855382B2 (en) | 2015-03-26 | 2021-04-14 | ユニバーシティー オブ ヒューストン システム | Integrated functionality of cells and profiling of molecules |
JP7187151B2 (en) | 2015-04-10 | 2022-12-12 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Method and apparatus for image analysis of living cells |
USD784549S1 (en) | 2015-04-28 | 2017-04-18 | Streck, Inc. | Laboratory analysis device housing |
US9753028B2 (en) * | 2015-05-05 | 2017-09-05 | Maxim Integrated Products, Inc. | Electric-field imager for assays |
US11299714B2 (en) | 2015-05-11 | 2022-04-12 | The Trustees Of Columbia University In The City Of New York | Engineered adult-like human heart tissue |
MA45488A (en) | 2015-10-22 | 2018-08-29 | Juno Therapeutics Gmbh | CELL CULTURE PROCESSES, KITS AND APPARATUS |
EP3377607A4 (en) | 2015-11-20 | 2019-12-11 | ACEA Biosciences Inc. | Cell-substrate impedance monitoring of cancer cells |
GB201522323D0 (en) | 2015-12-17 | 2016-02-03 | Vrije Universiteit Brussel And Katholieke Universiteit Leuven | Systems and methods for conducting electrochemical impedance spectroscopy |
CN106047678B (en) | 2016-05-20 | 2018-04-24 | 江苏大学 | A kind of cytoactive detection method and apparatus based on Measured By Impedance Spectroscopy |
USD817509S1 (en) | 2016-10-14 | 2018-05-08 | Spartan Bioscience Inc. | Diagnostic device |
WO2018200995A2 (en) * | 2017-04-27 | 2018-11-01 | Polybiomics, Inc. | Orthogonal polybiosensing and imaging systems |
US10473591B2 (en) * | 2017-05-01 | 2019-11-12 | Wyatt Technology Corporation | High throughput method and apparatus for measuring multiple optical properties of a liquid sample |
US11926813B2 (en) * | 2017-06-02 | 2024-03-12 | Molecular Devices, Llc | Cell colony picking system |
US20210364494A1 (en) * | 2017-08-01 | 2021-11-25 | Acea Biosciences, Inc. | Cell-substrate impedance monitoring of cancer cells of different lineage, origin, or stage |
WO2019029122A1 (en) | 2017-08-09 | 2019-02-14 | 甘肃成纪生物药业有限公司 | Rapid and automatic syringe |
US11481895B2 (en) | 2017-11-10 | 2022-10-25 | Sartorius Bioanalytical Instruments, Inc. | Live cell visualization and analysis |
US11911764B2 (en) * | 2018-02-21 | 2024-02-27 | Nexcelom Bioscience Llc | System and method for cell imaging, analysis and measurement |
USD889679S1 (en) | 2018-11-02 | 2020-07-07 | Agilent Technologies, Inc. | Chromatograph |
US20210301245A1 (en) | 2020-03-29 | 2021-09-30 | Agilent Technologies, Inc. | Systems and methods for electronically and optically monitoring biological samples |
-
2020
- 2020-03-29 US US16/833,651 patent/US20210301245A1/en active Pending
-
2021
- 2021-03-26 EP EP21779573.1A patent/EP4126366A1/en active Pending
- 2021-03-26 CN CN202180025017.0A patent/CN115397556A/en active Pending
- 2021-03-26 WO PCT/US2021/024305 patent/WO2021202264A1/en active Application Filing
- 2021-03-26 JP JP2022558234A patent/JP2023519337A/en active Pending
-
2023
- 2023-03-31 US US18/194,277 patent/US12049615B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5589351A (en) | Fluorescence detection apparatus | |
US7714301B2 (en) | Instrument excitation source and calibration method | |
JP5914561B2 (en) | Measuring apparatus and cell analysis method | |
EP1686380B1 (en) | Robotic apparatus for picking of cells with integrated spectroscopic capability and use thereof | |
US9224031B2 (en) | Compact dark field light source and dark field image analysis at low magnification | |
JP2009204616A5 (en) | ||
EP2394147B1 (en) | Optical measurement arrangement | |
EP0592624A1 (en) | Diagnostic microbiological testing apparatus and method | |
EP3465161A1 (en) | Imaging system with oblique illumination | |
JP5726956B2 (en) | Method and apparatus for analyzing faint light sample | |
CA2577299C (en) | A diagnostic imaging device for the analysis of circulating rare cells | |
CN115720638A (en) | Optical module having three or more color fluorescent light sources and method of using the same | |
CN115397556A (en) | System and method for electronically and optically monitoring a biological sample | |
CA2624475A1 (en) | Apparatus and method for detecting activity of living cells | |
JPWO2021202264A5 (en) | ||
US20140158541A1 (en) | Transilluminator Base and Scanner for Imaging Fluorescent Gels | |
CN101724683A (en) | Device for microbiological analysis | |
CN204556502U (en) | A kind of fluorescence imaging analysis system | |
JP5424528B2 (en) | Method and apparatus for analyzing faint light sample | |
JP2009162578A (en) | Method and instrument for measuring intercellular interaction | |
EP1032813A2 (en) | Apparatus and methods for measuring fluorescence polarization | |
US20120001095A1 (en) | Light source apparatus for fluorescence photography | |
CN205920047U (en) | High -power LED's microarray chip fluorescence detection device | |
US20070153280A1 (en) | Diagnostic imaging device for the analysis of circulating rare cells | |
CN218823937U (en) | Multi-light-source gel imaging system |