JPWO2021095782A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021095782A5
JPWO2021095782A5 JP2021556132A JP2021556132A JPWO2021095782A5 JP WO2021095782 A5 JPWO2021095782 A5 JP WO2021095782A5 JP 2021556132 A JP2021556132 A JP 2021556132A JP 2021556132 A JP2021556132 A JP 2021556132A JP WO2021095782 A5 JPWO2021095782 A5 JP WO2021095782A5
Authority
JP
Japan
Prior art keywords
catalyst
carbon
producing
transition metal
alkane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021556132A
Other languages
Japanese (ja)
Other versions
JPWO2021095782A1 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/JP2020/042127 external-priority patent/WO2021095782A1/en
Publication of JPWO2021095782A1 publication Critical patent/JPWO2021095782A1/ja
Publication of JPWO2021095782A5 publication Critical patent/JPWO2021095782A5/ja
Pending legal-status Critical Current

Links

Description

炭素含有ガスに含まれる炭素源(好ましくは炭化水素)の濃度(炭素含有ガスに対する炭素源の体積比率)は、1容量%以上、30容量%以下であることが好ましく、なかでも、5容量%以上であることが特に好ましく、一方、20容量%以下であることが特に好ましい。炭素源の濃度が1容量%以上であることにより、十分な量の炭素をより良好に担持することができ、不飽和炭化水素の選択率をより高めることができる。また、炭素源の濃度が30容量%以下であることにより、過剰な炭素の担持をより容易に制御でき、アルカン転化率および不飽和炭化水素の選択率の低下をより十分に抑制することができる。 The concentration of the carbon source (preferably hydrocarbon) contained in the carbon-containing gas (volume ratio of the carbon source to the carbon-containing gas) is preferably 1% by volume or more and 30% by volume or less, particularly 5% by volume . The above is particularly preferable, while 20% by volume or less is particularly preferable. When the concentration of the carbon source is 1% by volume or more, a sufficient amount of carbon can be supported better, and the selectivity of unsaturated hydrocarbons can be further increased. Further, when the concentration of the carbon source is 30% by volume or less, the carrier of excess carbon can be more easily controlled, and the decrease in the alkane conversion rate and the selectivity of unsaturated hydrocarbon can be more sufficiently suppressed. ..

Claims (28)

