JPS5876129A - Removal of nitrogen oxide from gas stream - Google Patents

Removal of nitrogen oxide from gas stream

Info

Publication number
JPS5876129A
JPS5876129A JP56173659A JP17365981A JPS5876129A JP S5876129 A JPS5876129 A JP S5876129A JP 56173659 A JP56173659 A JP 56173659A JP 17365981 A JP17365981 A JP 17365981A JP S5876129 A JPS5876129 A JP S5876129A
Authority
JP
Japan
Prior art keywords
carbon
nitrogen
nitrogen oxides
reactant
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56173659A
Other languages
Japanese (ja)
Inventor
ウイルフリツド・ガ−サイド・シヨ−
クリストス・パ−パリゾス
ルイス・ジヨセフ・ヴエレニ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Oil Co
Original Assignee
Standard Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co filed Critical Standard Oil Co
Priority to JP56173659A priority Critical patent/JPS5876129A/en
Publication of JPS5876129A publication Critical patent/JPS5876129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は一酸化窒素、二酸化窒素、亜酸化窒素のような
通常の窒素酸化物を窒素ガスへ転化する方法に関する・
これらの窒素酸化物は煙道ガス、内燃機関からの排気、
硝酸の分解のような種々の発生源から生じる・窒素酸化
物転化のための現在の方法は、アン等ニア、貴金属、高
温の使用を必要とするが、本発明の方法は炭素繊維また
はホスト間炭素粒子反応物と約550Cを越える必要の
ない温度を使用する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting common nitrogen oxides such as nitrogen monoxide, nitrogen dioxide and nitrous oxide into nitrogen gas.
These nitrogen oxides are found in flue gases, exhaust from internal combustion engines,
Current methods for the conversion of nitrogen oxides from a variety of sources, such as the decomposition of nitric acid, require the use of anisotropic, noble metals, and high temperatures; however, the method of the present invention Use carbon particle reactants and temperatures that need not exceed about 550C.

高度に化学反応性の炭素のM造が米国特許第1.352
.+62号に記載されている。この方法は鉄、マンガン
、ニラトル、またはコバルトなどのような微粉砕金属触
媒上で空気の実際上不在下に、常圧で700’C以下の
温度で1酸化炭素の二酸化炭素への転化法を提供してい
る。 ・ 転化中、炭素が触媒上に析出し、これを機械的または磁
気的手段により別に集めることができる。
U.S. Patent No. 1.352 describes highly chemically reactive carbon M structure.
.. It is described in No. +62. This process involves the conversion of carbon monoxide to carbon dioxide over a finely divided metal catalyst such as iron, manganese, niratol, or cobalt in the virtual absence of air at normal pressure and temperatures below 700'C. providing. - During the conversion, carbon is deposited on the catalyst and can be collected separately by mechanical or magnetic means.

こうして形成した炭素は、無灰、高純度、反応性で、か
つ窒素固定法に適するといわれている。
The carbon thus formed is said to be ashless, highly pure, reactive, and suitable for nitrogen fixation methods.

米国特許第7.838.577号は、コークス炉ガスを
吸着媒体を含む濾過器を通すことによシ、有害な反応性
炭化水素と共に窒素酸°化物のごとく痕跡を除去する方
法に関する。該吸着媒体は活性炭であって、その触媒作
用は金属または金属塩の含浸により増加するといわれる
。この特許権者はシリカゲルのような他の物質を活性炭
の代りに使用できること4明らかにしている。
U.S. Pat. No. 7,838,577 relates to a method for removing harmful reactive hydrocarbons as well as traces of nitrogen oxides by passing coke oven gas through a filter containing an adsorption medium. The adsorption medium is activated carbon, the catalytic activity of which is said to be increased by impregnation with metals or metal salts. The patentee discloses that other materials such as silica gel can be used in place of activated carbon.

