JPWO2021064812A1 - Integrated valve - Google Patents

Integrated valve Download PDF

Info

Publication number
JPWO2021064812A1
JPWO2021064812A1 JP2020554566A JP2020554566A JPWO2021064812A1 JP WO2021064812 A1 JPWO2021064812 A1 JP WO2021064812A1 JP 2020554566 A JP2020554566 A JP 2020554566A JP 2020554566 A JP2020554566 A JP 2020554566A JP WO2021064812 A1 JPWO2021064812 A1 JP WO2021064812A1
Authority
JP
Japan
Prior art keywords
valve
flow path
heat insulating
insulating member
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020554566A
Other languages
Japanese (ja)
Other versions
JP7139446B2 (en
Inventor
和宏 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Original Assignee
Pacific Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd filed Critical Pacific Industrial Co Ltd
Publication of JPWO2021064812A1 publication Critical patent/JPWO2021064812A1/en
Application granted granted Critical
Publication of JP7139446B2 publication Critical patent/JP7139446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Valve Housings (AREA)

Abstract

【課題】オリフィスを容易に形成することが可能な統合弁の提供。【解決手段】統合弁は、支持ベースと、支持ベースに形成され、冷媒を取り込んで気液分離して気体状の冷媒と液体状の冷媒とを別々に排出する気液分離室と、気液分離室から延びて末端に室内コンデンサに接続される室内コンデンサ用ポートを有する冷媒取り込み用の第1流路と、気液分離室から延びて末端に室外エバポレータに接続される室外エバポレータ用ポートを有する液体状の冷媒用の第2流路と、気液分離室から延びて末端にコンプレッサの入力ポートに接続されるコンプレッサ用ポートを有する気体状の冷媒用の第3流路と、第3流路の途中に備えられ、通常は、第3流路を遮断した閉弁状態になり、第2流路の圧力に応じて第3流路を開通させる開弁状態になる差圧弁と、第2流路の途中に備えられて、通常室内暖房モードでは開弁状態とされ、特別室内暖房モードでは閉弁状態になるように駆動される駆動弁と、支持ベースより熱伝導率が低い材料で形成され、支持ベースの内部に組み付けられて、第2流路の一部が貫通する断熱部材と、断熱部材に形成され、第2流路のうち前記駆動弁にて開閉される弁口の上流側と下流側との間を連絡するオリフィスと、を備える。【選択図】図4PROBLEM TO BE SOLVED: To provide an integrated valve capable of easily forming an orifice. An integrated valve is formed in a support base, a gas-liquid separation chamber that takes in a refrigerant, separates the gas and liquid, and discharges a gaseous refrigerant and a liquid refrigerant separately, and a gas and liquid. It has a first flow path for refrigerant intake that extends from the separation chamber and has an indoor condenser port connected to the indoor condenser at the end, and an outdoor evaporator port that extends from the gas-liquid separation chamber and connects to the outdoor evaporator at the end. A second flow path for a liquid refrigerant, a third flow path for a gaseous refrigerant having a compressor port extending from the gas-liquid separation chamber and connected to a compressor input port at the end, and a third flow path. A differential pressure valve that is provided in the middle of the process and normally closes the third flow path and opens the third flow path according to the pressure of the second flow path, and the second flow. It is provided in the middle of the road and is made of a drive valve that is normally opened in the indoor heating mode and closed in the special indoor heating mode, and a material with lower thermal conductivity than the support base. , A heat insulating member that is assembled inside the support base and penetrates a part of the second flow path, and an upstream side of the valve port that is formed in the heat insulating member and is opened and closed by the drive valve in the second flow path. It is provided with an orifice that communicates with the downstream side. [Selection diagram] Fig. 4

Description

本開示は、室内コンデンサと室外エバポレータとコンプレッサとを有するヒートポンプサイクルに組み込まれ、室内コンデンサからの冷媒を気液分離し、気体状の冷媒をコンプレッサへ流出させるか否かを切り替えて、ヒートサイクルの暖房モードを切り替える統合弁に関する。 The present disclosure is incorporated in a heat pump cycle having an indoor condenser, an outdoor evaporator and a compressor, and the refrigerant from the indoor condenser is separated into gas and liquid, and whether or not the gaseous refrigerant is discharged to the compressor is switched to switch the heat cycle. Regarding the integrated valve that switches the heating mode.

従来の統合弁として、金属製のボディを有し、そのボディを貫通する流路の途中に開閉される弁口が設けられると共に、ボディに弁口の上流側と下流側とを連通するオリフィスが形成されたものが知られている(例えば、特許文献1参照)。 As a conventional integrated valve, it has a metal body, a valve port that opens and closes in the middle of the flow path that penetrates the body is provided, and an orifice that communicates the upstream side and the downstream side of the valve port is provided in the body. The formed one is known (see, for example, Patent Document 1).

特許5772764号(段落[0010]、図4)Japanese Patent No. 5772764 (paragraph [0010], FIG. 4)

上述した従来の統合弁では、オリフィスをボディの流路の奥に穿孔して形成するため、オリフィスの形成が難しいという問題があった。 In the conventional integrated valve described above, since the orifice is formed by drilling the orifice in the depth of the flow path of the body, there is a problem that it is difficult to form the orifice.

上記課題を解決するためになされた請求項1の発明は、室内コンデンサと室外エバポレータとコンプレッサとを有するヒートポンプサイクルに組み込まれて、前記ヒートポンプサイクルを通常室内暖房モードと特別室内暖房モードとに切り替える統合弁であって、支持ベースと、前記支持ベースに形成され、冷媒を取り込んで気液分離して気体状の冷媒と液体状の冷媒とを別々に排出する気液分離室と、前記気液分離室から延びて末端に前記室内コンデンサに接続される室内コンデンサ用ポートを有する前記冷媒取り込み用の第1流路と、前記気液分離室から延びて末端に前記室外エバポレータに接続される室外エバポレータ用ポートを有する前記液体状の冷媒用の第2流路と、前記気液分離室から延びて末端に前記コンプレッサの入力ポートに接続されるコンプレッサ用ポートを有する前記気体状の冷媒用の第3流路と、前記第3流路の途中に備えられ、通常は、前記第3流路を遮断した閉弁状態になり、前記第2流路の圧力に応じて前記第3流路を開通させる開弁状態になる差圧弁と、前記第2流路の途中に備えられて、前記通常室内暖房モードでは開弁状態とされ、前記特別室内暖房モードでは閉弁状態になるように駆動される駆動弁と、前記支持ベースより熱伝導率が低い材料で形成され、前記支持ベースの内部に組み付けられて、前記第2流路の一部が貫通する断熱部材と、前記断熱部材に形成され、前記第2流路のうち前記駆動弁にて開閉される弁口の上流側と下流側との間を連絡するオリフィスと、を備える統合弁である。 The invention of claim 1 made to solve the above problems is incorporated into a heat pump cycle having an indoor condenser, an outdoor evaporator and a compressor, and integrates the heat pump cycle to switch between a normal indoor heating mode and a special indoor heating mode. A valve, a support base, a gas-liquid separation chamber formed on the support base, taking in a refrigerant, separating the gas and liquid, and discharging the gaseous refrigerant and the liquid refrigerant separately, and the gas-liquid separation. For the first flow path for taking in the refrigerant having an indoor condenser port extending from the chamber and connected to the indoor condenser at the end, and for an outdoor evaporator extending from the gas-liquid separation chamber and connected to the outdoor evaporator at the end. A third stream for the gaseous refrigerant having a second flow path for the liquid refrigerant having a port and a compressor port extending from the gas-liquid separation chamber and connected to the input port of the compressor at the end. It is provided in the middle of the path and the third flow path, and is usually in a valve closed state in which the third flow path is blocked, and the third flow path is opened according to the pressure of the second flow path. A differential pressure valve that is in a valve state and a drive valve that is provided in the middle of the second flow path and is driven so as to be in a valve open state in the normal room heating mode and in a valve closed state in the special room heating mode. A heat insulating member formed of a material having a lower thermal conductivity than the support base, assembled inside the support base, and partially penetrating the second flow path, and a heat insulating member formed on the heat insulating member. It is an integrated valve including an orifice that connects between the upstream side and the downstream side of the valve opening that is opened and closed by the drive valve among the two flow paths.