遷移金属と炭素が担体に担持され、前記炭素が繊維状炭素を含んでいることを特徴とする触媒。 A catalyst in which a transition metal and carbon are supported on a carrier, and the carbon contains fibrous carbon. 担体に担持された炭素が繊維状炭素を含んでいない場合の前記担体に担持された遷移金属の結晶子径に対する、前記繊維状炭素を含んでいる場合の前記遷移金属の結晶子径の比が、0.80以下である請求項1に記載の触媒。 The ratio of the crystallite diameter of the transition metal when the carbon carried on the carrier to the crystallite diameter of the transition metal supported on the carrier is the ratio of the crystallite diameter of the transition metal when the carbon supported on the carrier does not contain fibrous carbon. , 0.80 or less, according to claim 1. 前記遷移金属に対する前記炭素の量が510質量%以上2500質量%以下である、請求項1又は2記載の触媒。 The catalyst according to claim 1 or 2, wherein the amount of carbon with respect to the transition metal is 510% by mass or more and 2500% by mass or less. 前記触媒がアルカン脱水素用触媒である、請求項1から3のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein the catalyst is an alkane dehydrogenation catalyst. 前記遷移金属がNiである、請求項1から4のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the transition metal is Ni. 前記担体が、シリカ、アルミナ、ジルコニア、及びチタニアからなる群から選ばれる少なくとも1種である、請求項1から5のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 5, wherein the carrier is at least one selected from the group consisting of silica, alumina, zirconia, and titania. 前記担体が、γ-アルミナである、請求項1から5のいずれか一項に記載の触媒。 The catalyst according to any one of claims 1 to 5, wherein the carrier is γ-alumina. 遷移金属化合物を含む溶液と担体を混合し、加熱して溶媒を除去して、触媒前駆体を得る工程と、
前記触媒前駆体に、炭素含有ガスを接触させ、遷移金属と炭素が担持された触媒を形成する工程と、
を含む、触媒の製造方法であって、
前記触媒を形成する工程において、前記触媒前駆体に、炭素含有ガスを接触させることで、繊維状炭素を形成し、担持する、触媒の製造方法。
A step of mixing a solution containing a transition metal compound and a carrier and heating to remove the solvent to obtain a catalyst precursor.
A step of contacting the catalyst precursor with a carbon-containing gas to form a catalyst carrying a transition metal and carbon.
A method for manufacturing a catalyst, including
A method for producing a catalyst, which forms and supports fibrous carbon by contacting a carbon-containing gas with the catalyst precursor in the step of forming the catalyst.
前記触媒前駆体を得る工程は、遷移金属化合物を溶解した溶液と担体を混合し、加熱して溶媒を蒸発して固体を得る工程と、該固体を粉砕して、粉末状の触媒前駆体を得る工程を含む、請求項8に記載の触媒の製造方法。 The step of obtaining the catalyst precursor is a step of mixing a solution in which a transition metal compound is dissolved and a carrier and heating to evaporate the solvent to obtain a solid, and a step of crushing the solid to obtain a powdery catalyst precursor. The method for producing a catalyst according to claim 8, which comprises a step of obtaining the catalyst. 前記炭素含有ガスが炭化水素を含む、請求項8又は9に記載の触媒の製造方法。 The method for producing a catalyst according to claim 8 or 9, wherein the carbon-containing gas contains a hydrocarbon. 前記炭化水素が、炭素数2~5のアルカンである、請求項10に記載の触媒の製造方法。 The method for producing a catalyst according to claim 10, wherein the hydrocarbon is an alkane having 2 to 5 carbon atoms. 前記炭化水素がイソブタンである、請求項10に記載の触媒の製造方法。 The method for producing a catalyst according to claim 10, wherein the hydrocarbon is isobutane. 前記炭素含有ガスに対する前記炭化水素の体積比率が1容量%以上30容量%以下である、請求項10から12のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 10 to 12, wherein the volume ratio of the hydrocarbon to the carbon-containing gas is 1% by volume or more and 30% by volume or less. 前記触媒前駆体に前記炭素含有ガスを接触させる際の温度が300℃以上1000℃以下である、請求項8から13のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 13, wherein the temperature at which the carbon-containing gas is brought into contact with the catalyst precursor is 300 ° C. or higher and 1000 ° C. or lower. 前記触媒前駆体に前記炭素含有ガスを接触させる際の炭素含有ガスの供給速度に対する触媒前駆体量の比(W/F)が0.03g・min/ml以上0.5g・min/ml以下である、請求項8から14のいずれか一項に記載の触媒の製造方法。 When the ratio (W / F) of the amount of the catalyst precursor to the supply rate of the carbon-containing gas when the carbon-containing gas is brought into contact with the catalyst precursor is 0.03 g · min / ml or more and 0.5 g · min / ml or less. The method for producing a catalyst according to any one of claims 8 to 14. 前記遷移金属がNiである、請求項8から15のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 15, wherein the transition metal is Ni. 