JP7038799B2 - Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method - Google Patents

Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method Download PDF

Info

Publication number
JP7038799B2
JP7038799B2 JP2020506852A JP2020506852A JP7038799B2 JP 7038799 B2 JP7038799 B2 JP 7038799B2 JP 2020506852 A JP2020506852 A JP 2020506852A JP 2020506852 A JP2020506852 A JP 2020506852A JP 7038799 B2 JP7038799 B2 JP 7038799B2
Authority
JP
Japan
Prior art keywords
hot
content
steel sheet
less
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020506852A
Other languages
Japanese (ja)
Other versions
JPWO2020084987A1 (en
Inventor
正崇 吉野
佳士 井上
法剛 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020084987A1 publication Critical patent/JPWO2020084987A1/en
Application granted granted Critical
Publication of JP7038799B2 publication Critical patent/JP7038799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、フランジ等への適用に好適な加工性に優れたフェライト系ステンレス熱延焼鈍鋼板およびその製造方法に関するものである。 The present invention relates to a ferrite-based stainless heat-rolled annealed steel sheet having excellent workability suitable for application to flanges and the like, and a method for producing the same.

近年、温室効果ガスであるCO排出量の削減のため、自動車における排気ガスに関する法規制の強化が進んでいる。自動車排気ガスにおけるCO排出量を削減するためには、燃費の向上が有効であるため、エンジンにおける燃焼温度の高温化に向けた検討が進んでいる。In recent years, in order to reduce CO 2 emissions, which are greenhouse gases, laws and regulations regarding exhaust gas in automobiles have been tightened. Since it is effective to improve fuel efficiency in order to reduce CO 2 emissions from automobile exhaust gas, studies are underway to raise the combustion temperature of engines.

エンジンで発生した排気ガスは排気ガス再循環(Exhaust Gas Recirculation、EGR)システムやマフラー等の排気系部品を介して大気に放出される。このような自動車排気系の各部品は、ガスの漏洩を防ぐためにフランジを介して締結される。排気系部品に適用されるフランジは締結部品として十分な寸法精度を有する必要がある。 Exhaust gas generated by the engine is released to the atmosphere through exhaust system components such as an exhaust gas recirculation (EGR) system and a muffler. Each component of such an automobile exhaust system is fastened via a flange to prevent gas leakage. Flange applied to exhaust system parts must have sufficient dimensional accuracy as fastening parts.

従来、このような厚肉のフランジには普通鋼が用いられてきた。しかし近年、自動車のさらなる燃費改善への要求から、エンジン燃焼温度およびエンジンからの排気ガスのさらなる高温化が進んでいる。それに伴ってフランジに従来以上の高温強度と耐食性が求められるようになってきた。このような背景から、近年では普通鋼より高温強度と耐食性に優れるステンレス鋼、特に熱膨張率が比較的小さく熱応力が発生しにくい高強度フェライト系ステンレス鋼板(例えば、ASTM A240/240M-S40975(11mass%Cr-Ti-Ni鋼)の板厚の厚いもの(例えば板厚で5mm以上)の適用が進んでいる。 Conventionally, ordinary steel has been used for such thick flanges. However, in recent years, due to the demand for further improvement in fuel efficiency of automobiles, the engine combustion temperature and the exhaust gas from the engine have been further increased in temperature. Along with this, flanges are required to have higher high temperature strength and corrosion resistance than before. Against this background, in recent years, stainless steels that are superior in high-temperature strength and corrosion resistance to ordinary steels, especially high-strength ferritic stainless steel plates that have a relatively small thermal expansion rate and are less likely to generate thermal stress (for example, ASTM A240 / 240M-S40975 (for example). The application of thick plates of 11 mass% Cr—Ti—Ni steel (for example, 5 mm or more in plate thickness) is in progress.

しかし、排気系に使用されるフランジは板厚が厚いため(5mm以上が多い)、フランジを製造する際の打ち抜き加工時に割れが生じて、フランジ部品を適正に製造できない場合があるという課題があり、打ち抜き加工性に優れた厚肉のフェライト系ステンレス鋼板が強く求められている。 However, since the flange used for the exhaust system is thick (often 5 mm or more), there is a problem that cracks may occur during punching when manufacturing the flange, and flange parts may not be manufactured properly. There is a strong demand for thick ferrite stainless steel sheets with excellent punching workability.

このような市場要求に対し、例えば、特許文献1には、質量%で、C:0.015%以下、Si:0.01~0.4%、Mn:0.01~0.8%、P:0.04%以下、S:0.01%以下、Cr:14.0~18.0%未満、Ni:0.05~1%、Nb:0.3~0.6%、Ti:0.05%以下、N:0.020%以下、Al:0.10%以下、B:0.0002~0.0020%を含有し、残部がFe及び不可避的不純物であり、Nb、CおよびNの含有量がNb/(C+N)≧16を満たし、0℃におけるシャルピー衝撃値が10J/cm以上であり、板厚が5.0~9.0mmであるフェライト系ステンレス熱延鋼板が開示されている。In response to such market demands, for example, Patent Document 1 states that, in terms of mass%, C: 0.015% or less, Si: 0.01 to 0.4%, Mn: 0.01 to 0.8%, P: 0.04% or less, S: 0.01% or less, Cr: 14.0 to less than 18.0%, Ni: 0.05 to 1%, Nb: 0.3 to 0.6%, Ti: It contains 0.05% or less, N: 0.020% or less, Al: 0.10% or less, B: 0.0002 to 0.0020%, and the balance is Fe and unavoidable impurities, Nb, C and Disclosed is a ferritic stainless hot-rolled steel sheet having an N content of Nb / (C + N) ≧ 16, a charpy impact value of 10 J / cm 2 or more at 0 ° C., and a plate thickness of 5.0 to 9.0 mm. Has been done.

国際公開第2014/157576号International Publication No. 2014/157576

本発明者らは特許文献1に開示された手法を用いて、ASTM A240/240M-S40975に準拠する鋼成分を有する板厚10mmのフェライト系ステンレス鋼板を試作し、20mmφの孔を有するフランジを、クリアランス10%の打ち抜き加工により作製した。その結果、いずれも打ち抜きによる割れは生じなかったものの、フランジの外周寸法および/または中心の孔寸法が部品の許容公差を超える場合があり、厚肉のフランジに適用するには十分ではないことが明らかとなった。 Using the method disclosed in Patent Document 1, the present inventors have prototyped a ferritic stainless steel sheet having a steel component conforming to ASTM A240 / 240M-S40975 and having a thickness of 10 mm, and forming a flange having a hole of 20 mmφ. It was manufactured by punching with a clearance of 10%. As a result, although cracks did not occur due to punching, the outer peripheral dimensions and / or the hole dimensions at the center of the flange may exceed the allowable tolerance of the part, which is not sufficient for thick-walled flanges. It became clear.

本発明は、かかる課題を解決し、十分な耐食性を有するとともに、厚肉のフランジへの打ち抜き加工時に割れが生じることなく所定の寸法精度を得られる、優れた打ち抜き加工性を有するフェライト系ステンレス熱延焼鈍鋼板およびその製造方法を提供することを目的とする。 The present invention solves this problem, has sufficient corrosion resistance, and is capable of obtaining predetermined dimensional accuracy without cracking during punching of thick-walled flanges. Ferritic stainless heat with excellent punching workability. It is an object of the present invention to provide an annealed ferritic steel sheet and a method for producing the same.

本発明者らは、上記課題を解決するために詳細な検討を行った。その結果、打ち抜き加工において割れが発生することなく所定の寸法精度を得るためには、鋼板の金属組織をフェライト単相組織とし、かつその平均結晶粒径を5~20μmの範囲に制御すればよいことを知見した。 The present inventors have conducted a detailed study in order to solve the above problems. As a result, in order to obtain a predetermined dimensional accuracy without cracking in the punching process, the metal structure of the steel sheet may be a ferrite single-phase structure and the average crystal grain size thereof may be controlled in the range of 5 to 20 μm. I found that.

そして、適切な成分のフェライト系ステンレス鋼に対して熱間圧延を行い、得られた熱延鋼板に対して、フェライト単相域となる適切な条件、具体的には600℃以上750℃未満で1分~24時間保持する熱延板焼鈍を行うことにより、金属組織をフェライト単相であり、かつ平均結晶粒径が5~20μmの範囲に制御できることを知見した。 Then, hot rolling is performed on the ferritic stainless steel having an appropriate component, and the obtained hot-rolled steel sheet is subjected to appropriate conditions for a ferrite single phase region, specifically, at 600 ° C. or higher and lower than 750 ° C. It was found that the metal structure can be controlled to a ferrite single phase and the average crystal grain size can be controlled in the range of 5 to 20 μm by performing hot-rolled sheet annealing that is held for 1 minute to 24 hours.

