JPWO2021192004A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021192004A5
JPWO2021192004A5 JP2022509806A JP2022509806A JPWO2021192004A5 JP WO2021192004 A5 JPWO2021192004 A5 JP WO2021192004A5 JP 2022509806 A JP2022509806 A JP 2022509806A JP 2022509806 A JP2022509806 A JP 2022509806A JP WO2021192004 A5 JPWO2021192004 A5 JP WO2021192004A5
Authority
JP
Japan
Prior art keywords
fuel
catalyst
electrode
manufacturing apparatus
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022509806A
Other languages
English (en)
Japanese (ja)
Other versions
JPWO2021192004A1 (enExample
JP7213393B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2020/012889 external-priority patent/WO2021192004A1/ja
Publication of JPWO2021192004A1 publication Critical patent/JPWO2021192004A1/ja
Publication of JPWO2021192004A5 publication Critical patent/JPWO2021192004A5/ja
Application granted granted Critical
Publication of JP7213393B2 publication Critical patent/JP7213393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2022509806A 2020-03-24 2020-03-24 燃料製造装置 Active JP7213393B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012889 WO2021192004A1 (ja) 2020-03-24 2020-03-24 燃料製造装置

Publications (3)

Publication Number Publication Date
JPWO2021192004A1 JPWO2021192004A1 (enExample) 2021-09-30
JPWO2021192004A5 true JPWO2021192004A5 (enExample) 2022-05-25
JP7213393B2 JP7213393B2 (ja) 2023-01-26

Family

ID=77891612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022509806A Active JP7213393B2 (ja) 2020-03-24 2020-03-24 燃料製造装置

Country Status (3)

Country Link
EP (1) EP4130201A4 (enExample)
JP (1) JP7213393B2 (enExample)
WO (1) WO2021192004A1 (enExample)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507306B2 (ja) * 2021-03-11 2024-06-27 日本碍子株式会社 メタン製造システム及びメタン製造方法
JP7777034B2 (ja) * 2022-04-26 2025-11-27 株式会社日立製作所 炭化水素製造システム
JP2025012845A (ja) * 2023-07-14 2025-01-24 株式会社日立製作所 電気化学反応システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118717B2 (en) * 2002-09-06 2006-10-10 Engelhard Corporation Simplified article for carbon monoxide removal
JP2013119556A (ja) * 2011-12-06 2013-06-17 Mitsubishi Heavy Ind Ltd 燃料製造方法及び燃料製造装置
US10336944B2 (en) * 2016-09-27 2019-07-02 University Of South Carolina Direct synthesis of hydrocarbons from co-electrolysis solid oxide cell
JP6622237B2 (ja) * 2017-03-14 2019-12-18 株式会社東芝 二酸化炭素電解装置

Similar Documents

Publication Publication Date Title
Kyriakou et al. Symmetrical exsolution of Rh nanoparticles in solid oxide cells for efficient syngas production from greenhouse gases
Zhu et al. Biphasic transition metal nitride electrode promotes nucleophile oxidation reaction for practicable hybrid water electrocatalysis
Park et al. Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance
Wan et al. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions
Chang et al. High-performance electroreduction CO2 to formate at Bi/Nafion interface
Huang et al. Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction
He et al. Roles of copper (I) in water-promoted CO2 electrolysis to multi-carbon compounds
Ma et al. Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates
Xie et al. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation
Lei et al. The co-electrolysis of CO 2–H 2 O to methane via a novel micro-tubular electrochemical reactor
US11390959B2 (en) Boron-doped copper catalysts for efficient conversion of CO2 to multi-carbon hydrocarbons and associated methods
Xie et al. Direct low concentration CO2 electroreduction to multicarbon products via rate-determining step tuning
Fan et al. A microchannel reactor-integrated ceramic fuel cell with dual-coupling effect for efficient power and syngas co-generation from methane
Laursen et al. CO2 electro-reduction on Cu3P: Role of Cu (I) oxidation state and surface facet structure in C1-formate production and H2 selectivity
JPWO2021192004A5 (enExample)
Chang et al. Strongly coupled N-doped graphene quantum dots/Ni (Fe) OxHy electrocatalysts with accelerated reaction kinetics for water oxidation
JP2004520694A5 (enExample)
US11788193B2 (en) Electrochemical cells and electrochemical methods
JPWO2023106424A5 (enExample)
US20250205696A1 (en) Method of synthesizing high-efficiency bifunctional electrocatalysts
WO2007002599A3 (en) Reformer and reforming process for production of hydrogen from hydrocarbon fuel
Bai et al. Facile synthesis of silver@ carbon nanocable-supported platinum nanoparticles as high-performing electrocatalysts for glycerol oxidation in direct glycerol fuel cells
US20140311917A1 (en) Hydrogen production process
Wei et al. Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction
Liang et al. Electricity-to-ammonia interconversion in protonic ceramic cells: advances, challenges and perspectives