WO2021117203A1 - Surface analysis method, surface analysis system, and surface analysis program - Google Patents

Surface analysis method, surface analysis system, and surface analysis program Download PDF

Info

Publication number
WO2021117203A1
WO2021117203A1 PCT/JP2019/048822 JP2019048822W WO2021117203A1 WO 2021117203 A1 WO2021117203 A1 WO 2021117203A1 JP 2019048822 W JP2019048822 W JP 2019048822W WO 2021117203 A1 WO2021117203 A1 WO 2021117203A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
curve
sample surface
force
distance
Prior art date
Application number
PCT/JP2019/048822
Other languages
French (fr)
Japanese (ja)
Inventor
勇貴 新井
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/048822 priority Critical patent/WO2021117203A1/en
Priority to KR1020227017909A priority patent/KR20220103732A/en
Priority to JP2021563549A priority patent/JP7070809B2/en
Publication of WO2021117203A1 publication Critical patent/WO2021117203A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/28Adhesion force microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q10/00Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
    • G01Q10/04Fine scanning or positioning
    • G01Q10/045Self-actuating probes, i.e. wherein the actuating means for driving are part of the probe itself, e.g. piezoelectric means on a cantilever probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/04Display or data processing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00

Definitions

  • One aspect of this disclosure relates to surface analysis methods, surface analysis systems, and surface analysis programs.
  • Patent Document 1 describes a method for measuring mechanical characteristics, which comprises measuring using a sample having a thickness determined based on the size of a structure in a polymer composite material.
  • This document also describes that an atomic force microscope (AFM) can be used to measure mechanical properties such as hardness and frictional force on the surface of a sample.
  • AFM atomic force microscope
  • a method for analyzing the organic material formed on the surface of the sample in more detail is desired.
  • the surface analysis method is a probe that is the distance between the probe and the sample surface and the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe.
  • the step of calculating as and the step of outputting the breaking length are included.
  • the surface analysis system includes at least one processor. At least one processor obtains a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe, and sets the force curve by the probe-surface distance, which is the distance between the probe and the sample surface. A differential curve is calculated by order differentiation, and the distance from the sample surface to the farthest peak is calculated as the breaking length of the organic material forming the sample surface based on the differential curve, and the breaking length is output.
  • the surface analysis program is a probe that is the distance between the probe and the sample surface, and the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe.
  • the computer is made to execute the step of calculating as and the step of outputting the breaking length.
  • a differential curve showing a point (peak) where the force fluctuates momentarily is obtained. Be done. Then, based on this differential curve, the distance from the surface to the farthest peak is obtained as the breaking length of the organic material forming the surface of the sample. Since the breaking length showing the characteristics of the organic material is obtained by this series of treatments, the organic material formed on the surface of the sample can be analyzed in more detail.
  • the organic material formed on the surface of the sample can be analyzed in more detail.
  • the surface analysis system 10 is a computer system that analyzes the surface of a sample that may contain an organic material (this is also referred to as a "sample surface" in the present disclosure).
  • An organic material is a material composed of an organic compound.
  • a sample is a substance whose surface is to be analyzed.
  • the "sample containing an organic material” is a substance whose surface is formed by the organic material, for example, a substance in which a layer of the organic material is formed on the surface of a powder such as filler.
  • a powder is an aggregate of a large number of fine solid particles. Analysis of the sample surface is a process for clarifying some characteristics of the sample surface.
  • the surface analysis system 10 executes analysis using data obtained from a scanning probe microscope.
  • a scanning probe microscope refers to a microscope that observes the physical properties (for example, shape, properties, state, etc.) of a substance by moving the surface of the substance by tracing it with a cantilever probe.
  • An atomic force microscope can be mentioned as an example of the scanning probe microscope, but the type of the scanning probe microscope used together with the surface analysis system 10 is not limited to the example.
  • an atomic force microscope is shown as an example of a scanning probe microscope.
  • the AFM can support various measurement methods such as contact mode, dynamic mode, and force mode. In the force mode, various physical properties such as elastic modulus, maximum breaking force (adhesive force), and surface position can be obtained.
  • the surface analysis system 10 is composed of one or more computers. When a plurality of computers are used, one surface analysis system 10 is logically constructed by connecting these computers via a communication network such as the Internet or an intranet.
  • FIG. 1 is a diagram showing an example of a general hardware configuration of a computer 100 constituting the surface analysis system 10.
  • the computer 100 includes a processor (for example, a CPU) 101 for executing an operating system, an application program, and the like, a main storage unit 102 composed of a ROM and a RAM, an auxiliary storage unit 103 composed of a hard disk, a flash memory, and the like.
  • It includes a communication control unit 104 composed of a network card or a wireless communication module, an input device 105 such as a keyboard and a mouse, and an output device 106 such as a monitor.
  • Each functional element of the surface analysis system 10 is realized by reading a predetermined program on the processor 101 or the main storage unit 102 and causing the processor 101 to execute the program.
  • the processor 101 operates the communication control unit 104, the input device 105, or the output device 106 according to the program, and reads and writes data in the main storage unit 102 or the auxiliary storage unit 103.
  • the data or database required for processing is stored in the main storage unit 102 or the auxiliary storage unit 103.
  • FIG. 2 is a diagram showing an example of the functional configuration of the surface analysis system 10.
  • the surface analysis system 10 includes a first analysis unit 11 and a second analysis unit 12 as functional elements.
  • the first analysis unit 11 is a functional element for obtaining the breaking length of the organic material forming the sample surface by processing the data obtained by AFM (this is referred to as “input data” in the present disclosure).
  • the breaking length refers to the distance from the sample surface to the probe when the organic material adhering to the probe of a scanning probe microscope (for example, AFM) is separated from the probe due to attractive force.
  • AFM scanning probe microscope
  • the breaking length is an example of the physical properties of the sample surface or organic material.
  • the calculation of fracture length is at least part of the analysis of the sample surface.
  • the first analysis unit 11 includes an acquisition unit 111, a calculation unit 112, and a storage unit 113.
  • the acquisition unit 111 is a functional element for acquiring input data.
  • the calculation unit 112 is a functional element that calculates the breaking length from the input data.
  • the storage unit 113 is a functional element that stores the first analysis data including the breaking length in the database 20.
  • the second analysis unit 12 is a functional element that executes further analysis on the sample surface using the first analysis data and outputs the second analysis data showing the analysis result.
  • the method of constructing the surface analysis system 10 is not limited. When the surface analysis system 10 is composed of a plurality of computers, it may be arbitrarily determined which processor executes which functional element. In any case, the surface analysis system 10 including at least one processor functions as the first analysis unit 11 (acquisition unit 111, calculation unit 112, and storage unit 113) and the second analysis unit 12.
  • the surface analysis system 10 may be incorporated in the AFM or may be a computer system independent of the AFM.
  • the surface analysis system 10 can access the database 20.
  • the database 20 is a device (storage unit) that stores analysis data non-temporarily.
  • the database 20 is a relational database, but the configuration of the database 20 is not limited to this, and may be designed and constructed according to an arbitrary policy.
  • the database 20 may be a component of the surface analysis system 10 or may be constructed in a computer system different from the surface analysis system 10.
  • the surface analysis system 10 connects to the database 20 via a communication network.
  • the configuration of the communication network is not limited in any way, and for example, the communication network may be constructed using the Internet, an intranet, or the like.
  • FIG. 3 is a flowchart showing an example of the operation of the surface analysis system 10 as a processing flow S1.
  • the processing flow S1 indicates a processing for analyzing at least one observation point on the sample surface.
  • the trigger of the processing flow S1 is not limited.
  • the processing flow S1 may be executed in response to a user operation of the surface analysis system 10.
  • the processing flow S1 may be automatically executed in response to processing by the AFM or another device without any user operation.
  • the acquisition unit 111 acquires the input data for one observation point.
  • the input data is data generated by the AFM that measures the sample surface and used to analyze the sample surface.
  • the method of acquiring the input data is not limited.
  • the acquisition unit 111 may acquire input data directly from the AFM, or may read data stored in a predetermined storage unit (for example, a memory, a database, etc.) from the AFM as input data from the storage unit. Good.
  • the input data may include other data such as measurement position information, maximum breaking force, surface position, etc., in addition to the data used to calculate the breaking length. At least some of such other data can be additional physical properties obtained in addition to the breaking length.
  • the maximum breaking force is the maximum value of the force applied to the probe that tries to move away from the sample surface, and is also called the adhesion force.
  • the surface position can be indicated by the distance from a given reference plane to the sample surface in the Z direction (vertical direction). Both the maximum breaking force and the surface position are examples of the additional physical properties obtained in addition to the breaking length.
  • step S12 it is determined whether or not the calculation unit 112 has acquired a sufficient amount of input data.
  • the applied voltage reaches the limit value before the probe reaches the surface, the sample surface is located outside the scanning range, or the organic material does not leave the probe. Therefore, it is possible that a sufficient amount of input data cannot be obtained. Therefore, the calculation unit 112 determines whether or not a sufficient amount of input data has been acquired for analysis.
  • the calculation unit 112 determines that the amount of input data is not sufficient when the number of data is less than or equal to a given threshold value, and the amount of input data is sufficient when the number of data is greater than the threshold value. Is determined to be.
  • the threshold may be set by any policy. For example, the threshold value may be 50 as long as 1024 data can be acquired along the Z direction for one observation point.
  • the calculation unit 112 determines that the amount of input data is not sufficient if the size of the data file is equal to or less than a given threshold value (for example, 1/5 or less of the average size), and if the size is larger than the threshold value. May determine that the amount of input data is sufficient.
  • a given threshold value for example, 1/5 or less of the average size
  • the calculation unit 112 has a section farthest from the sample surface on the approach curve (for example, a section indicated by 10 data corresponding to the corresponding portion) and a section farthest from the sample surface on the release curve (for example, corresponding).
  • the validity of the input data may be determined depending on whether or not the interval (the section indicated by the 10 data corresponding to the location) overlaps. If there is no such overlap, it is highly probable that the organic material did not separate from the probe until the end.
  • the calculation unit 112 determines that the input data is sufficient when there is overlap, and determines that the input data is insufficient when there is no overlap.
  • the approach curve indicates the force measured when the probe approaches the sample surface
  • the release curve indicates the force measured when the probe in contact with the sample surface moves away from the sample surface.
  • step S12 When a sufficient amount of input data has been acquired (YES in step S12), the process proceeds to step S13. On the other hand, if a sufficient amount of input data is not acquired (NO in step S12), the surface analysis system 10 determines that the input data is invalid and ends the process for the current measurement point. .. In this case, the surface analysis system 10 does not execute the processes of steps S13 to S17 described later.
  • step S13 calculation unit 112 the voltage is represented by at least a portion of the input data - converting operation amount curve (F v -Z curve) the force curve.
  • FIG. 4 is a schematic view of an AFM measuring unit shown to explain the probe-surface distance D.
  • This figure shows a probe 32 provided at the end of a cantilever 31, a sample 40 placed on a stage 33, and a piezoelectric element (piezo element) for moving the sample 40 in a three-dimensional direction with high accuracy. 34 and is shown.
  • the probe-surface distance D refers to the distance between the tip of the probe 32 and the sample surface 41.
  • Figure 5 is a voltage - is a diagram showing an example of conversion from operating quantity curve (F v -Z curve) to force curve (F N -D curve).
  • F v -Z curve operating quantity curve
  • F N -D curve force curve
  • the region of F N > 0 indicates that a repulsive force acts on the probe
  • the region of F N ⁇ 0 indicates that an attractive force acts on the probe.
  • the sample surface is measured by bringing the probe into contact with the sample surface in an aqueous solution.
  • a repulsive force due to electrostatic repulsion is generated, and the breaking force is canceled by the repulsive force and cannot be confirmed.
  • the sample surface is measured in an aqueous solution, its electrostatic repulsion is prevented or suppressed, so that the repulsive force caused by the electrostatic repulsion is also prevented or suppressed. As a result, it is possible to obtain a force curve in which the maximum breaking force clearly appears.
  • an aqueous solution that is difficult to evaporate, does not dissolve the organic material, and does not swell the organic material is selected.
  • the aqueous solution used for measuring the sample surface with a scanning probe microscope such as AFM include an aqueous solution of sodium chloride (NaCl), an aqueous solution of sodium sulfate (Na 2 SO 4 ), and an aqueous solution of potassium chloride (KCl).
  • the ionic strength of the aqueous solution is preferably 0.01 (mol / L) or more.
  • the ionic strength of an aqueous NaCl solution having a molar concentration of 10 mM (mmol / L) is 0.01 (mol / L).
  • FIG. 6 is a diagram showing an example of the relationship between the liquid used for measuring the sample surface and the force curve.
  • the sample is niobium, but of course the type of sample is not limited to this.
  • the graph (a) of FIG. 6 shows the force curve obtained when the sample surface is measured in pure water.
  • the graph (b) of FIG. 6 shows the force curve obtained when the sample surface is measured in an aqueous NaCl solution.
  • the gray line (approach curve) indicates the force measured as the probe approaches the sample surface
  • the black line (release curve) indicates the probe that was in contact with the sample surface. Shows the force measured as it moves away from the sample surface.
  • the maximum breaking force can be clearly detected by using an aqueous solution.
  • step S14 the calculation unit 112 calculates the differential curve by differentiating the force curve. Specifically, the calculation unit 112 calculates the differential curve by first-order differentiation (that is, dF N / dD) of the force curve by the probe-surface distance D.
  • 7 and 8 are both diagrams showing an example of a force curve and a corresponding differential curve. In these figures, the upper graph shows the force curve and the lower graph shows the differential curve. The vertical axis of the differential curve shows dF N / dD, and the horizontal axis shows the probe-surface distance D. In each graph, the gray line (approach curve) is the force measured as the probe approaches the sample surface, and the black line (release curve) is the probe that was in contact with the sample surface. With respect to the force measured as the sample moves away from the sample surface.
  • the calculation unit 112 determines the peak threshold value applied to the differential curve.
  • the peak means the maximum value in the needle-shaped portion where the differential value protrudes from the other portions, and corresponds to the portion where the force applied to the probe (cantilever) fluctuates significantly momentarily.
  • the peak threshold is a value set to identify a peak on the differential curve.
  • the method of setting the peak threshold value is not limited.
  • the calculation unit 112 may set the peak threshold value based on the signal-to-noise ratio (S / N) of the differential curve, and may set the peak threshold value to 5 dB (decibel), for example.
  • the calculation unit 112 may calculate the noise statistical value (for example, mean square error) in the section of the differential curve where the organic material is not attached as the noise level which is the basis of S / N.