本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C:0.001~0.020%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.04%以下、S:0.01%以下、Al:0.01~0.10%、Cr:10.0~20.0%、Ni:0.50~2.00%、Ti:0.10~0.40%、N:0.001~0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、金属組織が平均結晶粒径5~20μmのフェライト単相組織であるフェライト系ステンレス熱延焼鈍鋼板。
[2]質量%で、さらに、Cu:0.01~1.00%、Mo:0.01~2.00%、W:0.01~0.20%、Co:0.01~0.20%のうちから選ばれる1種または2種以上を含有する前記[1]に記載のフェライト系ステンレス熱延焼鈍鋼板。
[3]質量%で、さらに、V:0.01~0.20%、Nb:0.01~0.10%、Zr:0.01~0.20%、REM:0.001~0.100%、B:0.0002~0.0025%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%のうちから選ばれる1種または2種以上を含有する前記[1]または[2]に記載のフェライト系ステンレス熱延焼鈍鋼板。
[4]前記[1]~[3]のいずれかに記載のフェライト系ステンレス熱延焼鈍鋼板の製造方法であって、熱間圧延工程で得られた熱延鋼板について600℃以上750℃未満で1分~24時間保持する熱延板焼鈍を行うフェライト系ステンレス熱延焼鈍鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In terms of mass%, C: 0.001 to 0.020%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.10%, Cr: 10.0 to 20.0%, Ni: 0.50 to 2.00%, Ti: 0.10 to 0.40%, Ferritic stainless heat, which contains N: 0.001 to 0.020%, has a component composition in which the balance is Fe and unavoidable impurities, and has a metal structure having an average crystal grain size of 5 to 20 μm, which is a ferrite single-phase structure. Annealed ferritic steel plate.
[2] In terms of mass%, Cu: 0.01 to 1.00%, Mo: 0.01 to 2.00%, W: 0.01 to 0.20%, Co: 0.01 to 0. The ferrite-based stainless hot-rolled annealed steel sheet according to the above [1], which contains one or more selected from 20%.
[3] By mass%, V: 0.01 to 0.20%, Nb: 0.01 to 0.10%, Zr: 0.01 to 0.20%, REM: 0.001 to 0. The above containing one or more selected from 100%, B: 0.0002 to 0.0025%, Mg: 0.0005 to 0.0030%, Ca: 0.0003 to 0.0030%. The ferritic stainless hot-spread annealed steel sheet according to [1] or [2].
[4] The method for manufacturing a ferrite-based stainless hot-rolled annealed steel sheet according to any one of [1] to [3] above, wherein the hot-rolled steel sheet obtained in the hot rolling step is at 600 ° C. or higher and lower than 750 ° C. A method for manufacturing a ferrite-based stainless hot-rolled annealed steel sheet, which is annealed with a hot-rolled sheet that is held for 1 minute to 24 hours.

本発明によれば、十分な耐食性を有するとともに、優れた打ち抜き加工性を有するフェライト系ステンレス熱延焼鈍鋼板が得られる。 According to the present invention, a ferrite-based stainless hot-rolled annealed steel sheet having sufficient corrosion resistance and excellent punching workability can be obtained.

なお、本発明における十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験(塩水噴霧(5質量%NaCl、35℃、噴霧2hr)→乾燥(60℃、4hr、相対湿度40%)→湿潤(50℃、2hr、相対湿度≧95%))を1サイクルとする試験)を5サイクル行った場合の鋼板表面における発錆面積率(=発錆面積/鋼板全面積×100[%])が25%以下であることを意味する。 Sufficient corrosion resistance in the present invention is defined as a salt spray cycle test (salt spray (5 mass% NaCl, 35)) specified in JIS H8502 on a steel sheet whose surface is polished and finished with # 600 emery paper and whose end face is sealed. ℃, spray 2hr) → drying (60 ℃, 4hr, relative humidity 40%) → wetting (50 ℃, 2hr, relative humidity ≧ 95%)) in one cycle) on the surface of the steel sheet It means that the rusted area ratio (= rusted area / total steel plate area x 100 [%]) is 25% or less.

また、打ち抜き加工性の評価としては、まず、熱延焼鈍鋼板から100mm×100mmの試験片を採取した後、該試験片中央部にφ20mm(公差±0.1mm)の孔が形成されるように、直径20mmの肉抜き用円柱刃を有する上金型(ポンチ)と直径20mm以上の孔を有する下金型(ダイス)を設置したクランクプレス機によって、打ち抜き加工により5枚の試験片を作製する。なお、打ち抜き加工は上金型と下金型のクリアランスが10%となるように、下金型側の孔直径を試験片板厚に合せて選定することにより行う。ここで、上記のクリアランス(C)[%]、ダイスの孔の直径(ダイスの内径)(Dd)[mm]及びポンチの直径(Dp)[mm]は、板厚(t)[mm]も含め、以下の式(1)の関係で表される。
C=(Dd-Dp)÷(2×t)×100・・・式(1)
本発明における優れた打ち抜き加工性とは、このようにして得られた試験片について、試験片外観の目視観察と試験片中央部の孔径をデジタルノギスにより測定した場合、割れがなく、打ち抜き加工後の孔径が5枚の試験片すべてで19.9~20.1mmの範囲となることを意味する。
As an evaluation of punching workability, first, a test piece of 100 mm × 100 mm is collected from a hot-rolled annealed steel sheet, and then a hole of φ20 mm (tolerance ± 0.1 mm) is formed in the center of the test piece. Five test pieces are produced by punching with a crank press machine equipped with an upper die (punch) having a cylindrical blade for lightening with a diameter of 20 mm and a lower die (die) having a hole with a diameter of 20 mm or more. .. The punching process is performed by selecting the hole diameter on the lower die side according to the thickness of the test piece so that the clearance between the upper die and the lower die is 10%. Here, the above clearance (C) [%], the diameter of the hole of the die (inner diameter of the die) (Dd) [mm], and the diameter of the punch (Dp) [mm] are also the plate thickness (t) [mm]. Including, it is expressed by the relation of the following equation (1).
C = (Dd-Dp) ÷ (2 × t) × 100 ... Equation (1)
The excellent punching workability in the present invention means that the test piece thus obtained has no cracks when the appearance of the test piece is visually observed and the hole diameter at the center of the test piece is measured by a digital caliper, and after punching. It means that the hole diameter of all five test pieces is in the range of 19.9 to 20.1 mm.

以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

本発明のフェライト系ステンレス熱延焼鈍鋼板は、質量%で、C:0.001~0.020%、Si:0.05~1.00%、Mn:0.05~1.00%、P:0.04%以下、S:0.01%以下、Al:0.01~0.10%、Cr:10.0~20.0%、Ni:0.50~2.00%、Ti:0.10~0.40%、N:0.001~0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、金属組織が平均結晶粒径で5~20μmのフェライト単相組織であるフェライト系ステンレス熱延焼鈍鋼板である。 The ferrite-based stainless hot-rolled annealed steel sheet of the present invention has C: 0.001 to 0.020%, Si: 0.05 to 1.00%, Mn: 0.05 to 1.00%, P in mass%. : 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.10%, Cr: 10.0 to 20.0%, Ni: 0.50 to 2.00%, Ti: It contains 0.10 to 0.40%, N: 0.001 to 0.020%, has a component composition consisting of Fe and unavoidable impurities in the balance, and has a metal structure having an average crystal grain size of 5 to 20 μm. It is a ferritic stainless hot-spread annealed steel sheet having a ferrite single-phase structure.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明者らは、ASTM A240/240M-S40975(成分組成は、質量%で、C≦0.03%、Si≦1.00%、Mn≦1.00%、P≦0.040%、S≦0.030%、Cr:10.5~11.7%、Ni:0.50~1.00%、N≦0.03%、Ti:6×(C+N)~0.74%を含有し、残部Feおよび不可避的不純物からなる。)に準拠する板厚10mmの各種フェライト系ステンレス鋼板を用いて20mmφの孔を有するフランジを、クリアランス10%の打ち抜き加工により作製した。その結果、いずれも打ち抜きによる割れは生じなかったものの、フランジの外周寸法および/または中心の孔寸法が部品の許容公差を超える場合があることを知見した。 The present inventors have ASTM A240 / 240M-S40975 (component composition is mass%, C ≦ 0.03%, Si ≦ 1.00%, Mn ≦ 1.00%, P ≦ 0.040%, S. Contains ≦ 0.030%, Cr: 10.5 to 11.7%, Ni: 0.50 to 1.00%, N ≦ 0.03%, Ti: 6 × (C + N) to 0.74% A flange having a hole of 20 mmφ was produced by punching with a clearance of 10% using various ferrite-based stainless steel plates having a plate thickness of 10 mm and having a hole of 20 mmφ. As a result, it was found that although cracking did not occur due to punching, the outer peripheral dimension and / or the central hole dimension of the flange may exceed the allowable tolerance of the component.

さらに本発明者らは、打ち抜き加工における寸法精度が鋼板によって大きく異なった原因について詳細に検討した。その結果、打ち抜き加工に供した鋼板の平均結晶粒径が5μm未満であった場合には打ち抜き加工後の部品寸法が許容公差よりも小さくなること、および鋼板の平均結晶粒径が20μm超であった場合には打ち抜き加工後の部品寸法が許容公差よりも大きくなる傾向にあることを知見した。このことから、本発明者らは打ち抜き加工において十分な寸法精度が安定して得られない原因は、平均結晶粒径が過度に小さい場合には、鋼板が過度に硬質であるために打ち抜き加工時のせん断面比率が小さくなること、および平均結晶粒径が過度に大きい場合には打ち抜き加工時に大きなダレあるいはバリが生じることに起因することを突き止めた。 Furthermore, the present inventors have investigated in detail the reason why the dimensional accuracy in the punching process differs greatly depending on the steel sheet. As a result, when the average crystal grain size of the steel sheet subjected to the punching process is less than 5 μm, the component size after the punching process becomes smaller than the allowable tolerance, and the average crystal grain size of the steel sheet exceeds 20 μm. In this case, it was found that the size of the parts after punching tends to be larger than the allowable tolerance. From this, the present inventors cannot stably obtain sufficient dimensional accuracy in punching, because when the average crystal grain size is excessively small, the steel sheet is excessively hard and therefore during punching. It was found that the shear plane ratio of the steel sheet is small, and that if the average crystal grain size is excessively large, large sagging or burrs occur during punching.

そこで本発明者らは、金属組織が平均結晶粒径で5~20μmのフェライト単相組織となるフェライト系ステンレス鋼板を得る手法について、鋼成分、熱間圧延手法ならびに熱延板焼鈍手法の観点で鋭意検討した。その結果、鋼成分、特にCrとNiの含有量を適切な範囲に制御して熱間圧延工程においてオーステナイト相とフェライト相を生成させた上で熱間圧延を行った後、フェライト単相温度域の適正な温度範囲で熱延板焼鈍を行うことが有効であることを知見した。 Therefore, the present inventors have described a method for obtaining a ferritic stainless steel sheet having a metal structure having a ferrite single-phase structure having an average crystal grain size of 5 to 20 μm from the viewpoint of steel composition, hot rolling method, and hot-rolled sheet annealing method. Diligently examined. As a result, the steel components, especially the contents of Cr and Ni, are controlled to an appropriate range to generate an austenite phase and a ferrite phase in the hot rolling process, and then hot rolling is performed, and then the ferrite single phase temperature range is reached. It was found that it is effective to perform hot-rolled plate annealing in the appropriate temperature range.