前記担体が、シリカ、アルミナ、ジルコニア、及びチタニアからなる群から選ばれる少なくとも1種である、請求項8から16のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 16, wherein the carrier is at least one selected from the group consisting of silica, alumina, zirconia, and titania. 前記担体が、γ-アルミナである、請求項8から16のいずれか一項に記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 8 to 16, wherein the carrier is γ-alumina. 前記炭素含有ガスを接触させない場合の前記触媒前駆体上の遷移金属の結晶子径に対する、前記触媒に担持された遷移金属の結晶子径の比が0.80以下である、請求項8から18のいずれか一項に記載の触媒の製造方法。 Claims 8 to 18 wherein the ratio of the crystallite diameter of the transition metal carried on the catalyst to the crystallite diameter of the transition metal on the catalyst precursor when the carbon-containing gas is not brought into contact is 0.80 or less. The method for producing a catalyst according to any one of the above. 請求項1からのいずれか一項に記載の触媒、アルカン及び二酸化炭素を含む混合ガス接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法。 A method for producing an unsaturated hydrocarbon, wherein the catalyst according to any one of claims 1 to 7 is brought into contact with a mixed gas containing an alkane and carbon dioxide to produce an unsaturated hydrocarbon from the alkane. 前記混合ガスにおいて、前記アルカンに対する前記二酸化炭素のモル比が0.1以上1.9以下である、請求項20に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 20, wherein the molar ratio of carbon dioxide to the alkane in the mixed gas is 0.1 or more and 1.9 or less. 前記アルカンが炭素数2~5のアルカンである、請求項20又は21に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 20 or 21, wherein the alkane is an alkane having 2 to 5 carbon atoms. 前記アルカンがイソブタンである、請求項20又は21に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 20 or 21, wherein the alkane is isobutane. 前記触媒に前記混合ガスを接触させる際の温度が300℃以上1000℃以下である、請求項20から23のいずれか一項に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to any one of claims 20 to 23, wherein the temperature at which the mixed gas is brought into contact with the catalyst is 300 ° C. or higher and 1000 ° C. or lower. 前記触媒に前記混合ガスを接触させる際の混合ガスの供給速度に対する触媒量の比(W/F)が0.001g・min/ml以上1000g・min/ml以下である、請求項20から24のいずれか一項に記載の不飽和炭化水素の製造方法。 20 to 24, wherein the ratio (W / F) of the amount of the catalyst to the supply rate of the mixed gas when the mixed gas is brought into contact with the catalyst is 0.001 g · min / ml or more and 1000 g · min / ml or less. The method for producing an unsaturated hydrocarbon according to any one of the above. 請求項8から19のいずれか一項に記載の製造方法によって触媒を製造し、引き続き、得られた触媒に、アルカン及び二酸化炭素を含む混合ガスを接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法。 A catalyst is produced by the production method according to any one of claims 8 to 19, and subsequently, the obtained catalyst is brought into contact with a mixed gas containing alkane and carbon dioxide to obtain unsaturated hydrocarbons from the alkane. A method for producing unsaturated hydrocarbons. 遷移金属化合物が担体に担持された触媒前駆体に、炭素含有ガスを接触させて、前記触媒前駆体に繊維状炭素を含む炭素を担持させ、遷移金属と繊維状炭素を含む炭素が担持された触媒を形成する工程と、
得られた触媒に、アルカン及び二酸化炭素を含む混合ガスを接触させて、前記アルカンから不飽和炭化水素を製造する、不飽和炭化水素の製造方法。
A carbon-containing gas was brought into contact with the catalyst precursor on which the transition metal compound was supported on the carrier, carbon containing fibrous carbon was supported on the catalyst precursor, and the transition metal and carbon containing fibrous carbon were supported. The process of forming the catalyst and
A method for producing an unsaturated hydrocarbon, wherein an unsaturated hydrocarbon is produced from the alkane by contacting the obtained catalyst with a mixed gas containing an alkane and carbon dioxide.
前記混合ガスにおいて、前記アルカンに対する前記二酸化炭素のモル比が0.1以上1.9以下である、請求項26又は27に記載の不飽和炭化水素の製造方法。 The method for producing an unsaturated hydrocarbon according to claim 26 or 27, wherein the molar ratio of carbon dioxide to the alkane in the mixed gas is 0.1 or more and 1.9 or less.
JP2021556132A 2019-11-14 2020-11-11 Pending JPWO2021095782A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019206232 2019-11-14
JP2020159945 2020-09-24
PCT/JP2020/042127 WO2021095782A1 (en) 2019-11-14 2020-11-11 Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JPWO2021095782A1 JPWO2021095782A1 (en) 2021-05-20
JPWO2021095782A5 true JPWO2021095782A5 (en) 2022-07-14

