JPWO2021117203A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021117203A5
JPWO2021117203A5 JP2021563549A JP2021563549A JPWO2021117203A5 JP WO2021117203 A5 JPWO2021117203 A5 JP WO2021117203A5 JP 2021563549 A JP2021563549 A JP 2021563549A JP 2021563549 A JP2021563549 A JP 2021563549A JP WO2021117203 A5 JPWO2021117203 A5 JP WO2021117203A5
Authority
JP
Japan
Prior art keywords
sample
probe
sample surface
curve
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021563549A
Other languages
Japanese (ja)
Other versions
JP7070809B2 (en
JPWO2021117203A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2019/048822 external-priority patent/WO2021117203A1/en
Publication of JPWO2021117203A1 publication Critical patent/JPWO2021117203A1/ja
Publication of JPWO2021117203A5 publication Critical patent/JPWO2021117203A5/ja
Application granted granted Critical
Publication of JP7070809B2 publication Critical patent/JP7070809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (11)

探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、
前記探針と前記試料表面との間の距離である探針-表面間距離によって前記フォースカーブを一階微分することで微分曲線を算出するステップと、
前記微分曲線に基づいて、前記試料表面に接触していた前記探針が該試料表面から離れていくときの複数のピークを識別するステップと、
前記複数のピークの中から、前記試料表面から最も離れたピークを最遠のピークとして識別するステップと、
前記試料表面から、前記最遠のピークまでの距離を、前記試料表面を形成する有機材料の破断長として算出するステップと、
前記破断長を出力するステップと
を含む表面分析方法。
Steps to obtain a force curve based on measurement of the sample surface with a scanning probe microscope equipped with a probe,
A step of calculating a differential curve by first-order differentializing the force curve according to the distance between the probe and the surface of the sample, which is the distance between the probe and the surface of the sample.
A step of identifying a plurality of peaks when the probe that was in contact with the sample surface moves away from the sample surface based on the differential curve.
A step of identifying the peak farthest from the sample surface as the farthest peak from the plurality of peaks.
The step of calculating the distance from the sample surface to the farthest peak as the breaking length of the organic material forming the sample surface, and
A surface analysis method including the step of outputting the breaking length.
前記フォースカーブを取得するステップが、
前記走査型プローブ顕微鏡の圧電素子の稼働量と前記走査型プローブ顕微鏡の検出器の電圧との関係を示す電圧-稼働量曲線を取得するステップと、
前記電圧-稼働量曲線を前記フォースカーブに変換するステップとを含む、
請求項1に記載の表面分析方法。
The step to acquire the force curve is
A step of acquiring a voltage-operating amount curve showing the relationship between the operating amount of the piezoelectric element of the scanning probe microscope and the voltage of the detector of the scanning probe microscope, and
Including the step of converting the voltage-working amount curve into the force curve.
The surface analysis method according to claim 1.
前記電圧-稼働量曲線を前記フォースカーブに変換するステップが、
前記探針を有するカンチレバーのばねたわみ量を前記稼働量から減ずることで前記探針-表面間距離を算出するステップと、
前記カンチレバーのばね定数に前記ばねたわみ量を乗ずることで、前記探針に作用する力を算出するステップとを含む、
請求項2に記載の表面分析方法。
The step of converting the voltage-operating amount curve into the force curve is
A step of calculating the distance between the probe and the surface by reducing the amount of spring deflection of the cantilever having the probe from the operating amount, and
A step of calculating a force acting on the probe by multiplying the spring constant of the cantilever by the amount of the spring deflection is included.
The surface analysis method according to claim 2.
前記試料表面上の複数の測定点のそれぞれにおける前記フォースカーブを取得するステップと、
複数の前記フォースカーブのそれぞれについて前記破断長を算出するステップと、
複数の前記破断長を出力するステップと
をさらに含む請求項1~3のいずれか一項に記載の表面分析方法。
The step of acquiring the force curve at each of the plurality of measurement points on the sample surface, and
A step of calculating the breaking length for each of the plurality of force curves, and
The surface analysis method according to any one of claims 1 to 3, further comprising a plurality of steps for outputting the breaking length.
前記複数の破断長を出力するステップが、前記試料表面における前記破断長の分布を出力するステップを含む、
請求項4に記載の表面分析方法。
The step of outputting the plurality of break lengths includes a step of outputting the distribution of the break lengths on the sample surface.