次いで、熱延板焼鈍工程をフェライト単相温度域の適正な温度範囲、具体的には600℃以上750℃未満で1分~24時間保持することにより行う。これにより、熱間圧延後の金属組織に存在していた、フェライト相の再結晶と、マルテンサイト相のフェライト相への変態を生じさせて、フェライト単相組織を得る。この時、熱延板焼鈍温度を600℃未満とした場合には、フェライト相の再結晶ならびにマルテンサイト相のフェライト相への変態が不十分となり、鋼板の過度な硬質化に起因した打ち抜き割れが生じやすくなる。一方、焼鈍温度が750℃以上になると、結晶粒が過度に粗大化して平均結晶粒径が20μmを上回って、打ち抜き加工時に大きなダレやバリが発生しやすくなり、打ち抜き加工時に所定の寸法精度が得られない。保持時間を1分未満とした場合、フェライト相の再結晶ならびにマルテンサイト相のフェライト相への変態が不十分となり、鋼板の過度な硬質化に起因した打ち抜き割れが生じやすくなる。保持時間が24時間を超えると、結晶粒が過度に粗大化して平均結晶粒径が20μmを上回り、打ち抜き加工時に大きなダレやバリが発生しやすくなることにより、打ち抜き加工時に所定の寸法精度が得られない。そのため、本発明では600℃以上750℃未満の温度範囲で1分~24時間保持する熱延板焼鈍を行う必要がある。 Next, the hot-rolled plate annealing step is carried out by holding in an appropriate temperature range in the ferrite single-phase temperature range, specifically, at 600 ° C. or higher and lower than 750 ° C. for 1 minute to 24 hours. As a result, the recrystallization of the ferrite phase and the transformation of the martensite phase into the ferrite phase, which existed in the metal structure after hot rolling, are caused to obtain a ferrite single phase structure. At this time, when the annealing temperature of the hot-rolled sheet is less than 600 ° C., the recrystallization of the ferrite phase and the transformation of the martensite phase into the ferrite phase become insufficient, and punching cracks due to excessive hardening of the steel sheet occur. It is more likely to occur. On the other hand, when the annealing temperature becomes 750 ° C. or higher, the crystal grains become excessively coarse and the average crystal grain size exceeds 20 μm, and large sagging and burrs are likely to occur during the punching process, resulting in a predetermined dimensional accuracy during the punching process. I can't get it. When the holding time is less than 1 minute, the recrystallization of the ferrite phase and the transformation of the martensite phase into the ferrite phase become insufficient, and punching cracks due to excessive hardening of the steel sheet are likely to occur. When the holding time exceeds 24 hours, the crystal grains become excessively coarse and the average crystal grain size exceeds 20 μm, and large sagging and burrs are likely to occur during punching, so that predetermined dimensional accuracy can be obtained during punching. I can't. Therefore, in the present invention, it is necessary to perform hot rolled sheet annealing in a temperature range of 600 ° C. or higher and lower than 750 ° C. for 1 minute to 24 hours.

このように、本発明では、金属組織がフェライト単相組織であり、該フェライト単相組織の平均結晶粒径を5~20μmとする。好ましくは、この平均結晶粒径は7μm以上であり、より好ましくは、10μm以上であえる。また、好ましくは、この平均結晶粒径は18μm以下であり、より好ましくは、15μm以下である。 As described above, in the present invention, the metal structure is a ferrite single-phase structure, and the average crystal grain size of the ferrite single-phase structure is 5 to 20 μm. Preferably, the average crystal grain size is 7 μm or more, and more preferably 10 μm or more. Further, the average crystal grain size is preferably 18 μm or less, and more preferably 15 μm or less.

また、平均結晶粒径については、板幅中央部から組織観察用試験片を採取し、圧延方向断面を鏡面研磨後、SEM/EBSD法を用いて全厚を含む視野で測定および解析を行い、方位差15°以上の境界を粒界と定義しArea法に基づいて求めることができる。 For the average crystal grain size, a test piece for microstructure observation was collected from the center of the plate width, the cross section in the rolling direction was mirror-polished, and then measured and analyzed in the field including the total thickness using the SEM / EBSD method. A boundary with an orientation difference of 15 ° or more is defined as a grain boundary and can be obtained based on the Area method.

なお、本発明のフェライト系ステンレス熱延焼鈍鋼板の板厚は特に限定されないが、厚肉のフランジに適用できる板厚であることが望ましいため、5.0mm以上とすることが好ましく、より好ましくは、8.0mm以上である。また、板厚は15.0mm以下とすることが好ましく、より好ましくは、13.0mm以下である。 The plate thickness of the ferrite-based stainless hot-rolled annealed steel sheet of the present invention is not particularly limited, but it is preferably 5.0 mm or more because it is desirable that the plate thickness is applicable to a thick flange. , 8.0 mm or more. The plate thickness is preferably 15.0 mm or less, more preferably 13.0 mm or less.

次に、本発明のフェライト系ステンレス熱延焼鈍鋼板の成分組成について説明する。
以下、特に断らない限り、成分の含有量の単位である「%」は「質量%」を意味する。
Next, the composition of the ferrite-based stainless hot-rolled annealed steel sheet of the present invention will be described.
Hereinafter, unless otherwise specified, "%", which is a unit of the content of a component, means "mass%".

C:0.001~0.020%
Cを0.020%超えて含有すると、加工性の低下および溶接部の耐食性低下が顕著になる。C含有量が少ないほど耐食性および加工性の観点では好ましいが、C含有量を0.001%未満にするためには精錬に時間がかかり製造上好ましくない。そのため、C含有量は0.001~0.020%の範囲とする。好ましくは、C含有量は0.003%以上であり、さらに好ましくは0.004%以上である。また、好ましくは、C含有量は0.015%以下であり、さらに好ましくは、0.012%以下である。
C: 0.001 to 0.020%
When C is contained in excess of 0.020%, the workability and the corrosion resistance of the welded portion are significantly reduced. The smaller the C content is, the more preferable it is from the viewpoint of corrosion resistance and processability, but in order to reduce the C content to less than 0.001%, refining takes time, which is not preferable in terms of production. Therefore, the C content is in the range of 0.001 to 0.020%. The C content is preferably 0.003% or more, more preferably 0.004% or more. Further, the C content is preferably 0.015% or less, and more preferably 0.012% or less.

Si:0.05~1.00%
Siは、溶接時に形成される酸化皮膜に濃縮して溶接部の耐食性を向上させる効果があるとともに、製鋼工程における脱酸元素としても有用な元素である。これらの効果は0.05%以上のSiの含有により得られ、含有量が多いほどその効果は大きくなる。しかし、1.00%を超えてSiを含有すると、熱間圧延工程における圧延荷重の増大や顕著なスケールの生成が生じて、表面欠陥の増加や製造コストの上昇を誘引するため好ましくない。そのため、Si含有量は0.05~1.00%とする。好ましくは、Si含有量は0.10%以上であり、さらに好ましくは0.15%以上である。また、好ましくは、Si含有量は0.60%以下であり、さらに好ましくは、0.40%以下である。
Si: 0.05 to 1.00%
Si has the effect of concentrating on the oxide film formed during welding to improve the corrosion resistance of the welded portion, and is also a useful element as a deoxidizing element in the steelmaking process. These effects are obtained by containing 0.05% or more of Si, and the larger the content, the greater the effect. However, if the content of Si exceeds 1.00%, the rolling load in the hot rolling process increases and remarkable scale is generated, which is not preferable because it induces an increase in surface defects and an increase in manufacturing cost. Therefore, the Si content is set to 0.05 to 1.00%. The Si content is preferably 0.10% or more, more preferably 0.15% or more. Further, the Si content is preferably 0.60% or less, and more preferably 0.40% or less.

Mn:0.05~1.00%
Mnはオーステナイト生成元素であり、熱間圧延工程における圧延加工前の加熱時に生成するオーステナイト量を増加させる効果がある。また、脱酸剤としての作用もある。その効果を得るためには0.05%以上のMnの含有が必要である。しかし、Mn含有量が1.00%を超えると、腐食の起点となるMnSの析出が促進され、耐食性が低下する。そのため、Mn含有量は0.05~1.00%とする。好ましくは、Mn含有量は0.10%以上であり、さらに好ましくは0.15%以上である。また、好ましくは、Mn含有量は0.60%以下であり、さらに好ましくは、0.30%以下である。
Mn: 0.05 to 1.00%
Mn is an austenite-producing element and has the effect of increasing the amount of austenite produced during heating before rolling in the hot rolling process. It also acts as a deoxidizing agent. In order to obtain the effect, it is necessary to contain Mn of 0.05% or more. However, when the Mn content exceeds 1.00%, the precipitation of MnS, which is the starting point of corrosion, is promoted, and the corrosion resistance is lowered. Therefore, the Mn content is set to 0.05 to 1.00%. The Mn content is preferably 0.10% or more, more preferably 0.15% or more. Further, the Mn content is preferably 0.60% or less, and more preferably 0.30% or less.

P:0.04%以下
Pは鋼に不可避的に含まれる元素であるが、耐食性および加工性に対して有害な元素であるので可能な限り低減することが好ましい。特に、P含有量が0.04%を超えると固溶強化により加工性が顕著に低下する。よって、P含有量は0.04%以下とする。好ましくは、P含有量は0.03%以下である。
P: 0.04% or less P is an element inevitably contained in steel, but since it is an element harmful to corrosion resistance and workability, it is preferable to reduce it as much as possible. In particular, when the P content exceeds 0.04%, the workability is remarkably lowered due to the solid solution strengthening. Therefore, the P content is 0.04% or less. Preferably, the P content is 0.03% or less.