  • the calculation unit 112 calculates the distance from the sample surface to the farthest peak as the breaking length of the organic material based on the differential curve.
  • the "farthest peak” means the peak farthest from the sample surface.
  • the calculation unit 112 calculates the distance from the sample surface to the farthest peak as the breaking length of the organic material.
  • the distance L in FIGS. 7 and 8 indicates the breaking length thereof.
  • the differential curve By finding the differential curve, it is possible to capture the timing at which the force applied to the probe fluctuates significantly momentarily as a peak. Since this variation indicates fracture, the fracture length can be accurately determined based on the position of the peak on the differential curve.
  • the long-period distortion of the baseline of the force curve (the line near the force NF of 0) due to the interference of light can be eliminated by the differential curve.
  • the storage unit 113 stores the first analysis data including at least the breaking length in the database 20.
  • the first analysis data may include at least a part of the input data as an additional physical characteristic quantity, or may not include such an additional physical characteristic quantity.
  • FIG. 9 is a diagram showing an example of the first analysis data.
  • the record of analytical data for one observation point includes the observation point ID, filename, X position, Y position, surface position, breaking length, and maximum breaking force.
  • the observation point ID is an identifier that uniquely identifies each observation point.
  • the file name is the name of the electronic file in which the input data is written.
  • the X position and the Y position indicate the positions of the observation points in the X and Y directions set based on the surface (XY plane) of the AFM stage. It can be said that the individual records shown in FIG. 9 show the combination of the breaking length and the additional physical properties.
  • step S18 the surface analysis system 10 performs processing on all of at least one observation point on the sample surface. If there are unprocessed observation points (NO in step S18), the processing of steps S11 to S17 is executed for one of the remaining observation points. When the surface analysis system 10 has processed all the observation points (YES in step S18), the processing flow S1 ends. As a result, as shown in FIG. 9, the database 20 stores the first analysis data for one or more observation points processed this time.
  • the surface analysis system 10 may output a plurality of break lengths corresponding to a plurality of measurement points, or may calculate and output a single break length corresponding to a single measurement point.
  • the surface analysis system 10 may perform further processing (eg, further analysis) using the analysis data.
  • FIG. 10 is a flowchart showing an example of the further processing as a processing flow S2.
  • the surface analysis method according to the present embodiment may or may not include this processing flow S2.
  • the trigger of the processing flow S2 is not limited.
  • the processing flow S2 may be automatically executed following the processing flow S1.
  • the processing flow S2 may be executed in response to a user operation of the surface analysis system 10.
  • the processing flow S2 may be automatically executed in response to processing by the AFM or another device without any user operation.
  • the second analysis unit 12 acquires the first analysis data to be processed from the database 20.
  • the second analysis unit 12 executes further processing using the first analysis data.
  • the second analysis unit 12 performs further analysis with reference to at least the break length at one or more observation points.
  • the second analysis unit 12 may perform analysis based on the combination of the breaking length and the additional physical properties.
  • the second analysis unit 12 outputs the second analysis data indicating the result of the processing (for example, analysis).
  • the output method of the second analysis data is not limited.
  • the second analysis unit 12 may output the second analysis data on a monitor, store it in an arbitrary storage unit such as a database 20, or transmit it to another computer or device. You may print it.
  • the processing by the second analysis unit 12 is not limited, and the data structure and representation format of the second analysis data are not limited accordingly.
  • FIG. 11 is a diagram showing an example of the second analysis data including the breaking length, and more specifically, shows the second analysis data 200 showing the distribution of the amount of physical properties in a specific range on the sample surface.
  • the second analysis data 200 includes a map 201 showing the distribution of surface positions, a map 202 showing the distribution of the maximum breaking force (adhesive force), and a map 203 showing the distribution of the breaking length.
  • the breaking length As in the second analysis data 200, the user of the surface analysis system 10 can visually grasp the state of the organic material on the sample surface.
  • the second analysis data 200 is an example of the result of the analysis based on the combination of the breaking length and the additional physical properties.
  • FIG. 12 is a diagram showing images of three types of silica fillers obtained by a scanning electron microscope (SEM).
  • Silica filler is an example of powder.
  • the three types of silica fillers are a silica filler that does not contain an organic material (untreated filler), a silica filler that uses 3-glycidoxypropyltrimethoxysilane as an organic material (epoxy-treated filler), and an organic material.
  • FIG. 13 is a diagram showing an amplitude image obtained by dynamic mode measurement of AFM, and shows four samples for each of the above three types of silica fillers.
  • FIG. 14 is a diagram showing a phase image obtained by dynamic mode measurement of AFM, and shows four samples for each of the above three types of silica fillers. As can be seen from FIGS. 12 to 14, it is impossible or very difficult to distinguish the three types of silica fillers using any of the images.
  • FIG. 15 is a diagram schematically showing an example of the range of observation points.
  • FIG. 16 is a diagram showing a force curve at a typical observation point of unprocessed Fira.
  • FIG. 17 is a diagram showing the force distribution in the untreated filler and corresponds to FIG.
  • FIG. 18 is a diagram showing a force curve at a typical observation point of an epoxy-treated filler.
  • FIG. 19 is a diagram showing the force distribution in the epoxy-treated filler, which corresponds to FIG.
  • FIG. 20 is a diagram showing a force curve at a typical observation point of a phenyl-treated filler.
  • FIG. 21 is a diagram showing the distribution of force in the phenyl-treated filler, which corresponds to FIG. 20.
  • the measurement environment was as follows. A scanning probe microscope SPM8100 manufactured by Shimadzu Corporation was used as a microscope, and SPM9700 manufactured by Shimadzu Corporation was used as software. Each silica filler was measured in force mode. TR800PSA-1 manufactured by Olympus Corporation was used as the cantilever. The spring constant of this cantilever was 150 pN / nm. The light lever sensitivity was 20 nm / V. The scanning range in the Z direction was 1 um (micrometer), and the scanning speed was 1 Hz. The maximum pushing force of the cantilever was + 0.2 V in terms of the detector voltage. The measurement of the sample surface was carried out in an aqueous NaCl solution having a molar concentration of 10 mM (mmol / L).
  • FIG. 15 shows the range 51 of the observation points set on the silica filler 50 together with the coordinate system.
  • the XY plane was set along the surface of the AFM stage and the Z axis was set along the vertical direction.
  • the average particle size of the silica filler 50 was 500 nm.
  • the actual size of range 51 was 200 nm ⁇ 25 nm, which corresponded to 64 ⁇ 8 observation points.
  • 15 to 21 each show a graph or map at a specific Y position.
  • the gray line indicates the force measured as the probe approaches the sample surface
  • the black line indicates the probe that was in contact with the sample surface. Shows the force measured as it moves away from the sample surface. 17, 19 and 21 all show the distribution of forces in the XZ plane at a particular Y position, and the arrows on the map indicate the above seven observation points.
  • the bright portion 210 shows repulsive force, which corresponds to the untreated filler.
  • the color-changing boundary 211 corresponds to the surface of the untreated filler. The breaking length could not be recognized from this map.
  • the bright portion 220 shows repulsive force, which corresponds to the epoxy treated filler.
  • the color-changing boundary 221 corresponds to the surface of the epoxy-treated filler. Further, the color-changing boundary 222 corresponds to the point in time when the organic material is completely separated from the probe. Therefore, the distance from the boundary 221 to the boundary 222 in the Z-axis direction corresponds to the breaking length.
  • FIG. 21 is the same as FIG. That is, in FIG. 21, the bright portion 230 exhibits repulsive force, which corresponds to the phenyl treated filler.
  • the color-changing boundary 231 corresponds to the surface of the phenyl-treated filler. Further, the color-changing boundary 232 corresponds to the point in time when the organic material is completely separated from the probe. Therefore, the distance from the boundary 231 to the boundary 232 in the Z-axis direction corresponds to the breaking length.
  • FIG. 22 is a diagram showing an example of the second analysis data using the calculated breaking length, and more specifically, is a graph showing the relationship between the breaking length and the maximum breaking force for the above three types of silica fillers. is there. This graph is an example of the results of analysis based on the combination of breaking length and additional physical properties. Each point in the graph corresponds to each observation point.
  • Point cloud 241 shows the results for untreated fillers
  • point group 242 shows the results for epoxy treated fillers
  • point group 243 shows the results for phenyl treated fillers.
  • the point cloud of each silica filler can be more clearly distinguished by calculating the breaking length, so that each silica filler can be discriminated.
  • the surface analysis program for making the computer system function as the surface analysis system 10 is for making the computer system function as the first analysis unit 11 (acquisition unit 111, calculation unit 112, and storage unit 113) and the second analysis unit 12. Includes the program code of.
  • the programming language for creating the surface analysis program is not limited, and the programming language may be, for example, Python, Java®, or C ++.
  • the surface analysis program may be provided after being non-temporarily recorded on a tangible recording medium such as a CD-ROM, a DVD-ROM, or a semiconductor memory. Alternatively, the surface analysis program may be provided via a communication network as a data signal superimposed on a carrier wave.
  • the provided surface analysis program is stored in, for example, the auxiliary storage unit 103.
  • Each of the above functional elements is realized by the processor 101 reading the surface analysis program from the auxiliary storage unit 103 and executing the program.
  • the surface analysis method is between the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe and the probe and the sample surface.
  • the sample surface is formed by the step of calculating the differential curve by first-order differentiating the force curve by the distance between the probe and the surface, and the distance from the sample surface to the farthest peak based on the differential curve. It includes a step of calculating the breaking length of the organic material to be used and a step of outputting the breaking length.
  • the surface analysis system includes at least one processor. At least one processor obtains a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe, and sets the force curve by the probe-surface distance, which is the distance between the probe and the sample surface. A differential curve is calculated by order differentiation, and the distance from the sample surface to the farthest peak is calculated as the breaking length of the organic material forming the sample surface based on the differential curve, and the breaking length is output.
  • the surface analysis program is a probe that is the distance between the probe and the sample surface, and the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe.
  • the computer is made to execute the step of calculating as and the step of outputting the breaking length.
  • a differential curve showing a point (peak) where the force fluctuates momentarily is obtained. Be done. Then, based on this differential curve, the distance from the surface to the farthest peak is obtained as the breaking length of the organic material forming the surface of the sample. Since the breaking length showing the characteristics of the organic material is obtained by this series of treatments, the organic material formed on the surface of the sample can be analyzed in more detail.
  • the step of acquiring the force curve acquires a voltage-operating amount curve showing the relationship between the operating amount of the piezoelectric element of the scanning probe microscope and the voltage of the detector of the scanning probe microscope.
  • a step of converting a voltage-working amount curve into a force curve may be included. If the voltage-operating amount curve is used as it is, an error will occur in the breaking length by the amount of deflection of the cantilever of the scanning probe microscope (for example, the breaking length will be overestimated by the amount of deflection). By converting the voltage-working amount curve into a force curve, the breaking length can be calculated more accurately.
  • the step of converting the voltage-operating amount curve into the force curve is the step of calculating the probe-surface distance by reducing the spring deflection amount of the cantilever having the probe from the operating amount. And the step of calculating the force acting on the probe by multiplying the spring constant of the cantilever by the distance between the probe and the surface may be included. By calculating the distance between the probe and the surface and the force in this way, the force curve can be obtained by a simple calculation.
  • a step of acquiring a force curve at each of a plurality of measurement points on the sample surface a step of calculating a break length for each of the plurality of force curves, and a step of outputting a plurality of break lengths. It may further include steps to be performed.
  • steps to be performed By obtaining the breaking lengths at a plurality of measurement points, it is possible to obtain further information on the breaking lengths such as the distribution of the breaking lengths, statistical values, and the like.
  • the step of outputting a plurality of breaking lengths may include a step of outputting the distribution of breaking lengths on the sample surface.
  • information on the breaking length can be presented to the user in an easy-to-understand manner.
  • the step of outputting a plurality of break lengths may include a step of storing a plurality of break lengths in the database. In this case, information about the breaking length can be saved for various subsequent processes.
  • the surface analysis method includes a step of obtaining an additional physical property amount based on the measurement of the sample surface by a scanning probe microscope, a step of performing an analysis based on a combination of the breaking length and the additional physical property amount, and a step of performing an analysis. It may further include a step of outputting the result of the analysis.
  • the organic material formed on the surface of the sample can be analyzed in more detail.
  • the measurement of the sample surface may include bringing the probe into contact with the sample surface in an aqueous solution.
  • electrostatic repulsion is prevented or suppressed, so that the repulsive force caused by electrostatic repulsion is also prevented or suppressed.
  • the sample surface may be the surface of the powder.
  • the organic material formed on the surface of the powder can be analyzed in more detail.
  • the surface analysis system 10 converts the voltage-working amount curve into a force curve, but this conversion process is not essential.
  • the surface analysis system may acquire force curve data calculated by a scanning probe microscope or other computer system.
  • the surface analysis system 10 uses the peak threshold value to identify the farthest peak, but the method for identifying the farthest peak is not limited to this.
  • the surface analysis system may calculate the breaking length by identifying the farthest peak using other techniques.
  • the second analysis unit 12 is not an essential component of the surface analysis system, and for example, a computer system other than the surface analysis system may have a function corresponding to the second analysis unit 12.
  • the process of storing the fracture length in the database is also not essential, for example, the surface analysis system may display the fracture length on a monitor, send it to another computer or device, or print it. Good.
  • the expression "at least one processor executes the first process, executes the second process, ... executes the nth process", or the expression corresponding thereto is the first.
  • the concept including the case where the execution subject (that is, the processor) of n processes from the first process to the nth process changes in the middle is shown. That is, this expression shows a concept including both a case where all n processes are executed by the same processor and a case where the processor changes according to an arbitrary policy in n processes.
  • the processing procedure of the method executed by at least one processor is not limited to the example in the above embodiment. For example, some of the steps (processes) described above may be omitted, or each step may be executed in a different order. Further, any two or more steps among the above-mentioned steps may be combined, or a part of the steps may be modified or deleted. Alternatively, other steps may be performed in addition to each of the above steps.
  • 10 surface analysis system, 11 ... first analysis unit, 12 ... second analysis unit, 20 ... database, 111 ... acquisition unit, 112 ... calculation unit, 113 ... storage unit, 31 ... cantilever, 32 ... probe, 40 ... Sample, 41 ... Sample surface.