Family

ID=75912674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021556132A Pending JPWO2021095782A1 (en) 2019-11-14 2020-11-11

Country Status (4)

Country Link
JP (1) JPWO2021095782A1 (en)
KR (1) KR20220078697A (en)
CN (1) CN114728272A (en)
WO (1) WO2021095782A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876129A (en) * 1981-10-28 1983-05-09 ザ・スタンダ−ド・オイル・カンパニ− Removal of nitrogen oxide from gas stream
JPH0975732A (en) 1995-09-08 1997-03-25 Chiyoda Corp Dehydrogenation catalyst
JP2006342137A (en) * 2005-06-10 2006-12-21 Kansai Electric Power Co Inc:The Method for producing alkene
JP5135840B2 (en) * 2006-04-14 2013-02-06 三菱化学株式会社 Propylene production method
GB2485686A (en) * 2009-06-05 2012-05-23 Johnson Matthey Plc Catalyst and process
RU2414296C1 (en) * 2009-10-29 2011-03-20 Инфра Текнолоджиз Лтд. Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
GB201020501D0 (en) * 2010-12-03 2011-01-19 Johnson Matthey Plc Dehydrogenation process
JP2013163647A (en) 2012-02-09 2013-08-22 Mitsui Chemicals Inc Method for producing unsaturated hydrocarbon and dehydrogenation catalyst used for the method
JP6037849B2 (en) 2013-01-25 2016-12-07 国立大学法人徳島大学 Method for producing oxidative dehydrogenation catalyst and method for producing alkene
TW201703856A (en) 2015-06-29 2017-02-01 Smh股份有限公司 Catalyst and hydrocarbon conversion process utilizing the catalyst
US10343148B2 (en) * 2016-12-01 2019-07-09 Southern Research Institute Mixed metal oxide catalysts and methods for olefin production in an oxidative dehydrogenation reaction process
JP2019025378A (en) * 2017-07-25 2019-02-21 住友金属鉱山株式会社 Composite material and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5377851B2 (en) Nanocarbon structure-containing catalyst for unsaturated hydrocarbon production
US8148590B2 (en) Process for producing aromatic hydrocarbon and hydrogen
TW201119737A (en) Catalysts for oxidative coupling of hydrocarbons
TW201119979A (en) Process for the oxidative coupling of methane
CN105214657B (en) A kind of catalyst for manufacturing olefin by low-carbon alkane dehydrogenation and preparation method thereof
KR101676498B1 (en) Method for the dehydroaromatisation of mixtures containing methane by regenerating the corresponding catalysts that are devoid of precious metal
CN101767040A (en) Capsule type catalyst for preparing low-carbon olefin by catalyzing synthesis gas and preparation method thereof
TW200920739A (en) Ethylene oxide production using fixed moderator concentration
JPWO2007083684A1 (en) Catalyst and method for producing olefin using the same
JP2022547817A (en) Supported tantalum catalyst for the production of 1,3-butadiene
JPWO2021095782A5 (en)
CN112808295A (en) Preparation method and application of single-site Co (II) catalyst
CN109433257B (en) Catalyst for preparing ethylene by carbon dioxide oxidation ethane dehydrogenation and preparation method thereof
JP6736073B2 (en) Ammonia synthesis catalyst
JP2017127857A (en) Catalyst for producing aromatic compound and method for producing aromatic compound
RU2586069C1 (en) Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
CA3095560A1 (en) Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same
JP2018104217A (en) Metal-containing mfi-type zeolite and aromatic compound producing catalyst formed therefrom
JP2005255605A (en) Method of catalytically converting lower hydrocarbon
JP2017119267A (en) Catalyst for manufacturing aromatic compound and method for manufacturing aromatic compound
JP2017178885A (en) Process for producing hydrocarbon
JP2007075796A (en) Lower hydrocarbon reforming catalyst
KR101745966B1 (en) Catalyst for preparing olefin and carbon monoxide from paraffin and carbon dioxide by chemical looping combustion
JP6037849B2 (en) Method for producing oxidative dehydrogenation catalyst and method for producing alkene
CN113304761B (en) PtCu 3 Intermetallic compound, preparation method thereof and application of intermetallic compound as dehydrogenation catalyst