S:0.01%以下
SもPと同様に鋼に不可避的に含まれる元素であるが、耐食性および加工性に対して有害な元素であるので可能な限り低減するのが好ましい。特に、S含有量が0.01%を超えると耐食性が顕著に低下する。よって、S含有量は0.01%以下とする。好ましくは、S含有量は0.008%以下である。さらに好ましくは、S含有量は0.003%以下である。
S: 0.01% or less S is also an element inevitably contained in steel like P, but since it is an element harmful to corrosion resistance and workability, it is preferable to reduce it as much as possible. In particular, when the S content exceeds 0.01%, the corrosion resistance is remarkably lowered. Therefore, the S content is 0.01% or less. Preferably, the S content is 0.008% or less. More preferably, the S content is 0.003% or less.

Al:0.01~0.10%
Alは有効な脱酸剤である。さらに、Alは窒素との親和力がCrよりも強いため、溶接部に窒素が侵入した場合に、窒素をCr窒化物ではなくAl窒化物として析出させて、鋭敏化を抑制する効果がある。これらの効果は、Alを0.01%以上含有することで得られる。しかし、0.10%を超えるAlを含有すると、溶接時の溶け込み性が低下して溶接作業性が低下するので好ましくない。そのため、Al含有量は0.01~0.10%の範囲とする。好ましくは、Al含有量は0.02%以上であり、さらに好ましくは0.03%以上である。また、好ましくは、Al含有量は0.06%以下であり、さらに好ましくは、0.04%以下である。
Al: 0.01-0.10%
Al is an effective deoxidizing agent. Further, since Al has a stronger affinity with nitrogen than Cr, when nitrogen invades the welded portion, nitrogen is precipitated as Al nitride instead of Cr nitride, which has an effect of suppressing sensitization. These effects are obtained by containing 0.01% or more of Al. However, if Al containing more than 0.10% is contained, the penetration property at the time of welding is lowered and the welding workability is lowered, which is not preferable. Therefore, the Al content is set in the range of 0.01 to 0.10%. The Al content is preferably 0.02% or more, and more preferably 0.03% or more. Further, the Al content is preferably 0.06% or less, and more preferably 0.04% or less.

Cr:10.0~20.0%
Crは、ステンレス鋼の耐食性を確保するために最も重要な元素である。その含有量が10.0%未満では、自動車排気ガス雰囲気において十分な耐食性が得られない。一方、20.0%を超えてCrを含有すると、所定量のNiを含有させたとしても、熱間圧延工程におけるオーステナイト相の生成量が不足して、熱間圧延工程における金属組織の微細化効果が不十分となって熱延板焼鈍後の平均結晶粒径が20μmを上回り、打ち抜き加工時に所定の寸法精度が得られない。そのため、Cr含有量は10.0~20.0%の範囲とする。好ましくは、Cr含有量は10.0~17.0%の範囲である。より好ましくは、Cr含有量は10.5%以上であり、さらに好ましくは11.2%以上である。また、より好ましくは、Cr含有量は12.0%以下であり、さらに好ましくは、11.7%以下である。
Cr: 10.0-20.0%
Cr is the most important element for ensuring the corrosion resistance of stainless steel. If the content is less than 10.0%, sufficient corrosion resistance cannot be obtained in an automobile exhaust gas atmosphere. On the other hand, if Cr is contained in an amount of more than 20.0%, the amount of austenite phase produced in the hot rolling process is insufficient even if a predetermined amount of Ni is contained, and the metal structure in the hot rolling process is refined. The effect is insufficient and the average crystal grain size after hot-rolled sheet annealing exceeds 20 μm, and a predetermined dimensional accuracy cannot be obtained during punching. Therefore, the Cr content is set in the range of 10.0 to 20.0%. Preferably, the Cr content is in the range of 10.0 to 17.0%. More preferably, the Cr content is 10.5% or more, and even more preferably 11.2% or more. Further, the Cr content is more preferably 12.0% or less, still more preferably 11.7% or less.

Ni:0.50~2.00%
Niはオーステナイト生成元素であり、熱間圧延工程における圧延加工前の加熱時に生成するオーステナイト量を増加させる効果がある。本発明においては、CrおよびNiの含有量を所定量に制御することによって、熱間圧延工程における加熱時にオーステナイト相を生成させる。このオーステナイト相の生成によって、鋳造時に形成された粗大な金属組織が微細化するとともに、オーステナイト相には熱間圧延中に動的および/または静的再結晶が生じるために熱間圧延後の金属組織は一層微細化し、結果として熱延板焼鈍後の金属組織の微細化に寄与する。これらの効果は、Niを0.50%以上含有することで得られる。一方、Ni含有量が2.00%を超えると、過剰な固溶Niによる熱延焼鈍後の鋼板の過度な硬質化に起因した打ち抜き割れが生じやすくなる。そのため、Ni含有量は0.50~2.00%とする。好ましくは、Ni含有量は0.60%以上であり、さらに好ましくは0.70%以上である。さらに好ましくは0.75%以上である。また、より好ましくは、Ni含有量は1.50%以下であり、さらに好ましくは、1.00%以下である。
Ni: 0.50 to 2.00%
Ni is an austenite-forming element and has the effect of increasing the amount of austenite produced during heating before rolling in the hot rolling process. In the present invention, by controlling the contents of Cr and Ni to predetermined amounts, an austenite phase is generated during heating in the hot rolling step. Due to the formation of this austenite phase, the coarse metal structure formed during casting becomes finer, and the austenite phase undergoes dynamic and / or static recrystallization during hot rolling, so that the metal after hot rolling The structure is further refined, and as a result, it contributes to the miniaturization of the metal structure after hot rolling plate annealing. These effects can be obtained by containing 0.50% or more of Ni. On the other hand, when the Ni content exceeds 2.00%, punching cracks due to excessive hardening of the steel sheet after hot rolling annealing due to excessive solid solution Ni are likely to occur. Therefore, the Ni content is set to 0.50 to 2.00%. The Ni content is preferably 0.60% or more, more preferably 0.70% or more. More preferably, it is 0.75% or more. Further, the Ni content is more preferably 1.50% or less, still more preferably 1.00% or less.

Ti:0.10~0.40%
TiはC、Nと優先的に結合して、Cr炭窒化物の析出を抑制し、再結晶温度を低下させるとともに、Cr炭窒化物の析出による鋭敏化に起因した耐食性の低下を抑制する効果がある。これらの効果を得るためには0.10%以上のTiの含有が必要である。しかし、Ti含有量が0.40%を超えると、鋳造工程において粗大なTi炭窒化物が生成して鋼板の靭性が著しく低下することに加え、表面欠陥を引き起こすため製造上好ましくない。そのため、Ti含有量は0.10~0.40%とする。好ましくは、Ti含有量は0.15%以上であり、さらに好ましくは0.20%以上である。また、好ましくは、Ti含有量は0.35%以下であり、さらに好ましくは、Ti含有量は0.30%以下である。なお、溶接部耐食性の観点では式:Ti/(C+N)≧8(該式中のTi、CおよびNは各元素の含有量(質量%)である)を満たすTi含有量とすることが好ましい。
Ti: 0.10 to 0.40%
Ti preferentially binds to C and N to suppress the precipitation of Cr carbonitride, lower the recrystallization temperature, and suppress the deterioration of corrosion resistance due to the sensitization caused by the precipitation of Cr carbonitride. There is. In order to obtain these effects, it is necessary to contain 0.10% or more of Ti. However, if the Ti content exceeds 0.40%, coarse Ti carbonitride is generated in the casting process, the toughness of the steel sheet is significantly lowered, and surface defects are caused, which is not preferable in manufacturing. Therefore, the Ti content is set to 0.10 to 0.40%. The Ti content is preferably 0.15% or more, more preferably 0.20% or more. Further, the Ti content is preferably 0.35% or less, and more preferably the Ti content is 0.30% or less. From the viewpoint of corrosion resistance of the welded portion, it is preferable that the Ti content satisfies the formula: Ti / (C + N) ≧ 8 (Ti, C and N in the formula are the contents (mass%) of each element). ..

N:0.001~0.020%
N含有量が0.020%を超えると、加工性の低下および溶接部の耐食性の低下が顕著になる。耐食性の観点からN含有量は低いほど好ましいが、N含有量を0.001%未満にまで低減するには長時間の精錬が必要となり、製造コストの上昇および生産性の低下を招くため好ましくない。よって、N含有量は0.001~0.020%の範囲とする。好ましくは、N含有量は0.005%以上であり、さらに好ましくは0.007%以上である。また、好ましくは、N含有量は0.015%以下であり、さらに好ましくは、N含有量は0.012%以下である。
N: 0.001 to 0.020%
When the N content exceeds 0.020%, the workability and the corrosion resistance of the welded portion are significantly reduced. From the viewpoint of corrosion resistance, a lower N content is preferable, but it is not preferable to reduce the N content to less than 0.001% because long-term refining is required, which leads to an increase in manufacturing cost and a decrease in productivity. .. Therefore, the N content is in the range of 0.001 to 0.020%. The N content is preferably 0.005% or more, more preferably 0.007% or more. Further, the N content is preferably 0.015% or less, and more preferably the N content is 0.012% or less.