Abstract

A surface analysis method according to one embodiment comprises: a step for acquiring a force curve based on a measurement of a sample surface by means of a scanning-type probe microscope provided with a probe; a step for calculating a differential curve by first-order-differentiating the force curve by a probe-surface distance that is the distance between the probe and the surface; a step for calculating, on the basis of the differential curve, the distance from the sample surface to the farthest peak as a breaking length of an organic material forming the sample surface; and a step for outputting the breaking length.

Description

表面分析方法、表面分析システム、および表面分析プログラムSurface analysis methods, surface analysis systems, and surface analysis programs
 本開示の一側面は表面分析方法、表面分析システム、および表面分析プログラムに関する。 One aspect of this disclosure relates to surface analysis methods, surface analysis systems, and surface analysis programs.
 従来から、有機材料を含む試料の表面を分析するための手法が知られている。例えば、特許文献1には、高分子複合材料中の構造体のサイズを基に決定した厚みを持つ試料を用いて測定することを特徴とする力学物性測定方法が記載されている。この文献には、原子間力顕微鏡(AFM)によって試料の表面の硬さ、摩擦力等の力学的特性を測定できることも記載されている。 Conventionally, a method for analyzing the surface of a sample containing an organic material has been known. For example, Patent Document 1 describes a method for measuring mechanical characteristics, which comprises measuring using a sample having a thickness determined based on the size of a structure in a polymer composite material. This document also describes that an atomic force microscope (AFM) can be used to measure mechanical properties such as hardness and frictional force on the surface of a sample.
特開2018-178016号公報JP-A-2018-178016
 試料の表面に形成された有機材料をより詳細に分析する手法が望まれている。 A method for analyzing the organic material formed on the surface of the sample in more detail is desired.
 本開示の一側面に係る表面分析方法は、探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、探針と試料表面との間の距離である探針-表面間距離によってフォースカーブを一階微分することで微分曲線を算出するステップと、微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、試料表面を形成する有機材料の破断長として算出するステップと、破断長を出力するステップとを含む。 The surface analysis method according to one aspect of the present disclosure is a probe that is the distance between the probe and the sample surface and the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe. The step of calculating the differential curve by first-order differentiating the force curve according to the inter-surface distance, and the distance from the sample surface to the farthest peak based on the differential curve, the breaking length of the organic material forming the sample surface. The step of calculating as and the step of outputting the breaking length are included.
 本開示の一側面に係る表面分析システムは、少なくとも一つのプロセッサを備える。少なくとも一つのプロセッサは、探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得し、探針と試料表面との間の距離である探針-表面間距離によってフォースカーブを一階微分することで微分曲線を算出し、微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、試料表面を形成する有機材料の破断長として算出し、破断長を出力する。 The surface analysis system according to one aspect of the present disclosure includes at least one processor. At least one processor obtains a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe, and sets the force curve by the probe-surface distance, which is the distance between the probe and the sample surface. A differential curve is calculated by order differentiation, and the distance from the sample surface to the farthest peak is calculated as the breaking length of the organic material forming the sample surface based on the differential curve, and the breaking length is output.
 本開示の一側面に係る表面分析プログラムは、探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、探針と試料表面との間の距離である探針-表面間距離によってフォースカーブを一階微分することで微分曲線を算出するステップと、微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、試料表面を形成する有機材料の破断長として算出するステップと、破断長を出力するステップとをコンピュータに実行させる。 The surface analysis program according to one aspect of the present disclosure is a probe that is the distance between the probe and the sample surface, and the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe. The step of calculating the differential curve by first-order differentiating the force curve according to the inter-surface distance, and the distance from the sample surface to the farthest peak based on the differential curve, the breaking length of the organic material forming the sample surface. The computer is made to execute the step of calculating as and the step of outputting the breaking length.
 このような側面においては、走査型プローブ顕微鏡による測定に基づくフォースカーブを探針-表面間距離によって一階微分することで、瞬間的に力が大きく変動した箇所(ピーク)を示す微分曲線が得られる。そして、この微分曲線に基づいて、表面から、最遠のピークまでの距離が、試料の表面を形成する有機材料の破断長として得られる。有機材料の特性を示す破断長がこの一連の処理により得られるので、試料の表面に形成された有機材料をより詳細に分析することができる。 In such an aspect, by first-order differentiating the force curve based on the measurement by the scanning probe microscope according to the distance between the probe and the surface, a differential curve showing a point (peak) where the force fluctuates momentarily is obtained. Be done. Then, based on this differential curve, the distance from the surface to the farthest peak is obtained as the breaking length of the organic material forming the surface of the sample. Since the breaking length showing the characteristics of the organic material is obtained by this series of treatments, the organic material formed on the surface of the sample can be analyzed in more detail.
 本開示の一側面によれば、試料の表面に形成された有機材料をより詳細に分析することができる。 According to one aspect of the present disclosure, the organic material formed on the surface of the sample can be analyzed in more detail.
実施形態に係る表面分析システムを構成するコンピュータのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the computer which comprises the surface analysis system which concerns on embodiment. 実施形態に係る表面分析システムの機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the surface analysis system which concerns on embodiment. 実施形態に係る表面分析システムの動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the surface analysis system which concerns on embodiment. 原子間力顕微鏡の測定部の模式図である。It is a schematic diagram of the measurement part of an atomic force microscope. 電圧-稼働量曲線(F-Z曲線)からフォースカーブ(F-D曲線)への変換の一例を示す。Voltage - shows an example of conversion from operating quantity curve (F v -Z curve) to force curve (F N -D curve). 試料表面の測定で用いられる液体とフォースカーブとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the liquid used in the measurement of a sample surface, and a force curve. フォースカーブおよび対応する微分曲線の一例を示す図である。It is a figure which shows an example of the force curve and the corresponding differential curve. フォースカーブおよび対応する微分曲線の別の例を示す図である。It is a figure which shows another example of a force curve and a corresponding derivative curve. 破断長を含む第1分析データの一例を示す図である。It is a figure which shows an example of the 1st analysis data including the breaking length. 実施形態に係る表面分析システムのさらなる動作の一例を示すフローチャートである。It is a flowchart which shows an example of the further operation of the surface analysis system which concerns on embodiment. 破断長を含む第2分析データの一例を示す図である。It is a figure which shows an example of the 2nd analysis data including the breaking length. 走査型電子顕微鏡によって得られるシリカフィラの画像を示す図である。It is a figure which shows the image of the silica filler obtained by the scanning electron microscope. 原子間力顕微鏡のダイナミックモード測定によって得られるシリカフィラの振幅像を示す図である。It is a figure which shows the amplitude image of the silica filler obtained by the dynamic mode measurement of an atomic force microscope. 原子間力顕微鏡のダイナミックモード測定によって得られるシリカフィラの位相像を示す図である。It is a figure which shows the phase image of the silica filler obtained by the dynamic mode measurement of an atomic force microscope. 観測点の範囲の一例を模式的に示す図である。It is a figure which shows an example of the range of an observation point schematically. 未処理のフィラのフォースカーブを示す図である。It is a figure which shows the force curve of the unprocessed Phila. 未処理のフィラでの力の分布を示す図である。It is a figure which shows the distribution of the force in the untreated filler. エポキシ処理されたフィラのフォースカーブを示す図である。It is a figure which shows the force curve of the epoxy-treated Phila. エポキシ処理されたフィラでの力の分布を示す図である。It is a figure which shows the distribution of the force in the epoxy-treated filler. フェニル処理されたフィラのフォースカーブを示す図である。It is a figure which shows the force curve of the phenyl-treated Fila. フェニル処理されたフィラでの力の分布を示す図である。It is a figure which shows the distribution of the force in the phenyl-treated filler. 破断長を用いた第2分析データの一例を示す図である。It is a figure which shows an example of the 2nd analysis data using the breaking length.
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面の説明において同一または同等の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements are designated by the same reference numerals, and duplicate description will be omitted.
 [表面分析システムの構成]
 実施形態に係る表面分析システム10は、有機材料を含み得る試料の表面(本開示ではこれを「試料表面」ともいう)を分析するコンピュータシステムである。有機材料とは、有機化合物により構成される材料のことをいう。試料とは、表面を分析する対象となる物質のことをいう。一例では、「有機材料を含む試料」は、有機材料によって表面が形成された物質であり、例えば、フィラ等の粉体の表面に有機材料の層が形成された物質である。粉体とは、多数の微小な固体粒子の集合体のことをいう。試料表面の分析とは、試料表面の何らかの特性を明らかにする処理のことをいう。
[Surface analysis system configuration]
The surface analysis system 10 according to the embodiment is a computer system that analyzes the surface of a sample that may contain an organic material (this is also referred to as a "sample surface" in the present disclosure). An organic material is a material composed of an organic compound. A sample is a substance whose surface is to be analyzed. In one example, the "sample containing an organic material" is a substance whose surface is formed by the organic material, for example, a substance in which a layer of the organic material is formed on the surface of a powder such as filler. A powder is an aggregate of a large number of fine solid particles. Analysis of the sample surface is a process for clarifying some characteristics of the sample surface.
 表面分析システム10は、走査型プローブ顕微鏡から得られるデータを用いて分析を実行する。走査型プローブ顕微鏡とは、物質の表面をカンチレバーの探針でなぞるように動かして該表面の物性(例えば、形状、性質、状態等)を観察する顕微鏡のことをいう。走査型プローブ顕微鏡の例として原子間力顕微鏡が挙げられるが、表面分析システム10と共に用いられる走査型プローブ顕微鏡の種類はその例に限定されない。本実施形態では原子間力顕微鏡(AFM)を走査型プローブ顕微鏡の一例として示す。AFMはコンタクトモード、ダイナミックモード、フォースモード等の様々な測定方法に対応し得る。フォースモードでは、弾性率、最大破断力(凝着力)、表面位置などの様々な物性量を得ることができる。 The surface analysis system 10 executes analysis using data obtained from a scanning probe microscope. A scanning probe microscope refers to a microscope that observes the physical properties (for example, shape, properties, state, etc.) of a substance by moving the surface of the substance by tracing it with a cantilever probe. An atomic force microscope can be mentioned as an example of the scanning probe microscope, but the type of the scanning probe microscope used together with the surface analysis system 10 is not limited to the example. In this embodiment, an atomic force microscope (AFM) is shown as an example of a scanning probe microscope. The AFM can support various measurement methods such as contact mode, dynamic mode, and force mode. In the force mode, various physical properties such as elastic modulus, maximum breaking force (adhesive force), and surface position can be obtained.
 表面分析システム10は1台以上のコンピュータで構成される。複数台のコンピュータを用いる場合には、これらのコンピュータがインターネット、イントラネット等の通信ネットワークを介して接続されることで、論理的に一つの表面分析システム10が構築される。 The surface analysis system 10 is composed of one or more computers. When a plurality of computers are used, one surface analysis system 10 is logically constructed by connecting these computers via a communication network such as the Internet or an intranet.
 図1は、表面分析システム10を構成するコンピュータ100の一般的なハードウェア構成の一例を示す図である。コンピュータ100は、オペレーティングシステム、アプリケーション・プログラム等を実行するプロセッサ(例えばCPU)101と、ROMおよびRAMで構成される主記憶部102と、ハードディスク、フラッシュメモリ等で構成される補助記憶部103と、ネットワークカードまたは無線通信モジュールで構成される通信制御部104と、キーボード、マウス等の入力装置105と、モニタ等の出力装置106とを備える。 FIG. 1 is a diagram showing an example of a general hardware configuration of a computer 100 constituting the surface analysis system 10. The computer 100 includes a processor (for example, a CPU) 101 for executing an operating system, an application program, and the like, a main storage unit 102 composed of a ROM and a RAM, an auxiliary storage unit 103 composed of a hard disk, a flash memory, and the like. It includes a communication control unit 104 composed of a network card or a wireless communication module, an input device 105 such as a keyboard and a mouse, and an output device 106 such as a monitor.
 表面分析システム10の各機能要素は、プロセッサ101または主記憶部102の上に予め定められたプログラムを読み込ませてプロセッサ101にそのプログラムを実行させることで実現される。プロセッサ101はそのプログラムに従って、通信制御部104、入力装置105、または出力装置106を動作させ、主記憶部102または補助記憶部103におけるデータの読み出しおよび書き込みを行う。処理に必要なデータまたはデータベースは主記憶部102または補助記憶部103内に格納される。 Each functional element of the surface analysis system 10 is realized by reading a predetermined program on the processor 101 or the main storage unit 102 and causing the processor 101 to execute the program. The processor 101 operates the communication control unit 104, the input device 105, or the output device 106 according to the program, and reads and writes data in the main storage unit 102 or the auxiliary storage unit 103. The data or database required for processing is stored in the main storage unit 102 or the auxiliary storage unit 103.
 図2は表面分析システム10の機能構成の一例を示す図である。一例では、表面分析システム10は機能要素として第1分析部11および第2分析部12を備える。第1分析部11は、AFMにより得られるデータ(本開示ではこれを「入力データ」という)を処理することで、試料表面を形成する有機材料の破断長を求める機能要素である。本開示において、破断長とは、引力によって走査型プローブ顕微鏡(例えばAFM)の探針に付着していた有機材料が該探針から離れたときの、試料表面から探針までの距離のことをいう。破断長は、試料表面または有機材料の物性量の一例である。破断長の算出は、試料表面の分析の少なくとも一部である。第1分析部11は取得部111、算出部112、および格納部113を備える。取得部111は入力データを取得する機能要素である。算出部112はその入力データから破断長を算出する機能要素である。格納部113はその破断長を含む第1分析データをデータベース20に格納する機能要素である。第2分析部12はその第1分析データを用いて、試料表面に関するさらなる分析を実行し、その分析結果を示す第2分析データを出力する機能要素である。 FIG. 2 is a diagram showing an example of the functional configuration of the surface analysis system 10. In one example, the surface analysis system 10 includes a first analysis unit 11 and a second analysis unit 12 as functional elements. The first analysis unit 11 is a functional element for obtaining the breaking length of the organic material forming the sample surface by processing the data obtained by AFM (this is referred to as “input data” in the present disclosure). In the present disclosure, the breaking length refers to the distance from the sample surface to the probe when the organic material adhering to the probe of a scanning probe microscope (for example, AFM) is separated from the probe due to attractive force. Say. The breaking length is an example of the physical properties of the sample surface or organic material. The calculation of fracture length is at least part of the analysis of the sample surface. The first analysis unit 11 includes an acquisition unit 111, a calculation unit 112, and a storage unit 113. The acquisition unit 111 is a functional element for acquiring input data. The calculation unit 112 is a functional element that calculates the breaking length from the input data. The storage unit 113 is a functional element that stores the first analysis data including the breaking length in the database 20. The second analysis unit 12 is a functional element that executes further analysis on the sample surface using the first analysis data and outputs the second analysis data showing the analysis result.
 表面分析システム10の構築方法は限定されない。表面分析システム10が複数のコンピュータで構成される場合には、どのプロセッサがどの機能要素を実行するかが任意に決定されてよい。いずれにしても、少なくとも一つのプロセッサを備える表面分析システム10が第1分析部11(取得部111、算出部112、および格納部113)および第2分析部12として機能する。表面分析システム10は、AFMに組み込まれてもよいし、AFMとは独立したコンピュータシステムでもよい。 The method of constructing the surface analysis system 10 is not limited. When the surface analysis system 10 is composed of a plurality of computers, it may be arbitrarily determined which processor executes which functional element. In any case, the surface analysis system 10 including at least one processor functions as the first analysis unit 11 (acquisition unit 111, calculation unit 112, and storage unit 113) and the second analysis unit 12. The surface analysis system 10 may be incorporated in the AFM or may be a computer system independent of the AFM.