最近、米国特許第4,060,589号は煙道ガスを4
1!2〜Sフ7°Cの間の温度でピチューメンコークス
上に通すことによシ、煙道ガスからNOXおよびBox
成分を同時に還元する方法を明らかにしている。煙道ガ
ス中の水蒸気はコークスと反応して一酸化炭素と水素を
生成し、−酸化炭素はNOxと反応し水素ij 802
と反応するといわれる。この特許権者は、転化は触媒的
方法で行なわnているとは考えられないが、コークスは
鉄のような特別の金属を含んでおシ、これが還元を促進
すると述べている―この方法は、存在するSOxと若干
のNOxにつき操作可能に見え、上記両者は実施例で使
った合成煙道ガス中に痕跡量で存在していた。
Recently, U.S. Patent No. 4,060,589
1. NOx and Box are removed from the flue gas by passing it over picumen coke at a temperature between 2 and 7 °C.
A method to simultaneously reduce the components has been clarified. Water vapor in the flue gas reacts with coke to produce carbon monoxide and hydrogen, -carbon oxide reacts with NOx to produce hydrogen ij 802
It is said to react with The patentee states that the conversion is not believed to be carried out in a catalytic manner, but that the coke contains special metals, such as iron, which facilitate the reduction - this process , appears to be operational with SOx and some NOx present, both of which were present in trace amounts in the synthetic flue gas used in the examples.

本発明の方法は炭素鵞使用するが、炭素は吸着剤として
働らくのではなくて、存在する窒素酸化物と化学的に反
応して窒素ガスを生成する。有用なためには、このよう
な方法は痕跡ではなくて多量の窒素酸化物を著しく高く
ない温度で転イビできるものである必要がある。
Although the method of the present invention uses carbon, the carbon does not act as an adsorbent, but rather reacts chemically with the nitrogen oxides present to produce nitrogen gas. To be useful, such a process must be capable of transferring large amounts, but not traces, of nitrogen oxides at temperatures that are not significantly elevated.

そこで、本発明の目的はNo 、 NO2、NzO& 
Therefore, the purpose of the present invention is to solve the problem of No., NO2, NzO &
.

N20のような種々の窒素酸化物の多量を、これと化学
反応性の炭素物質により転化する方法を提供することに
ある・ 本発明の別の目的は、約800°Cまでの温度で実施で
きる上記窒素酸化物の転化法を提供するにある。
It is an object of the present invention to provide a process for converting large quantities of various nitrogen oxides, such as N20, with carbon substances that are chemically reactive therewith. Another object of the invention is to provide a method for converting large quantities of various nitrogen oxides, such as N20, which can be carried out at temperatures up to about 800°C. Another object of the present invention is to provide a method for converting the nitrogen oxides.

本発明の別の目的灯一時の使用では消費でき、または長
時間の使用では反応系で再生できる炭素物質を使うこと
による上記窒素酸化物の転化法を提供するにある。
Another object of the present invention is to provide a method for converting the nitrogen oxides by using a carbon material that can be consumed during temporary use or regenerated in the reaction system during long-term use.

