JPWO2021004739A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2021004739A5 JPWO2021004739A5 JP2021575913A JP2021575913A JPWO2021004739A5 JP WO2021004739 A5 JPWO2021004739 A5 JP WO2021004739A5 JP 2021575913 A JP2021575913 A JP 2021575913A JP 2021575913 A JP2021575913 A JP 2021575913A JP WO2021004739 A5 JPWO2021004739 A5 JP WO2021004739A5
- Authority
- JP
- Japan
- Prior art keywords
- movement
- axis
- gas pressure
- pressure spring
- along
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007789 sealing Methods 0.000 claims 21
- 239000012530 fluid Substances 0.000 claims 6
Claims (11)
前記チャンバ(4,5)が、バルブアセンブリ(6)を通って互いに接続され、前記バルブアセンブリ(6)が、
a)流体を収容する2つのチャンバ(4,5)の流体伝導接続のためのチャネル部(13)であって、前記流体のための貫通開口(16)を有するチャネル部(13)と、
b)開放温度範囲内の開放構成および閉鎖温度範囲内の閉鎖構成を有する少なくとも1つの切換手段(8)であって、
b1)前記切換手段(8)が、移動軸(A)に沿って前記チャネル部(13)に対して温度駆動式に少なくとも部分的に可動で、
b2)前記貫通開口(16)の開口法線が、前記切換手段(8)側を向き、
b3)前記チャネル部(13)が、前記移動軸(A)の周りでチャネル壁(9)にて円周方向に密閉される、少なくとも1つの切換手段(8)と、
c)前記チャネル壁(9)の周りに円周方向に延びる少なくとも1つの封止手段(10)であって、
c1)前記封止手段(10)が、取付位置で、前記チャネル壁(9)の少なくとも1つの封止面(9A)に当接し、前記封止面(9A)の面法線が前記切換手段(8)側を向き、
c2)前記少なくとも1つの封止手段(10)が、前記取付位置で、前記少なくとも1つの封止面(9A)および前記閉鎖構成にある前記少なくとも1つの切換手段(8)と封止式に協働して、前記貫通開口(16)を閉鎖し、
c3)前記少なくとも1つの封止手段(10)が、前記取付位置で、前記移動軸(A)に沿って前記開放構成にある前記少なくとも1つの切換手段(8)から隔置され、その結果1次流体経路(11)が、前記貫通開口(16)を通って前記少なくとも1つの切換手段(8)と前記少なくとも1つの封止手段(10)との間で前記2つのチャンバ(4,5)を流体伝導式に接続する、少なくとも1つの封止手段(10)と、
を備える、ガス圧力ばね(1)において、
d)前記チャネル壁(9)内の少なくとも1つの凹部(14)であって、
d1)前記移動軸(A)に沿った前記少なくとも1つの凹部(14)の突出が、前記移動軸(A)に沿った前記封止面(9A)の突出にて密閉され、
d2)前記封止手段(10)が前記移動軸(A)に沿って前記少なくとも1つの封止面(9A)から隔置される前記封止手段(10)の動作位置で、2次流体経路(15)が、前記少なくとも1つの凹部(14)を通って前記2つのチャンバ(4,5)を互いに流体伝導式に接続する、少なくとも1つの凹部(14)を含む、
ことを特徴とするガス圧力ばね(1)。 A gas pressure spring (1) comprising two separate chambers (4,5) containing a fluid,
said chambers (4, 5) are connected to each other through a valve assembly (6), said valve assembly (6)
a) a channel portion (13) for the fluid conducting connection of two chambers (4, 5) containing a fluid, the channel portion (13) having a through opening (16) for said fluid;
b) at least one switching means (8) having an open configuration within the open temperature range and a closed configuration within the closed temperature range,
b1) said switching means (8) are at least partially movable relative to said channel portion (13) along an axis of movement (A) in a temperature-driven manner;
b2) the opening normal of the through opening (16) faces the switching means (8);
b3) at least one switching means (8), wherein said channel portion (13) is circumferentially enclosed by a channel wall (9) around said axis of movement (A);
c) at least one sealing means (10) extending circumferentially around said channel wall (9),
c1) said sealing means (10), in the mounting position, abut against at least one sealing surface (9A) of said channel wall (9), the surface normal of said sealing surface (9A) being aligned with said switching means; (8) turn to the side;
c2) said at least one sealing means (10) sealingly cooperates in said mounting position with said at least one sealing surface (9A) and said at least one switching means (8) in said closed configuration; working to close said through opening (16);
c3) said at least one sealing means (10) is spaced, in said mounting position, from said at least one switching means (8) in said open configuration along said axis of movement (A), so that 1 a subsequent fluid path (11) extends between said at least one switching means (8) and said at least one sealing means (10) through said through opening (16) between said two chambers (4, 5) at least one sealing means (10) fluidly connecting the