 表面分析システム10はデータベース20にアクセスすることができる。データベース20は分析データを非一時的に記憶する装置(記憶部)である。一例ではデータベース20はリレーショナルデータベースであるが、データベース20の構成はこれに限定されず、任意の方針で設計および構築されてよい。データベース20は表面分析システム10の一構成要素でもよいし、表面分析システム10とは異なるコンピュータシステム内に構築されてもよい。一例では、表面分析システム10は通信ネットワークを介してデータベース20に接続する。通信ネットワークの構成は何ら限定されず、例えば、通信ネットワークはインターネット、イントラネット等を用いて構築されてよい。 The surface analysis system 10 can access the database 20. The database 20 is a device (storage unit) that stores analysis data non-temporarily. In one example, the database 20 is a relational database, but the configuration of the database 20 is not limited to this, and may be designed and constructed according to an arbitrary policy. The database 20 may be a component of the surface analysis system 10 or may be constructed in a computer system different from the surface analysis system 10. In one example, the surface analysis system 10 connects to the database 20 via a communication network. The configuration of the communication network is not limited in any way, and for example, the communication network may be constructed using the Internet, an intranet, or the like.
 [表面分析システムの動作]
 図3および他の図面を参照しながら、表面分析システム10の動作を説明するとともに本実施形態に係る表面分析方法について説明する。図3は表面分析システム10の動作の一例を処理フローS1として示すフローチャートである。処理フローS1は、試料表面上の少なくとも一つの観測点を分析する処理を示す。処理フローS1の契機は限定されない。例えば、処理フローS1は表面分析システム10のユーザの操作に応答して実行されてもよい。あるいは、処理フローS1は、AFMまたは他の装置での処理に応答して、ユーザ操作を介することなく自動的に実行されてもよい。
[Operation of surface analysis system]
The operation of the surface analysis system 10 and the surface analysis method according to the present embodiment will be described with reference to FIG. 3 and other drawings. FIG. 3 is a flowchart showing an example of the operation of the surface analysis system 10 as a processing flow S1. The processing flow S1 indicates a processing for analyzing at least one observation point on the sample surface. The trigger of the processing flow S1 is not limited. For example, the processing flow S1 may be executed in response to a user operation of the surface analysis system 10. Alternatively, the processing flow S1 may be automatically executed in response to processing by the AFM or another device without any user operation.
 ステップS11では、取得部111が一つの観測点についての入力データを取得する。入力データは、試料表面を測定したAFMによって生成され、試料表面を分析するために用いられるデータである。入力データの取得方法は限定されない。例えば、取得部111はAFMから入力データを直接に取得してもよいし、AFMから所定の記憶部(例えば、メモリ、データベース等)に格納されたデータを該記憶部から入力データとして読み出してもよい。入力データは、破断長を算出するために用いられるデータに加えて、測定位置の情報、最大破断力、表面位置等の他のデータを含んでもよい。このような他のデータの少なくとも一部は、破断長に加えて取得される追加の物性量であり得る。最大破断力は、試料表面から離れようとする探針に掛かる力の最大値であり、凝着力ともいう。表面位置は、Z方向(鉛直方向)における、所与の基準面から試料表面までの距離によって示され得る。最大破断力および表面位置はいずれも、破断長に加えて取得される追加の物性量の一例である。 In step S11, the acquisition unit 111 acquires the input data for one observation point. The input data is data generated by the AFM that measures the sample surface and used to analyze the sample surface. The method of acquiring the input data is not limited. For example, the acquisition unit 111 may acquire input data directly from the AFM, or may read data stored in a predetermined storage unit (for example, a memory, a database, etc.) from the AFM as input data from the storage unit. Good. The input data may include other data such as measurement position information, maximum breaking force, surface position, etc., in addition to the data used to calculate the breaking length. At least some of such other data can be additional physical properties obtained in addition to the breaking length. The maximum breaking force is the maximum value of the force applied to the probe that tries to move away from the sample surface, and is also called the adhesion force. The surface position can be indicated by the distance from a given reference plane to the sample surface in the Z direction (vertical direction). Both the maximum breaking force and the surface position are examples of the additional physical properties obtained in addition to the breaking length.
 ステップS12では、算出部112が十分な量の入力データを取得したか否かを判定する。試料表面の測定では、探針が該表面に到達する前に印加電圧が限界値に達したり、試料表面が走査範囲外に位置したり、有機材料が探針から離れなかったりする等の何らかの理由で、十分な量の入力データが得られない可能性がある。そのため、算出部112は分析のために十分な量の入力データを取得したか否かを判定する。 In step S12, it is determined whether or not the calculation unit 112 has acquired a sufficient amount of input data. In the measurement of the sample surface, for some reason, the applied voltage reaches the limit value before the probe reaches the surface, the sample surface is located outside the scanning range, or the organic material does not leave the probe. Therefore, it is possible that a sufficient amount of input data cannot be obtained. Therefore, the calculation unit 112 determines whether or not a sufficient amount of input data has been acquired for analysis.
 一例では、算出部112は、データの個数が所与の閾値以下である場合には入力データの量が十分でないと判定し、データの個数が該閾値より多い場合には入力データの量が十分であると判定する。その閾値は任意の方針で設定されてよい。例えば、一つの観測点についてZ方向に沿って1024個のデータを取得可能であれば、閾値は50でもよい。 In one example, the calculation unit 112 determines that the amount of input data is not sufficient when the number of data is less than or equal to a given threshold value, and the amount of input data is sufficient when the number of data is greater than the threshold value. Is determined to be. The threshold may be set by any policy. For example, the threshold value may be 50 as long as 1024 data can be acquired along the Z direction for one observation point.
 あるいは、算出部112は、データファイルのサイズが所与の閾値以下(例えば、平均サイズの1/5以下)であれば入力データの量が十分でないと判定し、サイズがその閾値より大きい場合には入力データの量が十分であると判定してもよい。 Alternatively, the calculation unit 112 determines that the amount of input data is not sufficient if the size of the data file is equal to or less than a given threshold value (for example, 1/5 or less of the average size), and if the size is larger than the threshold value. May determine that the amount of input data is sufficient.
 あるいは、算出部112は、アプローチカーブにおいて試料表面から最も離れた区間(例えば、該当箇所に対応する10個のデータで示される区間)と、リリースカーブにおいて試料表面から最も離れた区間(例えば、該当箇所に対応する10個のデータで示される区間)とが重なるか否かによって、入力データの有効性を判定してもよい。この重なりが無い場合には、有機材料が最後まで探針から離れなかった蓋然性が高い。算出部112は、重なりがある場合には入力データが十分であると判定し、重なりが無い場合には入力データが不十分であると判定する。ここで、アプローチカーブは探針が試料表面に近づくときに測定される力を示し、リリースカーブは試料表面に接触した探針が該試料表面から離れていくときに測定される力を示す。 Alternatively, the calculation unit 112 has a section farthest from the sample surface on the approach curve (for example, a section indicated by 10 data corresponding to the corresponding portion) and a section farthest from the sample surface on the release curve (for example, corresponding). The validity of the input data may be determined depending on whether or not the interval (the section indicated by the 10 data corresponding to the location) overlaps. If there is no such overlap, it is highly probable that the organic material did not separate from the probe until the end. The calculation unit 112 determines that the input data is sufficient when there is overlap, and determines that the input data is insufficient when there is no overlap. Here, the approach curve indicates the force measured when the probe approaches the sample surface, and the release curve indicates the force measured when the probe in contact with the sample surface moves away from the sample surface.
 十分な量の入力データを取得した場合には(ステップS12においてYES)、処理はステップS13に進む。一方、十分な量の入力データを取得しなかった場合には(ステップS12においてNO)、表面分析システム10はその入力データが無効であると判定して、現在の測定点についての処理を終了する。この場合には、表面分析システム10は、後述するステップS13~S17の処理を実行しない。 When a sufficient amount of input data has been acquired (YES in step S12), the process proceeds to step S13. On the other hand, if a sufficient amount of input data is not acquired (NO in step S12), the surface analysis system 10 determines that the input data is invalid and ends the process for the current measurement point. .. In this case, the surface analysis system 10 does not execute the processes of steps S13 to S17 described later.
 ステップS13では、算出部112が、入力データの少なくとも一部によって表される電圧-稼働量曲線(F-Z曲線)をフォースカーブに変換する。 In step S13, calculation unit 112, the voltage is represented by at least a portion of the input data - converting operation amount curve (F v -Z curve) the force curve.
 フォースカーブとは、探針-表面間距離D(単位はnm(ナノメートル))と、AFMの探針(カンチレバー)に作用する力F(単位はnN(ナノニュートン))との関係を示す曲線(F-D曲線)である。図4は、探針-表面間距離Dを説明するために示す、AFMの測定部の模式図である。この図は、カンチレバー31の端部に設けられた探針32と、ステージ33上に置かれた試料40と、その試料40を3次元方向に高精度に移動させるための圧電素子(ピエゾ素子)34とを示す。その図に示すように、探針-表面間距離Dとは、探針32の先端と試料表面41との間の距離のことをいう。 The force curve indicates the relationship between the probe-surface distance D (unit: nm (nanometer)) and the force F N (unit: nN (nanonewton)) acting on the AFM probe (cantilever). a curve (F N -D curve). FIG. 4 is a schematic view of an AFM measuring unit shown to explain the probe-surface distance D. This figure shows a probe 32 provided at the end of a cantilever 31, a sample 40 placed on a stage 33, and a piezoelectric element (piezo element) for moving the sample 40 in a three-dimensional direction with high accuracy. 34 and is shown. As shown in the figure, the probe-surface distance D refers to the distance between the tip of the probe 32 and the sample surface 41.
 電圧-稼働量曲線(F-Z曲線)とは、走査型プローブ顕微鏡(例えばAFM)の圧電素子の稼働量Z(単位はnm(ナノメートル))と、該走査型プローブ顕微鏡の検出器の電圧F(単位はV(ボルト))との関係を示す曲線である。 Voltage - The production amount curve (F v -Z curve), and operation of the piezoelectric element of the scanning probe microscope (for example, AFM) Z (unit nm (nanometers)), of the scanning probe microscope detector It is a curve which shows the relationship with voltage F v (unit is V (volt)).
 算出部112はF-Z曲線をフォースカーブ(F-D曲線)に変換する。カンチレバーのたわみ量を、ばねたわみ量x(単位はnm)というとすると、算出部112はD=Z-xの式に従って、圧電素子の稼働量Zを探針-表面間距離Dに変換する。ばねたわみ量xは、x=(検出器の電圧F)/(光てこ感度)という式により得られる。光てこ感度の単位はnm/Vである。力Fはカンチレバーのばね定数kとばねたわみ量xとの積により得られ、従ってF=kxである。図5は、電圧-稼働量曲線(F-Z曲線)からフォースカーブ(F-D曲線)への変換の一例を示す図である。フォースカーブにおいて、F>0の領域は探針に斥力が働くことを示し、F<0の領域は探針に引力が働くことを示す。図5の例では、探針-表面間距離D=0の付近における引力の最大値が最大破断力に相当する。 Calculating unit 112 converts the F v -Z curve force curve (F N -D curve). Assuming that the amount of deflection of the cantilever is the amount of deflection x of the spring (unit: nm), the calculation unit 112 converts the operating amount Z of the piezoelectric element into the distance D between the probe and the surface according to the equation D = Zx. The spring deflection amount x is obtained by the equation x = (detector voltage Fv ) / (light lever sensitivity). The unit of light lever sensitivity is nm / V. The force F N is obtained by the product of the spring constant k of the cantilever and the amount of spring deflection x, and therefore F N = kx. Figure 5 is a voltage - is a diagram showing an example of conversion from operating quantity curve (F v -Z curve) to force curve (F N -D curve). In the force curve, the region of F N > 0 indicates that a repulsive force acts on the probe, and the region of F N <0 indicates that an attractive force acts on the probe. In the example of FIG. 5, the maximum value of the attractive force in the vicinity of the probe-surface distance D = 0 corresponds to the maximum breaking force.
 その最大破断力(凝着力)を明瞭に検出するための手法として、水溶液中で探針を試料表面に接触させることで試料表面を測定することが挙げられる。水溶液ではなく純水中で試料表面を測定すると、静電反発に起因する斥力が発生し、破断力がその斥力によって相殺されて確認できなくなる。水溶液中で試料表面を測定するとその静電反発が防止または抑制されるので、静電反発に起因する斥力も防止または抑制される。この結果、最大破断力が明瞭に現われるフォースカーブを得ることができる。一例では、蒸発しにくく、有機材料を溶かさず、かつ有機材料を膨潤させない水溶液が選択される。AFM等の走査型プローブ顕微鏡による試料表面の測定で用いられる水溶液の例として、塩化ナトリウム(NaCl)水溶液、硫酸ナトリウム(NaSO)水溶液、および塩化カリウム(KCl)水溶液が挙げられるが、これらに限定されない。水溶液のイオン強度は0.01(mol/L)以上であることが好ましい。例えば、モル濃度が10mM(mmol/L)のNaCl水溶液のイオン強度は0.01(mol/L)である。 As a method for clearly detecting the maximum breaking force (adhesive force), the sample surface is measured by bringing the probe into contact with the sample surface in an aqueous solution. When the sample surface is measured in pure water instead of an aqueous solution, a repulsive force due to electrostatic repulsion is generated, and the breaking force is canceled by the repulsive force and cannot be confirmed. When the sample surface is measured in an aqueous solution, its electrostatic repulsion is prevented or suppressed, so that the repulsive force caused by the electrostatic repulsion is also prevented or suppressed. As a result, it is possible to obtain a force curve in which the maximum breaking force clearly appears. In one example, an aqueous solution that is difficult to evaporate, does not dissolve the organic material, and does not swell the organic material is selected. Examples of the aqueous solution used for measuring the sample surface with a scanning probe microscope such as AFM include an aqueous solution of sodium chloride (NaCl), an aqueous solution of sodium sulfate (Na 2 SO 4 ), and an aqueous solution of potassium chloride (KCl). Not limited to. The ionic strength of the aqueous solution is preferably 0.01 (mol / L) or more. For example, the ionic strength of an aqueous NaCl solution having a molar concentration of 10 mM (mmol / L) is 0.01 (mol / L).
 図6は試料表面の測定で用いられる液体とフォースカーブとの関係の一例を示す図である。この例では試料がニオブであるが、当然ながら試料の種類はこれに限定されない。図6のグラフ(a)は、純水中で試料表面を測定した場合に得られるフォースカーブを示す。図6のグラフ(b)は、NaCl水溶液中で試料表面を測定した場合に得られるフォースカーブを示す。両方のグラフにおいて、灰色の線(アプローチカーブ)は、探針が試料表面に近づいていくときに測定される力を示し、黒の線(リリースカーブ)は、試料表面に接触していた探針が該試料表面から離れていくときに測定される力を示す。図6に示すように、水溶液を用いることで最大破断力を明瞭に検出することができる。 FIG. 6 is a diagram showing an example of the relationship between the liquid used for measuring the sample surface and the force curve. In this example, the sample is niobium, but of course the type of sample is not limited to this. The graph (a) of FIG. 6 shows the force curve obtained when the sample surface is measured in pure water. The graph (b) of FIG. 6 shows the force curve obtained when the sample surface is measured in an aqueous NaCl solution. In both graphs, the gray line (approach curve) indicates the force measured as the probe approaches the sample surface, and the black line (release curve) indicates the probe that was in contact with the sample surface. Shows the force measured as it moves away from the sample surface. As shown in FIG. 6, the maximum breaking force can be clearly detected by using an aqueous solution.
 ステップS14では、算出部112がフォースカーブを微分することで微分曲線を算出する。具体的には、算出部112はフォースカーブを探針-表面間距離Dによって一階微分(すなわち、dF/dD)することで微分曲線を算出する。図7および図8はいずれもフォースカーブおよび対応する微分曲線の一例を示す図である。これらの図では、上のグラフがフォースカーブを示し、下のグラフが微分曲線を示す。微分曲線の縦軸はdF/dDを示し、横軸は探針-表面間距離Dを示す。いずれのグラフにおいても、灰色の線(アプローチカーブ)は、探針が試料表面に近づいていくときに測定される力に関し、黒の線(リリースカーブ)は、試料表面に接触していた探針が該試料表面から離れていくときに測定される力に関する。 In step S14, the calculation unit 112 calculates the differential curve by differentiating the force curve. Specifically, the calculation unit 112 calculates the differential curve by first-order differentiation (that is, dF N / dD) of the force curve by the probe-surface distance D. 7 and 8 are both diagrams showing an example of a force curve and a corresponding differential curve. In these figures, the upper graph shows the force curve and the lower graph shows the differential curve. The vertical axis of the differential curve shows dF N / dD, and the horizontal axis shows the probe-surface distance D. In each graph, the gray line (approach curve) is the force measured as the probe approaches the sample surface, and the black line (release curve) is the probe that was in contact with the sample surface. With respect to the force measured as the sample moves away from the sample surface.
 ステップS15では、算出部112が微分曲線に適用するピーク閾値を決定する。本開示において、ピークとは、微分値が他の部分よりも突出した針状の部分における最大値のことをいい、探針(カンチレバー)に掛かる力が瞬間的に大きく変動した箇所に対応する。ピーク閾値とは、微分曲線におけるピークを識別するために設定される値である。ピーク閾値の設定方法は限定されない。一例では、算出部112は微分曲線の信号対雑音比(S/N)に基づいてピーク閾値を設定してもよく、例えば、ピーク閾値を5dB(デシベル)に設定してもよい。算出部112は、微分曲線のうち、探針に有機材料が付いていない区間におけるノイズの統計値(例えば平均二乗誤差)を、S/Nの基となるノイズレベルとして算出してもよい。 In step S15, the calculation unit 112 determines the peak threshold value applied to the differential curve. In the present disclosure, the peak means the maximum value in the needle-shaped portion where the differential value protrudes from the other portions, and corresponds to the portion where the force applied to the probe (cantilever) fluctuates significantly momentarily. The peak threshold is a value set to identify a peak on the differential curve. The method of setting the peak threshold value is not limited. In one example, the calculation unit 112 may set the peak threshold value based on the signal-to-noise ratio (S / N) of the differential curve, and may set the peak threshold value to 5 dB (decibel), for example. The calculation unit 112 may calculate the noise statistical value (for example, mean square error) in the section of the differential curve where the organic material is not attached as the noise level which is the basis of S / N.