本開示の第1実施形態に係る統合弁が組み込まれるヒートポンプサイクルの概念図Conceptual diagram of a heat pump cycle in which the integrated valve according to the first embodiment of the present disclosure is incorporated. 統合弁の前方斜視図Front perspective view of the integrated valve 統合弁の後方斜視図Rear perspective view of the integrated valve 電磁弁が開状態のときの統合弁の正断面図Regular cross-sectional view of the integrated valve when the solenoid valve is open 電磁弁が閉状態のときの統合弁の正断面図Positive cross-sectional view of the integrated valve when the solenoid valve is closed 断熱部材の斜視図Perspective view of heat insulating member 下側ベースと断熱部材のB−B断面図BB sectional view of the lower base and the heat insulating member 下側ベースに組み付けられた断熱部材の側面図Side view of the heat insulating member assembled to the lower base

[第1実施形態]
以下、図1〜8を参照しつつ、本実施形態の弁10について説明する。図1に示されるように、本実施形態の統合弁10は、例えば、モータの駆動力で走行する電気自動車やハイブリッド自動車のエアコンのヒートポンプサイクル80に組み込まれる。ヒートポンプサイクル80は、車室内を暖房する暖房モードや、車室内を冷房する冷房モード等に切替可能となっている。
[First Embodiment]
Hereinafter, the valve 10 of the present embodiment will be described with reference to FIGS. 1 to 8. As shown in FIG. 1, the integrated valve 10 of the present embodiment is incorporated into, for example, the heat pump cycle 80 of an air conditioner of an electric vehicle or a hybrid vehicle traveling by a driving force of a motor. The heat pump cycle 80 can be switched to a heating mode for heating the interior of the vehicle, a cooling mode for cooling the interior of the vehicle, and the like.

統合弁10は、冷媒が流入する流入ポート13と、冷媒が流出する2つの流出ポート14,15を有している。後述するように、統合弁10は、気液分離室12を内部に有し、流入ポート13からの冷媒を気液分離する。そして、統合弁10は、気液分離して得られた気体状の冷媒と液体状の冷媒とを、それぞれ気相用流出ポート14と液相用流出ポート15とから流出可能となっている。また、統合弁10は、内部に駆動弁50(本実施形態の例では、電磁弁)を備えていて、駆動弁50を開閉することで、気相用流出ポート14を開閉可能となっている。 The integrated valve 10 has an inflow port 13 into which the refrigerant flows in, and two outflow ports 14 and 15 in which the refrigerant flows out. As will be described later, the integrated valve 10 has a gas-liquid separation chamber 12 inside, and separates the refrigerant from the inflow port 13 into gas-liquid. The integrated valve 10 is capable of flowing out the gaseous refrigerant and the liquid refrigerant obtained by gas-liquid separation from the gas-phase outflow port 14 and the liquid-phase outflow port 15, respectively. Further, the integrated valve 10 is provided with a drive valve 50 (electromagnetic valve in the example of the present embodiment) inside, and the gas phase outflow port 14 can be opened and closed by opening and closing the drive valve 50. ..

統合弁10の詳細について説明する前に、ヒートポンプサイクル80についてまず説明する。ヒートポンプサイクル80には、例えば、ボンネット内に配置されるコンプレッサ81及び室外熱交換器83(室外エバポレータ)や、車室内に配置される室内コンデンサ82及び室内蒸発器84等が設けられている。 Before explaining the details of the integrated valve 10, the heat pump cycle 80 will be described first. The heat pump cycle 80 is provided with, for example, a compressor 81 and an outdoor heat exchanger 83 (outdoor evaporator) arranged in the bonnet, an indoor condenser 82 and an indoor evaporator 84 arranged in the vehicle interior.

コンプレッサ81は、冷媒を吸入し、圧縮して吐出させる。コンプレッサ81には、低圧冷媒を吸入する低圧入力ポート81Aと、低圧から高圧に圧縮する過程の冷媒に合流させる中間圧入力ポート81Bが設けられると共に、室内コンデンサ82に圧縮冷媒を流出させる出力ポート81Cが設けられている。 The compressor 81 sucks in the refrigerant, compresses it, and discharges it. The compressor 81 is provided with a low-pressure input port 81A for sucking the low-pressure refrigerant and an intermediate pressure input port 81B for merging with the refrigerant in the process of compressing from low pressure to high pressure, and an output port 81C for discharging the compressed refrigerant to the indoor condenser 82. Is provided.

室外熱交換器83は、外気と室外熱交換器83の内部を流れる冷媒とを熱交換させる。室外熱交換器83は、ヒートポンプサイクル90が暖房モードのときには、吸熱して冷媒を蒸発させる蒸発器(室外エバポレータ)として機能する一方、ヒートポンプサイクル90が冷房モードのときには、冷媒を放熱させる放熱器として機能する。 The outdoor heat exchanger 83 exchanges heat between the outside air and the refrigerant flowing inside the outdoor heat exchanger 83. The outdoor heat exchanger 83 functions as an evaporator (outdoor evaporator) that absorbs heat and evaporates the refrigerant when the heat pump cycle 90 is in the heating mode, while as a radiator that dissipates the refrigerant when the heat pump cycle 90 is in the cooling mode. Function.

室内コンデンサ82は、車室内の空調ユニット内に配置され、コンプレッサ81から吐出された高温高圧の冷媒を放熱させる放熱器として機能する(車室内を暖める)。冷房モードのときには、室内コンデンサ82は、例えばカバーで覆われる。また、室内蒸発器84は、冷房モードのときに使用され、車室内の空気から吸熱する(車室内を冷やす)。 The indoor condenser 82 is arranged in the air conditioning unit in the vehicle interior and functions as a radiator (heats the vehicle interior) to dissipate the high-temperature and high-pressure refrigerant discharged from the compressor 81. In the cooling mode, the chamber condenser 82 is covered, for example, with a cover. Further, the indoor evaporator 84 is used in the cooling mode and absorbs heat from the air in the vehicle interior (cools the vehicle interior).

統合弁10の流入ポート13は、室内コンデンサ82の出力ポート82Bに、膨張弁87を介して接続される。統合弁10の気相用流出ポート14は、コンプレッサ81の2つの入力ポートの1つである中間圧入力ポート81Bに接続される。統合弁10の液相用流出ポート15は、室外熱交換器83の入力ポートに接続される。 The inflow port 13 of the integrated valve 10 is connected to the output port 82B of the indoor capacitor 82 via the expansion valve 87. The gas phase outflow port 14 of the integrated valve 10 is connected to an intermediate pressure input port 81B, which is one of the two input ports of the compressor 81. The liquid phase outflow port 15 of the integrated valve 10 is connected to the input port of the outdoor heat exchanger 83.

室外熱交換器83の出力ポートには、膨張弁85を介して室内蒸発器84の入力ポートが接続される。また、室内蒸発器84の出力ポートには、コンプレッサ81の低圧入力ポート81Aが接続される。なお、室外熱交換器83の出力ポートとコンプレッサ81の低圧入力ポート81Aの間には、室内蒸発器84と並列に開閉弁86が接続されている。なお、暖房モードのときには、開閉弁86が開状態となって膨張弁85が閉状態となる一方で、冷房モードのときには、開閉弁86が閉状態となって膨張弁85が開状態となる(即ち、室内蒸発器84に冷媒が流通する)。 The input port of the indoor evaporator 84 is connected to the output port of the outdoor heat exchanger 83 via the expansion valve 85. Further, a low pressure input port 81A of the compressor 81 is connected to the output port of the indoor evaporator 84. An on-off valve 86 is connected in parallel with the indoor evaporator 84 between the output port of the outdoor heat exchanger 83 and the low-pressure input port 81A of the compressor 81. In the heating mode, the on-off valve 86 is in the open state and the expansion valve 85 is in the closed state, while in the cooling mode, the on-off valve 86 is in the closed state and the expansion valve 85 is in the open state. That is, the refrigerant flows through the indoor evaporator 84).