本発明のなお別の目的は、アンそニアヲー緒ニ供給する
ことを必要とせず、また種々のガス分子で容易に使用で
きる比較的安価な化合物による上記窒素酸化物の転化法
を提供することにあゐ・これらのおよび他の目的社、従
来の当該技術よりまさるその利点と共に、以下の記載か
ら明らかとなろう・ 一般に、本発明の方法はIWllまたはそれ以上の窒素
酸化物を反応物の縦索繊維物質またはホスト間炭素粒子
上に約450〜約750°Cで通す工程を含む・反応中
の圧力は、常圧から20〜30気圧程度までの範囲であ
ることができる。窒素酸化物と共に炭素含有ガスを一緒
に供給することにより本発明の方法を実施することもで
き、この場合は反応物物質を連続的に同時、に再生でき
る。炭素含有ガスが炭化水素でないとIFi、水素ガス
を゛供給することもできる・ 本発明の実施に利用する成分または反応物は、炭素、お
よび鉄、ニッケル、またはコバルトのような金属からな
る炭素繊維構造である。炭51cを触媒またはホスト物
質上に析出させることによシ、炭素繊維反応物を形成す
る・一方、ホスト物質上よりもむしろホスト物質の内側
で成長させたホスト間炭素粒子を使用する。
Yet another object of the present invention is to provide a process for the conversion of the above-mentioned nitrogen oxides by a relatively inexpensive compound that does not require a separate supply of anthonia and can be easily used with a variety of gas molecules. These and other objects, together with their advantages over the prior art, will become apparent from the following description. In general, the process of the present invention involves adding IWll or more of nitrogen oxide to the reactants in the vertical direction. Pressure during the reaction can range from normal pressure to about 20 to 30 atmospheres, including passing over the cord fiber material or host-to-host carbon particles at about 450 to about 750°C. It is also possible to carry out the process of the invention by cofeeding a carbon-containing gas with the nitrogen oxides, in which case the reactant materials can be regenerated continuously and simultaneously. If the carbon-containing gas is not a hydrocarbon, hydrogen gas can also be supplied. The components or reactants utilized in the practice of this invention include carbon fibers made of carbon and metals such as iron, nickel, or cobalt. It is a structure. Carbon fiber reactants are formed by depositing charcoal 51c onto a catalyst or host material, while using interhost carbon particles grown inside the host material rather than on the host material.

説明のために、反応物物質が炭素繊維またはホスト間炭
素粒子であっても、以後炭素繊維反応物または反応物と
呼ぶ・また、ホストにょ9担持さnている反応物につい
ては、ホスト上またはホスト内を意味している。
For illustrative purposes, even if the reactant material is carbon fiber or host-to-host carbon particles, it will be referred to hereafter as carbon fiber reactant or reactant; It means inside the host.

ホスト物質は、担体物質上に優先的に担持てきる鉄、ニ
ッケル、またはコバルトのような金属からなる。適当な
担体物質はシリカ、アルきす、チメニ了、炭化ケイ素、
カーボランダム、ジルコニア、アランダム、およびその
混合物などを含む。
The host material consists of metals such as iron, nickel, or cobalt that can be preferentially loaded onto the support material. Suitable carrier materials include silica, alkyl, aluminum, silicon carbide,
Includes carborundum, zirconia, alundum, and mixtures thereof.

ホスト物質の1製造法においては、水中の金属塩たとえ
ば硝酸塩の溶液を使って、すでに用意した担体を含浸す
る・一方、金属試薬とコロイド状担体を一諸に噴霧乾燥
できる・オたは、鉱石、鋼線、金属棒などのような非担
持形を使用できる。
In one method for preparing the host material, a solution of a metal salt, such as a nitrate, in water is used to impregnate an already prepared support; on the other hand, the metal reagent and the colloidal support can be spray-dried together; Unsupported forms such as , steel wire, metal rods, etc. can be used.

担体の含浸を使う場合は、ついでこれt約350〜70
0’tで1〜6時間か焼して金属の酸化物を得る・つい
でこの触媒を水嵩またはヒドラジンのような代表的還元
剤の添加により還元す2・こうして形成した触媒tたは
ホスト物質の組成は、重量係で金属約3〜95憾と担体
約97〜59Gからなり、夫々金属10〜401−担体
9o〜601の組成が好ましい。
If carrier impregnation is used, then this t is approximately 350 to 70
Calcination for 1 to 6 hours at 0't gives the metal oxide.The catalyst is then reduced by adding water or a typical reducing agent such as hydrazine2.The catalyst thus formed or the host material is The composition consists of about 3 to 95 g of the metal and about 97 to 59 g of the carrier, preferably a composition of 10 to 401 of the metal and 9 to 601 of the carrier, respectively.