 ステップS16では、算出部112が微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、有機材料の破断長として算出する。「最遠のピーク」とは、試料表面から最も離れたピークのことをいう。算出部112は、微分曲線においてピーク閾値よりも値が高い1以上の針状部分のそれぞれをピークとして識別する。有機材料が探針から離れる現象である破断が複数回発生する場合があり、これに対応して、探針に掛かる力がそれぞれの破断において瞬間的に大きく変動し得る。したがって、複数のピークが存在し得る。そのため、算出部112は、試料表面(微分曲線のグラフにおいてD=0の部分)から最も離れたピークを最遠のピークとして識別する。そして、算出部112は試料表面からその最遠のピークまでの距離を有機材料の破断長として算出する。図7および図8における距離Lはその破断長を示す。試料表面から最遠のピークまでの距離を破断長として求めることで、その破断長以上の長さを持つ有機材料の存在を知ることができる。 In step S16, the calculation unit 112 calculates the distance from the sample surface to the farthest peak as the breaking length of the organic material based on the differential curve. The "farthest peak" means the peak farthest from the sample surface. The calculation unit 112 identifies each of one or more needle-shaped portions having a value higher than the peak threshold value in the differential curve as a peak. Breakage, which is a phenomenon in which the organic material separates from the probe, may occur multiple times, and in response to this, the force applied to the probe may fluctuate significantly momentarily at each breakage. Therefore, there can be multiple peaks. Therefore, the calculation unit 112 identifies the peak farthest from the sample surface (the portion where D = 0 in the graph of the differential curve) as the farthest peak. Then, the calculation unit 112 calculates the distance from the sample surface to the farthest peak as the breaking length of the organic material. The distance L in FIGS. 7 and 8 indicates the breaking length thereof. By obtaining the distance from the sample surface to the farthest peak as the breaking length, the existence of an organic material having a length longer than the breaking length can be known.
 微分曲線を求めることで、探針に掛かる力が瞬間的に大きく変動したタイミングをピークとして捉えることができる。この変動は破断を示すので、微分曲線でのピークの位置に基づいて破断長を正確に求めることができる。加えて、図8から明らかなように、光の干渉によるフォースカーブのベースライン(力Fが0の付近における線)の長周期の歪みを微分曲線によって解消することができる。 By finding the differential curve, it is possible to capture the timing at which the force applied to the probe fluctuates significantly momentarily as a peak. Since this variation indicates fracture, the fracture length can be accurately determined based on the position of the peak on the differential curve. In addition, as is clear from FIG. 8, the long-period distortion of the baseline of the force curve (the line near the force NF of 0) due to the interference of light can be eliminated by the differential curve.
 ステップS17では、格納部113が、破断長を少なくとも含む第1分析データをデータベース20に格納する。第1分析データは入力データの少なくとも一部を追加の物性量として含んでもよいし、このような追加の物性量を含まなくてもよい。図9は第1分析データの一例を示す図である。この例では、一つの観測点についての分析データのレコードは観測点ID、ファイル名、X位置、Y位置、表面位置、破断長、および最大破断力を含む。観測点IDは個々の観測点を一意に特定する識別子である。ファイル名は入力データが書き込まれた電子ファイルの名称である。X位置およびY位置は、AFMのステージの表面(XY平面)に基づいて設定される観測点のX方向およびY方向の位置を示す。図9に示す個々のレコードは、破断長と追加の物性量との組合せを示すといえる。 In step S17, the storage unit 113 stores the first analysis data including at least the breaking length in the database 20. The first analysis data may include at least a part of the input data as an additional physical characteristic quantity, or may not include such an additional physical characteristic quantity. FIG. 9 is a diagram showing an example of the first analysis data. In this example, the record of analytical data for one observation point includes the observation point ID, filename, X position, Y position, surface position, breaking length, and maximum breaking force. The observation point ID is an identifier that uniquely identifies each observation point. The file name is the name of the electronic file in which the input data is written. The X position and the Y position indicate the positions of the observation points in the X and Y directions set based on the surface (XY plane) of the AFM stage. It can be said that the individual records shown in FIG. 9 show the combination of the breaking length and the additional physical properties.
 ステップS18で示すように、表面分析システム10は試料表面上の少なくとも一つの観測点のすべてについて処理を実行する。未処理の観測点が存在する場合には(ステップS18においてNO)、残っている観測点のうちの一つについてステップS11~S17の処理が実行される。表面分析システム10がすべての観測点を処理した場合には(ステップS18においてYES)、処理フローS1が終了する。この結果、図9に示すように、データベース20には、今回処理された1以上の観測点についての第1分析データが蓄積される。表面分析システム10は複数の測定点に対応する複数の破断長を出力してもよいし、単一の測定点に対応する単一の破断長を算出および出力してもよい。 As shown in step S18, the surface analysis system 10 performs processing on all of at least one observation point on the sample surface. If there are unprocessed observation points (NO in step S18), the processing of steps S11 to S17 is executed for one of the remaining observation points. When the surface analysis system 10 has processed all the observation points (YES in step S18), the processing flow S1 ends. As a result, as shown in FIG. 9, the database 20 stores the first analysis data for one or more observation points processed this time. The surface analysis system 10 may output a plurality of break lengths corresponding to a plurality of measurement points, or may calculate and output a single break length corresponding to a single measurement point.
 一例では、表面分析システム10はその分析データを用いてさらなる処理(例えばさらなる分析)を実行してもよい。図10はそのさらなる処理の一例を処理フローS2として示すフローチャートである。本実施形態に係る表面分析方法はこの処理フローS2を含んでもよいし、含まなくてもよい。処理フローS2の契機は限定されない。一例では、処理フローS2は処理フローS1に続いて自動的に実行されてもよい。別の例では、処理フローS2は、表面分析システム10のユーザの操作に応答して実行されてもよい。あるいは、処理フローS2は、AFMまたは他の装置での処理に応答して、ユーザ操作を介することなく自動的に実行されてもよい。 In one example, the surface analysis system 10 may perform further processing (eg, further analysis) using the analysis data. FIG. 10 is a flowchart showing an example of the further processing as a processing flow S2. The surface analysis method according to the present embodiment may or may not include this processing flow S2. The trigger of the processing flow S2 is not limited. In one example, the processing flow S2 may be automatically executed following the processing flow S1. In another example, the processing flow S2 may be executed in response to a user operation of the surface analysis system 10. Alternatively, the processing flow S2 may be automatically executed in response to processing by the AFM or another device without any user operation.
 ステップS21では、第2分析部12が、処理しようとする第1分析データをデータベース20から取得する。ステップS22では、第2分析部12がその第1分析データを用いてさらなる処理を実行する。一例では、第2分析部12は1以上の観測点での破断長を少なくとも参照してさらなる分析を実行する。第2分析部12は破断長と追加の物性量との組合せに基づく分析を実行してもよい。ステップS23では、第2分析部12がその処理(例えば分析)の結果を示す第2分析データを出力する。第2分析データの出力方法は限定されない。例えば、第2分析部12は第2分析データを、モニタ上に出力してもよいし、データベース20等の任意の記憶部に格納してもよいし、他のコンピュータまたは装置に送信してもよいし、印刷してもよい。第2分析部12による処理は限定されず、これに対応して、第2分析データのデータ構造および表現形式も限定されない。 In step S21, the second analysis unit 12 acquires the first analysis data to be processed from the database 20. In step S22, the second analysis unit 12 executes further processing using the first analysis data. In one example, the second analysis unit 12 performs further analysis with reference to at least the break length at one or more observation points. The second analysis unit 12 may perform analysis based on the combination of the breaking length and the additional physical properties. In step S23, the second analysis unit 12 outputs the second analysis data indicating the result of the processing (for example, analysis). The output method of the second analysis data is not limited. For example, the second analysis unit 12 may output the second analysis data on a monitor, store it in an arbitrary storage unit such as a database 20, or transmit it to another computer or device. You may print it. The processing by the second analysis unit 12 is not limited, and the data structure and representation format of the second analysis data are not limited accordingly.
 以下では、さらなる図面を参照しながら、実施形態に係る表面分析システム10および表面分析方法に関してさらに説明する。 In the following, the surface analysis system 10 and the surface analysis method according to the embodiment will be further described with reference to further drawings.
 図11は、破断長を含む第2分析データの一例を示す図であり、より具体的には、試料表面の特定の範囲における物性量の分布を示す第2分析データ200を示す。第2分析データ200は、表面位置の分布を示すマップ201と、最大破断力(凝着力)の分布を示すマップ202と、破断長の分布を示すマップ203とを含む。この第2分析データ200のように破断長を可視化することで、表面分析システム10のユーザは試料表面の有機材料の状態を視覚的に捉えることができる。第2分析データ200は、破断長と追加の物性量との組合せに基づく分析の結果の一例である。 FIG. 11 is a diagram showing an example of the second analysis data including the breaking length, and more specifically, shows the second analysis data 200 showing the distribution of the amount of physical properties in a specific range on the sample surface. The second analysis data 200 includes a map 201 showing the distribution of surface positions, a map 202 showing the distribution of the maximum breaking force (adhesive force), and a map 203 showing the distribution of the breaking length. By visualizing the breaking length as in the second analysis data 200, the user of the surface analysis system 10 can visually grasp the state of the organic material on the sample surface. The second analysis data 200 is an example of the result of the analysis based on the combination of the breaking length and the additional physical properties.
 本発明者らは、破断長の分布を算出することで、試料表面上の有機材料の存在または種類を判別できることを見出した。この判別は、従来の手法によって顕微鏡から得られる画像を見るだけでは不可能または非常に困難である。図12は走査型電子顕微鏡(SEM)によって得られる3種類のシリカフィラの画像を示す図である。シリカフィラは粉体の一例である。3種類のシリカフィラは、有機材料を含まないシリカフィラ(未処理のフィラ)、有機材料として3-グリシドキシプロピルトリメトキシシランを用いたシリカフィラ(エポキシ処理されたフィラ)、および、有機材料としてN-フェニル-3-アミノプロピルトリメトキシシランを用いたシリカフィラ(フェニル処理されたフィラ)である。図13はAFMのダイナミックモード測定によって得られる振幅像を示す図であり、上記3種類のシリカフィラのそれぞれについて4個のサンプルを示す。図14はAFMのダイナミックモード測定によって得られる位相像を示す図であり、上記3種類のシリカフィラのそれぞれについて4個のサンプルを示す。図12~図14からわかるように、いずれの画像を用いても、3種類のシリカフィラを判別することは不可能または非常に困難である。 The present inventors have found that the presence or type of an organic material on the sample surface can be determined by calculating the distribution of breaking length. This discrimination is impossible or very difficult just by looking at the image obtained from the microscope by the conventional method. FIG. 12 is a diagram showing images of three types of silica fillers obtained by a scanning electron microscope (SEM). Silica filler is an example of powder. The three types of silica fillers are a silica filler that does not contain an organic material (untreated filler), a silica filler that uses 3-glycidoxypropyltrimethoxysilane as an organic material (epoxy-treated filler), and an organic material. It is a silica filler (phenyl-treated filler) using N-phenyl-3-aminopropyltrimethoxysilane. FIG. 13 is a diagram showing an amplitude image obtained by dynamic mode measurement of AFM, and shows four samples for each of the above three types of silica fillers. FIG. 14 is a diagram showing a phase image obtained by dynamic mode measurement of AFM, and shows four samples for each of the above three types of silica fillers. As can be seen from FIGS. 12 to 14, it is impossible or very difficult to distinguish the three types of silica fillers using any of the images.
 例えば、フォースカーブは上記3種類のシリカフィラを判別するきっかけになる。図15~図22を参照しながらフォースカーブの表現の例を説明する。図15は観測点の範囲の一例を模式的に示す図である。図16は未処理のフィラの代表的な観測点でのフォースカーブを示す図である。図17は未処理のフィラでの力の分布を示す図であり、図16に対応する。図18はエポキシ処理されたフィラの代表的な観測点でのフォースカーブを示す図である。図19はエポキシ処理されたフィラでの力の分布を示す図であり、図18に対応する。図20はフェニル処理されたフィラの代表的な観測点でのフォースカーブを示す図である。図21はフェニル処理されたフィラでの力の分布を示す図であり、図20に対応する。 For example, the force curve is a trigger to distinguish the above three types of silica fillers. An example of expressing the force curve will be described with reference to FIGS. 15 to 22. FIG. 15 is a diagram schematically showing an example of the range of observation points. FIG. 16 is a diagram showing a force curve at a typical observation point of unprocessed Fira. FIG. 17 is a diagram showing the force distribution in the untreated filler and corresponds to FIG. FIG. 18 is a diagram showing a force curve at a typical observation point of an epoxy-treated filler. FIG. 19 is a diagram showing the force distribution in the epoxy-treated filler, which corresponds to FIG. FIG. 20 is a diagram showing a force curve at a typical observation point of a phenyl-treated filler. FIG. 21 is a diagram showing the distribution of force in the phenyl-treated filler, which corresponds to FIG. 20.
 測定環境は以下の通りであった。顕微鏡として株式会社島津製作所製の走査プローブ顕微鏡SPM8100を用い、ソフトウェアとして同社製のSPM9700を用いた。フォースモードでそれぞれのシリカフィラを測定した。カンチレバーにはオリンパス株式会社製のTR800PSA-1を用いた。このカンチレバーのばね定数は150pN/nmであった。光てこ感度は20nm/Vであった。Z方向の走査範囲は1um(マイクロメートル)であり、走査速度は1Hzとした。カンチレバーの最大押し込み力は、検出器電圧に換算して+0.2Vとした。試料表面の測定は、モル濃度が10mM(mmol/L)であるNaCl水溶液中で行った。 The measurement environment was as follows. A scanning probe microscope SPM8100 manufactured by Shimadzu Corporation was used as a microscope, and SPM9700 manufactured by Shimadzu Corporation was used as software. Each silica filler was measured in force mode. TR800PSA-1 manufactured by Olympus Corporation was used as the cantilever. The spring constant of this cantilever was 150 pN / nm. The light lever sensitivity was 20 nm / V. The scanning range in the Z direction was 1 um (micrometer), and the scanning speed was 1 Hz. The maximum pushing force of the cantilever was + 0.2 V in terms of the detector voltage. The measurement of the sample surface was carried out in an aqueous NaCl solution having a molar concentration of 10 mM (mmol / L).
 図15はシリカフィラ50上に設定された観測点の範囲51を座標系と共に示す。AFMのステージの表面に沿ってXY平面を設定し、鉛直方向に沿ってZ軸を設定した。シリカフィラ50の平均粒径は500nmであった。範囲51の実寸は200nm×25nmであり、これは64×8個の観測点に対応した。図15~図21はいずれも特定のY位置におけるグラフまたはマップを示す。図16、図18、および図20はいずれも、特定のY位置における7個の観測点(X=-75nm,-50nm,-25nm,0nm,25nm,50nm,75nm)でのフォースカーブを示す。それぞれのグラフにおいて、灰色の線(アプローチカーブ)は、探針が試料表面に近づいていくときに測定される力を示し、黒の線(リリースカーブ)は、試料表面に接触していた探針が該試料表面から離れていくときに測定される力を示す。図17、図19、および図21はいずれも、特定のY位置でのXZ平面における力の分布を示し、マップの上に示す矢印は上記の7個の観測点を示す。 FIG. 15 shows the range 51 of the observation points set on the silica filler 50 together with the coordinate system. The XY plane was set along the surface of the AFM stage and the Z axis was set along the vertical direction. The average particle size of the silica filler 50 was 500 nm. The actual size of range 51 was 200 nm × 25 nm, which corresponded to 64 × 8 observation points. 15 to 21 each show a graph or map at a specific Y position. 16 and 18 and 20 all show force curves at seven observation points (X = −75 nm, -50 nm, -25 nm, 0 nm, 25 nm, 50 nm, 75 nm) at a particular Y position. In each graph, the gray line (approach curve) indicates the force measured as the probe approaches the sample surface, and the black line (release curve) indicates the probe that was in contact with the sample surface. Shows the force measured as it moves away from the sample surface. 17, 19 and 21 all show the distribution of forces in the XZ plane at a particular Y position, and the arrows on the map indicate the above seven observation points.
 図17において、明るい部分210は斥力を示し、これは未処理のフィラに対応する。色が変化する境界211は未処理のフィラの表面に対応する。このマップからは破断長を認めることができなかった。 In FIG. 17, the bright portion 210 shows repulsive force, which corresponds to the untreated filler. The color-changing boundary 211 corresponds to the surface of the untreated filler. The breaking length could not be recognized from this map.
 図19において、明るい部分220は斥力を示し、これはエポキシ処理されたフィラに対応する。色が変化する境界221はエポキシ処理されたフィラの表面に対応する。さらに色が変化する境界222は有機材料が探針から完全に離れる時点に対応する。したがって、Z軸方向における境界221から境界222までの距離が破断長に対応する。 In FIG. 19, the bright portion 220 shows repulsive force, which corresponds to the epoxy treated filler. The color-changing boundary 221 corresponds to the surface of the epoxy-treated filler. Further, the color-changing boundary 222 corresponds to the point in time when the organic material is completely separated from the probe. Therefore, the distance from the boundary 221 to the boundary 222 in the Z-axis direction corresponds to the breaking length.
 図21は図19と同様である。すなわち、図21において、明るい部分230は斥力を示し、これはフェニル処理されたフィラに対応する。色が変化する境界231はフェニル処理されたフィラの表面に対応する。さらに色が変化する境界232は有機材料が探針から完全に離れる時点に対応する。したがって、Z軸方向における境界231から境界232までの距離が破断長に対応する。 FIG. 21 is the same as FIG. That is, in FIG. 21, the bright portion 230 exhibits repulsive force, which corresponds to the phenyl treated filler. The color-changing boundary 231 corresponds to the surface of the phenyl-treated filler. Further, the color-changing boundary 232 corresponds to the point in time when the organic material is completely separated from the probe. Therefore, the distance from the boundary 231 to the boundary 232 in the Z-axis direction corresponds to the breaking length.