ヒートポンプサイクル80では、暖房モードとして、通常室内暖房モード(以下、通常暖房モードという。)と特別室内暖房モード(以下、特別暖房モードという。)が設けられている。通常暖房モードでは、統合弁10の駆動弁50が開弁し、これにより、統合弁10の気相用流出ポート14は閉じられる(図1(A))。ここで、特別暖房モードでは、統合弁の駆動弁50が閉弁する。これにより、統合弁10の気相用流出ポート14からコンプレッサ81の中間圧入力ポート81Bまでの特別流入路89が開通する(図1(B))。そして、ヒートポンプサイクル80が、ガスインジェクションサイクルとして機能し、外気温が低く通常暖房モードでは車室内が暖まりにくい場合でも車室内を暖め易くすることができる。 In the heat pump cycle 80, as a heating mode, a normal room heating mode (hereinafter, referred to as a normal heating mode) and a special room heating mode (hereinafter, referred to as a special heating mode) are provided. In the normal heating mode, the drive valve 50 of the integrated valve 10 is opened, whereby the gas phase outflow port 14 of the integrated valve 10 is closed (FIG. 1 (A)). Here, in the special heating mode, the drive valve 50 of the integrated valve is closed. As a result, the special inflow path 89 from the gas phase outflow port 14 of the integrated valve 10 to the intermediate pressure input port 81B of the compressor 81 is opened (FIG. 1 (B)). Then, the heat pump cycle 80 functions as a gas injection cycle, and can easily warm the vehicle interior even when the outside air temperature is low and the vehicle interior is difficult to warm in the normal heating mode.

なお、詳細には、通常暖房モードでは、外気温が極端に低い場合には、室外エバポレータ(室外熱交換器83)で十分に外気から吸熱ができない。そのため、室外熱交換器83からコンプレッサ81までの流路内の冷媒の圧力が上がらず、冷媒流量も少なくなると考えられる。冷媒流量が減れば、コンプレッサ81からの冷媒の吐出圧力や温度が上がらず、室内コンデンサ82からの放熱も少なくなり、暖房能力が低くなると考えられる。これに対して、特別暖房モードでは、ガスインジェクションサイクルにより、室外熱交換器83に流入する前の冷媒を気液分離し、分離した気体冷媒をコンプレッサ81に戻す。これにより、室外熱交換器83で圧力が下がる前の冷媒がコンプレッサ81に加えられるので、コンプレッサ81からの冷媒の吐出圧力の低下を抑制できると考えられる。その結果、暖房性能を向上させることが可能となると考えられる。なお、ヒートポンプサイクル80についての詳細は、例えば、特許5772764号や特開2017−53591号等にも開示されている。 More specifically, in the normal heating mode, when the outside air temperature is extremely low, the outdoor evaporator (outdoor heat exchanger 83) cannot sufficiently absorb heat from the outside air. Therefore, it is considered that the pressure of the refrigerant in the flow path from the outdoor heat exchanger 83 to the compressor 81 does not increase and the flow rate of the refrigerant also decreases. It is considered that if the flow rate of the refrigerant decreases, the discharge pressure and temperature of the refrigerant from the compressor 81 do not rise, the heat radiation from the indoor condenser 82 also decreases, and the heating capacity decreases. On the other hand, in the special heating mode, the gas injection cycle separates the refrigerant before flowing into the outdoor heat exchanger 83 into gas and liquid, and returns the separated gas refrigerant to the compressor 81. As a result, the refrigerant before the pressure drops in the outdoor heat exchanger 83 is applied to the compressor 81, so that it is considered that the decrease in the discharge pressure of the refrigerant from the compressor 81 can be suppressed. As a result, it is considered possible to improve the heating performance. Details of the heat pump cycle 80 are also disclosed in, for example, Japanese Patent No. 5772764 and Japanese Patent Application Laid-Open No. 2017-53591.

次に、統合弁10の詳細について説明する。図2及び図3に示されるように、統合弁10は、縦長をなした例えば金属製の支持ベース11を有し、支持ベース11の内部に複数の流路を備えている。なお、本実施形態の統合弁10は、使用時(即ち、統合弁10が車両に設置された際)には、支持ベース11の長手方向が上下方向となるように配置される。以下では、支持ベース11において、統合弁10の使用時に、上側を向く面を上面、下側を向く面を下面等ということとする。また、図4において、支持ベース11のうち紙面手前を向く面を前面、紙面奥側を向く面を後面といい、支持ベース11のうち左側、右側を向く面を、それぞれ左面、右面ということとする。 Next, the details of the integrated valve 10 will be described. As shown in FIGS. 2 and 3, the integrated valve 10 has a vertically elongated support base 11 made of, for example, a metal, and includes a plurality of flow paths inside the support base 11. The integrated valve 10 of the present embodiment is arranged so that the longitudinal direction of the support base 11 is in the vertical direction when the integrated valve 10 is used (that is, when the integrated valve 10 is installed in the vehicle). In the following, in the support base 11, when the integrated valve 10 is used, the surface facing upward is referred to as the upper surface, the surface facing downward is referred to as the lower surface, and the like. Further, in FIG. 4, the surface of the support base 11 facing the front side of the paper surface is referred to as the front surface, the surface facing the back side of the paper surface is referred to as the rear surface, and the surfaces of the support base 11 facing the left side and the right side are referred to as the left surface and the right surface, respectively. do.

図4に示されるように、支持ベース11の内部には、上述の気液分離室12が設けられている。気液分離室12は、上下方向に延びた円柱状の部屋となっていて、天井から中心軸と同軸上に円筒体12Aが垂下している。気液分離室12の内周面のうち上部には、流入ポート13が連通している。 As shown in FIG. 4, the gas-liquid separation chamber 12 described above is provided inside the support base 11. The gas-liquid separation chamber 12 is a columnar chamber extending in the vertical direction, and a cylindrical body 12A hangs from the ceiling coaxially with the central axis. The inflow port 13 communicates with the upper part of the inner peripheral surface of the gas-liquid separation chamber 12.

気液分離室12は、遠心分離式となっていて、流入ポート13から流入した室内コンデンサ82からの冷媒は、気液分離室12の内周面に沿って旋回し、この旋回による遠心力によって冷媒が気体状の冷媒と液体状の冷媒とに分離される。分離した気体状の冷媒は、円筒体12Aの内側を通って、上方に向かい、分離した液体状の冷媒は、気液分離室12の下方に落ちていく。 The gas-liquid separation chamber 12 is of a centrifugal separation type, and the refrigerant from the indoor condenser 82 flowing in from the inflow port 13 swirls along the inner peripheral surface of the gas-liquid separation chamber 12, and the centrifugal force generated by this swirl causes the refrigerant to swirl. The refrigerant is separated into a gaseous refrigerant and a liquid refrigerant. The separated gaseous refrigerant passes through the inside of the cylindrical body 12A and goes upward, and the separated liquid refrigerant falls below the gas-liquid separation chamber 12.