本発明は、上記必須成分を含有し残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼である。さらに、必要に応じて、Cu、Mo、WおよびCoのうちから選ばれる1種または2種以上、あるいは/さらに、V、Nb、Zr、REM、B、MgおよびCaのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。なお、下記の範囲において下限値未満で下記の元素を含有しても本発明の効果は害されないことから、下記の元素を下限値未満で含む場合、その元素は不可避的不純物とする。 The present invention is a ferritic stainless steel containing the above-mentioned essential components and having a balance composed of Fe and unavoidable impurities. Further, if necessary, one or more selected from Cu, Mo, W and Co, or / further, one selected from V, Nb, Zr, REM, B, Mg and Ca. Alternatively, two or more kinds can be contained in the following range. In addition, since the effect of the present invention is not impaired even if the following elements are contained below the lower limit value in the following range, when the following elements are contained below the lower limit value, the element is regarded as an unavoidable impurity.

Cu:0.01~1.00%
Cuは、水溶液中や弱酸性の水滴が付着した場合の母材および溶接部の耐食性を向上させるのに特に有効な元素である。この効果は0.01%以上の含有により得られ、その効果はCu含有量が多いほど高くなる。しかし、1.00%を超えてCuを含有すると、熱間加工性が低下して表面欠陥を誘引する場合がある。さらには焼鈍後の脱スケールが困難となる場合もある。そのため、Cuを含有する場合は、Cu含有量は0.01~1.00%の範囲とすることが好ましい。より好ましくは、Cu含有量は0.10%以上であり、さらに好ましくは0.30%以上である。また、より好ましくは、Cu含有量は0.60%以下であり、さらに好ましくは、0.45%以下である。
Cu: 0.01-1.00%
Cu is an element particularly effective for improving the corrosion resistance of the base metal and the welded portion in an aqueous solution or when weakly acidic water droplets adhere to it. This effect is obtained by the content of 0.01% or more, and the effect becomes higher as the Cu content increases. However, if Cu is contained in an amount of more than 1.00%, the hot workability may be deteriorated and surface defects may be induced. Furthermore, it may be difficult to descale after annealing. Therefore, when Cu is contained, the Cu content is preferably in the range of 0.01 to 1.00%. More preferably, the Cu content is 0.10% or more, and even more preferably 0.30% or more. Further, the Cu content is more preferably 0.60% or less, still more preferably 0.45% or less.

Mo:0.01~2.00%
Moは、ステンレス鋼の耐食性を顕著に向上させる元素である。この効果は0.01%以上の含有によって得られ、その効果は含有量が多いほど向上する。しかし、Mo含有量が2.00%を超えると、熱間圧延時の圧延負荷が大きくなり製造性が低下したり、鋼板強度の過度な上昇が生じたりする場合がある。また、Moは高価な元素であることから、多量の含有は製造コストを増大させる。そのため、Moを含有する場合は、Mo含有量は0.01~2.00%とすることが好ましい。より好ましくは、Mo含有量は0.10%以上であり、さらに好ましくは0.30%以上である。また、より好ましくは、Mo含有量は1.40%以下であり、さらに好ましくは、0.90%以下である。
Mo: 0.01-2.00%
Mo is an element that significantly improves the corrosion resistance of stainless steel. This effect is obtained by the content of 0.01% or more, and the effect is improved as the content is higher. However, if the Mo content exceeds 2.00%, the rolling load during hot rolling may increase, resulting in a decrease in manufacturability or an excessive increase in steel sheet strength. Moreover, since Mo is an expensive element, its content in a large amount increases the manufacturing cost. Therefore, when Mo is contained, the Mo content is preferably 0.01 to 2.00%. More preferably, the Mo content is 0.10% or more, and even more preferably 0.30% or more. Further, the Mo content is more preferably 1.40% or less, still more preferably 0.90% or less.

W:0.01~0.20%
Wは、Moと同様に耐食性を向上させる効果がある。この効果は0.01%以上のWの含有により得られる。しかし、0.20%を超えてWを含有すると強度が上昇し、圧延荷重の増大等による製造性の低下を招く場合がある。そのため、Wを含有する場合は、W含有量は0.01~0.20%の範囲とすることが好ましい。さらに好ましくは、W含有量は0.05%以上である。また、さらに好ましくは、W含有量は0.15%以下である。
W: 0.01 to 0.20%
W has the same effect of improving corrosion resistance as Mo. This effect is obtained by containing 0.01% or more of W. However, if W is contained in excess of 0.20%, the strength increases, which may lead to a decrease in manufacturability due to an increase in rolling load or the like. Therefore, when W is contained, the W content is preferably in the range of 0.01 to 0.20%. More preferably, the W content is 0.05% or more. Further, more preferably, the W content is 0.15% or less.

Co:0.01~0.20%
Coは、靭性を向上させる元素である。この効果は0.01%以上のCoの含有によって得られる。一方、Co含有量が0.20%を超えると加工性が低下する場合がある。そのため、Coを含有する場合は、Co含有量は0.01~0.20%の範囲とすることが好ましい。
Co: 0.01-0.20%
Co is an element that improves toughness. This effect is obtained by containing 0.01% or more of Co. On the other hand, if the Co content exceeds 0.20%, the processability may decrease. Therefore, when Co is contained, the Co content is preferably in the range of 0.01 to 0.20%.

V:0.01~0.20%
Vは、C、Nと炭窒化物を形成し、溶接時の鋭敏化を抑制して溶接部の耐食性を向上させる。この効果はV含有量が0.01%以上で得られる。一方、V含有量が0.20%を超えると加工性および靭性が顕著に低下する場合がある。そのため、V含有量は0.01~0.20%とすることが好ましい。さらに好ましくは、V含有量は0.02%以上である。また、さらに好ましくは、V含有量は0.050%以下である。
V: 0.01 to 0.20%
V forms a carbonitride with C and N, suppresses sensitization during welding, and improves the corrosion resistance of the welded portion. This effect is obtained when the V content is 0.01% or more. On the other hand, if the V content exceeds 0.20%, the workability and toughness may be significantly reduced. Therefore, the V content is preferably 0.01 to 0.20%. More preferably, the V content is 0.02% or more. Further, more preferably, the V content is 0.050% or less.

Nb:0.01~0.10%
Nbは、結晶粒を微細化させるとともに、微細な炭窒化物として析出することで0.2%耐力を上昇させる効果がある。これらの効果は0.01%以上のNbの含有で得られる。一方、Nbは再結晶温度を上昇させる効果もあり、Nb含有量が0.10%を超えると熱延板焼鈍にて十分な再結晶を生じさせるために必要な焼鈍温度が過度に高温となるため、熱延板焼鈍後に本発明が必要とする平均結晶粒径が5~20μmであるフェライト単相組織が得られなくなる場合がある。そのため、Nbを含有させる場合には、Nb含有量は0.01~0.10%の範囲とすることが好ましい。さらに好ましくは、Nb含有量は0.01~0.05%である。
Nb: 0.01-0.10%
Nb has the effect of increasing the yield strength by 0.2% by refining the crystal grains and precipitating them as fine carbonitrides. These effects are obtained with a Nb content of 0.01% or more. On the other hand, Nb also has the effect of raising the recrystallization temperature, and when the Nb content exceeds 0.10%, the annealing temperature required to generate sufficient recrystallization by hot-rolled sheet annealing becomes excessively high. Therefore, after annealing the hot-rolled plate, a ferrite single-phase structure having an average crystal grain size of 5 to 20 μm required by the present invention may not be obtained. Therefore, when Nb is contained, the Nb content is preferably in the range of 0.01 to 0.10%. More preferably, the Nb content is 0.01 to 0.05%.

Zr:0.01~0.20%
Zrは、C、Nと結合して鋭敏化を抑制する効果がある。この効果は0.01%以上のZrの含有により得られる。一方、0.20%を超えてZrを含有すると加工性が顕著に低下する場合がある。そのため、Zrを含有する場合、Zr含有量は0.01~0.20%の範囲とすることが好ましい。さらに好ましくは、Zr含有量は0.01~0.10%の範囲とする。
Zr: 0.01-0.20%
Zr has the effect of binding to C and N to suppress sensitization. This effect is obtained by containing 0.01% or more of Zr. On the other hand, if Zr is contained in excess of 0.20%, the processability may be significantly reduced. Therefore, when Zr is contained, the Zr content is preferably in the range of 0.01 to 0.20%. More preferably, the Zr content is in the range of 0.01 to 0.10%.

REM:0.001~0.100%
REM(Rare Earth Metals:希土類金属)は、耐酸化性を向上させる効果があり、溶接部の酸化皮膜(溶接テンパーカラー)形成を抑制して酸化皮膜直下におけるCr欠乏領域の形成を抑制する。この効果は、REMを0.001%以上含有することで得られる。一方、0.100%を超えてREMを含有すると熱間加工性を低下させる場合がある。そのため、REMを含有する場合、REM含有量は0.001~0.100%の範囲とすることが好ましい。より好ましくは、REM含有量は0.001~0.050%の範囲である。
REM: 0.001 to 0.100%
REM (Rare Earth Metals) has the effect of improving oxidation resistance, suppresses the formation of an oxide film (welded temper color) in the welded portion, and suppresses the formation of a Cr-deficient region directly under the oxide film. This effect is obtained by containing 0.001% or more of REM. On the other hand, if REM is contained in excess of 0.100%, the hot workability may be deteriorated. Therefore, when REM is contained, the REM content is preferably in the range of 0.001 to 0.100%. More preferably, the REM content is in the range of 0.001 to 0.050%.

B:0.0002~0.0025%
Bは、深絞り成形後の耐二次加工脆性を改善するために有効な元素である。この効果はBの含有量を0.0002%以上にすることで得られる。一方、0.0025%を超えてBを含有すると加工性と靭性が低下する場合がある。そのため、Bを含有する場合、B含有量は0.0002~0.0025%の範囲とすることが好ましい。さらに好ましくは、B含有量は0.0003%以上である。また、さらに好ましくは、B含有量は0.0006%以下である。
B: 0.0002 to 0.0025%
B is an element effective for improving the secondary processing brittleness after deep drawing molding. This effect can be obtained by setting the B content to 0.0002% or more. On the other hand, if B is contained in excess of 0.0025%, processability and toughness may decrease. Therefore, when B is contained, the B content is preferably in the range of 0.0002 to 0.0025%. More preferably, the B content is 0.0003% or more. Further, more preferably, the B content is 0.0006% or less.