たとえば、水素にょシホスト物質の還元後、その上に炭
素繊維を析出させる・好ましくは、若干の水素と共に一
酸化炭素紮、または炭化水素のみをホスト上に約450
〜650’Cで約0.5〜ε時間通丁ことにより、上記
析出は容易にできる。
For example, after reducing the host material with hydrogen, carbon fibers are deposited thereon. Preferably, carbon monoxide along with some hydrogen, or only hydrocarbons, are applied to the host at about 450%
The above precipitation can be easily carried out by heating at ~650'C for about 0.5~ε hours.

容積基準での2.ガス、水素対−酸化炭素の比は約0対
!〜約1対2であり、1対5が好ましいe水素および一
酸化炭素の、または簀化水素の流れを反覆し、また別の
水素流をところどころに入nで析出縦索の若干を除去し
、それによって活性化を助けることができる・水素はか
ならずしも必要ではないが、−酸化炭素の場合のように
、その存在は反応を促進する・ 水素および一酸化炭素の上記送りの゛結果、炭素がホス
ト物質上にまたはホスト物質内に析出する・この繊維の
組成は一部分炭素と一部分ホストからの金属であり、I
!艙の炭素含量は約5〜約96重量嘔であって、70〜
95重量嘔が好ましい、炭素は本発明の方法において窒
素酸化物の窒素への転化に利用される反応物である・炭
素がIIJII形である場合は、転化反応に使う系に依
存して、繊維をホスト物質から分離でき、!友は形成さ
れたまま一諸に使用できる。反応物繊維は転化法中消費
されるから、反応物繊維は触媒として呼ばれていないO 窒素酸化物転化のため反応物炭素繊維を既知の反応器で
使用でき、このような反応aは固定床、流動床(特にホ
スト物質を噴霧乾燥により製造する場合)、半径流を含
むが、これらに限定されまい。転化法を窒素酸化物を直
接反応器中の約450〜約750’Cの反応物炭素繊維
上に送る工程を含む。
2. Based on volume. The ratio of gas, hydrogen to carbon oxide is approximately 0 to! ~about 1 to 2, preferably 1 to 5, by repeating the flow of hydrogen and carbon monoxide or of sulfurized hydrogen, and adding another flow of hydrogen here and there to remove some of the precipitated longitudinal cords. Hydrogen is not necessarily necessary, but its presence accelerates the reaction - as in the case of carbon oxide. As a result of the above transport of hydrogen and carbon monoxide, carbon Deposited on or within the host material - The composition of this fiber is partly carbon and partly metal from the host;
! The carbon content of the boat is about 5 to about 96 wt., and about 70 to about 96 wt.
Carbon is the reactant utilized for the conversion of nitrogen oxides to nitrogen in the process of the invention. If the carbon is in the IIJII form, depending on the system used for the conversion reaction, the fiber can be separated from the host substance! A friend can be used as it is formed. Because the reactant fibers are consumed during the conversion process, the reactant fibers are not referred to as catalysts.O Reactant carbon fibers can be used in known reactors for nitrogen oxide conversion; , fluidized beds (particularly when the host material is produced by spray drying), radial flow. The conversion process involves directing the nitrogen oxides directly onto the reactant carbon fibers at about 450 to about 750'C in a reactor.

炭素績維上の窒素酸化物の滞留時間は、反応器の型およ
びその寸法、床の型などのような因子に依存し変るが、
モル憾基準で炭素繊維は反応物1モル当り窒素酸化物約
1モルから2%ル以上までを転化できると考えられる・ 上記方法においては反応物は最終的には消費されて転化
は止るが、連続転化法がてっとりばやいときは、反応物
炭素繊維の連続的同時再生を行なうととも可能である。
The residence time of nitrogen oxides on carbon fibers varies depending on factors such as the reactor type and its dimensions, bed type, etc.
On a molar basis, carbon fibers are thought to be capable of converting from about 1 mole to more than 2% of nitrogen oxide per mole of reactant.In the above method, the reactant is eventually consumed and the conversion stops; When a continuous conversion process is rapid, it is also possible to carry out continuous and simultaneous regeneration of the reactant carbon fibers.

