JPWO2020240959A1 - Ferritic stainless steel sheet and its manufacturing method - Google Patents

Ferritic stainless steel sheet and its manufacturing method Download PDF

Info

Publication number
JPWO2020240959A1
JPWO2020240959A1 JP2020532071A JP2020532071A JPWO2020240959A1 JP WO2020240959 A1 JPWO2020240959 A1 JP WO2020240959A1 JP 2020532071 A JP2020532071 A JP 2020532071A JP 2020532071 A JP2020532071 A JP 2020532071A JP WO2020240959 A1 JPWO2020240959 A1 JP WO2020240959A1
Authority
JP
Japan
Prior art keywords
rolled
hot
content
cold
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020532071A
Other languages
Japanese (ja)
Other versions
JP6809653B1 (en
Inventor
修司 西田
修司 西田
光幸 藤澤
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6809653B1 publication Critical patent/JP6809653B1/en
Publication of JPWO2020240959A1 publication Critical patent/JPWO2020240959A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Cr含有量が15.0質量%未満であり、生産性および耐食性に優れ、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板およびその製造方法を提供すること。質量%で、C:0.004〜0.020%、Si:0.05〜0.90%、Mn:0.05〜0.60%、P:0.050%以下、S:0.030%以下、Al:0.001〜0.100%、Cr:13.0%以上15.0%未満、Ti:0.15〜0.35%、Nb:0.030〜0.090%、V:0.010〜0.200%、およびN:0.004〜0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、結晶粒の平均断面積が200〜400μm2である組織を有し、L方向、D方向およびC方向の0.2%耐力がいずれも230〜300MPaであるフェライト系ステンレス鋼板。To provide a ferritic stainless steel sheet having a Cr content of less than 15.0% by mass, excellent productivity and corrosion resistance, and 0.2% proof stress equivalent to AISI439, and a method for producing the same. By mass%, C: 0.004 to 0.020%, Si: 0.05 to 0.90%, Mn: 0.05 to 0.60%, P: 0.050% or less, S: 0.030 % Or less, Al: 0.001 to 0.100%, Cr: 13.0% or more and less than 15.0%, Ti: 0.15 to 0.35%, Nb: 0.030 to 0.090%, V : 0.010 to 0.200% and N: 0.004 to 0.020%, the balance is composed of Fe and unavoidable impurities, and the average cross-sectional area of the crystal grains is 200 to 400 μm2. A ferrite-based stainless steel plate having a structure and having a 0.2% resistance in the L, D, and C directions of 230 to 300 MPa.

Description

本発明は、フェライト系ステンレス鋼板およびその製造方法に関し、特に、耐食性および生産性に優れ、かつ、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板に関する。 The present invention relates to a ferritic stainless steel sheet and a method for producing the same, and more particularly to a ferritic stainless steel sheet having excellent corrosion resistance and productivity and having a 0.2% proof stress equivalent to AISI439.

ステンレス鋼は、鋼中にCrを含有することで、鋼表面に緻密かつ化学的に安定な不動態皮膜が形成され、耐食性に優れる。ステンレス鋼の中でも、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と比較して、高価な元素を多く含まないために比較的安価であることや、熱膨張係数が小さいこと、磁性を有することなどの特徴から、調理器具や自動車排気系部材をはじめとした様々な用途へ適用されている。 Since stainless steel contains Cr in the steel, a dense and chemically stable passivation film is formed on the steel surface, and the stainless steel is excellent in corrosion resistance. Among stainless steels, ferritic stainless steels are relatively inexpensive because they do not contain many expensive elements, have a small thermal expansion coefficient, and have magnetism, as compared to austenitic stainless steels. Due to its characteristics, it is applied to various applications such as cooking utensils and automobile exhaust system members.

代表的なフェライト系ステンレス鋼の1つに、AISI439(18質量%Cr−0.3質量%Ti鋼)がある。AISI439は、優れた耐食性を有するとともに、Tiが鋼中に含有されていることで鋭敏化の発生が抑制されて溶接部の耐食性に優れる。さらに、AISI439は、再結晶温度が比較的低いフェライト系ステンレス鋼であり、製造工程のうちの1つである冷延板焼鈍工程にて、最高焼鈍温度の高いステンレス鋼専用の焼鈍ラインではなく、最高焼鈍温度が900℃程度と比較的低い普通鋼−ステンレス鋼兼用の焼鈍ラインにて鋼を軟質化させることができ、生産性が高いため、比較的安価である。そのため、AISI439は、自動車排気系部材をはじめとした幅広い用途に適用されている。 One of the typical ferritic stainless steels is AISI439 (18 mass% Cr-0.3 mass% Ti steel). AISI439 has excellent corrosion resistance, and since Ti is contained in the steel, the occurrence of sensitization is suppressed and the welded portion is excellent in corrosion resistance. Further, AISI439 is a ferrite-based stainless steel having a relatively low recrystallization temperature, and is not an annealing line dedicated to stainless steel having a high maximum annealing temperature in the cold-rolled plate annealing process, which is one of the manufacturing processes. The maximum annealing temperature is as low as about 900 ° C. The annealing line for both ordinary steel and stainless steel can soften the steel, and the productivity is high, so it is relatively inexpensive. Therefore, AISI439 is applied to a wide range of applications including automobile exhaust system members.

一方、近年では、上述の自動車排気系部材などにおいて、鋼板を適用する部材の構造の改善等が進み、従来AISI439が使用されていた部材でAISI439ほどの耐食性が求められなくなる事例が発生している。これらの事例では、AISI439の代替材としてSUH409L(11質量%Cr−0.2質量%Ti鋼)が検討された。 On the other hand, in recent years, in the above-mentioned automobile exhaust system members and the like, improvements in the structure of the members to which the steel plate is applied have progressed, and there have been cases where the members for which AISI439 has been conventionally used are not required to have the same corrosion resistance as AISI439. .. In these cases, SUH409L (11% by mass Cr-0.2% by mass Ti steel) was considered as an alternative to AISI439.

SUH409Lは、AISI439と同様に再結晶温度が比較的低いため生産性が高い。さらに、原料コストや製造コストの増大を招くCrの含有量が低いため、AISI439よりも安価である。しかしながら、多くの事例では、AISI439をSUH409Lによって代替することができず、AISI439が用いられ続けてきた。 SUH409L, like AISI439, has a relatively low recrystallization temperature and thus has high productivity. Further, it is cheaper than AISI439 because the content of Cr that causes an increase in raw material cost and manufacturing cost is low. However, in many cases, AISI439 could not be replaced by SUH409L, and AISI439 has continued to be used.

AISI439が使用されている部材の材料を、SUH409Lによって代替できない理由は、主に以下に示す2点にある。まず、SUH409Lは、耐食性向上元素であるCrの含有量がAISI439よりも低く、AISI439と比較して耐食性が低いためである。部材構造の最適化等によって、鋼板にはAISI439ほどの耐食性が求められない事例も発生しているが、SUH409Lでは耐食性が不足している場合がある。 The reason why SUH409L cannot replace the material of the member in which AISI439 is used is mainly due to the following two points. First, SUH409L has a lower content of Cr, which is an element for improving corrosion resistance, than AISI439, and has lower corrosion resistance than AISI439. In some cases, the steel sheet is not required to have the same corrosion resistance as AISI439 due to the optimization of the member structure, but the SUH409L may have insufficient corrosion resistance.

次に、SUH409Lは、耐食性向上元素であると同時に固溶強化元素でもあるCrの含有量がAISI439よりも低く、0.2%耐力が低いためである。鋼板の0.2%耐力の差は、鋼板に曲げ加工などの加工を施した後に鋼板が僅かに元の形状に戻る、いわゆるスプリングバックの量に変化を招く。このようなスプリングバック量の差は、鋼板の加工において問題となる。 Next, SUH409L has a lower content of Cr, which is both a corrosion resistance improving element and a solid solution strengthening element, than AISI439, and has a low 0.2% proof stress. The difference in 0.2% proof stress of the steel sheet causes a change in the amount of so-called springback, in which the steel sheet slightly returns to its original shape after being bent or otherwise processed. Such a difference in the amount of springback becomes a problem in the processing of steel sheets.

例えば曲げ加工においては、加工時の曲げ角度は、目標の曲げ角度より大きく設定される。これにより、加工時の曲げ角度と、スプリングバックによって戻る角度との合計が、ちょうど目標の曲げ角度となり、所望の加工形状が得られる。 For example, in bending, the bending angle at the time of processing is set to be larger than the target bending angle. As a result, the sum of the bending angle at the time of machining and the angle returned by the springback becomes exactly the target bending angle, and a desired machining shape can be obtained.

ここで、AISI439に対して最適化された従来の加工法によってSUH409Lを加工した場合、スプリングバック量が小さくなり、所望の加工形状が得られない。スプリングバック量は、実験的および経験的に見積もられるものであるため、従来の加工法をSUH409Lに適したものへ変更するためには、その加工方法を新たに検討するために多大な時間とコストがかかるとともに、加工のために新たな金型を作製することが必要な場合がある。そのため、SUH409LによるAISI439の代替がなされないことが多い。 Here, when SUH409L is machined by a conventional machining method optimized for AISI439, the amount of springback becomes small and a desired machining shape cannot be obtained. Since the amount of springback is estimated experimentally and empirically, it takes a lot of time and cost to newly consider the processing method in order to change the conventional processing method to one suitable for SUH409L. In addition, it may be necessary to prepare a new mold for processing. Therefore, SUH409L often does not replace AISI439.

すなわち、AISI439よりも安価であり、かつ、SUH409Lよりも耐食性に優れ、かつ、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板が求められていた。そこで本発明者らは、SUH409LやAISI439と同様に冷延板焼鈍工程にて普通鋼−ステンレス鋼兼用の焼鈍ラインを用いることができること、および、コスト低減のためにCr含有量を15.0質量%未満とすることを前提とし、SUH409Lに対して耐食性を向上させ、さらに、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板について検討を行うこととした。 That is, there has been a demand for a ferritic stainless steel sheet that is cheaper than AISI439, has better corrosion resistance than SUH409L, and has 0.2% proof stress equivalent to AISI439. Therefore, the present inventors can use an annealing line for both ordinary steel and stainless steel in the cold-rolled sheet annealing step as in SUH409L and AISI439, and in order to reduce the cost, the Cr content is 15.0 mass. On the premise that the content is less than%, it was decided to study a ferritic stainless steel sheet having improved corrosion resistance with respect to SUH409L and further having 0.2% proof stress equivalent to AISI439.

フェライト系ステンレス鋼の0.2%耐力を上昇させる技術は、例えば、特許文献1および2に開示されている。 Techniques for increasing the 0.2% proof stress of ferritic stainless steel are disclosed in, for example, Patent Documents 1 and 2.

特許文献1には、C:0.015質量%以下、Si:0.5質量%以下、Cr:25.0超〜35.0質量%、N:0.020質量%以下、Ti:0.50質量%以下を含み、残部が不可避的不純物を除きFeの組成をもち、三方向0.2%耐力の最小値が320N/mm以上である耐衝撃穴開き性に優れたフェライト系ステンレス鋼が開示されている。Patent Document 1 describes C: 0.015% by mass or less, Si: 0.5% by mass or less, Cr: more than 25.0 to 35.0% by mass, N: 0.020% by mass or less, Ti: 0. Ferritic stainless steel with excellent impact resistance and perforation, containing 50% by mass or less, the balance having Fe composition excluding unavoidable impurities, and a minimum value of 0.2% proof stress in three directions of 320 N / mm 2 or more. Is disclosed.

特許文献2には、C:0.15質量%以下、Si:1.0質量%以下、Mn:1.0質量%以下、S:0.005質量%以下、Cr:10〜20質量%、Ni:0.5質量%以下、Al:0.001〜0.05質量%、Fe:実質的に残部の組成で、サイズ:10μm以下のAl系及び/又はAl・MgO系介在物が清浄度:0.06以下で分散した加工フェライト組織をもつステンレス鋼板の加工硬化材が開示されている。Patent Document 2 describes C: 0.15% by mass or less, Si: 1.0% by mass or less, Mn: 1.0% by mass or less, S: 0.005% by mass or less, Cr: 10 to 20% by mass, Ni: 0.5% by mass or less, Al: 0.001 to 0.05% by mass, Fe: Substantially the composition of the balance, size: 10 μm or less, Al 2 O 3 system and / or Al 2 O 3 · MgO A processed hardened material of a stainless steel plate having a processed ferrite structure in which system inclusions are dispersed with a cleanliness of 0.06 or less is disclosed.

特開2007−9263号公報Japanese Unexamined Patent Publication No. 2007-9263 国際公開第2005/014873号International Publication No. 2005/014873

特許文献1に開示された技術では、鋼の0.2%耐力を向上させることを目的に、結晶粒を微細化させるため、原料コストや製造コストの上昇を招くCrを25.0質量%超含有することが必要であり、Cr含有量を低減させることが希求されていた。 In the technique disclosed in Patent Document 1, in order to refine the crystal grains for the purpose of improving the 0.2% proof stress of steel, Cr that causes an increase in raw material cost and manufacturing cost exceeds 25.0% by mass. It is necessary to contain it, and it has been desired to reduce the Cr content.

特許文献2に開示された技術では、鋼の0.2%耐力を向上させることを目的に、軟質化させた鋼に圧延加工を加えている。本発明者らは、特許文献2に開示された成分組成および製造方法にてフェライト系ステンレス鋼板を実験室にて製造・評価したが、目的とする0.2%耐力を安定して得ることが困難であった。 In the technique disclosed in Patent Document 2, the softened steel is rolled for the purpose of improving the 0.2% proof stress of the steel. The present inventors have manufactured and evaluated a ferritic stainless steel sheet in a laboratory using the component composition and manufacturing method disclosed in Patent Document 2, and have found that the desired 0.2% proof stress can be stably obtained. It was difficult.

本発明は、上記問題点に鑑み開発されたものであって、Cr含有量が15.0質量%未満であり、生産性および耐食性に優れ、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板およびその製造方法を提供することを目的としている。 The present invention has been developed in view of the above problems, and is a ferritic stainless steel having a Cr content of less than 15.0% by mass, excellent productivity and corrosion resistance, and 0.2% proof stress equivalent to AISI439. It is an object of the present invention to provide a stainless steel sheet and a method for producing the same.