Mg:0.0005~0.0030%
Mgは、スラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。さらに、本発明のようにTiを含有する鋼においては、Ti炭窒化物が粗大化すると靭性が低下するが、MgはTi炭窒化物の粗大化を抑制する効果も有する。これらの効果は、0.0005%以上のMgを含有することで得られる。一方で、Mg含有量が0.0030%を超えると、鋼の表面性状を悪化させてしまう場合がある。したがって、Mgを含有する場合、Mg含有量は0.0005~0.0030%の範囲とすることが好ましい。さらに好ましくは、Mg含有量は0.0010%以上である。また、さらに好ましくは、Mg含有量は0.0020%以下である。
Mg: 0.0005-0.0030%
Mg is an element that improves the equiaxed crystal ratio of the slab and is effective in improving workability and toughness. Further, in the steel containing Ti as in the present invention, the toughness decreases when the Ti carbonitride becomes coarse, but Mg also has an effect of suppressing the coarsening of the Ti carbonitride. These effects are obtained by containing 0.0005% or more of Mg. On the other hand, if the Mg content exceeds 0.0030%, the surface properties of the steel may be deteriorated. Therefore, when Mg is contained, the Mg content is preferably in the range of 0.0005 to 0.0030%. More preferably, the Mg content is 0.0010% or more. Further, more preferably, the Mg content is 0.0020% or less.

Ca:0.0003~0.0030%
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0003%以上のCaを含有することで得られる。しかし、0.0030%を超えてCaを含有すると、CaSの生成により耐食性が低下する場合がある。従って、Caを含有する場合、Ca含有量は0.0003~0.0030%の範囲とすることが好ましい。より好ましくは、Ca含有量は0.0005%以上である。また、より好ましくは、Ca含有量は0.0015%以下であり、さらに好ましくは、0.0010%以下である。
Ca: 0.0003 to 0.0030%
Ca is an effective component for preventing nozzle blockage due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. The effect is obtained by containing 0.0003% or more of Ca. However, if Ca is contained in an amount of more than 0.0030%, the corrosion resistance may decrease due to the formation of CaS. Therefore, when Ca is contained, the Ca content is preferably in the range of 0.0003 to 0.0030%. More preferably, the Ca content is 0.0005% or more. Further, the Ca content is more preferably 0.0015% or less, still more preferably 0.0010% or less.

次に、本発明のフェライト系ステンレス熱延焼鈍鋼板の製造方法について説明する。 Next, a method for manufacturing the ferrite-based stainless hot-rolled annealed steel sheet of the present invention will be described.

本発明のフェライト系ステンレス熱延焼鈍鋼板は、上記成分組成を有する鋼スラブを用い、常法の熱間圧延により熱延鋼板を得て、該熱延鋼板に対してさらに600℃以上750℃未満で1分~24時間保持する熱延板焼鈍を行うことによって得られる。 The ferrite-based stainless hot-rolled annealed steel sheet of the present invention uses a steel slab having the above-mentioned composition to obtain a hot-rolled steel sheet by hot rolling in a conventional method, and further 600 ° C. or higher and lower than 750 ° C. with respect to the hot-rolled steel sheet. It is obtained by performing hot-rolled sheet annealing in which the steel is held for 1 minute to 24 hours.

まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。 First, the molten steel having the above-mentioned composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a steel material (slab) is obtained by a continuous casting method or a ingot-breaking method.

このスラブを、1050~1250℃で1~24時間加熱するか、あるいは鋳造後のスラブが上記温度範囲を下回る前に鋳造まま直接、熱間圧延に供する。本発明では熱間圧延の手法ならびに条件について特に限定すべき点はないが、巻取処理を過度に低温で行った場合、熱間圧延後の鋼板が著しく硬質化して次工程の操業が困難となる場合があるため、巻取処理は550℃以上で行うことが好ましい。 The slab is heated at 1050 to 1250 ° C. for 1 to 24 hours, or is directly subjected to hot rolling as cast before the cast slab falls below the above temperature range. In the present invention, the method and conditions of hot rolling are not particularly limited, but when the winding process is performed at an excessively low temperature, the steel sheet after hot rolling becomes extremely hard and it is difficult to operate the next process. Therefore, the winding process is preferably performed at 550 ° C. or higher.

熱延板焼鈍:600℃以上750℃未満で1分~24時間保持
本発明では上記熱間圧延工程終了後に熱延板焼鈍を行う。熱延板焼鈍において、金属組織を過度に粗大化させることなく、熱間圧延工程で形成させた圧延加工組織を再結晶させるとともに、熱間圧延工程で生成したマルテンサイト相をフェライト相へと変態させる。この効果を得るためには熱延板焼鈍を600℃以上750℃未満で行う必要がある。焼鈍温度が600℃未満では再結晶が不十分となり、熱延加工組織が微細な回復粒となって金属組織が過度に微細化し、打ち抜き加工時に所定の寸法精度が得られない。また、熱延板焼鈍後の金属組織中に、加工組織やマルテンサイト相が残存して、平均結晶粒径が所定の範囲内であっても、鋼板の過度な硬質化に起因した打ち抜き割れが生じる場合がある。一方、焼鈍温度が750℃以上の場合、結晶粒が過度に粗大化して平均結晶粒径20μmを上回り、打ち抜き加工時に所定の寸法精度が得られない。保持時間を1分未満とした場合、熱延板焼鈍後の金属組織中に、加工組織やマルテンサイト相が残存して、平均結晶粒径が所定の範囲内であっても、鋼板の過度な硬質化に起因した打ち抜き割れが生じやすくなる。保持時間が24時間を超えると、結晶粒が過度に粗大化して平均結晶粒径が20μmを上回り、打ち抜き加工時に所定の寸法精度が得られない。そのため、熱延板焼鈍は600℃以上750℃未満の温度範囲で1分~24時間保持することにより行う。好ましくは、熱延板焼鈍温度は600℃以上であり、さらに好ましくは640℃以上である。また、好ましくは、熱延板焼鈍温度は700℃以下である。好ましい保持時間は1時間以上であり、さらに好ましくは6時間以上である。また、好ましい保持時間は20時間以下であり、さらに好ましくは、12時間以下である。なお、熱延板焼鈍の手法に特に限定はなく、箱焼鈍(バッチ焼鈍)、連続焼鈍のいずれで実施してもかまわない。
Hot-rolled plate annealing: Holds at 600 ° C or higher and lower than 750 ° C for 1 minute to 24 hours In the present invention, hot-rolled plate annealing is performed after the hot rolling step is completed. In hot-rolled sheet annealing, the rolled structure formed in the hot rolling process is recrystallized without excessive coarsening of the metal structure, and the martensite phase generated in the hot rolling process is transformed into a ferrite phase. Let me. In order to obtain this effect, it is necessary to perform hot rolled sheet annealing at 600 ° C. or higher and lower than 750 ° C. If the annealing temperature is less than 600 ° C., recrystallization is insufficient, the hot-rolled structure becomes fine recovery grains, the metal structure becomes excessively fine, and a predetermined dimensional accuracy cannot be obtained during punching. Further, even if the processed structure and the martensite phase remain in the metal structure after annealing of the hot-rolled sheet and the average crystal grain size is within a predetermined range, punching cracks due to excessive hardening of the steel sheet occur. May occur. On the other hand, when the annealing temperature is 750 ° C. or higher, the crystal grains become excessively coarse and exceed the average crystal grain size of 20 μm, and a predetermined dimensional accuracy cannot be obtained during punching. When the holding time is less than 1 minute, the processed structure and martensite phase remain in the metal structure after annealing of the hot-rolled sheet, and even if the average crystal grain size is within a predetermined range, the steel sheet is excessive. Punching cracks due to hardening are likely to occur. If the holding time exceeds 24 hours, the crystal grains become excessively coarse and the average crystal grain size exceeds 20 μm, and the predetermined dimensional accuracy cannot be obtained at the time of punching. Therefore, hot-rolled sheet annealing is performed by holding for 1 minute to 24 hours in a temperature range of 600 ° C. or higher and lower than 750 ° C. The hot rolled sheet annealing temperature is preferably 600 ° C. or higher, more preferably 640 ° C. or higher. Further, preferably, the hot-rolled plate annealing temperature is 700 ° C. or lower. The preferred retention time is 1 hour or longer, more preferably 6 hours or longer. The holding time is preferably 20 hours or less, more preferably 12 hours or less. The method of hot-rolled sheet annealing is not particularly limited, and either box annealing (batch annealing) or continuous annealing may be performed.

得られた熱延焼鈍鋼板には、必要に応じてショットブラストや酸洗による脱スケール処理を行ってもよい。さらに、表面性状を向上させるために、研削や研磨等を施してもよい。また、本発明が提供する熱延焼鈍鋼板はその後、冷間圧延および冷延板焼鈍を行ってもよい。 The obtained hot-rolled annealed steel sheet may be descaled by shot blasting or pickling, if necessary. Further, in order to improve the surface texture, grinding, polishing or the like may be performed. Further, the hot-rolled annealed steel sheet provided by the present invention may be subsequently cold-rolled and cold-rolled and annealed.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to Examples.