The surface analysis method according to claim 4.
前記複数の破断長を出力するステップが、前記複数の破断長をデータベースに格納するステップを含む、
請求項4または5に記載の表面分析方法。
The step of outputting the plurality of break lengths includes a step of storing the plurality of break lengths in a database.
The surface analysis method according to claim 4 or 5.
前記走査型プローブ顕微鏡による前記試料表面の測定に基づく追加の物性量を取得するステップと、
前記破断長と前記追加の物性量との組合せに基づく分析を実行するステップと、
前記分析の結果を出力するステップと
をさらに含む請求項1~6のいずれか一項に記載の表面分析方法。
The step of obtaining an additional physical property quantity based on the measurement of the sample surface by the scanning probe microscope, and
A step of performing an analysis based on the combination of the breaking length and the additional physical properties, and
The surface analysis method according to any one of claims 1 to 6, further comprising a step of outputting the result of the analysis.
前記試料表面の測定が、水溶液中で前記探針を前記試料表面に接触させることを含む、
請求項1~7のいずれか一項に記載の表面分析方法。
Measurement of the sample surface comprises contacting the probe with the sample surface in aqueous solution.
The surface analysis method according to any one of claims 1 to 7.
前記試料表面が粉体の表面である、
請求項1~8のいずれか一項に記載の表面分析方法。
The surface of the sample is the surface of the powder.
The surface analysis method according to any one of claims 1 to 8.
少なくとも一つのプロセッサを備え、
前記少なくとも一つのプロセッサが、
探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得し、
前記探針と前記試料表面との間の距離である探針-表面間距離によって前記フォースカーブを一階微分することで微分曲線を算出し、
前記微分曲線に基づいて、前記試料表面に接触していた前記探針が該試料表面から離れていくときの複数のピークを識別し、
前記複数のピークの中から、前記試料表面から最も離れたピークを最遠のピークとして識別し、
前記試料表面から、前記最遠のピークまでの距離を、前記試料表面を形成する有機材料の破断長として算出し、
前記破断長を出力する、
表面分析システム。
Equipped with at least one processor
The at least one processor
Obtain a force curve based on the measurement of the sample surface with a scanning probe microscope equipped with a probe.
A differential curve is calculated by first-order differentiating the force curve according to the distance between the probe and the surface of the sample, which is the distance between the probe and the surface of the sample.
Based on the differential curve, a plurality of peaks when the probe that was in contact with the sample surface moves away from the sample surface are identified.
From the plurality of peaks, the peak farthest from the sample surface is identified as the farthest peak.
The distance from the sample surface to the farthest peak was calculated as the breaking length of the organic material forming the sample surface.
Output the breaking length,
Surface analysis system.
探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、
前記探針と前記試料表面との間の距離である探針-表面間距離によって前記フォースカーブを一階微分することで微分曲線を算出するステップと、
前記微分曲線に基づいて、前記試料表面に接触していた前記探針が該試料表面から離れていくときの複数のピークを識別するステップと、
前記複数のピークの中から、前記試料表面から最も離れたピークを最遠のピークとして識別するステップと、
前記試料表面から、前記最遠のピークまでの距離を、前記試料表面を形成する有機材料の破断長として算出するステップと、
前記破断長を出力するステップと
をコンピュータに実行させる表面分析プログラム。
Steps to obtain a force curve based on measurement of the sample surface with a scanning probe microscope equipped with a probe,
A step of calculating a differential curve by first-order differentializing the force curve according to the distance between the probe and the surface of the sample, which is the distance between the probe and the surface of the sample.
A step of identifying a plurality of peaks when the probe that was in contact with the sample surface moves away from the sample surface based on the differential curve.
A step of identifying the peak farthest from the sample surface as the farthest peak from the plurality of peaks.
The step of calculating the distance from the sample surface to the farthest peak as the breaking length of the organic material forming the sample surface, and
A surface analysis program that causes a computer to perform the step of outputting the breaking length.
JP2021563549A 2019-12-12 2019-12-12 Surface analysis methods, surface analysis systems, and surface analysis programs Active JP7070809B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048822 WO2021117203A1 (en) 2019-12-12 2019-12-12 Surface analysis method, surface analysis system, and surface analysis program