ここで、本発明において「生産性に優れる」とは、次に述べる焼鈍にともなう冷延板の硬さ変化の評価にて、900℃×20s(900℃において20s)の冷延板焼鈍を行った冷延焼鈍板の硬さが式(1)を満たすまで低下することを意味する。式(1)を満たせば900℃×20sで冷延板焼鈍が可能であり、普通鋼−ステンレス鋼兼用の焼鈍ラインで冷延板焼鈍を行うことができる。 Here, in the present invention, "excellent in productivity" means that the cold-rolled sheet is annealed at 900 ° C. × 20 s (20 s at 900 ° C.) in the evaluation of the hardness change of the cold-rolled sheet due to annealing described below. It means that the hardness of the cold-rolled annealed sheet decreases until the formula (1) is satisfied. If the formula (1) is satisfied, the cold-rolled plate can be annealed at 900 ° C. × 20 s, and the cold-rolled plate can be annealed on the annealing line for both ordinary steel and stainless steel.

焼鈍にともなう冷延板の硬さ変化の評価は、熱延焼鈍板を67%の圧下率にて冷間圧延して得た冷延板を対象に、冷延板(冷延板焼鈍未実施の冷延板)の硬さaと、900℃にて20sの冷延板焼鈍を施した冷延焼鈍板の硬さbと、十分に軟質化した場合の指標として1050℃にて20sの冷延板焼鈍を施した冷延焼鈍板の硬さcとを比較することで実施する。前記評価には、前記冷間圧延して得た冷延板より長さ15mm×幅20mmの試験片を3枚切出し、そのうち1枚の試験片の断面のビッカース硬さ(HV)を試験力9.8N、保持時間15秒の条件にて測定し、上記の硬さaとする。また、残り2枚の試験片について、それぞれ900℃において20s、1050℃において20sの冷延板焼鈍を施した後、長さ15mm×幅10mmのサイズに切断し、切断した試験片の断面のビッカース硬さ(HV)を上述した条件にて測定し、それぞれ上記の硬さb、cとする。冷延板焼鈍を施すことで、鋼板の硬さはaからcへ向かって変化(軟質化)するが,その軟質化による硬度低下のうちの90%以上が、900℃における20sの焼鈍で達成されるもの、すなわち、下記式(1)を満たすものを「生産性に優れる」と評価する。
c+0.1×(a−c)≧b ・・・(1)
For the evaluation of the change in hardness of the cold-rolled plate due to annealing, the cold-rolled plate (cold-rolled plate not tempered) was evaluated for the cold-rolled plate obtained by cold-rolling the hot-rolled rolled plate at a reduction rate of 67%. The hardness a of the cold-rolled sheet) and the hardness b of the cold-rolled annealed plate that has been annealed for 20 s at 900 ° C. This is carried out by comparing the hardness c of the cold-rolled rolled-rolled plate that has been rolled-rolled. For the evaluation, three test pieces having a length of 15 mm and a width of 20 mm were cut out from the cold rolled plate obtained by cold rolling, and the Vickers hardness (HV) of the cross section of one of the test pieces was used as a test force 9. Measure under the conditions of 8.N and holding time of 15 seconds, and use the above hardness a. The remaining two test pieces were annealed with a cold rolled plate at 900 ° C. for 20 s and 1050 ° C. for 20 s, and then cut into a size of 15 mm in length and 10 mm in width. The hardness (HV) is measured under the above-mentioned conditions, and is defined as the above-mentioned hardnesses b and c, respectively. By applying cold-rolled sheet annealing, the hardness of the steel sheet changes (softens) from a to c, but 90% or more of the hardness decrease due to the softening is achieved by annealing at 900 ° C for 20 s. Those that are satisfied, that is, those that satisfy the following formula (1) are evaluated as "excellent in productivity".
c + 0.1 × (ac) ≧ b ・ ・ ・ (1)

また、本発明において「耐食性に優れる」とは、鋼板をエメリー研磨紙で400番まで研磨した後、JASO M609−91に準拠して、5.0質量%NaCl水溶液の噴霧(2時間、35℃、98%RH)、乾燥(4時間、60℃、30%RH)、湿潤(2時間、50℃、95%RH以上)を1サイクルとして、5サイクルの腐食試験を行った結果、銹面積率が20%以下であることを指す。 Further, in the present invention, "excellent in corrosion resistance" means that after polishing a steel sheet to No. 400 with emery abrasive paper, a 5.0 mass% NaCl aqueous solution is sprayed (2 hours, 35 ° C.) in accordance with JASO M609-91. , 98% RH), dry (4 hours, 60 ° C, 30% RH), wet (2 hours, 50 ° C, 95% RH or more) as one cycle, and a corrosion test of 5 cycles was performed. Indicates that is 20% or less.

また、本発明において「AISI439と同等の0.2%耐力を有する」とは、鋼板から圧延方向(L方向)、圧延方向に対して45度方向(D方向)、および、圧延方向に対して直角方向(C方向)のそれぞれが長手となるように、JIS13号B試験片を採取し、引張試験を行った結果、得られる0.2%耐力のいずれもが230MPa以上300MPa以下であることを指す。 Further, in the present invention, "having a 0.2% proof stress equivalent to AISI439" means that the steel sheet has a rolling direction (L direction), a 45 degree direction (D direction) with respect to the rolling direction, and a rolling direction. As a result of collecting JIS No. 13B test pieces and conducting a tensile test so that each of them is longitudinal in the perpendicular direction (C direction), it is found that all of the obtained 0.2% proof stress is 230 MPa or more and 300 MPa or less. Point.

本発明者らは、上記の課題に対し、Cr含有量が15.0質量%未満であり、生産性および耐食性に優れ、さらには、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板を検討した。その結果、以下の知見を得た。 In response to the above problems, the present inventors have a Cr content of less than 15.0% by mass, are excellent in productivity and corrosion resistance, and further have a ferritic stainless steel sheet having a 0.2% proof stress equivalent to AISI439. It was investigated. As a result, the following findings were obtained.

すなわち、質量%で、C:0.004〜0.020%、Si:0.05〜0.90%、Mn:0.05〜0.60%、P:0.050%以下、S:0.030%以下、Al:0.001〜0.100%、Cr:13.0%以上15.0%未満、Ti:0.15〜0.35%、Nb:0.030〜0.090%、V:0.010〜0.200%、およびN:0.004〜0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、結晶粒の平均断面積が200〜400μmである組織を有し、L方向、D方向およびC方向の0.2%耐力がいずれも230〜300MPaであるフェライト系ステンレス鋼板とすることによって、生産性および耐食性に優れ、かつ、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板を得ることができる。That is, in terms of mass%, C: 0.004 to 0.020%, Si: 0.05 to 0.90%, Mn: 0.05 to 0.60%, P: 0.050% or less, S: 0. .030% or less, Al: 0.001 to 0.100%, Cr: 13.0% or more and less than 15.0%, Ti: 0.15 to 0.35%, Nb: 0.030 to 0.090% , V: 0.010 to 0.200%, and N: 0.004 to 0.020%, the balance is composed of Fe and unavoidable impurities, and the average cross-sectional area of the crystal grains is 200 to 400 μm. By using a ferrite-based stainless steel plate having a structure of 2 and having a 0.2% resistance in the L, D, and C directions of 230 to 300 MPa, the productivity and corrosion resistance are excellent, and AISI439 is used. A ferrite-based stainless steel plate having the same 0.2% strength can be obtained.

その機構は以下のように考えられる。 The mechanism is considered as follows.

AISI439よりもCr含有量が低いフェライト系ステンレス鋼板において、その0.2%耐力を上昇させAISI439と同等とすることは、冷延焼鈍板の結晶粒を微細化するとともに、鋼中に適切な固溶強化元素を含有させることによって達成される。 In a ferritic stainless steel sheet having a Cr content lower than that of AISI439, increasing its 0.2% proof stress to make it equivalent to AISI439 is to make the crystal grains of the cold-rolled annealed sheet finer and to provide an appropriate solid solution in the steel. This is achieved by including a ferritic element.

ここで、冷延焼鈍板の結晶粒微細化には、製造途中にて得られる中間素材である熱延焼鈍板の結晶粒微細化が有効である。また、熱延焼鈍板の結晶粒微細化は、熱間圧延および熱延板焼鈍の条件を適切とすることで達成される。さらに、結晶粒が微細な熱延焼鈍板を冷間圧延した後、適切な条件で仕上げ焼鈍を行うことで、結晶粒が微細な冷延焼鈍板を得ることができ、0.2%耐力を向上させることができる。 Here, in order to refine the crystal grains of the cold-rolled annealed plate, it is effective to refine the crystal grains of the hot-rolled annealed plate, which is an intermediate material obtained during production. Further, the grain refinement of the hot-rolled annealed plate is achieved by making the conditions of hot rolling and hot-rolled annealed suitable. Further, by cold-rolling a hot-rolled annealed plate having fine crystal grains and then performing finish annealing under appropriate conditions, a cold-rolled annealed plate having fine crystal grains can be obtained, and a 0.2% proof stress can be obtained. Can be improved.

また、冷延焼鈍板の0.2%耐力を上昇させるための固溶強化元素としては、耐食性の低下を招かないという観点からNbを選択した。ただし、Nbを含有すると冷延板の再結晶温度が上昇する。これに対しては、Nb含有量に適切な上限を設けるとともに、鋼にNbと適切な量のVとを複合的に含有させることによって再結晶温度の上昇を抑制する方法を見出した。Nbによる再結晶温度の上昇は、一部のNbが微細なNbCとして析出し、これが転位および結晶粒界のピンニング効果を起こすことによる。これに対して、鋼中にVを含有させると、析出するNbCは主に粗大なTiNとの複合析出物(粗大なTiNの表面に(Nb,V)Cが析出)として析出し再結晶温度の上昇が抑制されると考えられる。このNbによる固溶強化と、上述の結晶粒微細化とを複合的に実現することによって、生産性および耐食性に優れ、かつ、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板を実現することができる。 Further, as a solid solution strengthening element for increasing the 0.2% proof stress of the cold-rolled annealed plate, Nb was selected from the viewpoint of not causing a decrease in corrosion resistance. However, when Nb is contained, the recrystallization temperature of the cold rolled plate rises. To this end, we have found a method of suppressing an increase in recrystallization temperature by setting an appropriate upper limit on the Nb content and compoundly containing Nb and an appropriate amount of V in the steel. The increase in the recrystallization temperature due to Nb is due to the fact that some Nb are precipitated as fine NbC, which causes dislocations and pinning effects at grain boundaries. On the other hand, when V is contained in the steel, the precipitated NbC is mainly precipitated as a composite precipitate with coarse TiN ((Nb, V) C is precipitated on the surface of the coarse TiN) and the recrystallization temperature. Is thought to be suppressed. By combining the solid solution strengthening by Nb and the above-mentioned grain refinement, a ferritic stainless steel sheet having excellent productivity and corrosion resistance and 0.2% proof stress equivalent to AISI439 has been realized. can do.

本発明は、上記の知見に立脚するものであり、その要旨構成は次のとおりである。
[1]質量%で、
C:0.004〜0.020%、
Si:0.05〜0.90%、
Mn:0.05〜0.60%、
P:0.050%以下、
S:0.030%以下、
Al:0.001〜0.100%、
Cr:13.0%以上15.0%未満、
Ti:0.15〜0.35%、
Nb:0.030〜0.090%、
V:0.010〜0.200%、および
N:0.004〜0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
結晶粒の平均断面積が200〜400μmである組織を有し、
L方向、D方向およびC方向の0.2%耐力がいずれも230〜300MPaであるフェライト系ステンレス鋼板。
[2]前記成分組成が、さらに、質量%で、
Ni:0.01〜0.60%、
Cu:0.01〜0.80%、
Co:0.01〜0.50%、
Mo:0.01〜1.00%、および
W:0.01〜0.50%
のうちから選ばれた1種または2種以上を含有する[1]に記載のフェライト系ステンレス鋼板。
[3]前記成分組成が、さらに、質量%で、
Zr:0.01〜0.50%、
B:0.0003〜0.0030%、
Mg:0.0005〜0.0100%、
Ca:0.0003〜0.0030%、
Y:0.01〜0.20%、
REM(希土類金属):0.01〜0.10%、
Sn:0.01〜0.50%、および
Sb:0.01〜0.50%のうちから選ばれた1種または2種以上を含有する[1]または[2]に記載のフェライト系ステンレス鋼板。
[4]自動車排気系部材用である、[1]〜[3]のいずれかに記載のフェライト系ステンレス鋼板。
[5]前記[1]〜[4]のいずれかに記載のフェライト系ステンレス鋼板の製造方法であって、
前記成分組成を有する鋼素材を、1100〜1250℃の温度で10分以上保持した後、熱間圧延して熱延板とし、その後、500〜600℃の巻取温度で巻き取る熱間圧延工程と、
前記熱間圧延工程後の熱延板に940〜1000℃の温度で5〜180秒保持する熱延板焼鈍を施し熱延焼鈍板を得る熱延板焼鈍工程と、
前記熱延板焼鈍工程後の熱延焼鈍板を冷間圧延して冷延板とした後、880〜900℃の温度で5〜180秒保持する冷延板焼鈍を施し冷延焼鈍板を得る冷延板焼鈍工程と、を有する、フェライト系ステンレス鋼板の製造方法。
The present invention is based on the above findings, and its gist structure is as follows.
[1] By mass%,
C: 0.004 to 0.020%,
Si: 0.05 to 0.90%,
Mn: 0.05 to 0.60%,
P: 0.050% or less,
S: 0.030% or less,
Al: 0.001 to 0.100%,
Cr: 13.0% or more and less than 15.0%,
Ti: 0.15-0.35%,
Nb: 0.030 to 0.090%,
A component composition containing V: 0.010 to 0.200% and N: 0.004 to 0.020%, the balance of which is Fe and unavoidable impurities.
It has a structure in which the average cross-sectional area of the crystal grains is 200 to 400 μm 2.
A ferritic stainless steel sheet having a 0.2% proof stress in the L, D and C directions of 230 to 300 MPa.
[2] The composition of the components is further increased by mass%.
Ni: 0.01-0.60%,
Cu: 0.01 to 0.80%,
Co: 0.01-0.50%,
Mo: 0.01 to 1.00%, and W: 0.01 to 0.50%
The ferrite-based stainless steel sheet according to [1], which contains one or more selected from the above.
[3] The composition of the components is further increased by mass%.
Zr: 0.01-0.50%,
B: 0.0003 to 0.0030%,
Mg: 0.0005-0.0100%,
Ca: 0.0003 to 0.0030%,
Y: 0.01 to 0.20%,
REM (rare earth metal): 0.01-0.10%,
The ferrite stainless steel according to [1] or [2], which contains one or more selected from Sn: 0.01 to 0.50% and Sb: 0.01 to 0.50%. Steel plate.
[4] The ferritic stainless steel sheet according to any one of [1] to [3], which is used for automobile exhaust system members.
[5] The method for producing a ferritic stainless steel sheet according to any one of [1] to [4] above.
A hot rolling step in which a steel material having the above-mentioned composition is held at a temperature of 1100 to 1250 ° C. for 10 minutes or more, then hot-rolled to obtain a hot-rolled plate, and then wound at a winding temperature of 500 to 600 ° C. When,
A hot-rolled plate annealing step of obtaining a hot-rolled annealed plate by subjecting the hot-rolled plate after the hot-rolling step to annealing the hot-rolled plate at a temperature of 940 to 1000 ° C. for 5 to 180 seconds.
The hot-rolled annealed plate after the hot-rolled plate annealing step is cold-rolled to obtain a cold-rolled plate, and then cold-rolled annealed at a temperature of 880 to 900 ° C. for 5 to 180 seconds to obtain a cold-rolled annealed plate. A method for manufacturing a ferrite-based stainless steel plate, which comprises a cold-rolled sheet annealing step.