表1に示す化学組成を有するステンレス溶鋼を100kg真空溶解炉により溶製した。これらの鋼塊を1100℃で1時間加熱後、表2に記載の板厚(表2中、熱間圧延終了板厚参照)まで熱間圧延を行った後に650℃で1h保持後に炉冷する巻取模擬処理を行って熱延鋼板とした。ついで、表2に記載の温度(表2中、熱延板焼鈍温度参照)で8時間保持後、徐冷する熱延板焼鈍を行い熱延焼鈍鋼板を得た。
なお、得られた各熱延焼鈍鋼板の板厚は、夫々の熱間圧延終了板厚と同じであった。
かくして得られた熱延焼鈍鋼板について、以下の評価を行った。
A stainless molten steel having the chemical composition shown in Table 1 was melted in a 100 kg vacuum melting furnace. These ingots are heated at 1100 ° C. for 1 hour, hot-rolled to the plate thickness shown in Table 2 (see the plate thickness at the end of hot rolling in Table 2), held at 650 ° C. for 1 hour, and then cooled in a furnace. A hot-rolled steel sheet was obtained by performing a winding simulation process. Then, after holding at the temperature shown in Table 2 (see the hot-rolled sheet annealing temperature in Table 2) for 8 hours, the hot-rolled sheet was annealed by slow cooling to obtain a hot-rolled annealed steel sheet.
The plate thickness of each of the obtained hot-rolled annealed steel sheets was the same as the plate thickness at which hot rolling was completed.
The hot-rolled annealed steel sheet thus obtained was evaluated as follows.

(1)金属組織の評価
板幅中央部から組織観察用試験片を採取し、圧延方向断面を鏡面研磨後、SEM/EBSD法を用いて全厚を含む視野で測定および解析を行い、方位差15°以上の境界を粒界と定義しArea法に基づいて平均結晶粒径を求めた。平均結晶粒径5μm以上20μm以下の場合を本発明の範囲内とし、5μmの未満あるいは20μm超の場合を本発明の範囲外とし、表2中下線を付した。
(1) Evaluation of metal structure A test piece for structure observation is collected from the center of the plate width, the cross section in the rolling direction is mirror-polished, and then measured and analyzed in the field including the total thickness using the SEM / EBSD method. The boundary of 15 ° or more was defined as the grain boundary, and the average crystal grain size was determined based on the Area method. Cases with an average crystal grain size of 5 μm or more and 20 μm or less are within the scope of the present invention, and cases of less than 5 μm or more than 20 μm are outside the scope of the present invention, and are underlined in Table 2.

また、同じく板幅中央部から組織観察用試験片を採取し、圧延方向断面を鏡面研磨後、ピクリン酸-塩酸水溶液により観察用の腐食を行って金属組織を現出させた後、倍率500倍の光学顕微鏡を用いて観察を行い、金属組織の形態からフェライト相とマルテンサイト相とを区別することにより、各鋼板の金属組織がフェライト単相組織であるか否かを判定した。具体的には、結晶粒内が一様で平坦な形態が観察され、比較的明るいコントラストを呈する領域をフェライト相と判定した。また、結晶粒内に亜粒界やブロック境界等のマルテンサイト相特有の表面形態が観察され、フェライト相に比べて暗いコントラストを呈する領域をマルテンサイト相と判定した。表中、Fは金属組織がフェライト単相組織であったことを表している。 Similarly, a test piece for microstructure observation is collected from the central part of the plate width, the cross section in the rolling direction is mirror-polished, and then corroded for observation with an aqueous solution of picrinic acid and hydrochloric acid to reveal the metal structure, and then the magnification is 500 times. By observing with an optical microscope of No. 1 and distinguishing between a ferrite phase and a martensite phase from the morphology of the metal structure, it was determined whether or not the metal structure of each steel plate has a ferrite single phase structure. Specifically, a region in which a uniform and flat morphology was observed in the crystal grains and a relatively bright contrast was observed was determined to be a ferrite phase. In addition, surface morphology peculiar to the martensite phase such as subgrain boundaries and block boundaries was observed in the crystal grains, and the region exhibiting a darker contrast than the ferrite phase was determined to be the martensite phase. In the table, F indicates that the metal structure was a ferrite single-phase structure.

(2)耐食性の評価
熱延焼鈍鋼板から、60×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(5質量%NaCl、35℃、噴霧2hr)→乾燥(60℃、4hr、相対湿度40%)→湿潤(50℃、2hr、相対湿度≧95%)を1サイクルとして、5サイクル行った。塩水噴霧サイクル試験を5サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆面積率((試験片中の発錆面積/試験片全面積)×100[%])を算出した。発錆面積率10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした。
(2) Evaluation of corrosion resistance A 60 × 100 mm test piece was collected from a hot-rolled annealed steel sheet, the surface was polished with # 600 emery paper, and then a test piece with an end face sealed was prepared and specified in JIS H8502. It was subjected to a salt spray cycle test. The salt spray cycle test consists of one cycle of salt spray (5% by mass NaCl, 35 ° C, spray 2hr) → dry (60 ° C, 4hr, relative humidity 40%) → wet (50 ° C, 2hr, relative humidity ≧ 95%). As a result, 5 cycles were performed. The surface of the test piece after 5 cycles of the salt spray cycle test was photographed, the rusted area on the surface of the test piece was measured by image analysis, and the rusted area ratio ((in the test piece)) was calculated from the ratio to the total area of the test piece. Rusted area / total area of test piece) × 100 [%]) was calculated. A rusted area ratio of 10% or less was passed with particularly excellent corrosion resistance (⊚), a rusted area ratio of more than 10% and 25% or less was passed (◯), and a rusted area ratio of more than 25% was rejected (×).

(3)打ち抜き加工性の評価
熱延焼鈍鋼板から100mm×100mmの試験片を採取した後、該試験片中央部にφ20mm(公差±0.1mm)の孔が形成されるように、直径20mmの肉抜き用円柱刃を有する上金型(ポンチ)と上金型とのクリアランスが10%となるように適切に選定された孔を有する下金型(ダイス)を設置したクランクプレス機によって、打ち抜き加工により5枚の試験片を作製した。上記のクリアランス(C)[%]、ダイスの孔の直径(ダイスの内径)(Dd)[mm]及びポンチの直径(Dp)[mm]は、板厚(t)[mm]も含め、以下の式(1)の関係で表される。
C=(Dd-Dp)÷(2×t)×100・・・式(1)
このようにして得られた試験片について、試験片外観の目視観察と試験片中央部の孔径をデジタルノギスにより測定した。割れがなく打ち抜き加工後の孔径が5枚の試験片すべてで19.9~20.1mmの範囲となっていた場合を合格(○)とした。いずれか1枚でも割れがあるか、孔径が19.9mm未満あるいは20.1mm超となっていた場合を不合格(×)とした。
(3) Evaluation of punching workability After a 100 mm × 100 mm test piece is sampled from a hot-rolled annealed steel sheet, the diameter is 20 mm so that a hole of φ20 mm (tolerance ± 0.1 mm) is formed in the center of the test piece. Punching is performed by a crank press machine equipped with a lower die (die) having a hole appropriately selected so that the clearance between the upper die (punch) having a thinning columnar blade and the upper die is 10%. Five test pieces were prepared by processing. The above clearance (C) [%], the diameter of the hole of the die (inner diameter of the die) (Dd) [mm], and the diameter of the punch (Dp) [mm] are as follows, including the plate thickness (t) [mm]. It is expressed by the relation of the equation (1) of.
C = (Dd-Dp) ÷ (2 × t) × 100 ... Equation (1)
With respect to the test piece thus obtained, the appearance of the test piece was visually observed and the hole diameter at the center of the test piece was measured with a digital caliper. The case where there was no crack and the hole diameter after punching was in the range of 19.9 to 20.1 mm for all five test pieces was regarded as acceptable (◯). If any one of them had a crack, or if the hole diameter was less than 19.9 mm or more than 20.1 mm, it was rejected (x).

試験結果を熱延板焼鈍条件と併せて表2に示す。 The test results are shown in Table 2 together with the hot-rolled sheet annealing conditions.

Figure 0007038799000001
Figure 0007038799000001

Figure 0007038799000002
Figure 0007038799000002

鋼成分および熱延板焼鈍条件が本発明の範囲を満たすNo.1~36は、熱間圧延工程における加熱時にオーステナイト相が生成したことに加え、所定の熱延板焼鈍によって結晶粒の過度の粗大化を生じさせることなく再結晶が生じて所定の平均結晶粒径が得られた結果、所定の打ち抜き加工性が得られた。さらに得られた熱延焼鈍板の耐食性を評価した結果、発錆面積率はいずれも25%以下であり十分な耐食性も有していることが確認された。 No. 1 in which the steel composition and the hot-rolled sheet annealing conditions satisfy the scope of the present invention. In Nos. 1 to 36, in addition to the formation of an austenite phase during heating in the hot rolling process, recrystallization occurs without causing excessive coarsening of crystal grains by predetermined hot-rolled sheet annealing, and predetermined average crystal grains occur. As a result of obtaining the diameter, a predetermined punching workability was obtained. Further, as a result of evaluating the corrosion resistance of the obtained hot-rolled annealed plate, it was confirmed that the rusted area ratio was 25% or less and that the hot-rolled annealed plate had sufficient corrosion resistance.

特に、Cuを含有させた鋼A19を用いたNo.19、Cuを含有させた鋼A21を用いたNo.21、Moを含有させた鋼A20を用いたNo.20、およびMoを含有させた鋼A22を用いたNo.22では発錆面積率が10%以下と一層優れた耐食性が得られた。 In particular, No. 1 using steel A19 containing Cu. 19. No. 1 using steel A21 containing Cu. 21, No. 20 using steel A20 containing Mo, and No. 20 using steel A22 containing Mo. In No. 22, the rusted area ratio was 10% or less, and more excellent corrosion resistance was obtained.

また、Cr含有量が19.7%と高い鋼A3を用いたNo.3およびCr含有量が19.6%と高い鋼A18を用いたNo.18では鋼板表面に形成される不動態皮膜が強固になった結果、発錆面積率が10%以下と一層優れた耐食性が得られた。 In addition, No. 1 using steel A3 having a high Cr content of 19.7%. No. 3 using steel A18 having a high Cr content of 19.6%. In No. 18, as a result of the passivation film formed on the surface of the steel sheet being strengthened, a rusted area ratio of 10% or less was obtained, and even better corrosion resistance was obtained.