Publications (3)

Publication Number Publication Date
JPWO2021117203A1 JPWO2021117203A1 (en) 2021-06-17
JPWO2021117203A5 true JPWO2021117203A5 (en) 2022-05-02
JP7070809B2 JP7070809B2 (en) 2022-05-18

Family

ID=76330078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021563549A Active JP7070809B2 (en) 2019-12-12 2019-12-12 Surface analysis methods, surface analysis systems, and surface analysis programs

Country Status (3)

Country Link
JP (1) JP7070809B2 (en)
KR (1) KR20220103732A (en)
WO (1) WO2021117203A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972925A (en) * 1995-09-05 1997-03-18 Nikon Corp Scanning type microscope
JPH1144696A (en) * 1997-07-28 1999-02-16 Nikon Corp Flexure detection mechanism and scanning probe microscope
JP2000230933A (en) * 1999-02-12 2000-08-22 Nikon Corp Probe microscope and surface property analyzing method using the same
JP2005283433A (en) * 2004-03-30 2005-10-13 Canon Inc Probe with probe element interacting with sample, manufacturing method of the probe, and measuring method and measuring device for intermolecular action using the probe
US7658097B2 (en) * 2005-09-29 2010-02-09 Veeco Instruments Inc. Method and apparatus of high speed property mapping
EP2649444B1 (en) * 2010-12-10 2015-12-09 Universität Basel Method for staging cancer progression by afm
JP6852538B2 (en) 2017-04-18 2021-03-31 住友ゴム工業株式会社 Mechanical property measurement method

Similar Documents

Publication Publication Date Title
Gavara Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells
Alfano et al. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data
US9002687B2 (en) Device for predicting deformation behavior of rubber material and method for predicting deformation behavior of rubber material
US9921128B2 (en) Method and apparatus for residual stress measurement through indentation with in-situ generated reference
Orji et al. Tip characterization method using multi-feature characterizer for CD-AFM
Zeng et al. Toward accurate quantitative elasticity mapping of rigid nanomaterials by atomic force microscopy: effect of acquisition frequency, loading force, and tip geometry
CN106526242A (en) AFM probe lateral force calibrating coefficient measurement method and lateral force calibrating method
JPWO2021117203A5 (en)
Wang et al. Finite element modelling of atomic force microscope cantilever beams with uncertainty in material and dimensional parameters
Benítez et al. Searching events in AFM force‐extension curves: A wavelet approach
CN105910921B (en) A method of prediction DZ125 alloy creep curves
KR101805775B1 (en) Sensor sheet of modulus measurement apparatus, modulus measurement apparatus, modulus measurement apparatus for robot, and measurement method of the same
JP2011115805A (en) Friction correction method in hot working of columnar sample
Jannesar et al. Multiscaling behavior of atomic-scale friction
Slattery et al. Characterisation of the material and mechanical properties of atomic force microscope cantilevers with a plan-view trapezoidal geometry
Canavese et al. Resonating behaviour of nanomachined holed microcantilevers
Batabyal et al. Crack detection in cantilever beam using vibration response
JP4733158B2 (en) Elastic modulus measurement method
JP7070809B2 (en) Surface analysis methods, surface analysis systems, and surface analysis programs
Kumar et al. Finite element analysis of a force transducer
Medeossi et al. Effect of void pixels on the quantification of surface topography parameters
Pham et al. 2D Springback and Twisting of Ultra‐Thin Stainless Steel U‐Shaped Parts
WO2022024370A1 (en) Surface analysis method, surface analysis system, and surface analysis program
JP2013053996A (en) Method for specifying spring constant of cantilever and scanning probe microscope adopting the method
Vogl Functional Nanowires studied with correlative in situ Light and Electron Microscopy