 図16~図21に示すように、フォースカーブおよびそれに基づくマップによって試料表面の物性をある程度確認することができる。表面分析システム10を用いることで破断長を算出できるので、その物性をより詳しく確認することができる。図22は算出された破断長を用いた第2分析データの一例を示す図であり、より具体的には、上記の3種類のシリカフィラについて破断長と最大破断力との関係を示すグラフである。このグラフは、破断長と追加の物性量との組合せに基づく分析の結果の一例である。グラフにおけるそれぞれの点はそれぞれの観測点に対応する。点群241は未処理のフィラについての結果を示し、点群242はエポキシ処理されたフィラについての結果を示し、点群243はフェニル処理されたフィラについての結果を示す。このグラフからわかるように、破断長を算出することでそれぞれのシリカフィラの点群がより明確に区別されるので、それぞれのシリカフィラを判別することが可能になる。 As shown in FIGS. 16 to 21, the physical characteristics of the sample surface can be confirmed to some extent by the force curve and the map based on the force curve. Since the breaking length can be calculated by using the surface analysis system 10, its physical properties can be confirmed in more detail. FIG. 22 is a diagram showing an example of the second analysis data using the calculated breaking length, and more specifically, is a graph showing the relationship between the breaking length and the maximum breaking force for the above three types of silica fillers. is there. This graph is an example of the results of analysis based on the combination of breaking length and additional physical properties. Each point in the graph corresponds to each observation point. Point cloud 241 shows the results for untreated fillers, point group 242 shows the results for epoxy treated fillers, and point group 243 shows the results for phenyl treated fillers. As can be seen from this graph, the point cloud of each silica filler can be more clearly distinguished by calculating the breaking length, so that each silica filler can be discriminated.
 [プログラム]
 コンピュータシステムを表面分析システム10として機能させるための表面分析プログラムは、該コンピュータシステムを第1分析部11(取得部111、算出部112、および格納部113)および第2分析部12として機能させるためのプログラムコードを含む。表面分析プログラムを作成するためのプログラム言語は限定されず、例えば、そのプログラム言語はPython、Java(登録商標)、またはC++でもよい。表面分析プログラムは、CD-ROM、DVD-ROM、半導体メモリ等の有形の記録媒体に非一時的に記録された上で提供されてもよい。あるいは、表面分析プログラムは、搬送波に重畳されたデータ信号として通信ネットワークを介して提供されてもよい。提供された表面分析プログラムは例えば補助記憶部103に記憶される。プロセッサ101が補助記憶部103からその表面分析プログラムを読み出してそのプログラムを実行することで、上記の各機能要素が実現する。
[program]
The surface analysis program for making the computer system function as the surface analysis system 10 is for making the computer system function as the first analysis unit 11 (acquisition unit 111, calculation unit 112, and storage unit 113) and the second analysis unit 12. Includes the program code of. The programming language for creating the surface analysis program is not limited, and the programming language may be, for example, Python, Java®, or C ++. The surface analysis program may be provided after being non-temporarily recorded on a tangible recording medium such as a CD-ROM, a DVD-ROM, or a semiconductor memory. Alternatively, the surface analysis program may be provided via a communication network as a data signal superimposed on a carrier wave. The provided surface analysis program is stored in, for example, the auxiliary storage unit 103. Each of the above functional elements is realized by the processor 101 reading the surface analysis program from the auxiliary storage unit 103 and executing the program.
 [効果]
 以上説明したように、本開示の一側面に係る表面分析方法は、探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、探針と試料表面との間の距離である探針-表面間距離によってフォースカーブを一階微分することで微分曲線を算出するステップと、微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、試料表面を形成する有機材料の破断長として算出するステップと、破断長を出力するステップとを含む。
[effect]
As described above, the surface analysis method according to one aspect of the present disclosure is between the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe and the probe and the sample surface. The sample surface is formed by the step of calculating the differential curve by first-order differentiating the force curve by the distance between the probe and the surface, and the distance from the sample surface to the farthest peak based on the differential curve. It includes a step of calculating the breaking length of the organic material to be used and a step of outputting the breaking length.
 本開示の一側面に係る表面分析システムは、少なくとも一つのプロセッサを備える。少なくとも一つのプロセッサは、探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得し、探針と試料表面との間の距離である探針-表面間距離によってフォースカーブを一階微分することで微分曲線を算出し、微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、試料表面を形成する有機材料の破断長として算出し、破断長を出力する。 The surface analysis system according to one aspect of the present disclosure includes at least one processor. At least one processor obtains a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe, and sets the force curve by the probe-surface distance, which is the distance between the probe and the sample surface. A differential curve is calculated by order differentiation, and the distance from the sample surface to the farthest peak is calculated as the breaking length of the organic material forming the sample surface based on the differential curve, and the breaking length is output.
 本開示の一側面に係る表面分析プログラムは、探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、探針と試料表面との間の距離である探針-表面間距離によってフォースカーブを一階微分することで微分曲線を算出するステップと、微分曲線に基づいて、試料表面から、最遠のピークまでの距離を、試料表面を形成する有機材料の破断長として算出するステップと、破断長を出力するステップとをコンピュータに実行させる。 The surface analysis program according to one aspect of the present disclosure is a probe that is the distance between the probe and the sample surface, and the step of acquiring a force curve based on the measurement of the sample surface by a scanning probe microscope equipped with a probe. The step of calculating the differential curve by first-order differentiating the force curve according to the inter-surface distance, and the distance from the sample surface to the farthest peak based on the differential curve, the breaking length of the organic material forming the sample surface. The computer is made to execute the step of calculating as and the step of outputting the breaking length.
 このような側面においては、走査型プローブ顕微鏡による測定に基づくフォースカーブを探針-表面間距離によって一階微分することで、瞬間的に力が大きく変動した箇所(ピーク)を示す微分曲線が得られる。そして、この微分曲線に基づいて、表面から、最遠のピークまでの距離が、試料の表面を形成する有機材料の破断長として得られる。有機材料の特性を示す破断長がこの一連の処理により得られるので、試料の表面に形成された有機材料をより詳細に分析することができる。 In such an aspect, by first-order differentiating the force curve based on the measurement by the scanning probe microscope according to the distance between the probe and the surface, a differential curve showing a point (peak) where the force fluctuates momentarily is obtained. Be done. Then, based on this differential curve, the distance from the surface to the farthest peak is obtained as the breaking length of the organic material forming the surface of the sample. Since the breaking length showing the characteristics of the organic material is obtained by this series of treatments, the organic material formed on the surface of the sample can be analyzed in more detail.
 他の側面に係る表面分析方法では、フォースカーブを取得するステップが、走査型プローブ顕微鏡の圧電素子の稼働量と走査型プローブ顕微鏡の検出器の電圧との関係を示す電圧-稼働量曲線を取得するステップと、電圧-稼働量曲線をフォースカーブに変換するステップとを含んでもよい。電圧-稼働量曲線をそのまま用いると、走査型プローブ顕微鏡のカンチレバーのたわみ量の分だけ破断長に誤差が生じてしまう(例えば、たわみ量の分だけ破断長が過大に評価されてしまう)。電圧-稼働量曲線をフォースカーブに変換することで、破断長をより正確に算出することができる。 In the surface analysis method according to the other aspect, the step of acquiring the force curve acquires a voltage-operating amount curve showing the relationship between the operating amount of the piezoelectric element of the scanning probe microscope and the voltage of the detector of the scanning probe microscope. A step of converting a voltage-working amount curve into a force curve may be included. If the voltage-operating amount curve is used as it is, an error will occur in the breaking length by the amount of deflection of the cantilever of the scanning probe microscope (for example, the breaking length will be overestimated by the amount of deflection). By converting the voltage-working amount curve into a force curve, the breaking length can be calculated more accurately.
 他の側面に係る表面分析方法では、電圧-稼働量曲線をフォースカーブに変換するステップが、探針を有するカンチレバーのばねたわみ量を稼働量から減ずることで探針-表面間距離を算出するステップと、カンチレバーのばね定数に探針-表面間距離を乗ずることで、探針に作用する力を算出するステップとを含んでもよい。このように探針-表面間距離および力を算出することで、フォースカーブを簡単な計算によって得ることができる。 In the surface analysis method relating to the other aspect, the step of converting the voltage-operating amount curve into the force curve is the step of calculating the probe-surface distance by reducing the spring deflection amount of the cantilever having the probe from the operating amount. And the step of calculating the force acting on the probe by multiplying the spring constant of the cantilever by the distance between the probe and the surface may be included. By calculating the distance between the probe and the surface and the force in this way, the force curve can be obtained by a simple calculation.
 他の側面に係る表面分析方法では、試料表面上の複数の測定点のそれぞれにおけるフォースカーブを取得するステップと、複数のフォースカーブのそれぞれについて破断長を算出するステップと、複数の破断長を出力するステップとをさらに含んでもよい。複数の測定点について破断長を求めることで、破断長の分布、統計値等のような、破断長に関する更なる情報を得ることができる。 In the surface analysis method relating to other aspects, a step of acquiring a force curve at each of a plurality of measurement points on the sample surface, a step of calculating a break length for each of the plurality of force curves, and a step of outputting a plurality of break lengths. It may further include steps to be performed. By obtaining the breaking lengths at a plurality of measurement points, it is possible to obtain further information on the breaking lengths such as the distribution of the breaking lengths, statistical values, and the like.
 他の側面に係る表面分析方法では、複数の破断長を出力するステップが、試料表面における破断長の分布を出力するステップを含んでもよい。この場合には、破断長に関する情報をわかり易くユーザに提示することができる。 In the surface analysis method relating to other aspects, the step of outputting a plurality of breaking lengths may include a step of outputting the distribution of breaking lengths on the sample surface. In this case, information on the breaking length can be presented to the user in an easy-to-understand manner.
 他の側面に係る表面分析方法では、複数の破断長を出力するステップが、複数の破断長をデータベースに格納するステップを含んでもよい。この場合には、破断長に関する情報を後続の様々な処理のために保存することができる。 In the surface analysis method relating to other aspects, the step of outputting a plurality of break lengths may include a step of storing a plurality of break lengths in the database. In this case, information about the breaking length can be saved for various subsequent processes.
 他の側面に係る表面分析方法では、走査型プローブ顕微鏡による試料表面の測定に基づく追加の物性量を取得するステップと、破断長と追加の物性量との組合せに基づく分析を実行するステップと、分析の結果を出力するステップとをさらに含んでもよい。この場合には、試料の表面に形成された有機材料をより詳細に分析することができる。 The surface analysis method according to the other aspect includes a step of obtaining an additional physical property amount based on the measurement of the sample surface by a scanning probe microscope, a step of performing an analysis based on a combination of the breaking length and the additional physical property amount, and a step of performing an analysis. It may further include a step of outputting the result of the analysis. In this case, the organic material formed on the surface of the sample can be analyzed in more detail.
 他の側面に係る表面分析方法では、試料表面の測定が、水溶液中で探針を試料表面に接触させることを含んでもよい。水溶液中で試料表面を測定すると静電反発が防止または抑制されるので、静電反発に起因する斥力も防止または抑制される。この結果、最大破断力が明瞭に現われるフォースカーブを得ることができる。 In the surface analysis method according to the other aspect, the measurement of the sample surface may include bringing the probe into contact with the sample surface in an aqueous solution. When the sample surface is measured in an aqueous solution, electrostatic repulsion is prevented or suppressed, so that the repulsive force caused by electrostatic repulsion is also prevented or suppressed. As a result, it is possible to obtain a force curve in which the maximum breaking force clearly appears.
 他の側面に係る表面分析方法では、試料表面が粉体の表面であってもよい。この場合には、粉体の表面に形成された有機材料をより詳細に分析することができる。 In the surface analysis method relating to other aspects, the sample surface may be the surface of the powder. In this case, the organic material formed on the surface of the powder can be analyzed in more detail.
 [変形例]
 以上、本開示での実施形態に基づいて詳細に説明した。しかし、本開示は上記実施形態に限定されるものではない。本開示は、その要旨を逸脱しない範囲で様々な変形が可能である。
[Modification example]
The above description has been made in detail based on the embodiments in the present disclosure. However, the present disclosure is not limited to the above embodiment. The present disclosure can be modified in various ways without departing from its gist.
 上記実施形態では表面分析システム10が電圧-稼働量曲線をフォースカーブに変換するが、この変換処理は必須ではない。例えば、表面分析システムは走査型プローブ顕微鏡または他のコンピュータシステムにより算出されたフォースカーブのデータを取得してもよい。 In the above embodiment, the surface analysis system 10 converts the voltage-working amount curve into a force curve, but this conversion process is not essential. For example, the surface analysis system may acquire force curve data calculated by a scanning probe microscope or other computer system.
 上記実施形態では表面分析システム10がピーク閾値を用いて最遠のピークを識別するが、最遠のピークを特定するための手法はこれに限定されない。表面分析システムは他の手法を用いて最遠のピークを識別することで、破断長を算出してもよい。 In the above embodiment, the surface analysis system 10 uses the peak threshold value to identify the farthest peak, but the method for identifying the farthest peak is not limited to this. The surface analysis system may calculate the breaking length by identifying the farthest peak using other techniques.
 表面分析システム10の構成およびその周辺のシステム構成はいずれも上記実施形態に限定されない。第2分析部12は表面分析システムの必須の構成要素ではなく、例えば、表面分析システムとは別のコンピュータシステムが第2分析部12に相当する機能を有してもよい。破断長をデータベースに格納する処理も必須ではなく、例えば、表面分析システムは破断長を、モニタ上に表示してもよいし、他のコンピュータまたは装置に送信してもよいし、印刷してもよい。 Neither the configuration of the surface analysis system 10 nor the system configuration around it is limited to the above embodiment. The second analysis unit 12 is not an essential component of the surface analysis system, and for example, a computer system other than the surface analysis system may have a function corresponding to the second analysis unit 12. The process of storing the fracture length in the database is also not essential, for example, the surface analysis system may display the fracture length on a monitor, send it to another computer or device, or print it. Good.
 本開示において、「少なくとも一つのプロセッサが、第1の処理を実行し、第2の処理を実行し、…第nの処理を実行する。」との表現、またはこれに対応する表現は、第1の処理から第nの処理までのn個の処理の実行主体(すなわちプロセッサ)が途中で変わる場合を含む概念を示す。すなわち、この表現は、n個の処理のすべてが同じプロセッサで実行される場合と、n個の処理においてプロセッサが任意の方針で変わる場合との双方を含む概念を示す。 In the present disclosure, the expression "at least one processor executes the first process, executes the second process, ... executes the nth process", or the expression corresponding thereto is the first. The concept including the case where the execution subject (that is, the processor) of n processes from the first process to the nth process changes in the middle is shown. That is, this expression shows a concept including both a case where all n processes are executed by the same processor and a case where the processor changes according to an arbitrary policy in n processes.
 少なくとも一つのプロセッサにより実行される方法の処理手順は上記実施形態での例に限定されない。例えば、上述したステップ(処理)の一部が省略されてもよいし、別の順序で各ステップが実行されてもよい。また、上述したステップのうちの任意の2以上のステップが組み合わされてもよいし、ステップの一部が修正又は削除されてもよい。あるいは、上記の各ステップに加えて他のステップが実行されてもよい。 The processing procedure of the method executed by at least one processor is not limited to the example in the above embodiment. For example, some of the steps (processes) described above may be omitted, or each step may be executed in a different order. Further, any two or more steps among the above-mentioned steps may be combined, or a part of the steps may be modified or deleted. Alternatively, other steps may be performed in addition to each of the above steps.
 コンピュータシステムまたはコンピュータ内で二つの数値の大小関係を比較する際には、「以上」および「よりも大きい」という二つの基準のどちらを用いてもよく、「以下」および「未満」という二つの基準のうちのどちらを用いてもよい。このような基準の選択は、二つの数値の大小関係を比較する処理についての技術的意義を変更するものではない。 When comparing the magnitude relations of two numbers in a computer system or computer, either of the two criteria "greater than or equal to" and "greater than" may be used, and the two criteria "less than or equal to" and "less than" Either of the criteria may be used. The selection of such criteria does not change the technical significance of the process of comparing the magnitude relations of two numbers.
10…表面分析システム、11…第1分析部、12…第2分析部、20…データベース、111…取得部、112…算出部、113…格納部、31…カンチレバー、32…探針、40…試料、41…試料表面。 10 ... surface analysis system, 11 ... first analysis unit, 12 ... second analysis unit, 20 ... database, 111 ... acquisition unit, 112 ... calculation unit, 113 ... storage unit, 31 ... cantilever, 32 ... probe, 40 ... Sample, 41 ... Sample surface.