本発明によれば、Cr含有量が15.0質量%未満であり、生産性および耐食性に優れ、さらには、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼板およびその製造方法を提供することができる。 According to the present invention, there is provided a ferritic stainless steel sheet having a Cr content of less than 15.0% by mass, excellent productivity and corrosion resistance, and a 0.2% proof stress equivalent to AISI439, and a method for producing the same. can do.

以下、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described.

まず、本発明で成分組成を限定した理由について説明する。なお、鋼板の成分の含有量を示す「%」は、特に断らない限り質量%を意味する。 First, the reason for limiting the component composition in the present invention will be described. In addition, "%" indicating the content of the component of a steel sheet means mass% unless otherwise specified.

C:0.004〜0.020%
Cは、鋼の0.2%耐力を高めるのに有効な元素である。この効果はC含有量を0.004%以上にすることで得られる。しかし、C含有量が0.020%を超えると、鋼が硬質化して成形性が低下したり、耐食性が低下する。よって、C含有量は0.004〜0.020%とする。好ましくは、C含有量は0.006%以上である。より好ましくは、C含有量は0.008%以上である。また、好ましくは、C含有量は0.015%以下である。より好ましくは、C含有量は0.012%以下である。
C: 0.004 to 0.020%
C is an element effective for increasing the 0.2% proof stress of steel. This effect can be obtained by setting the C content to 0.004% or more. However, if the C content exceeds 0.020%, the steel becomes hard and the moldability is lowered, or the corrosion resistance is lowered. Therefore, the C content is set to 0.004 to 0.020%. Preferably, the C content is 0.006% or more. More preferably, the C content is 0.008% or more. Further, preferably, the C content is 0.015% or less. More preferably, the C content is 0.012% or less.

Si:0.05〜0.90%
Siは、脱酸作用を有する。この効果は、Si含有量を0.05%以上にすることで得られる。しかし、Si含有量が0.90%を超えると鋼が硬質化して0.2%耐力が過度に上昇する。従って、Si含有量は0.05〜0.90%とする。好ましくは、Si含有量は0.07%以上である。より好ましくは、Si含有量は0.10%以上である。さらに好ましくは、Si含有量は0.15%以上である。さらにより好ましくは、Si含有量は0.22%以上である。また、好ましくは、Si含有量は0.80%以下である。より好ましくは、Si含有量は0.60%以下である。
Si: 0.05 to 0.90%
Si has a deoxidizing effect. This effect can be obtained by setting the Si content to 0.05% or more. However, when the Si content exceeds 0.90%, the steel becomes hard and the 0.2% proof stress increases excessively. Therefore, the Si content is set to 0.05 to 0.90%. Preferably, the Si content is 0.07% or more. More preferably, the Si content is 0.10% or more. More preferably, the Si content is 0.15% or more. Even more preferably, the Si content is 0.22% or more. Further, preferably, the Si content is 0.80% or less. More preferably, the Si content is 0.60% or less.

Mn:0.05〜0.60%
Mnは、脱酸効果を有する。この効果は、Mn含有量を0.05%以上にすることで得られる。しかし、Mn含有量が0.60%を超えるとMnSの析出および粗大化が促進され、このMnSが腐食の起点となって鋼板の耐食性が低下する。従って、Mn含有量は0.05〜0.60%とする。好ましくは、Mn含有量は0.15%以上である。また、好ましくは、Mn含有量は0.30%以下である。
Mn: 0.05 to 0.60%
Mn has a deoxidizing effect. This effect can be obtained by setting the Mn content to 0.05% or more. However, when the Mn content exceeds 0.60%, precipitation and coarsening of MnS are promoted, and this MnS becomes a starting point of corrosion and the corrosion resistance of the steel sheet is lowered. Therefore, the Mn content is set to 0.05 to 0.60%. Preferably, the Mn content is 0.15% or more. Further, preferably, the Mn content is 0.30% or less.

P:0.050%以下
Pは耐食性を低下させる元素である。また、Pは結晶粒界に偏析することで熱間加工性を低下させる。そのため、P含有量は、可能な限り少ないほうが望ましく、0.050%以下とする。好ましくは、P含有量は0.040%以下である。さらに好ましくは、P含有量は0.030%以下である。
P: 0.050% or less P is an element that reduces corrosion resistance. Further, P is segregated at the grain boundaries to reduce hot workability. Therefore, the P content is preferably as low as possible, and is 0.050% or less. Preferably, the P content is 0.040% or less. More preferably, the P content is 0.030% or less.

S:0.030%以下
Sは、Mnと析出物としてMnSを形成する。このMnSは腐食の起点となり、耐食性を低下させる。よって、S含有量は、低いほうが望ましく、0.030%以下とする。好ましくは、S含有量は0.020%以下である。
S: 0.030% or less S forms MnS as a precipitate with Mn. This MnS becomes a starting point of corrosion and lowers corrosion resistance. Therefore, the S content is preferably as low as 0.030% or less. Preferably, the S content is 0.020% or less.

Al:0.001〜0.100%
Alは、脱酸効果を有する。この効果は、Al含有量が0.001%以上で得られる。しかし、Al含有量が0.100%を超えると鋼が硬質化して成形性が低下するとともに耐食性が低下する。よって、Al含有量は0.001〜0.100%とする。好ましくは、Al含有量は0.030%以上である。また、好ましくは、Al含有量は0.060%以下である。
Al: 0.001 to 0.100%
Al has a deoxidizing effect. This effect is obtained when the Al content is 0.001% or more. However, when the Al content exceeds 0.100%, the steel becomes hard and the moldability is lowered, and the corrosion resistance is lowered. Therefore, the Al content is set to 0.001 to 0.100%. Preferably, the Al content is 0.030% or more. Further, preferably, the Al content is 0.060% or less.

Cr:13.0%以上15.0%未満
Crは、表面に不働態皮膜を形成して耐食性を高める元素である。Cr含有量が13.0%未満では十分な耐食性が得られない。一方、Cr含有量が15.0%以上となると、原料コストや製造コストの増大を招く。よって、Cr含有量は13.0%以上15.0%未満とする。好ましくは、Cr含有量は13.5%以上である。また、好ましくは、Cr含有量は14.5%以下である。好ましくは、Cr含有量は14.0%以下である。
Cr: 13.0% or more and less than 15.0% Cr is an element that forms a passivation film on the surface to enhance corrosion resistance. If the Cr content is less than 13.0%, sufficient corrosion resistance cannot be obtained. On the other hand, when the Cr content is 15.0% or more, the raw material cost and the manufacturing cost increase. Therefore, the Cr content is set to 13.0% or more and less than 15.0%. Preferably, the Cr content is 13.5% or more. Further, preferably, the Cr content is 14.5% or less. Preferably, the Cr content is 14.0% or less.

Ti:0.15〜0.35%
Tiは、炭窒化物を形成することでC、Nを固定し、鋭敏化の発生を抑制する元素である。この効果は、Ti含有量を0.15%以上にすることで得られる。しかし、Ti含有量が0.35%を超えると、鋼が硬質化して成形性が低下する。よって、Ti含有量は0.15〜0.35%とする。好ましくは、Ti含有量は0.20%以上である。また、好ましくは、Ti含有量は0.30%以下である。
Ti: 0.15-0.35%
Ti is an element that fixes C and N by forming a carbonitride and suppresses the occurrence of sensitization. This effect can be obtained by setting the Ti content to 0.15% or more. However, when the Ti content exceeds 0.35%, the steel becomes hard and the formability deteriorates. Therefore, the Ti content is set to 0.15 to 0.35%. Preferably, the Ti content is 0.20% or more. Further, preferably, the Ti content is 0.30% or less.

Nb:0.030〜0.090%
Nbは、冷延焼鈍板の鋼中に固溶して存在することで、鋼の0.2%耐力を高めるのに有効な元素である。この効果は、Nb含有量を0.030%以上にすることで得られる。しかし、Nb含有量が0.090%を超えると、後述するVによる再結晶温度上昇の抑制効果を得たとしても、鋼の再結晶温度が上昇し、普通鋼−ステンレス鋼兼用の焼鈍ラインを用いて製造した場合、鋼の軟質化が不十分となったり、結晶粒が過度に微細となって0.2%耐力が高くなる。よって、Nb含有量は0.030〜0.090%とする。好ましくは、Nb含有量は0.035%以上である。より好ましくは、Nb含有量は0.040%以上である。また、好ましくは、Nb含有量は0.080%以下である。より好ましくは、Nb含有量は0.070%以下である。
Nb: 0.030 to 0.090%
Nb is an element effective for increasing the 0.2% proof stress of steel by being dissolved in the steel of the cold-rolled annealed sheet. This effect is obtained by setting the Nb content to 0.030% or more. However, when the Nb content exceeds 0.090%, the recrystallization temperature of steel rises even if the effect of suppressing the rise in recrystallization temperature due to V, which will be described later, is obtained, and an annealing line for both ordinary steel and stainless steel is formed. When manufactured using it, the softening of the steel becomes insufficient, or the crystal grains become excessively fine, and the 0.2% proof stress increases. Therefore, the Nb content is set to 0.030 to 0.090%. Preferably, the Nb content is 0.035% or more. More preferably, the Nb content is 0.040% or more. Further, preferably, the Nb content is 0.080% or less. More preferably, the Nb content is 0.070% or less.

V:0.010〜0.200%
Vは、Nbによる鋼の再結晶温度上昇を抑制することで、生産性を高める元素である。この効果は、V含有量を0.010%以上にすることで得られる。一方、過剰にVを含有するとV炭窒化物が過度に析出し、再結晶温度上昇して鋼の生産性を低下させる。よって、V含有量は0.010〜0.200%とする。好ましくは、V含有量は0.020%以上である。より好ましくは、V含有量は0.030%以上である。また、好ましくは、V含有量は0.150%以下である。より好ましくは、V含有量は0.100%以下である。
V: 0.010 to 0.200%
V is an element that enhances productivity by suppressing an increase in the recrystallization temperature of steel due to Nb. This effect can be obtained by setting the V content to 0.010% or more. On the other hand, if V is excessively contained, V carbonitride is excessively precipitated, the recrystallization temperature rises, and the productivity of steel is lowered. Therefore, the V content is set to 0.010 to 0.200%. Preferably, the V content is 0.020% or more. More preferably, the V content is 0.030% or more. Further, preferably, the V content is 0.150% or less. More preferably, the V content is 0.100% or less.

N:0.004〜0.020%
Nは、鋼の0.2%耐力を高めるのに有効な元素である。この効果はN含有量を0.004%以上にすることで得られる。しかし、N含有量が0.020%を超えると、鋼が硬質化して成形性が低下したり、耐食性が低下する。よって、N含有量は0.004〜0.020%とする。好ましくは、N含有量は0.005%以上である。より好ましくは、N含有量は0.007%以上である。また、好ましくは、N含有量は0.015%以下である。より好ましくは、N含有量は0.012%以下である。
N: 0.004 to 0.020%
N is an element effective in increasing the 0.2% proof stress of steel. This effect can be obtained by setting the N content to 0.004% or more. However, when the N content exceeds 0.020%, the steel becomes hard and the moldability is lowered, or the corrosion resistance is lowered. Therefore, the N content is set to 0.004 to 0.020%. Preferably, the N content is 0.005% or more. More preferably, the N content is 0.007% or more. Further, preferably, the N content is 0.015% or less. More preferably, the N content is 0.012% or less.

上記成分以外の残部は、Feおよび不可避的不純物である。 The rest other than the above components are Fe and unavoidable impurities.