In a gas pressure spring (1) comprising
d) at least one recess (14) in said channel wall (9),
d1) the projection of said at least one recess (14) along said axis of movement (A) is sealed with the projection of said sealing surface (9A) along said axis of movement (A),
d2) a secondary fluid path in an operative position of said sealing means (10) in which said sealing means (10) is spaced from said at least one sealing surface (9A) along said axis of movement (A); (15) comprises at least one recess (14) fluidly connecting said two chambers (4, 5) to each other through said at least one recess (14);
A gas pressure spring (1), characterized in that:
ことを特徴とする請求項1に記載のガス圧力ばね(1)。 said at least one recess (14) extending circumferentially around said axis of movement (A) within said outer surface (9B) of said channel wall (9). with grooves for
Gas pressure spring (1) according to claim 1, characterized in that:
ことを特徴とする請求項2に記載のガス圧力ばね(1)。 said outer surface (9B) is cylindrical and/or coaxial with said axis of movement (A);
Gas pressure spring (1) according to claim 2 , characterized in that:
ことを特徴とする請求項2に記載のガス圧力ばね(1)。 The width (B) of said at least one recess (14) in said circumferential direction about said axis of movement (A) is the outer radius (R) of said cylindrical outer surface (9B) of said channel wall (9). less than
Gas pressure spring (1) according to claim 2, characterized in that:
ことを特徴とする請求項1に記載のガス圧力ばね(1)。 said sealing means (10) being fixed transversely to said axis of movement (A) and positively relative to said channel wall (9);
Gas pressure spring (1) according to claim 1 , characterized in that:
ことを特徴とする請求項5に記載のガス圧力ばね(1)。 The thickness of the sealing means (10) along the axis of movement (A) in an unloaded state is such that the thickness of the through opening (16) of the switching means (8) in the open configuration along the axis of movement is greater than the distance of
Gas pressure spring (1) according to claim 5 , characterized in that:
ことを特徴とする請求項1に記載のガス圧力ばね(1)。 said sealing means (10) being movable relative to said channel wall (9) along said axis of movement (A) in said open configuration of said switching means (8);
Gas pressure spring (1) according to claim 1 , characterized in that:
b)前記封止手段(10)の前記厚さが、前記閉鎖構成にある前記切換手段(8)の前記移動軸に沿った前記封止面(9A)からの距離以上である、
ことを特徴とする請求項1に記載のガス圧力ばね(1)。 a) the thickness of the sealing means (10) along the axis of movement (A) in the unloaded state is such that the sealing surface ( 9A) less than the distance from
b) said thickness of said sealing means (10) is equal to or greater than the distance from said sealing surface (9A) along said axis of movement of said switching means (8) in said closed configuration,
Gas pressure spring (1) according to claim 1 , characterized in that:
ことを特徴とする請求項1に記載のガス圧力ばね(1)。 said switching means comprising a bimetal deforming along said axis of movement (A) at a switching temperature between said open temperature range and said closed temperature range;
Gas pressure spring (1) according to claim 1 , characterized in that:
ことを特徴とする請求項1に記載のガス圧力ばね(1)。 the channel portion (13), the opening normal of the through opening (16) and/or the surface normal of the sealing surface ( 9A ) are parallel to the axis of movement (A);