Claims (11)

  1.  探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、
     前記探針と前記試料表面との間の距離である探針-表面間距離によって前記フォースカーブを一階微分することで微分曲線を算出するステップと、
     前記微分曲線に基づいて、前記試料表面から、最遠のピークまでの距離を、前記試料表面を形成する有機材料の破断長として算出するステップと、
     前記破断長を出力するステップと
    を含む表面分析方法。
    Steps to obtain a force curve based on the measurement of the sample surface with a scanning probe microscope equipped with a probe,
    A step of calculating a differential curve by first-order differentiating the force curve according to the distance between the probe and the surface, which is the distance between the probe and the sample surface.
    Based on the differential curve, the step of calculating the distance from the sample surface to the farthest peak as the breaking length of the organic material forming the sample surface, and
    A surface analysis method including a step of outputting the breaking length.
  2.  前記フォースカーブを取得するステップが、
      前記走査型プローブ顕微鏡の圧電素子の稼働量と前記走査型プローブ顕微鏡の検出器の電圧との関係を示す電圧-稼働量曲線を取得するステップと、
      前記電圧-稼働量曲線を前記フォースカーブに変換するステップとを含む、
    請求項1に記載の表面分析方法。
    The step of acquiring the force curve is
    A step of acquiring a voltage-operating amount curve showing the relationship between the operating amount of the piezoelectric element of the scanning probe microscope and the voltage of the detector of the scanning probe microscope, and
    Including the step of converting the voltage-working amount curve into the force curve.
    The surface analysis method according to claim 1.
  3.  前記電圧-稼働量曲線を前記フォースカーブに変換するステップが、
      前記探針を有するカンチレバーのばねたわみ量を前記稼働量から減ずることで前記探針-表面間距離を算出するステップと、
      前記カンチレバーのばね定数に前記探針-表面間距離を乗ずることで、前記探針に作用する力を算出するステップとを含む、
    請求項2に記載の表面分析方法。
    The step of converting the voltage-working amount curve into the force curve is
    A step of calculating the distance between the probe and the surface by reducing the amount of spring deflection of the cantilever having the probe from the operating amount, and
    The step includes calculating the force acting on the probe by multiplying the spring constant of the cantilever by the distance between the probe and the surface.
    The surface analysis method according to claim 2.
  4.  前記試料表面上の複数の測定点のそれぞれにおける前記フォースカーブを取得するステップと、
     複数の前記フォースカーブのそれぞれについて前記破断長を算出するステップと、
     複数の前記破断長を出力するステップと
    をさらに含む請求項1~3のいずれか一項に記載の表面分析方法。
    The step of acquiring the force curve at each of the plurality of measurement points on the sample surface, and
    A step of calculating the breaking length for each of the plurality of force curves, and
    The surface analysis method according to any one of claims 1 to 3, further comprising a plurality of steps of outputting the breaking length.
  5.  前記複数の破断長を出力するステップが、前記試料表面における前記破断長の分布を出力するステップを含む、
    請求項4に記載の表面分析方法。
    The step of outputting the plurality of breaking lengths includes a step of outputting the distribution of the breaking lengths on the sample surface.
    The surface analysis method according to claim 4.
  6.  前記複数の破断長を出力するステップが、前記複数の破断長をデータベースに格納するステップを含む、
    請求項4または5に記載の表面分析方法。
    The step of outputting the plurality of break lengths includes a step of storing the plurality of break lengths in the database.
    The surface analysis method according to claim 4 or 5.
  7.  前記走査型プローブ顕微鏡による前記試料表面の測定に基づく追加の物性量を取得するステップと、
     前記破断長と前記追加の物性量との組合せに基づく分析を実行するステップと、
     前記分析の結果を出力するステップと
    をさらに含む請求項1~6のいずれか一項に記載の表面分析方法。
    The step of obtaining additional physical properties based on the measurement of the sample surface with the scanning probe microscope, and
    A step of performing an analysis based on the combination of the breaking length and the additional physical properties,
    The surface analysis method according to any one of claims 1 to 6, further comprising a step of outputting the result of the analysis.
  8.  前記試料表面の測定が、水溶液中で前記探針を前記試料表面に接触させることを含む、
    請求項1~7のいずれか一項に記載の表面分析方法。
    Measurement of the sample surface comprises contacting the probe with the sample surface in aqueous solution.
    The surface analysis method according to any one of claims 1 to 7.
  9.  前記試料表面が粉体の表面である、
    請求項1~8のいずれか一項に記載の表面分析方法。
    The surface of the sample is the surface of the powder.
    The surface analysis method according to any one of claims 1 to 8.
  10.  少なくとも一つのプロセッサを備え、
     前記少なくとも一つのプロセッサが、
      探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得し、
      前記探針と前記試料表面との間の距離である探針-表面間距離によって前記フォースカーブを一階微分することで微分曲線を算出し、
      前記微分曲線に基づいて、前記試料表面から、最遠のピークまでの距離を、前記試料表面を形成する有機材料の破断長として算出し、
      前記破断長を出力する、
    表面分析システム。
    With at least one processor
    The at least one processor
    Obtain a force curve based on the measurement of the sample surface with a scanning probe microscope equipped with a probe.
    A differential curve is calculated by first-order differentiating the force curve according to the distance between the probe and the surface, which is the distance between the probe and the sample surface.
    Based on the differential curve, the distance from the sample surface to the farthest peak is calculated as the breaking length of the organic material forming the sample surface.
    Output the breaking length,
    Surface analysis system.
  11.  探針を備える走査型プローブ顕微鏡による試料表面の測定に基づくフォースカーブを取得するステップと、
     前記探針と前記試料表面との間の距離である探針-表面間距離によって前記フォースカーブを一階微分することで微分曲線を算出するステップと、
     前記微分曲線に基づいて、前記試料表面から、最遠のピークまでの距離を、前記試料表面を形成する有機材料の破断長として算出するステップと、
     前記破断長を出力するステップと
    をコンピュータに実行させる表面分析プログラム。
    Steps to obtain a force curve based on the measurement of the sample surface with a scanning probe microscope equipped with a probe,
    A step of calculating a differential curve by first-order differentiating the force curve according to the distance between the probe and the surface, which is the distance between the probe and the sample surface.
    Based on the differential curve, the step of calculating the distance from the sample surface to the farthest peak as the breaking length of the organic material forming the sample surface, and
    A surface analysis program that causes a computer to perform the steps of outputting the breaking length.
PCT/JP2019/048822 2019-12-12 2019-12-12 Surface analysis method, surface analysis system, and surface analysis program WO2021117203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/048822 WO2021117203A1 (en) 2019-12-12 2019-12-12 Surface analysis method, surface analysis system, and surface analysis program
KR1020227017909A KR20220103732A (en) 2019-12-12 2019-12-12 Surface analysis method, surface analysis system, and surface analysis program
JP2021563549A JP7070809B2 (en) 2019-12-12 2019-12-12 Surface analysis methods, surface analysis systems, and surface analysis programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/048822 WO2021117203A1 (en) 2019-12-12 2019-12-12 Surface analysis method, surface analysis system, and surface analysis program