本発明では上述した成分の他にも、以下のA群、B群のうちから選ばれた1種または2種を含有してもよい。
(A群)Ni:0.01〜0.60%、Cu:0.01〜0.80%、Co:0.01〜0.50%、Mo:0.01〜1.00%、およびW:0.01〜0.50%のうちから選ばれた1種または2種以上
(B群)Zr:0.01〜0.50%、B:0.0003〜0.0030%、Mg:0.0005〜0.0100%、Ca:0.0003〜0.0030%、Y:0.01〜0.20%、REM(希土類金属):0.01〜0.10%、Sn:0.01〜0.50%、およびSb:0.01〜0.50%のうちから選んだ1種または2種以上
In the present invention, in addition to the above-mentioned components, one or two selected from the following groups A and B may be contained.
(Group A) Ni: 0.01 to 0.60%, Cu: 0.01 to 0.80%, Co: 0.01 to 0.50%, Mo: 0.01 to 1.00%, and W. : One or more selected from 0.01 to 0.50% (Group B) Zr: 0.01 to 0.50%, B: 0.0003 to 0.0030%, Mg: 0 0005 to 0.0100%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, REM (rare earth metal): 0.01 to 0.10%, Sn: 0.01 ~ 0.50%, and Sb: one or more selected from 0.01 to 0.50%

Ni:0.01〜0.60%
Niは、低pH環境において、鋼の活性溶解を抑制することで、鋼の耐食性を高める。一方、過剰にNiを含有すると、鋼の成分コストおよび製造コストの上昇を招くとともに、鋼が硬質化して成形性が低下する。そのため、Niを含有する場合は、Ni含有量を0.01〜0.60%とする。好ましくは、Ni含有量は0.10%以上である。また、好ましくは、Ni含有量は0.25%以下である。
Ni: 0.01 to 0.60%
Ni enhances the corrosion resistance of steel by suppressing the active melting of steel in a low pH environment. On the other hand, if an excessive amount of Ni is contained, the component cost and the manufacturing cost of the steel are increased, and the steel is hardened and the formability is lowered. Therefore, when Ni is contained, the Ni content is set to 0.01 to 0.60%. Preferably, the Ni content is 0.10% or more. Further, preferably, the Ni content is 0.25% or less.

Cu:0.01〜0.80%
Cuは、ステンレス鋼の耐食性を向上させる元素である。一方、過剰にCuを含有すると、鋼の成分コストおよび製造コストの上昇を招くとともに、ε−Cuが析出しやすくなり、耐食性が低下する。そのため、Cuを含有する場合は、Cu含有量を0.01〜0.80%とする。好ましくは、Cu含有量は0.30%以上である。より好ましくは、Cu含有量は0.40%以上である。また、好ましくは、Cu含有量は0.50%以下である。より好ましくは、Cu含有量は0.45%以下である。さらにより好ましくは、Cu含有量は0.42%以下である。
Cu: 0.01 to 0.80%
Cu is an element that improves the corrosion resistance of stainless steel. On the other hand, if Cu is contained in an excessive amount, the component cost and the manufacturing cost of the steel are increased, and ε-Cu is likely to be precipitated, so that the corrosion resistance is lowered. Therefore, when Cu is contained, the Cu content is set to 0.01 to 0.80%. Preferably, the Cu content is 0.30% or more. More preferably, the Cu content is 0.40% or more. Further, preferably, the Cu content is 0.50% or less. More preferably, the Cu content is 0.45% or less. Even more preferably, the Cu content is 0.42% or less.

Co:0.01〜0.50%
Coは、ステンレス鋼の耐食性を向上させる元素である。一方、過剰にCoを含有すると、鋼が硬質化して0.2%耐力が過度に上昇する。そのため、Coを含有する場合は、Co含有量は0.01〜0.50%とする。好ましくは、Co含有量は0.03%以上である。より好ましくは、Co含有量は0.05%以上である。また、好ましくは、Co含有量は0.30%以下である。より好ましくは、Co含有量は0.10%以下である。
Co: 0.01-0.50%
Co is an element that improves the corrosion resistance of stainless steel. On the other hand, if Co is excessively contained, the steel becomes hard and the 0.2% proof stress increases excessively. Therefore, when Co is contained, the Co content is set to 0.01 to 0.50%. Preferably, the Co content is 0.03% or more. More preferably, the Co content is 0.05% or more. Further, preferably, the Co content is 0.30% or less. More preferably, the Co content is 0.10% or less.

Mo:0.01〜1.00%
Moには、ステンレス鋼の耐食性を向上させる効果がある。一方、過剰にMoを含有すると、鋼の成分コストおよび製造コストの上昇を招くとともに、鋼が硬質化して0.2%耐力が過度に上昇する。そのため、Moを含有する場合は、Mo含有量を0.01〜1.00%とする。好ましくは、Mo含有量は0.03%以上である。より好ましくは、Mo含有量は0.05%以上である。また、好ましくは、Mo含有量は0.50%以下である。より好ましくは、Mo含有量は0.30%以下である。
Mo: 0.01-1.00%
Mo has the effect of improving the corrosion resistance of stainless steel. On the other hand, if Mo is contained in an excessive amount, the component cost and the manufacturing cost of the steel are increased, and the steel is hardened and the 0.2% proof stress is excessively increased. Therefore, when Mo is contained, the Mo content is set to 0.01 to 1.00%. Preferably, the Mo content is 0.03% or more. More preferably, the Mo content is 0.05% or more. Further, preferably, the Mo content is 0.50% or less. More preferably, the Mo content is 0.30% or less.

W:0.01〜0.50%
Wは、ステンレス鋼の耐食性を向上させる元素である。一方、過剰にWを含有すると、鋼が硬質化して0.2%耐力が過度に上昇する。そのため、Wを含有する場合は、W含有量を0.01〜0.50%とする。好ましくは、W含有量は0.03%以上である。より好ましくは、W含有量は0.05%以上である。また、好ましくは、W含有量は0.30%以下である。より好ましくは、W含有量は0.10%以下である。
W: 0.01 to 0.50%
W is an element that improves the corrosion resistance of stainless steel. On the other hand, if W is excessively contained, the steel becomes hard and the 0.2% proof stress increases excessively. Therefore, when W is contained, the W content is set to 0.01 to 0.50%. Preferably, the W content is 0.03% or more. More preferably, the W content is 0.05% or more. Further, preferably, the W content is 0.30% or less. More preferably, the W content is 0.10% or less.

Zr:0.01〜0.50%
Zrは、炭窒化物を形成することでC、Nを固定し、鋼の耐食性を向上させる元素である。一方、過剰にZrを含有すると炭窒化物が過度に析出し、鋼の耐食性が低下する。そのため、Zrを含有する場合は、Zr含有量を0.01〜0.50%とする。好ましくは、Zr含有量は0.03%以上である。より好ましくは、Zr含有量は0.05%以上である。また、好ましくは、Zr含有量は0.40%以下である。より好ましくは、Zr含有量は0.30%以下である。
Zr: 0.01-0.50%
Zr is an element that fixes C and N by forming a carbonitride and improves the corrosion resistance of steel. On the other hand, if Zr is excessively contained, the carbonitride is excessively precipitated, and the corrosion resistance of the steel is lowered. Therefore, when Zr is contained, the Zr content is set to 0.01 to 0.50%. Preferably, the Zr content is 0.03% or more. More preferably, the Zr content is 0.05% or more. Further, preferably, the Zr content is 0.40% or less. More preferably, the Zr content is 0.30% or less.

B:0.0003〜0.0030%
Bには、鋼の強度を向上させる効果がある。一方、過剰にBを含有すると鋼が硬質化して0.2%耐力が過度に上昇する。そのため、Bを含有する場合は、B含有量を0.0003〜0.0030%とする。好ましくは、B含有量は0.0010%以上である。また、好ましくは、B含有量は0.0025%以下である。
B: 0.0003 to 0.0030%
B has the effect of improving the strength of steel. On the other hand, if B is excessively contained, the steel becomes hard and the 0.2% proof stress increases excessively. Therefore, when B is contained, the B content is set to 0.0003 to 0.0030%. Preferably, the B content is 0.0010% or more. Further, preferably, the B content is 0.0025% or less.

Mg:0.0005〜0.0100%
Mgは、脱酸剤として作用する。一方、過剰にMgを含有すると表面欠陥が増加する。そのため、Mgを含有する場合は、Mg含有量を0.0005〜0.0100%とする。好ましくは、Mg含有量は0.0010%以上である。また、好ましくは、Mg含有量は0.0050%以下である。より好ましくは、Mg含有量は0.0030%以下である。
Mg: 0.0005 to 0.0100%
Mg acts as an antacid. On the other hand, if Mg is contained in excess, surface defects increase. Therefore, when Mg is contained, the Mg content is set to 0.0005 to 0.0100%. Preferably, the Mg content is 0.0010% or more. Further, preferably, the Mg content is 0.0050% or less. More preferably, the Mg content is 0.0030% or less.

Ca:0.0003〜0.0030%
Caは、脱酸剤として作用する。一方、過剰にCaを含有すると表面欠陥が増加する。そのため、Caを含有する場合は、Ca含有量を0.0003〜0.0030%とする。好ましくは、Ca含有量は0.0005%以上である。より好ましくは、Ca含有量は0.0007%以上である。また、好ましくは、Ca含有量は0.0025%以下である。より好ましくは、Ca含有量は0.0015%以下である。
Ca: 0.0003 to 0.0030%
Ca acts as an antacid. On the other hand, if Ca is contained in excess, surface defects increase. Therefore, when Ca is contained, the Ca content is set to 0.0003 to 0.0030%. Preferably, the Ca content is 0.0005% or more. More preferably, the Ca content is 0.0007% or more. Further, preferably, the Ca content is 0.0025% or less. More preferably, the Ca content is 0.0015% or less.

Y:0.01〜0.20%
Yは、鋼の清浄度を向上させる元素である。一方、過剰にYを含有すると表面欠陥が増加する。そのため、Yを含有する場合は、Y含有量を0.01〜0.20%とする。好ましくは、Y含有量は0.03%以上である。また、好ましくは、Y含有量は0.10%以下である。
Y: 0.01 to 0.20%
Y is an element that improves the cleanliness of steel. On the other hand, if Y is contained in excess, surface defects increase. Therefore, when Y is contained, the Y content is set to 0.01 to 0.20%. Preferably, the Y content is 0.03% or more. Further, preferably, the Y content is 0.10% or less.

REM(希土類金属;Rare Earth Metals):0.01〜0.10%
REM(希土類金属:La、Ce、Ndなどの原子番号57〜71の元素)は、鋼の清浄度を向上させる元素である。一方、REMを過剰に含有すると、表面欠陥が増加する。そのため、REMを含有する場合は、REM含有量を0.01〜0.10%とする。好ましくは、REM含有量は0.02%以上である。また、好ましくは、REM含有量は0.05%以下である。なお、本発明におけるREM含有量は、上述のREMから選択された1種または2種以上の元素の総含有量である。
REM (Rare Earth Metals): 0.01-0.10%
REM (rare earth metal: an element having atomic numbers 57 to 71 such as La, Ce, and Nd) is an element that improves the cleanliness of steel. On the other hand, if REM is excessively contained, surface defects will increase. Therefore, when REM is contained, the REM content is set to 0.01 to 0.10%. Preferably, the REM content is 0.02% or more. Further, preferably, the REM content is 0.05% or less. The REM content in the present invention is the total content of one or more elements selected from the above-mentioned REM.

Sn:0.01〜0.50%
Snは、加工肌荒れの抑制に有効な元素である。一方、過剰にSnを含有すると、鋼の熱間加工性が低下する。そのため、Snを含有する場合は、Sn含有量を0.01〜0.50%とする。好ましくは、Sn含有量は0.03%以上である。また、好ましくは、Sn含有量は0.20%以下である。
Sn: 0.01 to 0.50%
Sn is an element effective in suppressing rough processed skin. On the other hand, if Sn is contained in an excessive amount, the hot workability of the steel is lowered. Therefore, when Sn is contained, the Sn content is set to 0.01 to 0.50%. Preferably, the Sn content is 0.03% or more. Further, preferably, the Sn content is 0.20% or less.

Sb:0.01〜0.50%
Sbは、Snと同様に、加工肌荒れの抑制に有効な元素である。一方、過剰にSbを含有すると、表面欠陥が増加する。そのため、Sbを含有する場合は、Sb含有量を0.01〜0.50%とする。好ましくは、Sb含有量は0.03%以上である。また、好ましくは、Sb含有量は0.20%以下である。
Sb: 0.01 to 0.50%
Similar to Sn, Sb is an element effective in suppressing rough processed skin. On the other hand, if Sb is contained in excess, surface defects increase. Therefore, when Sb is contained, the Sb content is set to 0.01 to 0.50%. Preferably, the Sb content is 0.03% or more. Further, preferably, the Sb content is 0.20% or less.

なお、上記任意成分として説明したNi、Cu、Co、Mo、W、Zr、B、Mg、Ca、Y、REM(希土類金属)、Sn、Sbの含有量が下限値未満の場合、その成分は不可避的不純物として含まれるものとする。 When the contents of Ni, Cu, Co, Mo, W, Zr, B, Mg, Ca, Y, REM (rare earth metal), Sn, and Sb described as the above optional components are less than the lower limit, the components are It shall be contained as an unavoidable impurity.

結晶粒の平均断面積:200〜400μm
本発明においては、Nbをはじめとした各種元素の含有量を制御することに加え、組織における結晶粒の平均断面積を所定の範囲に制御することで、優れた生産性のもと製造可能な、AISI439と同等の0.2%耐力を有するフェライト系ステンレス鋼を得ることができる。ここで、結晶粒の平均断面積は、鋼の0.2%耐力に影響を与える。結晶粒の平均断面積が200μm未満では、鋼の0.2%耐力が高くなり、AISI439と同等の0.2%耐力が得られない。また、結晶粒の平均断面積が400μmを超えると、鋼の0.2%耐力が低くなり、AISI439と同等の0.2%耐力が得られない。よって、組織における結晶粒の平均断面積は、200〜400μmとする。好ましくは、結晶粒の平均断面積は240μm以上である。また、好ましくは、結晶粒の平均断面積は360μm以下である。なお、結晶粒の平均断面積は、後述する製造方法で制御することができる。
Average cross-sectional area of crystal grains: 200-400 μm 2
In the present invention, in addition to controlling the content of various elements such as Nb, by controlling the average cross-sectional area of the crystal grains in the structure within a predetermined range, it is possible to produce with excellent productivity. , Ferritic stainless steel having 0.2% proof stress equivalent to AISI439 can be obtained. Here, the average cross-sectional area of the crystal grains affects the 0.2% proof stress of the steel. If the average cross-sectional area of the crystal grains is less than 200 μm 2 , the 0.2% proof stress of the steel becomes high, and the 0.2% proof stress equivalent to AISI439 cannot be obtained. Further, when the average cross-sectional area of the crystal grains exceeds 400 μm 2 , the 0.2% proof stress of the steel becomes low, and the 0.2% proof stress equivalent to AISI439 cannot be obtained. Therefore, the average cross-sectional area of the crystal grains in the structure is set to 200 to 400 μm 2 . Preferably, the average cross-sectional area of the crystal grains is 240 μm 2 or more. Further, preferably, the average cross-sectional area of the crystal grains is 360 μm 2 or less. The average cross-sectional area of the crystal grains can be controlled by a production method described later.