Gas pressure spring (1) according to claim 1 , characterized in that:
b)前記バルブアセンブリ(6)が、前記切換温度を上回る閉鎖温度範囲内で閉鎖され、その結果前記少なくとも2つのチャンバ(4,5)が互いから液密に分離される、
ことを特徴とする請求項1に記載のガス圧力ばね(1)。
a) said valve assembly (6) is opened within an opening temperature range below the switching temperature so that said at least two chambers (4, 5) are fluidly connected;
b) said valve assembly (6) is closed within a closing temperature range above said switching temperature, so that said at least two chambers (4, 5) are liquid-tightly separated from each other,
Gas pressure spring (1) according to claim 1 , characterized in that:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019118211.5 | 2019-07-05 | ||
DE102019118211.5A DE102019118211A1 (en) | 2019-07-05 | 2019-07-05 | Temperature driven valve assembly |
PCT/EP2020/066746 WO2021004739A1 (en) | 2019-07-05 | 2020-06-17 | Temperature-driven valve assembly |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022538041A JP2022538041A (en) | 2022-08-31 |
JPWO2021004739A5 true JPWO2021004739A5 (en) | 2023-05-26 |
JP7539933B2 JP7539933B2 (en) | 2024-08-26 |
Family
ID=71108598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021575913A Active JP7539933B2 (en) | 2019-07-05 | 2020-06-17 | Temperature Activated Valve Assembly |
Country Status (9)
Country | Link |
---|---|
US (1) | US12044287B2 (en) |
EP (1) | EP3994372B1 (en) |
JP (1) | JP7539933B2 (en) |
KR (1) | KR20220027147A (en) |
CN (1) | CN114222874B (en) |
CA (1) | CA3144044A1 (en) |
DE (1) | DE102019118211A1 (en) |
MX (1) | MX2022000291A (en) |
WO (1) | WO2021004739A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220099155A1 (en) * | 2019-01-29 | 2022-03-31 | Suspa Gmbh | Temperature compensating valve for gas springs |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3804326A (en) | 1972-12-27 | 1974-04-16 | Chrysler Corp | Thermal vacuum valve |
US4025042A (en) * | 1973-12-26 | 1977-05-24 | Texas Instruments Incorporated | Thermally actuated valve |
US4068800A (en) * | 1975-07-30 | 1978-01-17 | Texas Instruments Incorporated | Thermally responsive valve assembly |
JPS52140027A (en) * | 1976-05-19 | 1977-11-22 | Automobile Antipollution | Temperature detecting valve |
US4156518A (en) * | 1977-08-29 | 1979-05-29 | Tom Mcguane Industries, Inc. | Electric vacuum valve |
JPS57177470A (en) * | 1981-04-22 | 1982-11-01 | Aisan Ind Co Ltd | Bimetal type thermo-control valve |
US4408751A (en) * | 1981-04-24 | 1983-10-11 | Avm Corporation | Multi-chamber temperature compensated pneumatic counterbalance |
DE3328347A1 (en) * | 1983-08-05 | 1985-02-14 | Fichtel & Sachs Ag, 8720 Schweinfurt | VIBRATION DAMPER OR SHOCK ABSORBER WITH TEMPERATURE COMPENSATION |
US4830277A (en) * | 1988-04-20 | 1989-05-16 | Demaich Industries, Inc. | Thermostatic valve |
WO1991003664A1 (en) * | 1989-09-11 | 1991-03-21 | Stabilus Gmbh | Self-blocking gas spring with temperature-responsive bypass valve |
JP3838448B2 (en) * | 1996-07-31 | 2006-10-25 | 東陶機器株式会社 | Switching valve with temperature-responsive switching mechanism |
US5722643A (en) * | 1996-03-07 | 1998-03-03 | Avm, Inc. | Temperature compensated safety gas spring |
US6092632A (en) * | 1997-10-01 | 2000-07-25 | Fichtel And Sachs Industries, Inc. | Gas spring with temperature compensation |
DE19755080B4 (en) * | 1997-12-11 | 2004-12-02 | Stabilus Gmbh | Gas spring with stop function and temperature compensation |
