JPWO2021105726A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021105726A5
JPWO2021105726A5 JP2022531030A JP2022531030A JPWO2021105726A5 JP WO2021105726 A5 JPWO2021105726 A5 JP WO2021105726A5 JP 2022531030 A JP2022531030 A JP 2022531030A JP 2022531030 A JP2022531030 A JP 2022531030A JP WO2021105726 A5 JPWO2021105726 A5 JP WO2021105726A5
Authority
JP
Japan
Prior art keywords
cement
chamber
aggregate material
adsorbing
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022531030A
Other languages
Japanese (ja)
Other versions
JP2023503485A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/GR2019/000083 external-priority patent/WO2021105726A1/en
Publication of JP2023503485A publication Critical patent/JP2023503485A/en
Publication of JPWO2021105726A5 publication Critical patent/JPWO2021105726A5/ja
Pending legal-status Critical Current

Links

Description

CO2の吸着および放出を促進し、したがってコンクリート混合物中の炭素の均一な拡散を促進するために、リサイクルされていない骨材材料は、CO 2 を吸着し、セメントの混合および硬化中に発生する発熱反応によって発生した熱に起因して吸着したCO2をコンクリート混合物に放出することができる骨材材料を含む。いくつかの実施形態では、リサイクルされていない骨材材料は、CO2を吸着および放出することができる骨材材料であるポゾラン材料を含む。例えば、ポゾラン材料は、30℃の温度で吸着されたCO2を放出し、したがって、CO2吸着骨材材料CO2吸着ポゾラン材料を含む場合、CO2吸着骨材材料は、セメント混合チャンバ140においてCO2吸着骨材材料をセメントおよび水と混合する間に到達する温度(すなわち、30℃~60℃の温度)でCO2を放出する。リサイクルされていない骨材材料のポゾラン材料は、天然ポゾラン材料、人工ポゾラン材料、またはそれらの組み合わせであり得る。天然ポゾラン材料の例には、火山灰、軽石、軽石粉(軽石質軽石など)、軽石、イグニンブライト、膨張頁岩、ゼオライト、メタカオリン、ならびに籾殻灰およびナツメヤシの木灰を含むシリカを含有する植物灰からの天然ポゾランが含まれる。人工ポゾラン材料の例には、フライアッシュ、スラグ、ガラス化カルシウムアルミノケイ酸塩(VCAS)、およびシリカフュームが含まれる。 In order to promote the adsorption and release of CO 2 and therefore the uniform diffusion of carbon in the concrete mixture, non-recycled aggregate materials are used to adsorb CO 2 and generate during cement mixing and curing. Contains an aggregate material that is capable of releasing adsorbed CO 2 into the concrete mixture due to the heat generated by exothermic reactions. In some embodiments, the non-recycled aggregate material includes pozzolanic material, which is an aggregate material that can adsorb and release CO2 . For example, pozzolanic materials release adsorbed CO2 at a temperature of 30°C, so if the CO2 adsorbing aggregate material comprises a CO2 adsorbing pozzolanic material, the CO2 adsorbing aggregate material CO 2 is released at temperatures reached during mixing the CO 2 adsorbing aggregate material with cement and water at 140 (ie, temperatures between 30° C. and 60° C.) . The pozzolanic material of the non-recycled aggregate material may be a natural pozzolanic material, an engineered pozzolanic material, or a combination thereof. Examples of natural pozzolanic materials include volcanic ash, pumice, pumice powder (such as pumice pumice), pumice, ignimbrite, expanded shale, zeolite, metakaolin, and from plant ashes containing silica, including rice husk ash and date palm wood ash. Contains natural pozzolan. Examples of engineered pozzolanic materials include fly ash, slag, vitrified calcium aluminosilicate (VCAS), and silica fume.