気液分離室12の下側と上側には、互いに平行に延びた第1ストレート孔部21と第2ストレート孔部31とが形成されている。第1ストレート孔部21は、支持ベース11の右面から左面寄り位置まで延びていて、第1ストレート孔部21の左端部は、支持ベース11の前面から延びた上述の液相用流出ポート15と連通している。第1ストレート孔部21の右端部は、駆動弁50の支持ボディ53によって閉塞される第1弁取付部となっている。駆動弁50は、左右方向に直動する弁体51を備え、弁体51により第1ストレート孔部21の途中に設けられた弁口62を開閉する。駆動弁50は、作動状態では、弁口62から離れた開弁状態となり、非作動状態では、弁口62の開口縁(即ち、弁座62Z)に宛がわれて閉弁状態となる。 A first straight hole portion 21 and a second straight hole portion 31 extending in parallel with each other are formed on the lower side and the upper side of the gas-liquid separation chamber 12. The first straight hole portion 21 extends from the right surface of the support base 11 to a position closer to the left surface, and the left end portion of the first straight hole portion 21 is the above-mentioned liquid phase outflow port 15 extending from the front surface of the support base 11. Communicating. The right end of the first straight hole 21 is a first valve mounting portion that is closed by the support body 53 of the drive valve 50. The drive valve 50 includes a valve body 51 that moves linearly in the left-right direction, and the valve body 51 opens and closes a valve port 62 provided in the middle of the first straight hole portion 21. In the operating state, the drive valve 50 is in a valve open state away from the valve port 62, and in the non-operating state, the drive valve 50 is addressed to the opening edge of the valve port 62 (that is, the valve seat 62Z) and is in a valve closed state.

第2ストレート孔部31は、支持ベース11の左面から右面寄り位置まで延びていて、第2ストレート孔部31の右端部は、支持ベース11の後面まで延びた上述の気相用流出ポート14と連通している。第2ストレート孔部31の途中部分は、気液分離室12の円筒体12Aの内側部分と連通孔32により連絡されている。第2ストレート孔部31の左端部は、差圧弁40に備えられた圧縮コイルバネ42を支持する支持キャップ44で閉塞されている。差圧弁40に備えられた弁体41は、第2ストレート孔部31の途中に設けられた弁口43を左側から開閉する。弁体41は、圧縮コイルバネ42により閉弁状態に付勢されている。 The second straight hole portion 31 extends from the left surface of the support base 11 to a position closer to the right surface, and the right end portion of the second straight hole portion 31 has the above-mentioned gas phase outflow port 14 extending to the rear surface of the support base 11. Communicating. The intermediate portion of the second straight hole portion 31 is connected to the inner portion of the cylindrical body 12A of the gas-liquid separation chamber 12 by a communication hole 32. The left end of the second straight hole 31 is closed by a support cap 44 that supports the compression coil spring 42 provided in the differential pressure valve 40. The valve body 41 provided in the differential pressure valve 40 opens and closes the valve port 43 provided in the middle of the second straight hole 31 from the left side. The valve body 41 is urged to a closed state by a compression coil spring 42.

第1ストレート孔部21の左側部分と第2ストレート孔部31の左端部とは、内圧導入路19により連通されている。 The left side portion of the first straight hole portion 21 and the left end portion of the second straight hole portion 31 are communicated with each other by an internal pressure introduction path 19.

図4に示されるように、支持ベース11には、気液分離室12と第1ストレート孔部21との間を区画する底壁39が設けられている。底壁39には、上下方向に延びて気液分離室12と第1ストレート孔部21とを連絡する連通孔34が貫通している。詳細には、第1ストレート孔部21のうち気液分離室12の真下に配置される部分には、拡径部23が設けられている。そして、この拡径部23に、連通孔34の下端が開口している。 As shown in FIG. 4, the support base 11 is provided with a bottom wall 39 for partitioning between the gas-liquid separation chamber 12 and the first straight hole portion 21. A communication hole 34 that extends in the vertical direction and connects the gas-liquid separation chamber 12 and the first straight hole portion 21 penetrates through the bottom wall 39. Specifically, a diameter-expanded portion 23 is provided in a portion of the first straight hole portion 21 that is arranged directly below the gas-liquid separation chamber 12. Then, the lower end of the communication hole 34 is opened in the enlarged diameter portion 23.

ここで、第1ストレート孔部21には、円筒状の断熱部材60が嵌合している(図6参照)。断熱部材60は、支持ベース11よりも熱電動率が低い材料で形成されていて、本実施形態の例では、樹脂の射出成形品である。断熱部材60は、第1ストレート孔部21のうち左端部に嵌合していて、断熱部材60の軸方向の途中部分がOリング60Rでシールされている。断熱部材60の右端部は、拡径部23内に配置されて、拡径部23の内面とは隙間をあけて配置されている。断熱部材60の右端開口は、駆動弁50によって開閉される弁口62を構成している。断熱部材60における弁口62の開口縁は、駆動弁50の弁体51が当接する弁座62Zになっている。断熱部材60の左端面は、第1ストレート孔部21の左端に突き当てられ、断熱部材60の左端面の周方向の一部に設けられた係合突部64が、第1ストレート孔部21の左端の係合凹部24(特許請求の範囲に記載の「位置決め部」に相当する。)と、断熱部材60の軸方向で凹凸係合している。これにより、断熱部材60が支持ベース11に対して回り止めされている。詳細には、断熱部材60は、断熱部材60の外周壁を貫通する貫通孔67と液相用流出ポート15とが連通する位置で、回り止めされている。この位置では、断熱部材60の外周壁を貫通孔67に対して直交するように貫通する後述の排出孔65の延長上に内圧導入路19が配置される。なお、本実施形態では、係合突部64と係合凹部24とが、特許請求の範囲に記載の「第1位置決め係合部」に相当する。 Here, a cylindrical heat insulating member 60 is fitted in the first straight hole portion 21 (see FIG. 6). The heat insulating member 60 is made of a material having a thermoelectricity lower than that of the support base 11, and in the example of the present embodiment, it is an injection molded product of resin. The heat insulating member 60 is fitted to the left end of the first straight hole portion 21, and an axially intermediate portion of the heat insulating member 60 is sealed with an O-ring 60R. The right end portion of the heat insulating member 60 is arranged in the diameter-expanded portion 23 and is arranged with a gap from the inner surface of the diameter-expanded portion 23. The right end opening of the heat insulating member 60 constitutes a valve opening 62 that is opened and closed by the drive valve 50. The opening edge of the valve port 62 in the heat insulating member 60 is a valve seat 62Z to which the valve body 51 of the drive valve 50 abuts. The left end surface of the heat insulating member 60 is abutted against the left end of the first straight hole portion 21, and the engaging protrusion 64 provided on a part of the left end surface of the heat insulating member 60 in the circumferential direction is formed by the first straight hole portion 21. The engagement recess 24 (corresponding to the "positioning portion" described in the claims) at the left end of the heat insulating member 60 is concavely engaged with the heat insulating member 60 in the axial direction. As a result, the heat insulating member 60 is prevented from rotating with respect to the support base 11. Specifically, the heat insulating member 60 is stopped at a position where the through hole 67 penetrating the outer peripheral wall of the heat insulating member 60 and the liquid phase outflow port 15 communicate with each other. At this position, the internal pressure introduction path 19 is arranged on the extension of the discharge hole 65, which will be described later, which penetrates the outer peripheral wall of the heat insulating member 60 so as to be orthogonal to the through hole 67. In the present embodiment, the engaging protrusion 64 and the engaging recess 24 correspond to the "first positioning engaging portion" described in the claims.

図4及び図7に示されるように、断熱部材60には、径方向に内外を連通するオリフィス61が形成されている。オリフィス61は、断熱部材60の内側に向かって絞れられている。具体的には、オリフィス61は、断熱部材60のうち前記第1ストレート孔部21の内面と(拡径部23の内面と)隙間をあけて配置される右端部に設けられている。そして、オリフィス61は、断熱部材60の外周面のち下側に配置される部分から上側に向かって延びている。また、オリフィス61は、第1ストレート孔部21のうち気液分離室12との合流部から第1ストレート孔部21の軸方向で(図4に示す左側に)離れた位置に配置されている。なお、本実施形態では、オリフィス61は、断熱部材60の軸方向に対して、直交しているが、傾斜していてもよい。例えば、オリフィス61は、下流側に向かうにつれて断熱部材60の内部に近づくように延びていてもよい。 As shown in FIGS. 4 and 7, the heat insulating member 60 is formed with an orifice 61 that communicates inside and outside in the radial direction. The orifice 61 is narrowed toward the inside of the heat insulating member 60. Specifically, the orifice 61 is provided at the right end portion of the heat insulating member 60, which is arranged with a gap between the inner surface of the first straight hole portion 21 and the inner surface of the enlarged diameter portion 23. The orifice 61 extends upward from a portion arranged on the lower side of the outer peripheral surface of the heat insulating member 60. Further, the orifice 61 is arranged at a position of the first straight hole 21 separated from the confluence with the gas-liquid separation chamber 12 in the axial direction of the first straight hole 21 (on the left side shown in FIG. 4). .. In the present embodiment, the orifice 61 is orthogonal to the axial direction of the heat insulating member 60, but may be inclined. For example, the orifice 61 may extend closer to the inside of the heat insulating member 60 toward the downstream side.