なお、結晶粒の平均断面積は、以下の方法によって評価できる。フェライト系ステンレス鋼板より、幅10mm×長さ15mmの組織観察用試験片を切出し、長さ方向の断面が観察面となるように樹脂に埋め込んだ後、観察面を鏡面研磨する。その後、ピクリン酸塩酸溶液(100mLエタノール−1gピクリン酸−5mL塩酸)にて観察面をエッチングし、結晶粒界を現出させた後、500倍の倍率にて光学顕微鏡にて組織を撮影する。得られた観察像に対し、実視野にして半径100μmの円(500倍の倍率で観察像を印刷した場合、半径50mmの円)を描き、その円内に完全に含まれている結晶粒の数をn、円周によって切られている結晶粒の数をnとしてそれぞれ計測し、得られた計測結果を下記式(2)に代入して与えられる結晶粒の平均断面積A(μm)を評価する。
A = 31400/(n+0.6×n) ・・・(2)
The average cross-sectional area of the crystal grains can be evaluated by the following method. A test piece for microstructure observation having a width of 10 mm and a length of 15 mm is cut out from a ferritic stainless steel plate, embedded in a resin so that the cross section in the length direction becomes the observation surface, and then the observation surface is mirror-polished. Then, the observation surface is etched with a picric acid hydrochloric acid solution (100 mL ethanol-1 g picric acid-5 mL hydrochloric acid) to reveal grain boundaries, and then the structure is photographed with an optical microscope at a magnification of 500 times. A circle with a radius of 100 μm (a circle with a radius of 50 mm when the observation image is printed at a magnification of 500 times) is drawn with respect to the obtained observation image in the actual field of view, and the crystal grains completely contained in the circle. The average cross-sectional area A (μm) of the crystal grains given by measuring the number as n 1 and the number of crystal grains cut by the circumference as n 2 and substituting the obtained measurement results into the following formula (2) 2 ) is evaluated.
A = 31400 / (n 1 + 0.6 × n 2 ) ・ ・ ・ (2)

L方向の0.2%耐力:230〜300MPa
D方向の0.2%耐力:230〜300MPa
C方向の0.2%耐力:230〜300MPa
AISI439と同等の0.2%耐力を有し、加工を施した際にAISI439と同等のスプリングバック量を得るためには、フェライト系ステンレス鋼板のL方向、C方向およびD方向の0.2%耐力を、いずれも230〜300MPaの範囲とすることが必要である。いずれかの方向の0.2%耐力が230MPa未満であると、当該0.2%耐力が230MPa未満である方向に垂直な方向が曲げ稜線となるように鋼を加工した場合に、AISI439と比較してスプリングバック量が小さくなる。また、いずれかの方向の0.2%耐力が300MPaを超えると、当該0.2%耐力が300MPaを超える方向に垂直な方向が曲げ稜線となるように鋼を加工した場合に、AISI439と比較してスプリングバック量が大きくなる。よって、L方向、D方向およびC方向の0.2%耐力は、いずれも230〜300MPaとする。好ましくは、前記0.2%耐力は、いずれも240MPa以上である。また、好ましくは、前記0.2%耐力は、いずれも290MPa以下である。
0.2% proof stress in the L direction: 230-300 MPa
0.2% proof stress in D direction: 230-300 MPa
0.2% proof stress in C direction: 230-300 MPa
In order to have 0.2% proof stress equivalent to AISI439 and to obtain the same springback amount as AISI439 when processed, 0.2% in the L, C and D directions of ferritic stainless steel sheets. It is necessary that the yield strength is in the range of 230 to 300 MPa. When the 0.2% proof stress in any direction is less than 230 MPa, the steel is processed so that the direction perpendicular to the direction in which the 0.2% proof stress is less than 230 MPa is the bending ridge line, as compared with AISI439. Then, the amount of springback becomes smaller. Further, when the 0.2% proof stress in any direction exceeds 300 MPa, the steel is processed so that the direction perpendicular to the direction in which the 0.2% proof stress exceeds 300 MPa becomes the bending ridge line, as compared with AISI439. Then, the amount of springback increases. Therefore, the 0.2% proof stress in the L direction, the D direction, and the C direction is set to 230 to 300 MPa. Preferably, the 0.2% proof stress is 240 MPa or more. Further, preferably, the 0.2% proof stress is 290 MPa or less.

耐食性に優れ、さらに生産性高く製造可能なフェライト系ステンレス鋼板のスプリングバック量を上記のように適切な範囲とするため、鋼板の0.2%耐力を上記のように適切な範囲内とするためには、各元素の含有量を上述の範囲内とするとともに、結晶粒の平均断面積を上述の範囲内とするための後述するような製造方法の調整が必要である。 In order to keep the springback amount of the ferritic stainless steel sheet, which has excellent corrosion resistance and can be manufactured with high productivity, within the appropriate range as described above, and to keep the 0.2% proof stress of the steel sheet within the appropriate range as described above. It is necessary to adjust the production method as described later so that the content of each element is within the above range and the average cross-sectional area of the crystal grains is within the above range.

次に、本発明のフェライト系ステンレス鋼板の好適な製造方法について説明する。上記した成分組成を有する鋼を、転炉、電気炉等の公知の方法で溶製した後、連続鋳造法あるいは造塊−分塊法により鋼素材(鋼スラブ)とする。この鋼素材を1100〜1250℃の温度に10分以上保持した後、熱間圧延して熱延板とし、その後、熱延板を500℃以上600℃以下の巻取温度で巻き取って熱延板コイルとする。この際、熱延板の板厚が2.0〜5.0mmになるように熱間圧延することが好ましい。こうして作製した熱延板に、940〜1000℃の温度で5〜180秒保持する熱延板焼鈍を施し、熱延焼鈍板とする。熱延板焼鈍の雰囲気は、大気雰囲気が好ましい。次いで酸洗を行ってスケールを除去する。次に、冷間圧延を行い、冷延板とした後、当該冷延板に880〜900℃の温度で5〜180秒保持する冷延板焼鈍を施し、冷延焼鈍板を得る。冷延板焼鈍後には酸洗あるいは表面研削を行い、スケールを除去する。スケールを除去した冷延焼鈍板にはスキンパス圧延を行ってもよい。ただし、スキンパス圧延の圧下率が2%を超えると、0.2%耐力が過剰に高くなるだけでなく、成形性が低下するため、スキンパス圧延を行う場合は、その圧下率を2%以下とすることが好ましい。 Next, a suitable manufacturing method of the ferritic stainless steel sheet of the present invention will be described. A steel having the above-mentioned composition is melted by a known method such as a converter or an electric furnace, and then made into a steel material (steel slab) by a continuous casting method or an ingot-integration method. After holding this steel material at a temperature of 1100 to 1250 ° C. for 10 minutes or more, it is hot-rolled to obtain a hot-rolled plate, and then the hot-rolled plate is wound at a winding temperature of 500 ° C. or higher and 600 ° C. or lower to be hot-rolled. It is a plate coil. At this time, it is preferable to hot-roll the hot-rolled plate so that the plate thickness is 2.0 to 5.0 mm. The hot-rolled plate thus produced is annealed by holding it at a temperature of 940 to 1000 ° C. for 5 to 180 seconds to obtain a hot-rolled annealed plate. The atmosphere of hot-rolled sheet annealing is preferably an atmospheric atmosphere. The scale is then removed by pickling. Next, cold rolling is performed to obtain a cold-rolled plate, and then the cold-rolled plate is annealed at a temperature of 880 to 900 ° C. for 5 to 180 seconds to obtain a cold-rolled annealed plate. After annealing the cold rolled plate, pickling or surface grinding is performed to remove the scale. Skin pass rolling may be performed on the cold-rolled annealed plate from which the scale has been removed. However, if the reduction rate of skin pass rolling exceeds 2%, not only the 0.2% proof stress becomes excessively high, but also the moldability deteriorates. Therefore, when skin pass rolling is performed, the reduction rate is set to 2% or less. It is preferable to do so.

まず、上述した好適な製造方法における結晶粒の平均断面積の制御方法について以下に述べる。上述した成分の鋼を鋳造することで、鋼中にTiN、TiC、NbC、およびVCなどに代表される炭窒化物が鋼中に析出した鋼スラブを得ることができる。熱間圧延前の鋼スラブを1100℃以上に加熱することによって、TiNやTiC、NbC、VCの鋼中への固溶が進む。鋼スラブの熱間圧延後、熱延板を冷却し500℃以上600℃以下の巻取温度で巻き取って熱延板コイルとすることで、鋼中に熱延歪みが残留するとともに、Cr炭窒化物が析出して固溶Cや固溶Nが少ない熱延板が得られる。得られた熱延板は、鋼中に歪みが残留しているとともに、固溶Cや固溶Nが少ないため、940℃以上1000℃以下の比較的低温の熱延板焼鈍によっても再結晶が起こる。また、焼鈍温度を比較的低温とすることで、結晶粒の比較的小さな熱延焼鈍板を得ることができる。 First, a method for controlling the average cross-sectional area of crystal grains in the above-mentioned suitable production method will be described below. By casting steel having the above-mentioned components, it is possible to obtain a steel slab in which carbonitrides typified by TiN, TiC, NbC, VC and the like are deposited in the steel. By heating the steel slab before hot rolling to 1100 ° C. or higher, solid solution of TiN, TiC, NbC, and VC into the steel proceeds. After hot rolling of the steel slab, the hot-rolled plate is cooled and wound at a winding temperature of 500 ° C. or higher and 600 ° C. or lower to form a hot-rolled plate coil. A hot-rolled plate with a small amount of solid solution C and solid solution N can be obtained by precipitating nitride. Since the obtained hot-rolled sheet has strain remaining in the steel and has a small amount of solid solution C and N, recrystallization can occur even by annealing at a relatively low temperature of 940 ° C. or higher and 1000 ° C. or lower. Occur. Further, by setting the annealing temperature to a relatively low temperature, a hot-rolled annealed plate having relatively small crystal grains can be obtained.

次いで、結晶粒の比較的小さな熱延焼鈍板を冷間圧延して冷延板とした後、880℃以上900℃以下の温度で冷延板焼鈍を行うことで、所望の結晶粒径の冷延焼鈍板を得ることができる。 Next, a hot-rolled annealed plate having relatively small crystal grains is cold-rolled to obtain a cold-rolled plate, and then the cold-rolled sheet is annealed at a temperature of 880 ° C. or higher and 900 ° C. or lower to cool the desired crystal grain size. An annealing plate can be obtained.

上述した過程により、結晶粒の平均断面積が200〜400μmである冷延焼鈍板が得られ、所望の0.2%耐力を有するフェライト系ステンレス鋼板が得られる。By the above-mentioned process, a cold-rolled annealed sheet having an average cross-sectional area of 200 to 400 μm 2 is obtained, and a ferritic stainless steel sheet having a desired 0.2% proof stress is obtained.

以下に、上述の好適な製造方法の各工程において、条件を上述した範囲とした理由についてさらに詳細に説明する。 Hereinafter, the reason why the conditions are set within the above-mentioned range in each step of the above-mentioned suitable production method will be described in more detail.

鋼スラブを1100℃以上1250℃以下の温度で10分以上保持してから熱間圧延して熱延板とし、その後、500〜600℃の巻取温度で巻き取る工程(熱間圧延工程)
鋼スラブの加熱温度が1100℃未満であると、鋼中のNbCが十分に固溶せず、冷延焼鈍板においてNbによる0.2%耐力の上昇効果が得られず、冷延焼鈍板の0.2%耐力が低下する。また、鋼スラブの加熱時間が10分未満であると、鋼中のNbCが十分に固溶せず、冷延焼鈍板においてNbによる0.2%耐力の上昇効果が得られず、冷延焼鈍板の0.2%耐力が低下する。また、鋼スラブの加熱温度が1250℃を超えると、鋼スラブの変形を招き熱間圧延工程における熱延板の製造性を低下させる。よって、本発明においては、鋼スラブを1100℃以上1250℃以下に10分以上保持してから熱間圧延して熱延板とすることが好ましい。より好ましくは、鋼スラブの加熱温度は1150℃以上である。また、上記の加熱時間は、より好ましくは30分以上である。また、より好ましくは、鋼スラブの加熱温度は1200℃以下である。また、鋼スラブの過度に長時間の加熱保持は、鋼スラブの変形を招き熱間圧延工程における熱延板の製造性を低下させるため、鋼スラブの加熱時間は2時間以下とすることが好ましい。
A process in which a steel slab is held at a temperature of 1100 ° C. or higher and 1250 ° C. or lower for 10 minutes or longer, then hot-rolled to obtain a hot-rolled plate, and then wound at a winding temperature of 500 to 600 ° C. (hot rolling step).
If the heating temperature of the steel slab is less than 1100 ° C., NbC in the steel is not sufficiently solidified, and the effect of increasing the 0.2% proof stress by Nb on the cold-rolled annealed sheet cannot be obtained. 0.2% proof stress decreases. Further, if the heating time of the steel slab is less than 10 minutes, NbC in the steel is not sufficiently solid-solved, and the effect of increasing the 0.2% proof stress by Nb on the cold-rolled annealed plate cannot be obtained, and the cold-rolled annealing is not obtained. The 0.2% proof stress of the board is reduced. Further, when the heating temperature of the steel slab exceeds 1250 ° C., the steel slab is deformed and the manufacturability of the hot-rolled plate in the hot rolling process is lowered. Therefore, in the present invention, it is preferable to hold the steel slab at 1100 ° C. or higher and 1250 ° C. or lower for 10 minutes or longer and then hot-roll it to obtain a hot-rolled plate. More preferably, the heating temperature of the steel slab is 1150 ° C. or higher. The heating time is more preferably 30 minutes or more. Further, more preferably, the heating temperature of the steel slab is 1200 ° C. or lower. Further, since heating and holding the steel slab for an excessively long time causes deformation of the steel slab and lowers the manufacturability of the hot-rolled plate in the hot rolling process, the heating time of the steel slab is preferably 2 hours or less. ..