そうするためには、水素対−酸化炭素比約0対1〜1対
2で、炭素対窒素酸化物比1対1以上で、−酸化縦索の
よらな炭素含有ガスと好ましくは若干の水素の流を窒素
酸化物と共に供給するニー酸化1炭素の代りに、メタン
、エタン、または灯油またはナフサのような他の炭化水
素を使用でき、この場合水素を一層少なくまたは全く必
畳としない。
To do so, hydrogen to carbon oxide ratios of about 0:1 to 1:2, carbon to nitrogen oxide ratios of 1 to 1 or more, - more carbon-containing gas in the oxidized longitudinal and preferably some hydrogen. Instead of carbon dioxide, which is supplied with a stream of nitrogen oxides, methane, ethane, or other hydrocarbons such as kerosene or naphtha can be used, in which case less or no hydrogen is required.

・別の変形として、廃ホストを反応器から除去し、別に
再生でき、または窒素酸化物流を停止してその間再生を
行なう・ 以下の実施例では、所定容量の窒素酸化物を窒素ガスに
転化した・この方法で利用した反応物炭素繊維は、Fe
 20憾と5i0280憾からなる触媒またはホスト物
質3・79ft−長さg+、28 tM、外径281、
内径25■の石英管に入nることによりつくった・この
管は長さ63・51M、内径3.1753譚の強力スプ
リット管炉に入れ、各端をガス入口および出口用に栓を
した。
Another variation is that the waste host can be removed from the reactor and regenerated separately, or the nitrogen oxide stream can be stopped while regeneration takes place. In the examples below, a given volume of nitrogen oxide is converted to nitrogen gas.・The reactant carbon fiber used in this method is Fe
Catalyst or host material consisting of 20 and 5i0280 3.79 ft - length g+, 28 tM, outer diameter 281,
This tube was made by placing it in a quartz tube with an internal diameter of 25 cm. This tube was placed in a high-power split tube furnace with a length of 63.51 m and an internal diameter of 3.175 mm, and each end was plugged for gas inlet and outlet.

石英管およびその内容物’k 720’Cに加熱した。The quartz tube and its contents were heated to 720°C.

ついで、水素を管に1時間49α/分の速度で通し、金
属を還元した0この点で、触媒またはホスト物質は灰色
に変った0その後水嵩流量を減らし、温度を550’C
に下げ、この温度に保った0次に水g(32cr、/分
)と−酸化炭素(16gac/分)の混合物を左から右
に管に30分通し、ついでさらに30分逆に通して、ホ
ストの一層良好な被覆と炭素繊維の満足な析出を確実に
したOついで混合ガス流を止め、ついで水素のみ(10
9cc/分)を左から右に30分通して、析出炭素の若
干を除去することにより活性化した・この処理後、はじ
めに使った水素と一酸化炭素の流を左から右へ30分再
び通した。下記実施例で示すように、上記反応物炭素繊
維は窒素酸化物転化用に整えられた・ 実施例 反応物炭素繊維およびホスト物質を含む同じ石英管に、
転化させる窒素酸化物230C/分の流nを550°C
で通した・30分後、ガス試料を流出物から採取した。
Hydrogen was then passed through the tube at a rate of 49 α/min for 1 hour to reduce the metal. At this point the catalyst or host material turned gray. The water bulk flow rate was then reduced and the temperature was increased to 550'C.
A mixture of g water (32 cr,/min) and -carbon oxide (16 gac/min) was then passed through the tube from left to right for 30 minutes and then reversed for an additional 30 minutes. O, which ensured better coverage of the host and satisfactory deposition of carbon fibers, then the mixed gas flow was stopped and hydrogen only (10
9 cc/min) from left to right for 30 minutes to remove some of the precipitated carbon. After this treatment, the initially used flow of hydrogen and carbon monoxide was passed again from left to right for 30 minutes. did. As shown in the Examples below, the reactant carbon fibers were prepared for nitrogen oxide conversion in the same quartz tube containing the Example reactant carbon fibers and host material.
Nitrogen oxides to be converted 230C/min flow n to 550°C
After 30 minutes, a gas sample was taken from the effluent.