図7に示されるように、底壁39の上面には、連通孔34とは別に、第1係合孔33Aと第2係合孔33Bが設けられている。第1係合孔33Aには、傘形カバー部材70が取り付けられている。具体的には、傘形カバー部材70は、傘部70Aから挿入バー70Bが垂下してなる。挿入バー70Bは、第2係合孔33Bに例えば圧入されている。このとき、傘部70Aは、連通孔34と第2係合孔33Bを上側から覆うように配置される。 As shown in FIG. 7, the upper surface of the bottom wall 39 is provided with a first engaging hole 33A and a second engaging hole 33B in addition to the communication hole 34. An umbrella-shaped cover member 70 is attached to the first engaging hole 33A. Specifically, the umbrella-shaped cover member 70 has an insertion bar 70B hanging from the umbrella portion 70A. The insertion bar 70B is, for example, press-fitted into the second engagement hole 33B. At this time, the umbrella portion 70A is arranged so as to cover the communication hole 34 and the second engagement hole 33B from above.

第2の係合孔33Bは、断熱部材60の端部の外周面のうちオリフィス61と周方向で反対側となる部分と対向している。そして、第2の係合孔33Bには、規制バー72が挿入されている。規制バー72の上端部は、傘部70Aの下面に当接して移動が規制されている。規制バー72の下端部は、断熱部材60の端部の外周面に形成された係合凹部63に係合して、断熱部材60を回り止め可能となっていると共に、断熱部材60を支持ベース11(詳細には、後述の下側ベース20B)に対して抜け止めしている。なお、本実施形態では、規制バー72と係合凹部63から、特許請求の範囲に記載の「第2位置決め係合部」が構成される。 The second engaging hole 33B faces a portion of the outer peripheral surface of the end portion of the heat insulating member 60 that is opposite to the orifice 61 in the circumferential direction. A regulation bar 72 is inserted into the second engagement hole 33B. The upper end of the regulation bar 72 is in contact with the lower surface of the umbrella portion 70A to restrict movement. The lower end of the regulation bar 72 engages with the engaging recess 63 formed on the outer peripheral surface of the end of the heat insulating member 60 to prevent the heat insulating member 60 from rotating, and also supports the heat insulating member 60 as a support base. It is prevented from coming off with respect to 11 (specifically, the lower base 20B described later). In the present embodiment, the "second positioning engaging portion" described in the claims is configured from the regulation bar 72 and the engaging recess 63.

図8に示されるように、断熱部材60に当接した規制バー72は、支持ベース11の右面に設けられた第1ストレート孔部21の開口から駆動弁50を外した状態で、視認可能となっている。これにより、規制バー72により断熱部材60が位置決めされているか否かを確認することが容易となる。 As shown in FIG. 8, the regulation bar 72 in contact with the heat insulating member 60 is visible in a state where the drive valve 50 is removed from the opening of the first straight hole 21 provided on the right side of the support base 11. It has become. This makes it easy to confirm whether or not the heat insulating member 60 is positioned by the regulation bar 72.

図7に示されるように、統合弁10には、断熱部材60のうちオリフィス61よりも下流側部分(左側部分)を内外に貫通する排出孔65が設けられている。また、断熱部材60の外周面と、第1ストレート孔部21の内周面との間には、Oリング60Rよりも上流側とは断絶される一方で、液相用流出ポート15及び排出孔65と連通する環状流路66(特許請求の範囲に記載の「湾曲流路」に相当する。)が形成されている。環状流路66は、内圧導入路19に連絡される。詳細には、図6に示されるように、断熱部材60の外周面には、環状流路66を形成するための環状の凹部66Uが形成されている。なお、環状流路66は、C字状であってもよい。 As shown in FIG. 7, the integrated valve 10 is provided with a discharge hole 65 that penetrates in and out of the heat insulating member 60 on the downstream side (left side portion) of the orifice 61. Further, between the outer peripheral surface of the heat insulating member 60 and the inner peripheral surface of the first straight hole portion 21, the upstream side of the O-ring 60R is disconnected, while the liquid phase outflow port 15 and the discharge hole are disconnected. An annular flow path 66 communicating with 65 (corresponding to the "curved flow path" described in the claims) is formed. The annular flow path 66 is connected to the internal pressure introduction path 19. Specifically, as shown in FIG. 6, an annular recess 66U for forming the annular flow path 66 is formed on the outer peripheral surface of the heat insulating member 60. The annular flow path 66 may be C-shaped.

なお、支持ベース11は、上側ベース20Aと下側ベース20Bとが上下に連結してなる。下側ベースは、略直方体状をなし、右面には、駆動弁50が取り付けられている。図2に示されるように、下側ベース20Bの前面には、上述の液相用流出ポート15が開口している。また、図3に示されるように、上側ベース20Aは、正面視四角形状のブロック状をなし、上側ベース20Aの後面には、上述の気相用流出ポート14と流入ポート13が上から並んで開口している。また、気液分離室12は、上側ベース20Aと下側ベース20Bの境目に配置され、気液分離室12の下端部は、下側ベース20Bの上面開口30Aにより構成され、上面開口30Aの底部は、底壁39により構成される。 The support base 11 is formed by connecting the upper base 20A and the lower base 20B vertically. The lower base has a substantially rectangular parallelepiped shape, and a drive valve 50 is attached to the right side. As shown in FIG. 2, the liquid phase outflow port 15 described above is open on the front surface of the lower base 20B. Further, as shown in FIG. 3, the upper base 20A has a rectangular block shape in front view, and the above-mentioned gas phase outflow port 14 and inflow port 13 are arranged side by side on the rear surface of the upper base 20A. It is open. Further, the gas-liquid separation chamber 12 is arranged at the boundary between the upper base 20A and the lower base 20B, and the lower end portion of the gas-liquid separation chamber 12 is composed of the upper surface opening 30A of the lower base 20B and the bottom portion of the upper surface opening 30A. Is composed of a bottom wall 39.

本実施形態では、例えば、断熱部材60は、下側ベース20Bと上側ベース20Aを合体させる前に、下側ベース20B内に取り付けられる。具体的には、下側ベース20Bの第1ストレート孔部21の一端開口から、駆動弁50を取り付ける前に挿入され、第1ストレート孔部21に嵌合されると共に、断熱部材60の係合突部64と第1ストレート孔部21の係合凹部24とが凹凸係合する。そして、下側ベース20Bの上面開口30Aから底壁39の第2係合孔33Bに、規制バー72が挿通されて断熱部材60の係合凹部63に係合する。その後、第1係合孔33Aに傘形カバー部材70が挿通され、規制バー72の上端部に当接する。これにより、断熱部材60が下側ベース20Bに取り付けられる。 In the present embodiment, for example, the heat insulating member 60 is mounted in the lower base 20B before the lower base 20B and the upper base 20A are combined. Specifically, it is inserted from one end opening of the first straight hole portion 21 of the lower base 20B before the drive valve 50 is attached, fitted into the first straight hole portion 21, and engaged with the heat insulating member 60. The protrusion 64 and the engaging recess 24 of the first straight hole 21 engage with each other in a concavo-convex manner. Then, the regulation bar 72 is inserted from the upper surface opening 30A of the lower base 20B into the second engaging hole 33B of the bottom wall 39 and engages with the engaging recess 63 of the heat insulating member 60. After that, the umbrella-shaped cover member 70 is inserted into the first engaging hole 33A and comes into contact with the upper end portion of the regulation bar 72. As a result, the heat insulating member 60 is attached to the lower base 20B.