また、熱延板の巻取温度が500℃未満であると、鋼中へのCr炭窒化物の析出が不十分となり、熱延板に含まれる固溶Cおよび固溶Nの量が過剰となった結果、熱延板の再結晶温度が高温となる。その場合、熱延板を後述する温度で焼鈍しても熱延板が再結晶しない。再結晶組織を有する熱延板の冷間圧延においては、粒界近傍に格子歪みが局所的に高くなった局所的な高歪み場が形成され、これらが冷延板の焼鈍過程において再結晶核となり、冷延焼鈍板の結晶粒の微細化に寄与する。一方、未再結晶組織を有する熱延焼鈍板を冷間圧延すると、冷延板の焼鈍過程において再結晶核となる局所的な高歪み場が鋼中に形成され難く、これにともない冷延焼鈍板の結晶粒が粗大となり、冷延焼鈍板の0.2%耐力が低下する。熱延板の巻取温度が600℃を超えると、熱間圧延工程にて熱延板に導入された歪みが回復し、熱延板の再結晶温度が高温となる。その場合、熱延板を後述する温度で焼鈍しても熱延板が再結晶せず、これにともない冷延焼鈍板の結晶粒が粗大となり、冷延焼鈍板の0.2%耐力が低下する。よって、本発明においては、熱間圧延後の熱延板を500℃以上600℃以下の巻取温度で巻き取って熱延板コイルとすることが好ましい。 Further, if the winding temperature of the hot-rolled plate is less than 500 ° C., the precipitation of Cr carbonitride in the steel becomes insufficient, and the amount of solid solution C and solid solution N contained in the hot-rolled plate becomes excessive. As a result, the recrystallization temperature of the hot-rolled sheet becomes high. In that case, even if the hot-rolled plate is annealed at a temperature described later, the hot-rolled plate does not recrystallize. In the cold rolling of a hot-rolled sheet having a recrystallized structure, a locally high-strain field with locally high lattice strain is formed near the grain boundaries, and these are recrystallized nuclei in the annealing process of the cold-rolled sheet. This contributes to the refinement of the crystal grains of the cold-rolled annealed plate. On the other hand, when a hot-rolled annealed plate having an unrecrystallized structure is cold-rolled, it is difficult to form a local high strain field as a recrystallization nucleus in the steel during the annealing process of the cold-rolled plate. The crystal grains of the plate become coarse, and the 0.2% resistance of the cold-rolled annealed plate decreases. When the winding temperature of the hot-rolled plate exceeds 600 ° C., the strain introduced into the hot-rolled plate in the hot rolling step is recovered, and the recrystallization temperature of the hot-rolled plate becomes high. In that case, even if the hot-rolled plate is annealed at a temperature described later, the hot-rolled plate does not recrystallize, and the crystal grains of the cold-rolled annealed plate become coarse, and the 0.2% proof stress of the cold-rolled annealed plate decreases. do. Therefore, in the present invention, it is preferable to wind the hot-rolled plate after hot rolling at a winding temperature of 500 ° C. or higher and 600 ° C. or lower to obtain a hot-rolled plate coil.

熱延板を940℃以上1000℃以下の温度で5〜180秒保持する熱延板焼鈍を行い、熱延焼鈍板とする工程(熱延板焼鈍工程)
熱延板焼鈍温度が940℃未満であると、熱延板が再結晶せず、これにともない冷延焼鈍板の結晶粒が粗大となり、冷延焼鈍板の0.2%耐力が低下する。熱延板焼鈍温度が1000℃を超えると、熱延焼鈍板の結晶粒が粗大となり、冷延焼鈍板の結晶粒が粗大となって、冷延焼鈍板の0.2%耐力が低下する。また、熱延板焼鈍の保持時間が5秒未満であると、熱延板が再結晶せず、これにともない冷延焼鈍板の結晶粒が粗大となり、冷延焼鈍板の0.2%耐力が低下する。熱延板焼鈍の保持時間が180秒を超えると、熱延焼鈍板の結晶粒が粗大となり、冷延焼鈍板の結晶粒が粗大となって、冷延焼鈍板の0.2%耐力が低下する。よって、本発明においては、熱延板を940℃以上1000℃以下の温度で5〜180秒保持する熱延板焼鈍を行い、熱延焼鈍板とすることが好ましい。より好ましくは、熱延板の焼鈍温度の範囲は950℃以上980℃以下である。また、上記の保持時間は、より好ましくは10秒以上である。また、上記の保持時間は、より好ましくは30秒以下である。
A process of annealing a hot-rolled plate by holding the hot-rolled plate at a temperature of 940 ° C. or higher and 1000 ° C. or lower for 5 to 180 seconds to obtain a hot-rolled annealed plate (hot-rolled plate annealing step).
If the hot-rolled sheet annealing temperature is less than 940 ° C., the hot-rolled sheet does not recrystallize, and accordingly, the crystal grains of the cold-rolled annealed plate become coarse, and the 0.2% proof stress of the cold-rolled annealed plate decreases. When the hot-rolled annealed temperature exceeds 1000 ° C., the crystal grains of the hot-rolled annealed plate become coarse, the crystal grains of the cold-rolled annealed plate become coarse, and the 0.2% proof stress of the cold-rolled annealed plate decreases. Further, if the holding time of the hot-rolled annealed plate is less than 5 seconds, the hot-rolled plate does not recrystallize, and the crystal grains of the cold-rolled annealed plate become coarse, and the 0.2% proof stress of the cold-rolled annealed plate becomes coarse. Decreases. When the holding time of the hot-rolled annealed plate exceeds 180 seconds, the crystal grains of the hot-rolled annealed plate become coarse, the crystal grains of the cold-rolled annealed plate become coarse, and the 0.2% proof stress of the cold-rolled annealed plate decreases. do. Therefore, in the present invention, it is preferable that the hot-rolled plate is annealed by holding the hot-rolled plate at a temperature of 940 ° C. or higher and 1000 ° C. or lower for 5 to 180 seconds to obtain a hot-rolled annealed plate. More preferably, the annealing temperature range of the hot-rolled plate is 950 ° C. or higher and 980 ° C. or lower. Moreover, the above-mentioned holding time is more preferably 10 seconds or more. Moreover, the above-mentioned holding time is more preferably 30 seconds or less.

次いで、熱延板焼鈍工程後の熱延焼鈍板を冷間圧延して冷延板とする。この際の冷間圧下率は50%以上が好ましい。より好ましくは65%以上である。 Next, the hot-rolled annealed sheet after the hot-rolled sheet annealing step is cold-rolled to obtain a cold-rolled sheet. At this time, the cold reduction rate is preferably 50% or more. More preferably, it is 65% or more.

冷延板を880℃以上900℃以下の温度で5〜180秒保持する冷延板焼鈍を行い、冷延焼鈍板とする工程(冷延板焼鈍工程)
冷延板焼鈍温度が880℃未満であると、鋼の結晶粒が過度に微細となり、0.2%耐力が過度に高くなる。一方、900℃を超える冷延板焼鈍は生産性の高い普通鋼−ステンレス鋼兼用の焼鈍ラインで冷延板焼鈍を行うことができない。また、冷延板焼鈍の保持時間が5秒未満であると、鋼の結晶粒が過度に微細となり、0.2%耐力が過度に高くなる。一方、冷延板焼鈍の保持時間が180秒を超えると、鋼の結晶粒が粗大となり、0.2%耐力が過度に低くなる。よって、本発明においては、冷延板を880℃以上900℃以下で5〜180秒保持する冷延板焼鈍を行うことが好ましい。より好ましくは、冷延板の焼鈍温度の範囲は890℃以上である。また、上記の保持時間は、より好ましくは10秒以上である。また、上記の保持時間は、より好ましくは120秒以下である。
A step of annealing a cold-rolled plate in which the cold-rolled plate is held at a temperature of 880 ° C. or higher and 900 ° C. or lower for 5 to 180 seconds to obtain a cold-rolled annealed plate (cold-rolled plate annealing step).
When the cold rolled sheet annealing temperature is less than 880 ° C., the crystal grains of the steel become excessively fine and the 0.2% proof stress becomes excessively high. On the other hand, cold-rolled plate annealing exceeding 900 ° C. cannot be performed on a highly productive ordinary steel-stainless steel combined annealing line. Further, if the holding time of the cold rolled sheet annealing is less than 5 seconds, the crystal grains of the steel become excessively fine and the 0.2% proof stress becomes excessively high. On the other hand, when the holding time of the cold rolled sheet annealing exceeds 180 seconds, the crystal grains of the steel become coarse and the 0.2% proof stress becomes excessively low. Therefore, in the present invention, it is preferable to perform cold-rolled plate annealing in which the cold-rolled plate is held at 880 ° C. or higher and 900 ° C. or lower for 5 to 180 seconds. More preferably, the annealing temperature range of the cold rolled plate is 890 ° C. or higher. Moreover, the above-mentioned holding time is more preferably 10 seconds or more. Moreover, the above-mentioned holding time is more preferably 120 seconds or less.

[実施例1]
表1−1に示す成分組成を有するフェライト系ステンレス鋼を100kg鋼塊(鋼素材)に溶製した後、表1−2に記載の各スラブ加熱温度で、表1−2に記載の各スラブ加熱時間保持した後、熱間圧延を行って板厚3.0mmの熱延板とした。熱間圧延の最終パスが完了した直後より、熱延板を表1−2に記載の各巻取温度まで空冷した後、熱延板を電気炉に挿入して各巻取温度にて1時間保持し、その後電気炉内で炉冷した。なお、この熱延板を電気炉に挿入して各巻取温度にて1時間保持し、その後電気炉内で炉冷する工程は、実製造ラインにおいて熱間圧延後の熱延板を各巻取温度でコイル状に巻き取ってから徐冷する温度履歴を模擬したものである。
[Example 1]
After melting a ferritic stainless steel having the component composition shown in Table 1-1 into a 100 kg ingot (steel material), each slab shown in Table 1-2 is heated at each slab heating temperature shown in Table 1-2. After holding the heating time, hot rolling was performed to obtain a hot-rolled plate having a plate thickness of 3.0 mm. Immediately after the final pass of hot rolling is completed, the hot-rolled plate is air-cooled to each winding temperature shown in Table 1-2, and then the hot-rolled plate is inserted into an electric furnace and held at each winding temperature for 1 hour. After that, it was cooled in an electric furnace. In the process of inserting this hot-rolled plate into an electric furnace, holding it at each winding temperature for 1 hour, and then cooling it in the electric furnace, the hot-rolled plate after hot rolling is placed at each winding temperature in the actual production line. This is a simulation of the temperature history in which the product is wound into a coil and then slowly cooled.

Figure 2020240959
Figure 2020240959

得られた熱延板を表1−2に記載の各熱延板焼鈍温度で、表1−2に記載の各熱延板焼鈍時間保持した後、空冷し、熱延焼鈍板とした。この熱延焼鈍板を硫酸溶液と続いてフッ酸と硝酸の混合溶液で酸洗し、冷間圧延用素材として、その後、板厚1.0mmまでの冷間圧延を行い、冷延板とした。得られた冷延板の一部は、表1−2に記載の各冷延板焼鈍温度で、表1−2に記載の各冷延板焼鈍時間保持した後、空冷し、その後、表裏面の表面研削を行って表面スケールを除去して、冷延焼鈍板とした。得られた冷延板および冷延焼鈍板を、以下の評価に供した。 The obtained hot-rolled plate was held at each hot-rolled plate annealing temperature shown in Table 1-2 for the annealing time of each hot-rolled plate shown in Table 1-2, and then air-cooled to obtain a hot-rolled annealed plate. This hot-rolled annealed plate was pickled with a sulfuric acid solution followed by a mixed solution of hydrofluoric acid and nitric acid to be used as a material for cold rolling, and then cold-rolled to a plate thickness of 1.0 mm to obtain a cold-rolled plate. .. A part of the obtained cold-rolled plate was held at the annealing temperature of each cold-rolled plate shown in Table 1-2 for the annealing time of each cold-rolled plate shown in Table 1-2, and then air-cooled, and then the front and back surfaces were cooled. The surface was ground to remove the surface scale to obtain a cold-rolled annealed plate. The obtained cold-rolled plate and cold-rolled annealed plate were subjected to the following evaluation.