ガス クロマトグラフィーで分析し、窒素を著しく高い
モルチで含んでいるが窒素酸化物を含んでいないことが
わかった・tlA1表に、3実施例、実施例1−一酸化
窒素、実施例2−亜酸化窒素、実施例3−二酸化窒素の
流出ガスの分析を報告する。
Analyzed by gas chromatography, it was found to contain a significantly high molten nitrogen content but no nitrogen oxides.Table tlA1 shows 3 examples, Example 1 - Nitric oxide, Example 2 - Nitrogen oxide. Nitrogen Oxide, Example 3 - Analysis of nitrogen dioxide effluent gas is reported.

各々は、上記に示したように転化した・比較の+メ、炭
素を含まない上記Fe −8102触媒5.872fを
使うことにより対照実験を行なった・生成した窒素量に
かなシ低く、97%以−ヒの一酸化窒素が流出物中に見
出された。流出物中の窒素または他のガスの量はガスク
ロマトグラフィーにより決定し九〇 第1表のデータかられかるように、種々の窒素酸化物の
窒素ガスへの着しく高い転化が得らnた。
Each was converted as shown above. A comparative experiment was carried out by using 5.872f of the above carbon-free Fe-8102 catalyst. The amount of nitrogen produced was much lower, at 97%. Nitric oxide was found in the effluent. The amount of nitrogen or other gas in the effluent was determined by gas chromatography and, as can be seen from the data in Table 1, very high conversions of various nitrogen oxides to nitrogen gas were obtained. .

夫々実施例2および3では、脚注に示したようにN20
およびNO2の残存量は測定できなかったが(生成し流
出ガス中に存在する多量の窒素ガスに基づき、N20お
よびNO2の量は零または零に近い・NOの転化を考え
ると、1モルが炭素およそ0・5モル劇応じる。N02
30C/分の流量でNo の100S転化を仮定すると
、炭素反応物は使用2時間以上まで完全には除去されな
い・ これらの結果に基づき、本発明の方法は窒素酸化物の窒
素への転化に有用である・窒素酸化物が好ましくない種
々のガス流の処理に炭素繊維反応物を利用できる。例え
ばその一つは硝酸および(または)硝酸法の窒素酸化物
分解生成物であることができる。特定量の反応物炭素繊
維を含む装置を使うことによって、硝酸のタンクを満た
すときまfcは空にするときふつう遭遇する酸化物を容
易に窒素に費えることができる・この系では、再生は重
要ではない、他の使用は燃焼排気ガス、煙道ガスの処理
、フィード前処理、流出物処理、不純物除去などを含む
。含まれる費用および実際的可能性に依存して、本法は
一時の使用または連続式転化に適合できる・ 上述のように、本法の実施に使用できる反応物炭素繊維
はここで明らかにし友量の鉄、ニッケル、またはコバル
トを含むことができる・ 上記で示したものの変形は本発明の特許請求の範囲内に
入り、また本発明は示した実施例によって限定されな仏
ことを理解すべきである・なお実施例は実施可能なこと
を示すためのものであって、本発明の精神から離れるこ
となく金属、還元剤、炭素含有ガス、ホスト物質などの
選択を決定できることt−理解すべきである・要するに
、本発明の技術的範l!lは、特許請求の範器内に入る
すべての変形を含む・ 第1頁の続き @発明者  ルイス・ジョセフ・ヴエレニーアメリカ合
衆国オハイオ州4412 4リントバースト・ローランド ・ロード1266
In Examples 2 and 3, respectively, N20
Although the residual amount of NO2 and NO2 could not be measured (based on the large amount of nitrogen gas produced and present in the effluent gas, the amount of N20 and NO2 is zero or close to zero - considering the conversion of NO, one mole of carbon Approximately 0.5 moles play.N02
Assuming a 100S conversion of No at a flow rate of 30 C/min, the carbon reactant is not completely removed until more than 2 hours of use. Based on these results, the method of the present invention is useful for converting nitrogen oxides to nitrogen. Carbon fiber reactants can be used to treat a variety of gas streams where nitrogen oxides are undesirable. For example, one can be nitric acid and/or the nitrogen oxide decomposition products of the nitric acid process. By using a device containing a specific amount of reactant carbon fiber, when filling a tank of nitric acid, the fc can readily deplete the oxides normally encountered when emptying into nitrogen. In this system, regeneration is Other non-critical uses include flue gas, flue gas treatment, feed pretreatment, effluent treatment, impurity removal, etc. Depending on the costs involved and the practical possibilities, the process can be adapted for one-time use or continuous conversion. As mentioned above, the reactant carbon fibers that can be used in the implementation of the process are disclosed here in various quantities. of iron, nickel, or cobalt. It is to be understood that variations of those shown above fall within the scope of the claims of the invention, and that the invention is not limited by the examples shown. It should be understood that the examples are for illustrative purposes only and that the selection of metals, reducing agents, carbon-containing gases, host materials, etc. can be determined without departing from the spirit of the invention. Yes, in short, the technical scope of the present invention! l includes all variations that fall within the scope of the claims Continued from page 1 @ Inventor Louis Joseph Veerenyi 1266 Roland Road, 4 Lindburst, Ohio 4412, USA