本実施形態の統合弁10では、気相用流出ポート14を開閉する差圧弁40は、以下のようにして動作する。ヒートポンプサイクル80が通常暖房モードである場合には、図4に示されるように、駆動弁50が開弁状態に駆動されると、弁口62が開放される。この場合、内圧導入路19を通った第1ストレート孔部21内の冷媒の圧力(弁体41の背圧)に対して、連通孔32を通った第2ストレート孔部31内における圧力は、弁体41を開弁位置に移動するほど強くないと考えられ、圧縮コイルバネ42に付勢された弁体41は、弁口43が閉弁状態になるように維持される。そのため、ヒートポンプサイクル80が通常暖房モードの場合、統合弁10の気相用流出ポート14が閉塞され、液相用流出ポート15のみから液体状の冷媒が流出する。ここで、特別暖房モードにヒートポンプサイクル80が切り替わった場合には、駆動弁50が閉弁状態に駆動されて弁口62を閉塞する(図5参照)。気液分離室12で分離された液体状の冷媒は、気液分離室12から第1ストレート孔部21の拡径部23内に流下し、その後、オリフィス61を通過して断熱部材60の内側部分に流れ込む。このとき、液体状の冷媒が減圧される。そして、内圧導入路19により、差圧弁40の弁体41の背圧が第1ストレート孔部21内の圧力と同じになる。そして、連通孔32内の圧力が弁体41の背圧よりも大きくなると、弁体41が図5に示されるように弁口43を開状態にする。これにより、気相用流出ポート14から気体状の冷媒が流出し、コンプレッサ81に流れ込む。これにより、ガスインジェクションサイクルが構成される。なお、差圧弁40の詳細については、例えば、特開2017−53591号等にも開示されている。 In the integrated valve 10 of the present embodiment, the differential pressure valve 40 that opens and closes the gas phase outflow port 14 operates as follows. When the heat pump cycle 80 is in the normal heating mode, the valve port 62 is opened when the drive valve 50 is driven to the valve open state, as shown in FIG. In this case, the pressure in the second straight hole 31 passing through the communication hole 32 is different from the pressure of the refrigerant in the first straight hole 21 passing through the internal pressure introduction path 19 (back pressure of the valve body 41). It is considered that the valve body 41 is not strong enough to move the valve body 41 to the valve opening position, and the valve body 41 urged by the compression coil spring 42 is maintained so that the valve opening 43 is in the closed state. Therefore, when the heat pump cycle 80 is in the normal heating mode, the gas phase outflow port 14 of the integrated valve 10 is blocked, and the liquid refrigerant flows out only from the liquid phase outflow port 15. Here, when the heat pump cycle 80 is switched to the special heating mode, the drive valve 50 is driven to the closed state to close the valve port 62 (see FIG. 5). The liquid refrigerant separated in the gas-liquid separation chamber 12 flows down from the gas-liquid separation chamber 12 into the enlarged diameter portion 23 of the first straight hole portion 21, and then passes through the orifice 61 to the inside of the heat insulating member 60. It flows into the part. At this time, the liquid refrigerant is depressurized. Then, the back pressure of the valve body 41 of the differential pressure valve 40 becomes the same as the pressure in the first straight hole portion 21 due to the internal pressure introduction path 19. Then, when the pressure in the communication hole 32 becomes larger than the back pressure of the valve body 41, the valve body 41 opens the valve opening 43 as shown in FIG. As a result, the gaseous refrigerant flows out from the gas phase outflow port 14 and flows into the compressor 81. This constitutes a gas injection cycle. The details of the differential pressure valve 40 are also disclosed in, for example, Japanese Patent Application Laid-Open No. 2017-53591.

本実施系形態では、流入ポート13、液相用流出ポート15、気相用流出ポート14が、それぞれ特許請求の範囲に記載の、「室内コンデンサ用ポート」、「室外エバポレータ用ポート」、「コンプレッサ用ポート」に相当する。また、流入ポート13により特許請求の範囲に記載の「第1流路」が構成される。さらに、連通孔34、第1ストレート孔部21の拡径部23、断熱部材60の内部及び液相用流出ポート15により、特許請求の範囲に記載の「第2流路」が構成される。また、連通孔32、第2ストレート孔部31、気相用流出ポート14により特許請求の範囲に記載の「第3流路」が構成される。 In the present embodiment, the inflow port 13, the liquid phase outflow port 15, and the gas phase outflow port 14 are described in the claims as "indoor condenser port", "outdoor evaporator port", and "compressor", respectively. Corresponds to "port". Further, the inflow port 13 constitutes the "first flow path" described in the claims. Further, the communication hole 34, the enlarged diameter portion 23 of the first straight hole portion 21, the inside of the heat insulating member 60, and the outflow port 15 for the liquid phase form the "second flow path" described in the claims. Further, the communication hole 32, the second straight hole portion 31, and the gas phase outflow port 14 form the "third flow path" described in the claims.

なお、本開示において、「平行」とは、厳密に平行な状態だけでなく、略平行な状態(例えば、5度以下の角度で互いに傾斜する状態)をも意味する。また、「直交」とは、厳密に90度で交差することだけでなく、略直交すること(例えば、85度以上95度以下の角度で交差すること)をも意味する。 In the present disclosure, "parallel" means not only a state of being strictly parallel but also a state of being substantially parallel (for example, a state of being inclined to each other at an angle of 5 degrees or less). Further, "orthogonal" means not only exactly intersecting at 90 degrees but also substantially orthogonal (for example, intersecting at an angle of 85 degrees or more and 95 degrees or less).

本実施形態の統合弁10の構造については、以上である。本実施形態では、支持ベース11の内部に組み付けられる部材に、オリフィス61が形成されるので、支持ベース11の内部にオリフィス61を直接形成する場合よりも、オリフィス61の形成を容易にすることが可能となる。本実施形態では、オリフィス61が形成される部材が、円筒状であり、その径方向にオリフィス61が形成されるので、オリフィス61を形成がより容易となる。 The structure of the integrated valve 10 of the present embodiment is as described above. In the present embodiment, since the orifice 61 is formed in the member assembled inside the support base 11, it is possible to facilitate the formation of the orifice 61 as compared with the case where the orifice 61 is directly formed inside the support base 11. It will be possible. In the present embodiment, the member on which the orifice 61 is formed is cylindrical, and the orifice 61 is formed in the radial direction thereof, so that the orifice 61 can be formed more easily.

また、オリフィス61が設けられる部材が、断熱部材であるので、オリフィス61を通過する冷媒の密度が外部の熱により変化し難くなり、オリフィス61を通過する冷媒の流量を安定化することが可能となる。ここで、気液分離された液体状の冷媒には、完全に液体の冷媒のみが含まれるわけではなく、気体の冷媒も分離しきれずに含まれ得る。この場合、液体状の冷媒の中の気体冷媒と液体冷媒との速度比であるスリップ比(気体冷媒の速度/液体冷媒の速度)が大きくなると、オリフィス61を通過する冷媒の密度が温度の影響等で変動し易くなり、オリフィス61を通過する冷媒の流量が安定しない。これに対し、本実施形態の統合弁10では、オリフィス61が、断熱部材60を径方向に貫通することで、第1ストレート孔部21内を流通してきた液体状の冷媒が、オリフィス61に進入する際に、方向を変えることになる。これにより、液体状の冷媒中の気体冷媒と液体冷媒を撹拌し易くなり、スリップ比が大きくなることを抑制可能となる。 Further, since the member provided with the orifice 61 is a heat insulating member, the density of the refrigerant passing through the orifice 61 is less likely to change due to external heat, and the flow rate of the refrigerant passing through the orifice 61 can be stabilized. Become. Here, the gas-liquid separated liquid refrigerant does not only contain the completely liquid refrigerant, but may also contain the gaseous refrigerant without being completely separated. In this case, when the slip ratio (the speed of the gas refrigerant / the speed of the liquid refrigerant), which is the speed ratio between the gas refrigerant and the liquid refrigerant in the liquid refrigerant, becomes large, the density of the refrigerant passing through the orifice 61 is affected by the temperature. The flow rate of the refrigerant passing through the orifice 61 is not stable. On the other hand, in the integrated valve 10 of the present embodiment, the orifice 61 penetrates the heat insulating member 60 in the radial direction, so that the liquid refrigerant circulating in the first straight hole 21 enters the orifice 61. When you do, you will change direction. This makes it easier to agitate the gas refrigerant and the liquid refrigerant in the liquid refrigerant, and it is possible to suppress an increase in the slip ratio.