Publications (1)

Publication Number Publication Date
WO2021117203A1 true WO2021117203A1 (en) 2021-06-17

Family

ID=76330078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048822 WO2021117203A1 (en) 2019-12-12 2019-12-12 Surface analysis method, surface analysis system, and surface analysis program

Country Status (3)

Country Link
JP (1) JP7070809B2 (en)
KR (1) KR20220103732A (en)
WO (1) WO2021117203A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972925A (en) * 1995-09-05 1997-03-18 Nikon Corp Scanning type microscope
JPH1144696A (en) * 1997-07-28 1999-02-16 Nikon Corp Flexure detection mechanism and scanning probe microscope
JP2005283433A (en) * 2004-03-30 2005-10-13 Canon Inc Probe with probe element interacting with sample, manufacturing method of the probe, and measuring method and measuring device for intermolecular action using the probe
US20070089498A1 (en) * 2005-09-29 2007-04-26 Chanmin Su Method and apparatus of high speed property mapping
JP2018178016A (en) * 2017-04-18 2018-11-15 住友ゴム工業株式会社 Mechanical physical property measuring method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230933A (en) * 1999-02-12 2000-08-22 Nikon Corp Probe microscope and surface property analyzing method using the same
CN103460039B (en) * 2010-12-10 2015-12-02 巴塞尔大学 By AFM by cancer progress method by stages

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972925A (en) * 1995-09-05 1997-03-18 Nikon Corp Scanning type microscope
JPH1144696A (en) * 1997-07-28 1999-02-16 Nikon Corp Flexure detection mechanism and scanning probe microscope
JP2005283433A (en) * 2004-03-30 2005-10-13 Canon Inc Probe with probe element interacting with sample, manufacturing method of the probe, and measuring method and measuring device for intermolecular action using the probe
US20070089498A1 (en) * 2005-09-29 2007-04-26 Chanmin Su Method and apparatus of high speed property mapping
JP2018178016A (en) * 2017-04-18 2018-11-15 住友ゴム工業株式会社 Mechanical physical property measuring method

Also Published As

Publication number Publication date
JP7070809B2 (en) 2022-05-18
JPWO2021117203A1 (en) 2021-06-17
KR20220103732A (en) 2022-07-22

Similar Documents

Publication Publication Date Title
Monclus et al. AFM indentation method used for elastic modulus characterization of interfaces and thin layers
KR101536788B1 (en) Method and Apparatus of Automatic Scanning Probe Imaging
Wagner et al. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy
Baker Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime
Marinello et al. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling
JP2012532458A5 (en)
Klapetek et al. Large area high-speed metrology SPM system
WO2015085316A1 (en) Force measurement with real-time baseline determination
JP2012185037A (en) Friction force microscope
JP4876216B2 (en) Surface position measuring method and surface position measuring apparatus
Ortuso et al. Detailed study on the failure of the wedge calibration method at nanonewton setpoints for friction force microscopy
JP7046383B2 (en) Mechanical property test method and measuring device
JP7070809B2 (en) Surface analysis methods, surface analysis systems, and surface analysis programs
KR101706819B1 (en) Analysis method for nanoindentation system, adjusting method, nanoindentation system and recording medium using thereof
Morkvenaite-Vilkonciene et al. The improvement of the accuracy of electromagnetic actuator based atomic force microscope operating in contact mode and the development of a new methodology for the estimation of control parameters and the achievement of superior image quality
Klapetek et al. Independent analysis of mechanical data from atomic force microscopy
JP7067686B1 (en) Surface analysis methods, surface analysis systems, and surface analysis programs
Devadasan et al. Quantitative atomic force microscopy: A statistical treatment of high-speed AFM data for quality control applications
Choi et al. Simulation of atomic force microscopy operation via three-dimensional finite element modelling
JP2003207432A (en) Apparatus for testing micromaterial and method for evaluating dynamic characteristics by the same
US11289367B2 (en) Method, atomic force microscopy system and computer program product
JP7234693B2 (en) Fiber length measuring method, fiber length measuring device and fiber length measuring program
KR20230002497A (en) Methods for feature dimensioning in subsurface topography, scanning probe microscope systems and computer programs
CN114765113A (en) Method and apparatus for measuring dimension of semiconductor structure
van Es et al. Quantitative tomography with subsurface scanning ultrasound resonance force microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563549

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227017909

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955405

Country of ref document: EP

Kind code of ref document: A1