Claims (1)

【特許請求の範囲】 (1)  窒素酸化物を約450〜約750°Cの温度
で反応物炭素繊維物質上に送る工程を特徴とする、窒素
酸化物の窒素ガスへの転化法。 (2)窒素酸化物を炭素含有ガスと共に約450〜約7
oo’cの温度で反応物炭素繊維物質上に送る工程を特
徴とする、窒素酸化物の窒素ガスへの連続式転化法・ (31当該反応物炭素繊維物質が炭素および鉄、ニッケ
ル、コバルトからなる群から選ばれる還元金属からなり
、炭素が当該反応物物質の約5〜約98重量憾を構成し
ている特許請求の範i!! (11または(21記載の
窒素酸化物の窒素ガスへの転化法・ (4)還元金属およびシリカ、炭化ケイ素、アルずす、
アランダム、ジヌコ二ア、カーボランダム、およびその
混合物からなる群から選ばれる担体物質からなるホスト
物質によって当該反応物炭素繊維物質が担持されており
、当該反応物物質が炭素5〜98重量−と残りが金属と
からなる特許請求の範囲(3)記載の窒素酸化物の窒素
ガスへの転化法・ −1当該炭素含有ガスが一酸化炭素、メタン、エタン、
灯油、ナフサからなる群から選ばれ、水素対炭素含有ガ
スの比が、約0対1〜約1対2である特許請求の範囲偉
1記載の窒素酸化物の窒素ガスへの転化法。 (6リ  炭素対窒素酸化物の比が1対!よシ大で約2
対1までである特許請求の範囲(6)記載の窒素酸化物
の窒素ガスへの転化法・ ()ν 窒素酸化物の転化を約1〜30気圧の範囲の圧
力で行なう特許請求の範囲(1)または(2)記載の窒
素酸化物の窒素ガスへの転化法。
Claims: (1) A process for converting nitrogen oxides to nitrogen gas, comprising the step of conveying the nitrogen oxides onto a reactant carbon fiber material at a temperature of about 450 to about 750°C. (2) Nitrogen oxides together with carbon-containing gas about 450 to about 7
A process for the continuous conversion of nitrogen oxides to nitrogen gas, characterized by the step of feeding the reactant carbon fiber material onto the reactant carbon fiber material at a temperature of 11 or 21, wherein carbon constitutes about 5 to about 98% by weight of the reactant material (4) Reducing metals and silica, silicon carbide, aluminum,
The reactant carbon fiber material is supported by a host material consisting of a carrier material selected from the group consisting of alundum, dinuconia, carborundum, and mixtures thereof, and the reactant material has 5 to 98% carbon by weight. A method for converting nitrogen oxides into nitrogen gas according to claim (3), the remainder of which is a metal. -1 The carbon-containing gas is carbon monoxide, methane, ethane,
A method for converting nitrogen oxides to nitrogen gas according to claim 1, wherein the ratio of hydrogen to carbon-containing gas is from about 0:1 to about 1:2, selected from the group consisting of kerosene and naphtha. (6) The ratio of carbon to nitrogen oxide is 1:1!
A method for converting nitrogen oxides into nitrogen gas according to claim (6), wherein the conversion of nitrogen oxides is carried out at a pressure in the range of about 1 to 30 atmospheres ( The method for converting nitrogen oxides into nitrogen gas according to 1) or (2).
JP56173659A 1981-10-28 1981-10-28 Removal of nitrogen oxide from gas stream Pending JPS5876129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173659A JPS5876129A (en) 1981-10-28 1981-10-28 Removal of nitrogen oxide from gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173659A JPS5876129A (en) 1981-10-28 1981-10-28 Removal of nitrogen oxide from gas stream