(1)生産性の評価
上記の製造条件で得られた冷延板の硬さaと、前記冷延板に、900℃にて20sの冷延板焼鈍を施した冷延焼鈍板の硬さbと、十分に軟質化した場合の指標として1050℃にて20sの冷延板焼鈍を施した冷延焼鈍板の硬さcとを比較することで、焼鈍にともなう冷延板の硬さ変化を評価した。具体的には、前記冷延板より長さ15mm×幅20mmの試験片を3枚切出し、そのうち1枚の試験片の断面のビッカース硬さ(HV)を測定し、上記の硬さaとした。また、残り2枚の試験片について、それぞれ900℃において20s、1050℃において20sの焼鈍を施した後、長さ15mm×幅10mmのサイズに切断し、切断した試験片の断面のビッカース硬さ(HV)を測定し、それぞれ上記の硬さb、cとした。試験片は、樹脂埋めの後に、試験面を鏡面研磨して試験に供した。ビッカース硬さの測定条件は、試験力9.8N、保持時間15秒とした。測定した硬さa、b、およびcが、式(1)を満たすものを「○(合格)」、満たさなかったものを「▲(不合格)」として評価した。この評価で○であれば、普通鋼−ステンレス鋼兼用の焼鈍ラインで冷延板焼鈍を行うことができ、生産性に優れると評価できる。
c+0.1×(a−c)≧b ・・・(1)
(1) Evaluation of Productivity The hardness a of the cold-rolled plate obtained under the above manufacturing conditions and the hardness of the cold-rolled annealed plate obtained by annealing the cold-rolled plate at 900 ° C. for 20 s. By comparing b with the hardness c of the cold-rolled annealed plate that has been annealed for 20 s at 1050 ° C. as an index when it is sufficiently softened, the hardness change of the cold-rolled plate due to annealing. Was evaluated. Specifically, three test pieces having a length of 15 mm and a width of 20 mm were cut out from the cold-rolled plate, and the Vickers hardness (HV) of the cross section of one of the test pieces was measured and used as the above-mentioned hardness a. .. Further, the remaining two test pieces were annealed at 900 ° C. for 20 s and at 1050 ° C. for 20 s, respectively, and then cut into a size of 15 mm in length × 10 mm in width, and the Vickers hardness of the cross section of the cut test pieces ( HV) was measured and set to the above hardnesses b and c, respectively. After embedding the test piece with resin, the test surface was mirror-polished and used for the test. The measurement conditions for Vickers hardness were a test force of 9.8 N and a holding time of 15 seconds. The measured hardnesses a, b, and c were evaluated as "○ (pass)" when they satisfied the formula (1) and as "▲ (fail)" when they did not meet the equation (1). If the evaluation is ◯, it can be evaluated that the cold rolled sheet can be annealed on the annealing line for both ordinary steel and stainless steel, and the productivity is excellent.
c + 0.1 × (ac) ≧ b ・ ・ ・ (1)

(2)結晶粒の平均断面積の評価
上記の製造条件で得られた冷延焼鈍板より、幅10mm×長さ15mmの組織観察用試験片を切出し、長さ方向の断面が観察面となるように樹脂に埋め込んだ後、観察面を鏡面研磨した。その後、ピクリン酸塩酸溶液(100mLエタノール−1gピクリン酸−5mL塩酸)にて観察面をエッチングし、結晶粒界を現出させた後、500倍の倍率にて光学顕微鏡にて組織を撮影した。得られた観察像に対し、実視野にして半径100μmの円(500倍の倍率で観察像を印刷した場合、半径50mmの円)を描き、その円内に完全に含まれている結晶粒の数をn、円周によって切られている結晶粒の数をnとしてそれぞれ計測し、得られた計測結果を下記式(2)に代入して与えられる結晶粒の平均断面積A(μm)を評価した。
A = 31400/(n+0.6×n) ・・・(2)
(2) Evaluation of average cross-sectional area of crystal grains A test piece for microstructure observation having a width of 10 mm and a length of 15 mm is cut out from the cold-rolled annealed plate obtained under the above manufacturing conditions, and the cross section in the length direction becomes the observation surface. After embedding in the resin as described above, the observation surface was mirror-polished. Then, the observation surface was etched with a picric acid hydrochloric acid solution (100 mL ethanol-1 g picric acid-5 mL hydrochloric acid) to reveal grain boundaries, and then the structure was photographed with an optical microscope at a magnification of 500 times. A circle with a radius of 100 μm (a circle with a radius of 50 mm when the observation image is printed at a magnification of 500 times) is drawn with respect to the obtained observation image in the actual field of view, and the crystal grains completely contained in the circle. The average cross-sectional area A (μm) of the crystal grains given by measuring the number as n 1 and the number of crystal grains cut by the circumference as n 2 and substituting the obtained measurement results into the following formula (2) 2 ) was evaluated.
A = 31400 / (n 1 + 0.6 × n 2 ) ・ ・ ・ (2)

(3)0.2%耐力の評価
上記の製造条件で得られた冷延焼鈍板より、圧延方向(L方向)、圧延方向に対して45度方向(D方向)、および、圧延方向に対して直角方向(C方向)のそれぞれが長手となるように、JIS13号B試験片を採取し、引張試験を行った。引張試験は、JIS Z 2241に準拠して実施し、得られた各試験片の0.2%耐力を評価した。
(3) Evaluation of 0.2% proof stress From the cold-rolled annealed sheet obtained under the above manufacturing conditions, with respect to the rolling direction (L direction), the 45 degree direction (D direction) with respect to the rolling direction, and the rolling direction. JIS No. 13B test pieces were collected and subjected to a tensile test so that each of them was longitudinal in the perpendicular direction (C direction). The tensile test was carried out in accordance with JIS Z 2241, and the 0.2% proof stress of each test piece obtained was evaluated.

(4)耐食性の評価
上記の製造条件で得られた冷延焼鈍板より、せん断加工により長さ80mm×幅60mmの試験片を切出した。試験片の表面をエメリー紙で400番まで研磨し、アセトンによる脱脂を行った後、腐食試験を行って、耐食性を評価した。腐食試験は、JASO M609−91に準拠して実施した。1サイクルを5.0質量%NaCl水溶液噴霧(35℃、相対湿度98%)2h→乾燥(60℃、相対湿度30%)4h→湿潤(50℃、相対湿度95%以上)2hとし、5サイクルの腐食試験を実施した。試験後、試験片表面を撮影した写真から、試験片表面中央の30mm×30mmの領域について、画像解析により発銹面積率を測定した。そして、発銹面積率が20%以下であったものを「○(合格)」、20%超であったものを「▲(不合格)」として評価した。この評価で○であれば、耐食性に優れると評価できる。
(4) Evaluation of Corrosion Resistance A test piece having a length of 80 mm and a width of 60 mm was cut out from a cold-rolled annealed plate obtained under the above manufacturing conditions by shearing. The surface of the test piece was polished to No. 400 with emery paper, degreased with acetone, and then subjected to a corrosion test to evaluate the corrosion resistance. Corrosion tests were carried out in accordance with JASO M609-91. One cycle is 5.0 mass% NaCl aqueous solution spray (35 ° C., relative humidity 98%) 2h → dry (60 ° C., relative humidity 30%) 4h → wet (50 ° C., relative humidity 95% or more) 2h, 5 cycles Corrosion test was carried out. After the test, the rusting area ratio was measured by image analysis in a region of 30 mm × 30 mm in the center of the surface of the test piece from a photograph of the surface of the test piece. Then, those having a rust area ratio of 20% or less were evaluated as "○ (pass)", and those having a rust area ratio of more than 20% were evaluated as "▲ (fail)". If the evaluation is ◯, it can be evaluated that the corrosion resistance is excellent.

得られた結果を表1−2に示す。 The results obtained are shown in Table 1-2.

Figure 2020240959
Figure 2020240959

本発明例のフェライト系ステンレス鋼板(試験No.1−1〜1−9)は、生産性の評価が「○」であり、結晶粒の平均断面積が200μm以上400μm以下であり、L方向、D方向およびC方向の三方向全ての0.2%耐力が230MPa以上300MPa以下であり、かつ、耐食性の評価が「○」であって、AISI439と同等の0.2%耐力を有するとともに、生産性に優れ、かつ、耐食性に優れることが分かった。The ferritic stainless steel plate (Test Nos. 1-1 to 1-9) of the example of the present invention has a productivity evaluation of "○", an average cross-sectional area of crystal grains of 200 μm 2 or more and 400 μm 2 or less, and L. The 0.2% proof stress in all three directions of the direction, the D direction and the C direction is 230 MPa or more and 300 MPa or less, and the evaluation of the corrosion resistance is "○", and the 0.2% proof stress equivalent to AISI439 is obtained. It was found that it was excellent in productivity and corrosion resistance.

試験No.1−10の比較例は、スラブ加熱温度が本発明の範囲よりも低く、本発明の範囲よりもL方向とC方向の0.2%耐力が低かった。 Test No. In the comparative example of 1-10, the slab heating temperature was lower than the range of the present invention, and the proof stress in the L direction and the C direction was lower than the range of the present invention by 0.2%.

試験No.1−11の比較例は、スラブ加熱時間が本発明の範囲よりも短く、本発明の範囲よりもL方向の0.2%耐力が低かった。 Test No. In the comparative example of 1-11, the slab heating time was shorter than the range of the present invention, and the 0.2% proof stress in the L direction was lower than the range of the present invention.

試験No.1−12の比較例は、熱延板巻取温度が本発明の範囲よりも高く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向とC方向の0.2%耐力が低かった。 Test No. In the comparative example of 1-12, the hot-rolled plate winding temperature is higher than the range of the present invention, the average cross-sectional area of the crystal grains is larger than the range of the present invention, and the L direction and the C direction are larger than the range of the present invention. 0.2% proof stress was low.

試験No.1−13の比較例は、熱延板巻取温度が本発明の範囲よりも低く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative example of 1-13, the hot-rolled plate winding temperature is lower than the range of the present invention, the average cross-sectional area of the crystal grains is larger than the range of the present invention, and the L direction, the D direction and the range of the present invention are higher than the range of the present invention. The 0.2% proof stress was low in all three directions in the C direction.

試験No.1−14の比較例は、熱延板焼鈍温度が本発明の範囲よりも低く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative example of 1-14, the hot-rolled plate annealing temperature is lower than the range of the present invention, the average cross-sectional area of the crystal grains is larger than the range of the present invention, and the L direction, the D direction and C are larger than the range of the present invention. The yield strength was low by 0.2% in all three directions.

試験No.1−15の比較例は、熱延板焼鈍温度が本発明の範囲よりも高く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative example of 1-15, the hot-rolled plate annealing temperature is higher than the range of the present invention, the average cross-sectional area of the crystal grains is larger than the range of the present invention, and the L direction, the D direction and C are larger than the range of the present invention. The yield strength was low by 0.2% in all three directions.

試験No.1−16の比較例は、熱延板焼鈍時間が本発明の範囲よりも短く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative example of 1-16, the hot-rolled plate annealing time is shorter than the range of the present invention, the average cross-sectional area of the crystal grains is larger than the range of the present invention, and the L direction, the D direction and C are larger than the range of the present invention. The yield strength was low by 0.2% in all three directions.

試験No.1−17の比較例は、熱延板焼鈍時間が本発明の範囲よりも長く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative example of 1-17, the hot-rolled plate annealing time is longer than the range of the present invention, the average cross-sectional area of the crystal grains is larger than the range of the present invention, and the L direction, the D direction and the C are larger than the range of the present invention. The yield strength was low by 0.2% in all three directions.

試験No.1−18の比較例は、冷延板焼鈍温度が本発明の範囲よりも低く、結晶粒の平均断面積が本発明の範囲よりも小さく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が高かった。 Test No. In the comparative example of 1-18, the cold-rolled plate annealing temperature was lower than the range of the present invention, the average cross-sectional area of the crystal grains was smaller than the range of the present invention, and the L direction, the D direction and C were smaller than the range of the present invention. The 0.2% proof stress was high in all three directions.

試験No.1−19の比較例は、冷延板焼鈍時間が本発明の範囲よりも短く、結晶粒の平均断面積が本発明の範囲よりも小さく、本発明の範囲よりもD方向の0.2%耐力が高かった。 Test No. In the comparative example of 1-19, the cold-rolled plate annealing time was shorter than the range of the present invention, the average cross-sectional area of the crystal grains was smaller than the range of the present invention, and 0.2% in the D direction than the range of the present invention. The bearing capacity was high.

試験No.1−20の比較例は、冷延板焼鈍時間が本発明の範囲よりも長く、結晶粒の平均断面積が本発明の範囲よりも大きく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative examples of 1-20, the cold-rolled plate annealing time was longer than the range of the present invention, the average cross-sectional area of the crystal grains was larger than the range of the present invention, and the L direction, the D direction and the C were larger than the range of the present invention. The yield strength was low by 0.2% in all three directions.

[実施例2]
表2に示す成分組成を有するフェライト系ステンレス鋼を100kg鋼塊(鋼素材)に溶製した後、1160℃の温度で1時間加熱し、熱間圧延を行って板厚3.0mmの熱延板とした。熱間圧延の最終パスが完了した直後より、熱延板を550℃まで空冷した後、熱延板を550℃に設定した電気炉に挿入して1時間保持し、その後電気炉内で炉冷した。得られた熱延板を980℃で20秒保持した後、空冷し、熱延焼鈍板とした。熱延焼鈍板を硫酸溶液と続いてフッ酸と硝酸の混合溶液で酸洗し、冷間圧延用素材として、その後、板厚1.0mmまでの冷間圧延を行い、冷延板とした。得られた冷延板の一部は、900℃で100秒保持した後、空冷し、その後、表裏面の表面研削を行って表面スケールを除去して、冷延焼鈍板とした。得られた冷延板および冷延焼鈍板を、上述した評価に供した。なお、試験No.2−32、2−33は参考例であり、前記試験No.2−32はSUH409L規格の成分組成であり、前記試験No.2−33はAISI439規格の成分組成である。
[Example 2]
Ferritic stainless steel having the composition shown in Table 2 is melted into a 100 kg ingot (steel material), heated at a temperature of 1160 ° C. for 1 hour, hot-rolled, and hot-rolled to a plate thickness of 3.0 mm. It was made into a board. Immediately after the final pass of hot rolling is completed, the hot-rolled plate is air-cooled to 550 ° C, then the hot-rolled plate is inserted into an electric furnace set at 550 ° C and held for 1 hour, and then cooled in the electric furnace. bottom. The obtained hot-rolled plate was held at 980 ° C. for 20 seconds and then air-cooled to obtain a hot-rolled annealed plate. The hot-rolled annealed plate was pickled with a sulfuric acid solution followed by a mixed solution of hydrofluoric acid and nitric acid to be used as a material for cold rolling, and then cold-rolled to a plate thickness of 1.0 mm to obtain a cold-rolled plate. A part of the obtained cold-rolled plate was held at 900 ° C. for 100 seconds, then air-cooled, and then the front and back surfaces were ground to remove the surface scale to obtain a cold-rolled annealed plate. The obtained cold-rolled plate and cold-rolled annealed plate were subjected to the above-mentioned evaluation. In addition, the test No. 2-32 and 2-33 are reference examples, and the above-mentioned test No. No. 2-32 is a component composition of SUH409L standard, and the above-mentioned test No. 2-33 is a component composition of AISI439 standard.

得られた結果を表2に示す。 The results obtained are shown in Table 2.

Figure 2020240959
Figure 2020240959

本発明例のフェライト系ステンレス鋼板(試験No.2−1〜2−25)は、生産性の評価が「○」であり、結晶粒の平均断面積が200μm以上400μm以下であり、L方向、D方向およびC方向の三方向全ての0.2%耐力が230MPa以上300MPa以下であり、かつ、耐食性の評価が「○」であって、AISI439と同等の0.2%耐力を有するとともに、生産性に優れ、かつ、耐食性に優れることが分かった。The ferritic stainless steel plate (Test No. 2-1 to 2-25) of the example of the present invention has a productivity evaluation of "○", an average cross-sectional area of crystal grains of 200 μm 2 or more and 400 μm 2 or less, and L. The 0.2% proof stress in all three directions of the direction, the D direction and the C direction is 230 MPa or more and 300 MPa or less, and the evaluation of the corrosion resistance is "○", and the 0.2% proof stress equivalent to AISI439 is obtained. It was found that it was excellent in productivity and corrosion resistance.