また、本実施形態では、オリフィス61が、断熱部材60を下側から上側に向かって貫通する。従って、気液分離室12で分離された液体状の冷媒が少ない場合でも、断熱部材60の上側部分にオリフィス61がある構成に比べて、液体状の冷媒をオリフィス61に通過させ易くすることが可能となる。 Further, in the present embodiment, the orifice 61 penetrates the heat insulating member 60 from the lower side to the upper side. Therefore, even when the amount of the liquid refrigerant separated in the gas-liquid separation chamber 12 is small, it is possible to facilitate the passage of the liquid refrigerant through the orifice 61 as compared with the configuration in which the orifice 61 is provided in the upper portion of the heat insulating member 60. It will be possible.

[他の実施形態]
(1)上記実施形態では、断熱部材60が、円筒状をなしていたが、これに限定されるものではなく、角筒状をなしていてもよいし、直方体状等のブロック状をなしていてもよい。
[Other Embodiments]
(1) In the above embodiment, the heat insulating member 60 has a cylindrical shape, but the present invention is not limited to this, and the heat insulating member 60 may have a rectangular parallelepiped shape or a block shape such as a rectangular parallelepiped shape. You may.

(2)上記実施形態では、傘形カバー部材70が、規制バー72と別体になっていたが、一体になっていてもよい。 (2) In the above embodiment, the umbrella-shaped cover member 70 is separate from the regulation bar 72, but may be integrated.

10 統合弁
11 支持ベース
60 断熱部材
61 オリフィス
80 ヒートポンプサイクル
10 Integrated valve 11 Support base 60 Insulation member 61 Orifice 80 Heat pump cycle

Claims (13)

室内コンデンサと室外エバポレータとコンプレッサとを有するヒートポンプサイクルに組み込まれて、前記ヒートポンプサイクルを通常室内暖房モードと特別室内暖房モードとに切り替える統合弁であって、
支持ベースと、
前記支持ベースに形成され、冷媒を取り込んで気液分離して気体状の冷媒と液体状の冷媒とを別々に排出する気液分離室と、
前記気液分離室から延びて末端に前記室内コンデンサに接続される室内コンデンサ用ポートを有する前記冷媒取り込み用の第1流路と、
前記気液分離室から延びて末端に前記室外エバポレータに接続される室外エバポレータ用ポートを有する前記液体状の冷媒用の第2流路と、
前記気液分離室から延びて末端に前記コンプレッサの入力ポートに接続されるコンプレッサ用ポートを有する前記気体状の冷媒用の第3流路と、
前記第3流路の途中に備えられ、通常は、前記第3流路を遮断した閉弁状態になり、前記第2流路の圧力に応じて前記第3流路を開通させる開弁状態になる差圧弁と、
前記第2流路の途中に備えられて、前記通常室内暖房モードでは開弁状態とされ、前記特別室内暖房モードでは閉弁状態になるように駆動される駆動弁と、
前記支持ベースより熱伝導率が低い材料で形成され、前記支持ベースの内部に組み付けられて、前記第2流路の一部が貫通する断熱部材と、
前記断熱部材に形成され、前記第2流路のうち前記駆動弁にて開閉される弁口の上流側と下流側との間を連絡するオリフィスと、を備える統合弁。
An integrated valve that is incorporated into a heat pump cycle having an indoor condenser, an outdoor evaporator, and a compressor to switch the heat pump cycle between a normal indoor heating mode and a special indoor heating mode.
Support base and
A gas-liquid separation chamber formed on the support base, which takes in the refrigerant, separates the gas and liquid, and discharges the gaseous refrigerant and the liquid refrigerant separately.
A first flow path for taking in the refrigerant, which has a port for an indoor condenser extending from the gas-liquid separation chamber and connected to the indoor condenser at the end, and a first flow path for taking in the refrigerant.
A second flow path for the liquid refrigerant having an outdoor evaporator port extending from the gas-liquid separation chamber and connected to the outdoor evaporator at the end.
A third flow path for the gaseous refrigerant having a compressor port extending from the gas-liquid separation chamber and connected to the input port of the compressor at the end.
It is provided in the middle of the third flow path, and is usually in a valve closed state in which the third flow path is shut off, and in a valve open state in which the third flow path is opened according to the pressure of the second flow path. With a differential pressure valve
A drive valve provided in the middle of the second flow path and driven so as to be in a valve open state in the normal room heating mode and in a valve closed state in the special room heating mode.
A heat insulating member formed of a material having a lower thermal conductivity than the support base, assembled inside the support base, and through which a part of the second flow path penetrates.
An integrated valve including an orifice formed in the heat insulating member and connecting between the upstream side and the downstream side of the valve port which is opened and closed by the drive valve in the second flow path.
前記第2流路のうち前記断熱部材を貫通する部分の一端開口は、前記駆動弁の弁体によって開閉される弁口をなし、前記一端開口の開口縁は、前記駆動弁の前記弁体が当接する弁座になっている、請求項1に記載の統合弁。 One end opening of the portion of the second flow path that penetrates the heat insulating member forms a valve opening that is opened and closed by the valve body of the drive valve, and the opening edge of the one end opening is formed by the valve body of the drive valve. The integrated valve according to claim 1, which is a valve seat that comes into contact with the valve seat. 前記支持ベースには、前記統合弁の使用時に前記気液分離室の下方で横方向に延びるように配置され、一部が前記第2流路の一部を構成する共に、一端部が前記駆動弁の支持ボディによって閉塞される第1弁取付部をなし、他端部が閉塞されるか縮径された位置決め部となった第1ストレート孔部が形成され、
前記断熱部材は、前記第1ストレート孔部に嵌合されて前記弁座と反対側の端部を前記位置決め部によって位置決めされている、請求項2に記載の統合弁。
The support base is arranged so as to extend laterally below the gas-liquid separation chamber when the integrated valve is used, a part thereof constitutes a part of the second flow path, and one end thereof drives the drive. A first straight hole is formed, which comprises a first valve mounting portion that is closed by a valve support body, and a positioning portion whose other end is closed or reduced in diameter.
The integrated valve according to claim 2, wherein the heat insulating member is fitted in the first straight hole portion and an end portion opposite to the valve seat is positioned by the positioning portion.
前記断熱部材は、筒状をなし、
前記オリフィスは、前記断熱部材の内側面と外側面との間を連絡するように形成されている請求項3に記載の統合弁。
The heat insulating member has a cylindrical shape and has a tubular shape.
The integrated valve according to claim 3, wherein the orifice is formed so as to communicate between the inner surface and the outer surface of the heat insulating member.
前記オリフィスは、前記第1ストレート孔部のうち前記気液分離室との合流部から前記第1ストレート孔部の軸方向で離した位置に配置されている、請求項4に記載の統合弁。 The integrated valve according to claim 4, wherein the orifice is arranged at a position of the first straight hole portion separated from the confluence portion with the gas-liquid separation chamber in the axial direction of the first straight hole portion. 前記オリフィスは、前記統合弁の使用時に上側に向かって前記断熱部材の外内に冷媒が通過するように配置される、請求項4又は5に記載の統合弁。 The integrated valve according to claim 4 or 5, wherein the orifice is arranged so that the refrigerant passes inside and outside the heat insulating member toward the upper side when the integrated valve is used. 前記位置決め部と前記断熱部材とに形成されて、前記断熱部材の軸方向で凹凸係合して、前記断熱部材を回り止めする第1位置決め係合部を備える、請求項4から6のうち何れか1の請求項に記載の統合弁。 Any of claims 4 to 6, further comprising a first positioning engaging portion formed on the positioning portion and the heat insulating member and engaging with the heat insulating member in the axial direction to prevent the heat insulating member from rotating. The integrated valve according to claim 1. 前記気液分離室と前記第1ストレート孔部との間を区画しかつ前記気液分離室と前記第1ストレート孔部との間を連絡する連通孔と第1係合孔と第2係合孔とを有する底壁と、
前記連通孔と前記第2係合孔とを前記統合弁の使用時に上方から覆う傘部から挿入バーが垂下してなり、前記挿入バーが前記第1係合孔に挿入されて前記底壁に固定される傘形カバー部材と、
前記第2係合孔を貫通し、前記統合弁の使用時に上方への移動を前記傘部によって規制されると共に、下端部を前記断熱部材に係合して前記断熱部材の前記駆動弁側への移動を規制する移動規制バーとを備える、請求項4から7のうち何れか1の請求項に記載の統合弁。
A communication hole, a first engagement hole, and a second engagement hole that partition the gas-liquid separation chamber and the first straight hole portion and communicate between the gas-liquid separation chamber and the first straight hole portion. A bottom wall with holes and
An insertion bar hangs down from an umbrella portion that covers the communication hole and the second engagement hole from above when the integrated valve is used, and the insertion bar is inserted into the first engagement hole and is inserted into the bottom wall. Umbrella-shaped cover member to be fixed and
Through the second engaging hole, upward movement is restricted by the umbrella portion when the integrated valve is used, and the lower end portion is engaged with the heat insulating member to the drive valve side of the heat insulating member. The integrated valve according to any one of claims 4 to 7, further comprising a movement control bar that regulates the movement of the vehicle.
前記移動規制バーの前記下端部と、前記断熱部材に形成されて前記移動規制バーの前記下端部が係合する凹部とから前記断熱部材を回り止めする第2位置決め係合部を備える、請求項8に記載の統合弁。 A second positioning engaging portion for preventing the heat insulating member from rotating from a lower end portion of the movement restricting bar and a recess formed in the heat insulating member and engaged with the lower end portion of the movement restricting bar. 8. The integrated valve according to 8. 前記第1弁取付部から前記駆動弁の支持ボディを外したときに、前記移動規制バーの前記下端部が視認可能となる、請求項8又は9に記載の統合弁。 The integrated valve according to claim 8 or 9, wherein the lower end portion of the movement restriction bar becomes visible when the support body of the drive valve is removed from the first valve mounting portion. 前記支持ベースには、前記統合弁の使用時に前記気液分離室の上側を前記第1ストレート孔部と平行に延びる第2ストレート孔部が形成され、
前記第2ストレート孔部のうち前記気液分離室より前記第1弁取付部側の一端側は、前記第3流路の少なくとも一部を構成し、
前記第2ストレート孔部の他端部は、前記差圧弁に備えた付勢部材を支持する支持キャップで閉塞されている、請求項3から10のうち何れか1の請求項に記載の統合弁。
The support base is formed with a second straight hole portion that extends parallel to the first straight hole portion on the upper side of the gas-liquid separation chamber when the integrated valve is used.
Of the second straight hole portion, one end side of the gas-liquid separation chamber on the side of the first valve mounting portion constitutes at least a part of the third flow path.
The integrated valve according to any one of claims 3 to 10, wherein the other end of the second straight hole is closed by a support cap for supporting the urging member provided in the differential pressure valve. ..
前記断熱部材のうち前記オリフィスより下流側部分を内外に貫通する排出孔と、
前記断熱部材の外周面と前記第1ストレート孔部の内周面との間に形成されて、前記第2流路のうち前記弁口より上流側部分から断絶されかつ前記室外エバポレータ用ポート及び前記排出孔と連通し、前記第2流路の一部を構成する湾曲流路と、
前記湾曲流路に連通し、前記差圧弁に前記第2流路の内圧を取り込むための内圧導入路と、を備える、請求項1から11の何れか1の請求項に記載の統合弁。
A discharge hole that penetrates inside and outside the portion of the heat insulating member on the downstream side of the orifice.
The outdoor evaporator port and the outdoor evaporator port formed between the outer peripheral surface of the heat insulating member and the inner peripheral surface of the first straight hole portion and disconnected from the upstream side portion of the second flow path from the valve opening. A curved flow path that communicates with the discharge hole and forms a part of the second flow path,
The integrated valve according to claim 1, further comprising an internal pressure introduction path for communicating with the curved flow path and taking in the internal pressure of the second flow path into the differential pressure valve.
前記排出孔は、前記統合弁の使用時に上方に向かうように配置され、前記断熱部材の内部から外部へと貫通し、
前記内圧導入路は、前記統合弁の使用時に前記湾曲流路から上方に延びるように配置され、
前記室外エバポレータ用ポートは、前記湾曲流路の側方に配置されている、請求項12に記載の統合弁。
The discharge hole is arranged so as to face upward when the integrated valve is used, and penetrates from the inside to the outside of the heat insulating member.
The internal pressure introduction path is arranged so as to extend upward from the curved flow path when the integrated valve is used.
The integrated valve according to claim 12, wherein the outdoor evaporator port is arranged on the side of the curved flow path.
JP2020554566A 2019-09-30 2019-09-30 integrated valve Active JP7139446B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038583 WO2021064812A1 (en) 2019-09-30 2019-09-30 Integrated valve