Publications (1)

Publication Number Publication Date
JPS5876129A true JPS5876129A (en) 1983-05-09

Family

ID=15964710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173659A Pending JPS5876129A (en) 1981-10-28 1981-10-28 Removal of nitrogen oxide from gas stream

Country Status (1)

Country Link
JP (1) JPS5876129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095782A1 (en) * 2019-11-14 2021-05-20 三菱ケミカル株式会社 Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095782A1 (en) * 2019-11-14 2021-05-20 三菱ケミカル株式会社 Catalyst and method for manufacturing same, and method for manufacturing unsaturated hydrocarbon
JPWO2021095782A1 (en) * 2019-11-14 2021-05-20

Similar Documents

Publication Publication Date Title
JP3009309B2 (en) Methods for removing hydrogen sulfide from gas streams
KR100838500B1 (en) A process and catalyst for reducing nitrogen oxides
US5041270A (en) Method of purifying exhaust gases
JP2923711B2 (en) Catalyst for removing sulfur compounds from industrial gas, method for producing the same and use thereof
KR970009558B1 (en) Copper oxide and ceria catalyst
EP0401788A1 (en) Selective removal of hydrogen sulfide over a nickel-promoted absorbing composition
US5202101A (en) Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream
JPS59142847A (en) Catalyst for oxidizing hydrogen sulfide
JPS59131569A (en) Manufacture of spinel composition containing alkali earth metal and aluminum
JP2003519010A (en) Activation of hydrocarbon synthesis catalyst by hydrogen and ammonia
JPH0451481B2 (en)
JP3766100B2 (en) H {circle around (2)} SO and SO {circle around 2} methods of catalytic desulfurization of gases containing compounds, and catalysts for carrying out the method
US4309392A (en) Process for removing nitrogen oxides from a gas stream
US4003850A (en) Novel iron oxide catalysts
JPS6150638A (en) Catalyst consisting of niobia and tatala supported by titania
JP2838192B2 (en) Hydrocarbon cracking catalyst and method for producing hydrogen using the same
JPS5840147A (en) Conversion catalyst of synthetic gas and production thereof
JP2691643B2 (en) Exhaust gas purification method
JPS5876129A (en) Removal of nitrogen oxide from gas stream
EP0077424A1 (en) Process for removing nitrogen oxides from a gas stream
JP3452570B2 (en) Catalyst for removing sulfur compounds from industrial gas, process for producing the same and use thereof
US3755550A (en) Process for reduction of so2
JP3918048B2 (en) Method for producing lower alkene
JPS63134028A (en) Dry desulfurizing method
CA1160429A (en) Process for removing nitrogen oxides from a gas stream