Claims (14)

コンクリート混合物内でCO2を拡散させる方法であって、前記方法が、
コンクリート調製システムの前処理チャンバ内で骨材材料をCO2ガスと混合して、CO2吸着骨材材料を形成する工程であって、前記骨材材料が、火山灰、軽石、軽石粉、イグニンブライト、膨張頁岩、ゼオライト、メタカオリン、植物灰、またはそれらの組み合わせから選択されるポゾラン材料を含み、前記ポゾラン材料が、6.0×10 -4 モル/秒以上のピークCO 2 吸着速度を有し、かつ前記ポゾラン材料が、30℃~60℃の温度で吸着されたCO 2 を放出する、工程と、
前記CO2吸着骨材材料を前記前処理チャンバから前記コンクリート調製システムのセメント混合チャンバに移送する工程と、
30℃~60℃の温度で前記CO2吸着骨材材料をセメントおよび水と混合して前記コンクリート混合物を形成する工程であって、前記ポゾラン材料を含むCO 2 吸着骨材材料のセメントおよび水との混合が、前記ポゾラン材料を含むCO 2 吸着骨材材料からCO 2 を放出し、かつCO 2 を前記コンクリート混合物に拡散して炭酸化コンクリート混合物を形成する、工程と、
を含方法。
A method for diffusing CO2 within a concrete mixture, the method comprising:
mixing an aggregate material with CO 2 gas in a pretreatment chamber of a concrete preparation system to form a CO 2 adsorbing aggregate material , the aggregate material comprising: volcanic ash, pumice, pumice powder, ignin; a pozzolanic material selected from brite, expanded shale, zeolite, metakaolin, vegetable ash, or combinations thereof, wherein the pozzolanic material has a peak CO 2 adsorption rate of 6.0×10 −4 mol/sec or more. , and the pozzolanic material releases the adsorbed CO 2 at a temperature of 30°C to 60°C;
transferring the CO2 adsorbing aggregate material from the pretreatment chamber to a cement mixing chamber of the concrete preparation system;
mixing the CO 2 adsorbing aggregate material with cement and water at a temperature between 30° C. and 60° C. to form the concrete mixture, the step of mixing the CO 2 adsorbing aggregate material comprising the pozzolanic material with cement and water; releasing CO 2 from the CO 2 adsorbing aggregate material comprising the pozzolanic material and diffusing CO 2 into the concrete mixture to form a carbonated concrete mixture;
method including .
前記ポゾラン材料が、0.4ミリモル/グラム以上のCO2吸着能力を含む、請求項に記載の方法。 2. The method of claim 1 , wherein the pozzolanic material comprises a CO2 adsorption capacity of 0.4 mmol/gram or more. 前記コンクリート調製システムが、CO2投入パイプによって前記前処理チャンバに結合されたCO2源をさらに備える、請求項1に記載の方法。 2. The method of claim 1, wherein the concrete preparation system further comprises a CO2 source coupled to the pretreatment chamber by a CO2 input pipe. 前記コンクリート調製システムが、前記CO2投入パイプに流体結合され、前記前処理チャンバに入るCO2ガスの流量を測定するように構成された上流流量計をさらに備える、請求項に記載の方法。 4. The method of claim 3 , wherein the concrete preparation system further comprises an upstream flow meter fluidly coupled to the CO2 input pipe and configured to measure the flow rate of CO2 gas entering the pretreatment chamber. 前記前処理チャンバ内で前記骨材材料を前記CO2ガスと混合する工程が、
記骨材材料を前記前処理チャンバに送ることと、
前記CO2ガスを前記CO2源から前記前処理チャンバに送ることと、を含む、請求項に記載の方法。
mixing the aggregate material with the CO2 gas in the pre-treatment chamber;
sending the aggregate material to the pretreatment chamber;