US6698729B2 (en) * | 2001-06-15 | 2004-03-02 | Mark A. Popjoy | Gas spring having a controllable output force |
US6959921B2 (en) * | 2003-01-13 | 2005-11-01 | Arvinmeritor Technology, Llc | Temperature responsive valve assembly for a pneumatic spring |
US7484720B2 (en) * | 2005-02-07 | 2009-02-03 | Stabilus, Inc. | Temperature compensating valve assembly |
EP2226538B1 (en) * | 2009-03-04 | 2017-01-04 | Jiffy-Tite CO., INC. | Check valve with modulation and/or anti-oscillation feature |
KR20110078706A (en) * | 2009-12-31 | 2011-07-07 | 주식회사 썬 프레인 코 | Gas spring |
DK177481B1 (en) * | 2012-03-27 | 2013-07-08 | Man Diesel & Turbo Deutschland | Gas exchange valve for internal combustion engine |
KR101538020B1 (en) * | 2013-12-30 | 2015-07-20 | 주식회사 썬 프레인 코 | themperature compensated apparatus of gas spring |
DE102014204739A1 (en) * | 2014-03-14 | 2015-10-15 | Zf Friedrichshafen Ag | Vibration damper with a temperature-dependent variable bypass opening |
DK3191749T3 (en) * | 2014-09-12 | 2021-06-07 | Taco Inc | MECHANICALLY CONTROLLED HOT WATER DRAINAGE VALVE ACTIVATED WITHOUT ELECTRICITY |
US9593737B2 (en) * | 2015-01-12 | 2017-03-14 | GM Global Technology Operations LLC | Pressure valve for gas spring |
US9416570B1 (en) * | 2015-04-07 | 2016-08-16 | GM Global Technology Operations LLC | Gas strut rod system |
US9683623B2 (en) * | 2015-04-08 | 2017-06-20 | GM Global Technology Operations LLC | Pressure valve for gas spring |
JP2017015244A (en) * | 2015-06-30 | 2017-01-19 | 日立オートモティブシステムズ株式会社 | Cylinder device |
DE102019112581B4 (en) * | 2019-05-14 | 2020-12-17 | Marcel P. HOFSAESS | Temperature dependent switch |
-
2019
- 2019-07-05 DE DE102019118211.5A patent/DE102019118211A1/en active Pending
-
2020
- 2020-06-17 WO PCT/EP2020/066746 patent/WO2021004739A1/en unknown
- 2020-06-17 US US17/624,397 patent/US12044287B2/en active Active
- 2020-06-17 JP JP2021575913A patent/JP7539933B2/en active Active
- 2020-06-17 CA CA3144044A patent/CA3144044A1/en active Pending
- 2020-06-17 KR KR1020227000421A patent/KR20220027147A/en unknown
- 2020-06-17 MX MX2022000291A patent/MX2022000291A/en unknown
- 2020-06-17 CN CN202080049151.XA patent/CN114222874B/en active Active
- 2020-06-17 EP EP20733749.4A patent/EP3994372B1/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS606682Y2 (en) | Bidirectional valve seal device | |
US4019532A (en) | Flap valve | |
RU2750568C2 (en) | Valve | |
JPWO2021004739A5 (en) | ||
KR101790959B1 (en) | Diaphragm type valve for cryogenic | |
JP7539933B2 (en) | Temperature Activated Valve Assembly | |
EP3376084B1 (en) | Low friction valve | |
JP5535997B2 (en) | Seal structure and temperature expansion valve | |
JPH02120584A (en) | Thermal type control valve | |
JP2002155901A (en) | Self-seal structure for accumulator | |
KR200492544Y1 (en) | A sealing device applied to a vacuum gate valve | |
JP7120618B2 (en) | spool valve | |
JP2005241011A (en) | Valve | |
KR200436495Y1 (en) | vacuum gate balve | |
RU2359163C2 (en) | Thermostatic valve | |
CA2937665C (en) | Valve device for exhaust flow passage | |
CN216112190U (en) | Deformable sealing valve | |
CN216768385U (en) | Butterfly valve with bidirectional sealing double-disc plate | |
JP6999184B2 (en) | Flow switching valve | |
JP3290575B2 (en) | High temperature globe valve | |
US3277923A (en) | Fluid pressure control | |
JPH0417846Y2 (en) | ||
JP3341187B2 (en) | Thermo-responsive steam trap | |
US1352036A (en) | Valve | |
WO2019139006A1 (en) | Butterfly valve |