Publications (2)

Publication Number Publication Date
JPWO2021064812A1 true JPWO2021064812A1 (en) 2021-10-28
JP7139446B2 JP7139446B2 (en) 2022-09-20

Family

ID=75337817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020554566A Active JP7139446B2 (en) 2019-09-30 2019-09-30 integrated valve

Country Status (2)

Country Link
JP (1) JP7139446B2 (en)
WO (1) WO2021064812A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196880A (en) * 2013-03-29 2014-10-16 株式会社デンソー Integrated valve
JP2017053613A (en) * 2015-09-11 2017-03-16 株式会社デンソー Integrated valve
JP2017053591A (en) * 2015-09-11 2017-03-16 株式会社デンソー Integrated valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196880A (en) * 2013-03-29 2014-10-16 株式会社デンソー Integrated valve
JP2017053613A (en) * 2015-09-11 2017-03-16 株式会社デンソー Integrated valve
JP2017053591A (en) * 2015-09-11 2017-03-16 株式会社デンソー Integrated valve

Also Published As

Publication number Publication date
JP7139446B2 (en) 2022-09-20
WO2021064812A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
EP3018434B1 (en) Electromagnetic valve
JP6370269B2 (en) Motorized valve and refrigeration cycle
JP3794100B2 (en) Expansion valve with integrated solenoid valve
JP6149206B2 (en) Control valve for variable capacity compressor
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
US11656014B2 (en) Heat exchanger
JP2008032269A (en) Accumulator
JP3555592B2 (en) Refrigeration cycle device and valve device used therefor
JP5083106B2 (en) Expansion valve and vapor compression refrigeration cycle provided with the same
JP6565701B2 (en) Flow path switching valve
WO2021064812A1 (en) Integrated valve
JP6795193B2 (en) Control valve
JP2001241808A (en) Expansion valve
JP2014114936A (en) Control valve
JP6850060B2 (en) Capacitor
WO2021084740A1 (en) Integrated valve
WO2021084741A1 (en) Integrated valve
JP6064124B2 (en) Control valve for variable capacity compressor
JP7082798B2 (en) Expansion valve
JP6780516B2 (en) Liquid reservoir
JP2003056948A (en) Pressure reducing device
JP2004340267A (en) Four-way selector valve
JP7074321B2 (en) Expansion valve
JP3991874B2 (en) Refrigeration cycle equipment
WO2017175724A1 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220907

R150 Certificate of patent or registration of utility model

Ref document number: 7139446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150