4. The method of claim 3 , comprising sending the CO2 gas from the CO2 source to the pretreatment chamber.
前記CO2ガスが、前記CO2源から前記前処理チャンバに、300ml/分~1400ml/分の流量で送られる、請求項に記載の方法。 4. The method of claim 3 , wherein the CO 2 gas is sent from the CO 2 source to the pretreatment chamber at a flow rate of 300 ml/min to 1400 ml/min. 前記前処理チャンバ内で前記骨材材料を前記CO2ガスと混合する工程が、前記前処理チャンバ内で前記骨材材料を攪拌することをさらに含む、請求項に記載の方法。 7. The method of claim 6 , wherein mixing the aggregate material with the CO2 gas in the pre-treatment chamber further comprises agitating the aggregate material in the pre-treatment chamber. 前記コンクリート調製システムが、セメント投入パイプによって前記セメント混合チャンバに結合されたセメント源と、水投入パイプによって前記セメント混合チャンバに結合された水源と、をさらに備え、
前記CO2吸着骨材材料を前記セメント混合チャンバ内で前記セメントおよび前記水と混合する工程が、
前記セメント源から前記セメント混合チャンバに前記セメントを送ることと、
前記水源から前記セメント混合チャンバに前記水を送ることと、を含む、請求項1に記載の方法。
The concrete preparation system further comprises: a cement source coupled to the cement mixing chamber by a cement input pipe; and a water source coupled to the cement mixing chamber by a water input pipe;
mixing the CO2 adsorbing aggregate material with the cement and the water in the cement mixing chamber;
delivering the cement from the cement source to the cement mixing chamber;
2. The method of claim 1, comprising directing the water from the water source to the cement mixing chamber.
前記CO2吸着骨材材料が、前記前処理チャンバから、チャンバ接続パイプを介して前記セメント混合チャンバに移送される、請求項1に記載の方法。 2. The method of claim 1, wherein the CO2 adsorbing aggregate material is transferred from the pretreatment chamber to the cement mixing chamber via a chamber connection pipe. 前記コンクリート調製システムが、前記チャンバ接続パイプに結合された下流流量計をさらに備え、
前記下流流量計が、前記セメント混合チャンバに入るCO2吸着骨材材料の流量を測定するように構成されている、請求項に記載の方法。
the concrete preparation system further comprising a downstream flow meter coupled to the chamber connecting pipe;
10. The method of claim 9 , wherein the downstream flow meter is configured to measure the flow rate of CO2 adsorbing aggregate material entering the cement mixing chamber.
コンクリート混合物内でCO2を拡散させる方法であって、前記方法が、
コンクリート調製システムの前処理チャンバ内で、骨材材料をCO2ガスと混合して、CO2吸着骨材材料を形成する工程であって、前記骨材材料が、火山灰、軽石、軽石粉、イグニンブライト、膨張頁岩、ゼオライト、メタカオリン、植物灰、またはそれらの組み合わせから選択されるポゾラン材料を含み、前記ポゾラン材料が、6.0×10 -4 モル/秒以上のピークCO 2 吸着速度を有し、かつ前記ポゾラン材料が、30℃~60℃の温度で吸着されたCO 2 を放出する、工程と、
前記CO2吸着骨材材料を前記前処理チャンバからチャンバ接続パイプを介して前記コンクリート調製システムのセメント混合チャンバに移送する工程と、
前記CO2吸着骨材材料をセメントおよび水と30℃~60℃の温度で混合して前記コンクリート混合物を形成する工程であって、前記CO 2 吸着骨材材料のセメントおよび水との混合が、前記CO 2 吸着骨材材料からCO 2 を放出し、かつCO 2 を前記コンクリート混合物に拡散して炭酸化コンクリート混合物が形成される、工程と、
を含方法。
A method for diffusing CO2 within a concrete mixture, the method comprising:
mixing an aggregate material with CO 2 gas to form a CO 2 adsorbing aggregate material in a pretreatment chamber of a concrete preparation system , the aggregate material comprising: volcanic ash, pumice, pumice powder, ignite powder; a pozzolanic material selected from embrite, expanded shale, zeolite, metakaolin, vegetable ash, or combinations thereof, wherein the pozzolanic material has a peak CO 2 adsorption rate of 6.0×10 −4 mol/sec or more. and the pozzolanic material releases the adsorbed CO 2 at a temperature of 30°C to 60°C;
transferring the CO2 adsorbing aggregate material from the pretreatment chamber to a cement mixing chamber of the concrete preparation system via a chamber connection pipe;
mixing the CO 2 adsorbing aggregate material with cement and water at a temperature of 30° C. to 60° C. to form the concrete mixture, the mixing of the CO 2 adsorbing aggregate material with the cement and water comprising: releasing CO 2 from the CO 2 adsorbing aggregate material and diffusing the CO 2 into the concrete mixture to form a carbonated concrete mixture;
method including .
前記ポゾラン材料が、0.4ミリモル/グラム以上のCO2吸着能力を含む、請求項11に記載の方法。 The pozzolanic material has a content of 0 . 12. The method of claim 11 , comprising a CO2 adsorption capacity of 4 mmol/gram or more. 前記コンクリート調製システムが、CO2投入パイプによって前記前処理チャンバに結合されたCO2源をさらに備え、前記前処理チャンバ内で前記骨材材料を前記CO2ガスと混合する工程が、
記骨材材料を前記前処理チャンバに送ることと、
前記CO2ガスを前記CO2源から前記前処理チャンバに送ることと、を含む、請求項11に記載の方法。
The concrete preparation system further comprises a CO2 source coupled to the pretreatment chamber by a CO2 input pipe, and mixing the aggregate material with the CO2 gas in the pretreatment chamber comprises :
sending the aggregate material to the pretreatment chamber;
12. The method of claim 11 , comprising sending the CO2 gas from the CO2 source to the pretreatment chamber.
前記コンクリート調製システムが、セメント投入パイプによって前記セメント混合チャンバに結合されたセメント源と、水投入パイプによって前記セメント混合チャンバに結合された水源と、をさらに備え、
前記CO2吸着骨材材料を前記セメント混合チャンバ内で前記セメントおよび前記水と混合する工程が、
前記セメント源から前記セメント混合チャンバに前記セメントを送ることと、
前記水源から前記セメント混合チャンバに前記水を送ることと、を含む、請求項11に記載の方法。
The concrete preparation system further comprises: a cement source coupled to the cement mixing chamber by a cement input pipe; and a water source coupled to the cement mixing chamber by a water input pipe;
mixing the CO2 adsorbing aggregate material with the cement and the water in the cement mixing chamber;
delivering the cement from the cement source to the cement mixing chamber;
12. The method of claim 11 , comprising directing the water from the water source to the cement mixing chamber.
JP2022531030A 2019-11-27 2019-11-27 A method for globally diffusing carbon dioxide within a concrete mix Pending JP2023503485A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GR2019/000083 WO2021105726A1 (en) 2019-11-27 2019-11-27 Methods of holistically diffusing carbon dioxide within a concrete mixture