試験No.2−26の比較例は、Nbの含有量が本発明の成分範囲よりも低く、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が低かった。 Test No. In the comparative example of 2-26, the Nb content was lower than the component range of the present invention, and the proof stress was lower than the range of the present invention by 0.2% in all three directions of the L direction, the D direction and the C direction.

試験No.2−27の比較例は、Nbの含有量が本発明の成分範囲よりも高いため、生産性に劣るとともに、結晶粒の平均断面積が本発明の範囲よりも小さく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が高かった。 Test No. In the comparative example of 2-27, since the content of Nb is higher than the component range of the present invention, the productivity is inferior, and the average cross-sectional area of the crystal grains is smaller than the range of the present invention, which is smaller than the range of the present invention. The 0.2% proof stress was high in all three directions of the L direction, the D direction and the C direction.

試験No.2−28の比較例は、Vの含有量が本発明の成分範囲よりも低いため、生産性に劣るとともに、結晶粒の平均断面積が本発明の範囲よりも小さく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が高かった。 Test No. In the comparative example of 2-28, since the V content is lower than the component range of the present invention, the productivity is inferior, and the average cross-sectional area of the crystal grains is smaller than the range of the present invention, which is smaller than the range of the present invention. The 0.2% proof stress was high in all three directions of the L direction, the D direction and the C direction.

試験No.2−29の比較例は、Vの含有量が本発明の成分範囲よりも高く、生産性に劣るとともに、結晶粒の平均断面積が本発明の範囲よりも小さく、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が高かった。 Test No. In the comparative example of 2-29, the V content is higher than the component range of the present invention, the productivity is inferior, and the average cross-sectional area of the crystal grains is smaller than the range of the present invention, which is larger than the range of the present invention. The 0.2% proof stress was high in all three directions of the direction, the D direction and the C direction.

試験No.2−30の比較例は、Siの含有量が本発明の成分範囲よりも高く、本発明の範囲よりもL方向、D方向およびC方向の三方向全ての0.2%耐力が高かった。 Test No. In the comparative example of 2-30, the Si content was higher than the component range of the present invention, and the proof stress was higher than the range of the present invention by 0.2% in all three directions of the L direction, the D direction and the C direction.

試験No.2−31の比較例は、Crの含有量が本発明の成分範囲よりも低いため、耐食性が劣っていた。 Test No. In the comparative example of 2-31, the Cr content was lower than the component range of the present invention, so that the corrosion resistance was inferior.

試験No.2−32は、SUH409L規格の成分組成を有する参考例である。試験No.2−32では、所望の耐食性と0.2%耐力が得られない。 Test No. 2-32 is a reference example having a component composition of SUH409L standard. Test No. In 2-32, the desired corrosion resistance and 0.2% proof stress cannot be obtained.

試験No.2−33は、AISI439規格の成分組成を有する参考例である。試験No.2−33は、15.0質量%以上となるCrを含有するため、原料コストと製造コストが高くなる。 Test No. 2-33 is a reference example having a component composition of AISI439 standard. Test No. Since 2-33 contains Cr of 15.0% by mass or more, the raw material cost and the manufacturing cost are high.

本発明のフェライト系ステンレス鋼板は、耐食性に優れ、かつAISI439と同等の0.2%耐力を有するため、自動車排気系部材、ロッカー、家電製品用部品、建材、厨房機器、鉄道車両、電気装置用部品等に好適であり、特に、自動車排気用配管、コンバーターケース、フロントパイプ、センターパイプ、マフラー、マフラーカッタ等の自動車排気系部材に好適である。本発明のフェライト系ステンレス鋼板は、特にAISI439使用部材の安価な代替鋼として好適である。 Since the ferrite-based stainless steel sheet of the present invention has excellent corrosion resistance and 0.2% proof stress equivalent to AISI439, it is used for automobile exhaust system members, rockers, parts for home appliances, building materials, kitchen equipment, railway vehicles, and electric appliances. It is suitable for parts and the like, and is particularly suitable for automobile exhaust system members such as automobile exhaust pipes, converter cases, front pipes, center pipes, mufflers, and muffler cutters. The ferritic stainless steel sheet of the present invention is particularly suitable as an inexpensive alternative steel for the members used in AISI439.

Claims (5)

質量%で、
C:0.004〜0.020%、
Si:0.05〜0.90%、
Mn:0.05〜0.60%、
P:0.050%以下、
S:0.030%以下、
Al:0.001〜0.100%、
Cr:13.0%以上15.0%未満、
Ti:0.15〜0.35%、
Nb:0.030〜0.090%、
V:0.010〜0.200%、および
N:0.004〜0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
結晶粒の平均断面積が200〜400μmである組織を有し、
L方向、D方向およびC方向の0.2%耐力がいずれも230〜300MPaであるフェライト系ステンレス鋼板。
By mass%
C: 0.004 to 0.020%,
Si: 0.05 to 0.90%,
Mn: 0.05 to 0.60%,
P: 0.050% or less,
S: 0.030% or less,
Al: 0.001 to 0.100%,
Cr: 13.0% or more and less than 15.0%,
Ti: 0.15-0.35%,
Nb: 0.030 to 0.090%,
A component composition containing V: 0.010 to 0.200% and N: 0.004 to 0.020%, the balance of which is Fe and unavoidable impurities.
It has a structure in which the average cross-sectional area of the crystal grains is 200 to 400 μm 2.
A ferritic stainless steel sheet having a 0.2% proof stress in the L, D and C directions of 230 to 300 MPa.
前記成分組成が、さらに、質量%で、
Ni:0.01〜0.60%、
Cu:0.01〜0.80%、
Co:0.01〜0.50%、
Mo:0.01〜1.00%、および
W:0.01〜0.50%
のうちから選ばれた1種または2種以上を含有する請求項1に記載のフェライト系ステンレス鋼板。
The component composition is further increased by mass%.
Ni: 0.01-0.60%,
Cu: 0.01 to 0.80%,
Co: 0.01-0.50%,
Mo: 0.01 to 1.00%, and W: 0.01 to 0.50%
The ferrite-based stainless steel sheet according to claim 1, which contains one or more selected from the above.
前記成分組成が、さらに、質量%で、
Zr:0.01〜0.50%、
B:0.0003〜0.0030%、
Mg:0.0005〜0.0100%、
Ca:0.0003〜0.0030%、
Y:0.01〜0.20%、
REM(希土類金属):0.01〜0.10%、
Sn:0.01〜0.50%、および
Sb:0.01〜0.50%のうちから選ばれた1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス鋼板。
The component composition is further increased by mass%.
Zr: 0.01-0.50%,
B: 0.0003 to 0.0030%,
Mg: 0.0005-0.0100%,
Ca: 0.0003 to 0.0030%,
Y: 0.01 to 0.20%,
REM (rare earth metal): 0.01-0.10%,
The ferrite-based stainless steel sheet according to claim 1 or 2, which contains one or more selected from Sn: 0.01 to 0.50% and Sb: 0.01 to 0.50%.
自動車排気系部材用である、請求項1〜3のいずれかに記載のフェライト系ステンレス鋼板。 The ferritic stainless steel sheet according to any one of claims 1 to 3, which is used for an automobile exhaust system member. 請求項1〜4のいずれかに記載のフェライト系ステンレス鋼板の製造方法であって、
前記成分組成を有する鋼素材を、1100〜1250℃の温度で10分以上保持した後、熱間圧延して熱延板とし、その後、500〜600℃の巻取温度で巻き取る熱間圧延工程と、
前記熱間圧延工程後の熱延板に940〜1000℃の温度で5〜180秒保持する熱延板焼鈍を施し熱延焼鈍板を得る熱延板焼鈍工程と、
前記熱延板焼鈍工程後の熱延焼鈍板を冷間圧延して冷延板とした後、880〜900℃の温度で5〜180秒保持する冷延板焼鈍を施し冷延焼鈍板を得る冷延板焼鈍工程と、を有する、フェライト系ステンレス鋼板の製造方法。
The method for producing a ferritic stainless steel sheet according to any one of claims 1 to 4.
A hot rolling step in which a steel material having the above-mentioned composition is held at a temperature of 1100 to 1250 ° C. for 10 minutes or more, then hot-rolled to obtain a hot-rolled plate, and then wound at a winding temperature of 500 to 600 ° C. When,
A hot-rolled plate annealing step of obtaining a hot-rolled annealed plate by subjecting the hot-rolled plate after the hot-rolling step to annealing the hot-rolled plate at a temperature of 940 to 1000 ° C. for 5 to 180 seconds.
The hot-rolled annealed plate after the hot-rolled plate annealing step is cold-rolled to obtain a cold-rolled plate, and then cold-rolled annealed at a temperature of 880 to 900 ° C. for 5 to 180 seconds to obtain a cold-rolled annealed plate. A method for manufacturing a ferrite-based stainless steel plate, which comprises a cold-rolled sheet annealing step.
JP2020532071A 2019-05-29 2020-03-03 Ferritic stainless steel sheet and its manufacturing method Active JP6809653B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019099958 2019-05-29
JP2019099958 2019-05-29
PCT/JP2020/008783 WO2020240959A1 (en) 2019-05-29 2020-03-03 Ferritic stainless steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JP6809653B1 JP6809653B1 (en) 2021-01-06
JPWO2020240959A1 true JPWO2020240959A1 (en) 2021-09-13

Family

ID=73553298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020532071A Active JP6809653B1 (en) 2019-05-29 2020-03-03 Ferritic stainless steel sheet and its manufacturing method

Country Status (4)

Country Link
JP (1) JP6809653B1 (en)
KR (1) KR102590079B1 (en)
CN (1) CN113767181B (en)
WO (1) WO2020240959A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115572893B (en) * 2022-09-02 2023-06-16 武汉钢铁有限公司 High-strength steel for automobile spoke resistant to atmospheric corrosion and manufacturing method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738249B2 (en) * 1992-03-24 1998-04-08 住友金属工業株式会社 Manufacturing method of ferritic stainless steel sheet
JP4285843B2 (en) * 1999-07-21 2009-06-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent shape freezing property during bending and its manufacturing method
JP3941363B2 (en) * 1999-09-09 2007-07-04 Jfeスチール株式会社 Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP2002332548A (en) * 2001-05-10 2002-11-22 Nisshin Steel Co Ltd Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JP3809827B2 (en) * 2002-06-17 2006-08-16 Jfeスチール株式会社 Ti-added ferritic stainless steel sheet and method for producing the same
JP4082205B2 (en) * 2002-12-20 2008-04-30 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in workability and ridging resistance and method for producing the same
KR100741993B1 (en) 2003-08-06 2007-07-23 닛신 세이코 가부시키가이샤 Work-hardened material from stainless steel
JP2007009263A (en) 2005-06-29 2007-01-18 Nisshin Steel Co Ltd Ferritic stainless steel with excellent impact perforation resistance
JP4626484B2 (en) * 2005-10-27 2011-02-09 Jfeスチール株式会社 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
CN101845603B (en) * 2009-03-26 2012-07-25 宝山钢铁股份有限公司 Ferrite stainless steel for high temperature-end part of exhaust system of automobile and manufacturing method thereof
CN105874092A (en) * 2014-01-08 2016-08-17 杰富意钢铁株式会社 Ferritic stainless steel and method for producing same
CN105917016B (en) * 2014-01-08 2018-11-27 杰富意钢铁株式会社 Ferrite-group stainless steel and its manufacturing method
KR101841379B1 (en) * 2014-02-05 2018-03-22 제이에프이 스틸 가부시키가이샤 Hot rolled and annealed ferritic stainless steel sheet, method for producing same, and cold rolled and annealed ferritic stainless steel sheet
JP6146401B2 (en) * 2014-08-14 2017-06-14 Jfeスチール株式会社 Ferritic stainless steel sheet
CN105506499B (en) * 2014-09-25 2018-11-02 宝钢不锈钢有限公司 A kind of ferritic stainless steel and its manufacturing method with good bending appearance
JP6411881B2 (en) * 2014-12-16 2018-10-24 Jfeスチール株式会社 Ferritic stainless steel and manufacturing method thereof
KR102267129B1 (en) * 2016-02-02 2021-06-18 닛테츠 스테인레스 가부시키가이샤 Nb-containing ferritic stainless hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless cold-rolled stainless steel sheet and manufacturing method thereof
WO2018198834A1 (en) * 2017-04-25 2018-11-01 Jfeスチール株式会社 Ferritic stainless steel sheet, and production method therefor

Also Published As

Publication number Publication date
JP6809653B1 (en) 2021-01-06
KR20210144847A (en) 2021-11-30
WO2020240959A1 (en) 2020-12-03
CN113767181A (en) 2021-12-07
CN113767181B (en) 2023-05-09
KR102590079B1 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
WO2010114131A1 (en) Cold-rolled steel sheet and process for producing same
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5924459B1 (en) Stainless steel for cold rolled steel
JP2007284783A (en) High strength cold rolled steel sheet and its production method
KR20220124789A (en) hot stamped parts
JP7436825B2 (en) Steel plate for hot stamped parts and its manufacturing method
JP2021155790A (en) Hot-stamping component and method for manufacturing the same
JP7010418B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP6809653B1 (en) Ferritic stainless steel sheet and its manufacturing method
JP6003837B2 (en) Manufacturing method of high strength pressed parts
KR20110018457A (en) Cold-rolled steel sheet, process for production of same, and backlight chassis
JP6098537B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
US11186900B2 (en) High-strength cold rolled steel sheet and method for manufacturing the same
WO2019065508A1 (en) Annealed hot-rolled ferritic stainless steel sheet and method for producing same
KR102398707B1 (en) High carbon cold rolled steel sheet and manufacturing method thereof
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP2021155794A (en) Steel plate for hot-stamping component and method for manufacturing the same
JP7047813B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP2005105347A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP7436824B2 (en) Steel plate for hot stamped parts and its manufacturing method
JP7038799B2 (en) Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP2021155788A (en) Steel plate for hot-stamping component and method for manufacturing the same
JP5846343B1 (en) Ferritic stainless steel cold rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200625

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200625

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6809653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250