Publications (2)

Publication Number Publication Date
JP2023503485A JP2023503485A (en) 2023-01-30
JPWO2021105726A5 true JPWO2021105726A5 (en) 2023-10-31

Family

ID=69063820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022531030A Pending JP2023503485A (en) 2019-11-27 2019-11-27 A method for globally diffusing carbon dioxide within a concrete mix

Country Status (5)

Country Link
US (1) US11352302B2 (en)
EP (1) EP4065535A1 (en)
JP (1) JP2023503485A (en)
CN (1) CN114901611A (en)
WO (1) WO2021105726A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202201756D0 (en) * 2022-02-10 2022-03-30 Concrete4Change Ltd Cementitious material
CN114538850B (en) * 2022-03-09 2022-11-29 南京工业大学 Solid waste base lightweight aggregate based on biochar internal carbonization and preparation method thereof
CN114734533B (en) * 2022-06-14 2022-09-06 福建南方路面机械股份有限公司 Concrete stirring device and method for reinforcing carbon fixation
CN116001072B (en) * 2022-11-17 2023-07-04 原初科技(北京)有限公司 Carbonization device for concrete curing and use method thereof
CN116749348B (en) * 2023-07-31 2024-01-30 湖北工业大学 Concrete mixing plant CO 2 System and method for sealing and utilizing
CN117205718B (en) * 2023-08-21 2024-05-14 青岛理工大学 Capturing and fixing CO2Composite material of (2), preparation method and CO2Absorption device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254910A (en) * 1992-03-07 1993-10-05 Taisei Corp Plaster material containing co2 adsorbed zeolite and its production and production of its secondary product
US5624493A (en) 1995-04-19 1997-04-29 The United States Of America As Represented By The Department Of Energy Quick-setting concrete and a method for making quick-setting concrete
JP4485774B2 (en) * 2003-09-26 2010-06-23 田川産業株式会社 Manufacturing method of molded body and manufacturing apparatus using the method
JP5997987B2 (en) * 2012-09-10 2016-09-28 鹿島建設株式会社 Concrete production method
US8845940B2 (en) 2012-10-25 2014-09-30 Carboncure Technologies Inc. Carbon dioxide treatment of concrete upstream from product mold
AU2014212083A1 (en) * 2013-02-04 2015-08-06 Coldcrete, Inc. System and method of applying carbon dioxide during the production of concrete
BR112015023238B1 (en) 2013-03-14 2022-03-03 Solidia Technologies, Inc Curing system to cure a material that requires co2 as a curing reagent
US9376345B2 (en) 2013-06-25 2016-06-28 Carboncure Technologies Inc. Methods for delivery of carbon dioxide to a flowable concrete mix
CA2924420C (en) * 2015-03-24 2021-08-17 The Board Of Trustees Of The University Of Alabama Addition of carbon dioxide to concrete mixtures
US10688686B2 (en) * 2017-12-01 2020-06-23 Saudi Arabian Oil Company Simultaneous cement enhancement and carbon dioxide utilization by mounting a carbon dioxide capture system onboard a concrete mixer vehicle

Similar Documents

Publication Publication Date Title
JP6494618B2 (en) Geopolymer foam preparation for non-flammable, sound-absorbing and heat-insulating geopolymer foam components
Senff et al. Eco-friendly approach to enhance the mechanical performance of geopolymer foams: Using glass fibre waste coming from wind blade production
CN101054284B (en) Desulfurated gypsum self-leveling material and preparation method thereof
US11352302B2 (en) Methods of holistically diffusing carbon dioxide within a concrete mixture
JPWO2021105726A5 (en)
CN102557723A (en) Nitrogen-doped titanium dioxide foam concrete and preparation method thereof
NZ608735A (en) Cement composition, method for producing mixed material and method for producing cement composition
TW201242656A (en) Compositions and methods to sequester flue gas mercury in concrete
CN114602115B (en) Curing agent for heavy metals in household garbage incineration fly ash and fixing method applying curing agent
Huseien et al. Potential use coconut milk as alternative to alkali solution for geopolymer production
CN115043637B (en) Cement containing biomass combustion waste material and preparation method thereof
JP2012503546A (en) Adsorbent compositions and processes for reducing mercury emissions from combustion gas streams
Posi et al. Effect of fly ash fineness on compressive, flexural and shear strengths of high strength-high volume fly ash jointing mortar
Mark et al. Alternative binders for increased sustainable construction in Ghana—A guide for building professionals
Kaya et al. Physical and mechanical properties of C class fly ash based lightweight geopolymer mortar produced with expanded vermiculite aggregate
Guo et al. Utilization of thermally treated flue gas desulfurization (FGD) gypsum and class-C Fly Ash (CFA) to prepare CFA-based geopolymer
Wang et al. A novel amine functionalized porous geopolymer spheres from municipal solid waste incineration fly ash for CO2 capture
EA002535B1 (en) Composite modifier for concrete and method for producing the same
Kabirova et al. Influence of rice husk ash substitution on some physical, mechanical and durability properties of the metakaolin-based geopolymer mortar
JP3409285B2 (en) Manufacturing method of flue gas treatment agent
CA2694342A1 (en) Plant for producing a multi-component sulphate-containing binder having high mechanical performances, from gypsum and/or derivatives thereof, process for manufacturing such a binder and resulting binder
Kampli et al. Investigation of effect of mixing procedure and alkaline solution to binder ratio on the strength of geopolymer concrete
Hao et al. Preparation of Titanium Gypsum Based Cementitious Materials and the Effect of Iron Ions on the System.
JP2007106671A (en) Building material composition
JP2002173350A (en) Aggregate production process utilizing incineration ash and production equipment for the same process