Ni含有量が本発明の範囲を下回る鋼B1を用いたNo.37では、熱間圧延工程の加熱時にオーステナイト相がほとんど生成しなかった結果、金属組織の微細化効果が得られなかった結果、平均結晶粒径が本発明の範囲を上回り、所定の打ち抜き加工性が得られなかった。 No. 1 using steel B1 whose Ni content is below the range of the present invention. In 37, as a result of almost no austenite phase being generated during heating in the hot rolling process, the effect of miniaturizing the metal structure was not obtained, and as a result, the average crystal grain size exceeded the range of the present invention, and the predetermined punching workability was achieved. Was not obtained.

Ni含有量が本発明の範囲を上回る鋼B2を用いたNo.38では、所定の平均結晶粒径は得られたものの、固溶Ni量が過剰であったために鋼板が過度に硬質化した結果、打ち抜き加工時に割れが発生して所定の形状へ加工することができなかった。 No. 1 using steel B2 having a Ni content exceeding the range of the present invention. In No. 38, although a predetermined average crystal grain size was obtained, the steel sheet was excessively hardened due to an excessive amount of solid solution Ni, and as a result, cracks were generated during punching and the steel sheet was processed into a predetermined shape. could not.

Cr含有量が本発明の範囲を下回る鋼B3を用いたNo.39では、Cr含有量が不足した結果、所定の耐食性が得られなかった。 No. 1 using steel B3 whose Cr content is below the range of the present invention. In No. 39, as a result of insufficient Cr content, the predetermined corrosion resistance could not be obtained.

Cr含有量が本発明の範囲を上回る鋼B4を用いたNo.40では、所定量のNiを含有させたにも関わらず、過剰なCrの含有によって熱間圧延工程の加熱時に生成するオーステナイト相が減少した。これにより、熱間圧延工程においてオーステナイト相の生成による微細化効果が十分には得られなかった。その結果、所定の平均結晶粒径が得られず、所定の打ち抜き加工性が得られなかった。 No. 1 using steel B4 having a Cr content exceeding the range of the present invention. In No. 40, although a predetermined amount of Ni was contained, the austenite phase generated during heating in the hot rolling step decreased due to the excessive content of Cr. As a result, the miniaturization effect due to the formation of the austenite phase could not be sufficiently obtained in the hot rolling process. As a result, a predetermined average crystal grain size could not be obtained, and a predetermined punching processability could not be obtained.

Ti含有量が本発明の範囲を下回る鋼B5を用いたNo.41では、熱延板焼鈍時にCr炭窒化物が多量に析出したことによる鋭敏化が生じ、所定の耐食性を得ることができなかった。 No. 1 using steel B5 whose Ti content is below the range of the present invention. In No. 41, sensitization occurred due to the precipitation of a large amount of Cr carbonitride during the annealing of the hot-rolled plate, and the predetermined corrosion resistance could not be obtained.

熱延板焼鈍温度が本発明の範囲を上回るNo.43では、生成した再結晶粒の著しい粗大化が生じた結果、所定の平均結晶粒径が得られず、所定の打ち抜き加工性が得られなかった。 No. 1 whose hot-rolled sheet annealing temperature exceeds the range of the present invention. In No. 43, as a result of significant coarsening of the recrystallized grains produced, a predetermined average crystal grain size could not be obtained, and a predetermined punching processability could not be obtained.

No.44は所定の鋼成分を有する鋼A14を本発明の範囲を上回る806℃で焼鈍し、平均結晶粒径を本発明の範囲を上回る34μmまで粗大化させた例である。所定の鋼成分を有していたものの、結晶粒が過度に粗大であったために、打ち抜き加工時に著しいダレおよびバリが生じ、所定の打ち抜き加工性が得られなかった。 No. Reference numeral 44 is an example in which the steel A14 having a predetermined steel component is annealed at 806 ° C., which exceeds the range of the present invention, and the average crystal grain size is coarsened to 34 μm, which exceeds the range of the present invention. Although it had a predetermined steel component, the crystal grains were excessively coarse, so that significant sagging and burrs occurred during the punching process, and the predetermined punching workability could not be obtained.

本発明で得られるフェライト系ステンレス熱延焼鈍鋼板は、高い加工性と耐食性が要求される用途、例えばバーリング加工部を有するフランジ等への適用に特に好適である。


The ferrite-based stainless hot-rolled annealed steel sheet obtained in the present invention is particularly suitable for applications where high workability and corrosion resistance are required, for example, a flange having a burring processed portion.


Claims (4)

質量%で、
C:0.001~0.020%、
Si:0.05~0.40%、
Mn:0.05~0.60%、
P:0.04%以下、
S:0.01%以下、
Al:0.01~0.10%、
Cr:11.2~20.0%、
Ni:0.50~0.86%、
Ti:0.10~0.40%、
N:0.001~0.020%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
金属組織が平均結晶粒径5~20μmのフェライト単相組織であるフェライト系ステンレス熱延焼鈍鋼板。
By mass%,
C: 0.001 to 0.020%,
Si: 0.05 to 0.40%,
Mn: 0.05 to 0.60%,
P: 0.04% or less,
S: 0.01% or less,
Al: 0.01-0.10%,
Cr: 11.2 to 20.0%,
Ni: 0.50 to 0.86 %,
Ti: 0.10 to 0.40%,
N: contains 0.001 to 0.020%, and has a component composition in which the balance is composed of Fe and unavoidable impurities.
A ferritic stainless hot-rolled annealed steel sheet having a ferrite single-phase structure with an average crystal grain size of 5 to 20 μm.
質量%で、さらに、
Cu:0.01~1.00%、
Mo:0.01~2.00%、
W:0.01~0.20%、
Co:0.01~0.20%のうちから選ばれる1種または2種以上を含有する請求項1に記載のフェライト系ステンレス熱延焼鈍鋼板。
By mass%, more
Cu: 0.01-1.00%,
Mo: 0.01-2.00%,
W: 0.01 to 0.20%,
Co: The ferrite-based stainless hot-rolled annealed steel sheet according to claim 1, which contains one or more selected from 0.01 to 0.20%.
質量%で、さらに、
V:0.01~0.20%、
Nb:0.01~0.10%、
Zr:0.01~0.20%、
REM:0.001~0.100%、
B:0.0002~0.0025%、
Mg:0.0005~0.0030%、
Ca:0.0003~0.0030%のうちから選ばれる1種または2種以上を含有する請求項1または2に記載のフェライト系ステンレス熱延焼鈍鋼板。
By mass%, more
V: 0.01-0.20%,
Nb: 0.01-0.10%,
Zr: 0.01-0.20%,
REM: 0.001 to 0.100%,
B: 0.0002 to 0.0025%,
Mg: 0.0005-0.0030%,
Ca: The ferrite-based stainless heat-rolled annealed steel sheet according to claim 1 or 2, which contains one or more selected from 0.0003 to 0.0030%.
請求項1~3のいずれかに記載のフェライト系ステンレス熱延焼鈍鋼板の製造方法であって、
熱間圧延工程で得られた熱延鋼板について600℃以上750℃未満で1分~24時間保持する熱延板焼鈍を行うフェライト系ステンレス熱延焼鈍鋼板の製造方法。
The method for manufacturing a ferrite-based stainless hot-rolled annealed steel sheet according to any one of claims 1 to 3.
A method for producing a ferritic stainless hot-rolled annealed steel sheet, which is annealed by hot-rolling a hot-rolled steel sheet obtained in a hot-rolling step and held at 600 ° C. or higher and lower than 750 ° C. for 1 minute to 24 hours.
JP2020506852A 2018-10-25 2019-09-25 Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method Active JP7038799B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018200479 2018-10-25
JP2018200479 2018-10-25
PCT/JP2019/037430 WO2020084987A1 (en) 2018-10-25 2019-09-25 Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same

Publications (2)

Publication Number Publication Date
JPWO2020084987A1 JPWO2020084987A1 (en) 2021-02-15
JP7038799B2 true JP7038799B2 (en) 2022-03-18

Family

ID=70331042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020506852A Active JP7038799B2 (en) 2018-10-25 2019-09-25 Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method

Country Status (8)

Country Link
US (1) US20210363604A1 (en)
JP (1) JP7038799B2 (en)
KR (2) KR20210064281A (en)
CN (1) CN112888802A (en)
CA (1) CA3114743C (en)
MX (1) MX2021004713A (en)
TW (1) TWI718712B (en)
WO (1) WO2020084987A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191150A (en) 2015-03-30 2016-11-10 新日鐵住金ステンレス株式会社 Stainless steel sheet excellent in toughness and production method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3231174B2 (en) * 1993-10-18 2001-11-19 新日本製鐵株式会社 Hot-rolled high-strength steel sheet with good drawability and method for producing the same
JP2003213376A (en) * 2002-01-15 2003-07-30 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JP3886933B2 (en) * 2003-06-04 2007-02-28 日新製鋼株式会社 Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP4749888B2 (en) * 2006-02-22 2011-08-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with less rough processing and manufacturing method thereof
JP5225620B2 (en) * 2006-07-04 2013-07-03 新日鐵住金ステンレス株式会社 Low chromium-containing stainless steel excellent in corrosion resistance of heat-affected zone multiple times and its manufacturing method
JP5045050B2 (en) * 2006-10-05 2012-10-10 Jfeスチール株式会社 Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP5196807B2 (en) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
CN102041452A (en) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 Medium chromium ferrite stainless steel and making method thereof
JP5885884B2 (en) 2013-03-27 2016-03-16 新日鐵住金ステンレス株式会社 Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
CN109642286B (en) * 2016-10-17 2021-02-12 杰富意钢铁株式会社 Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
JP6765287B2 (en) * 2016-11-17 2020-10-07 日鉄ステンレス株式会社 Ferritic stainless steel, its manufacturing method, and fuel cell components
US20200385835A1 (en) * 2017-04-27 2020-12-10 Jfe Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
KR102603113B1 (en) * 2017-10-30 2023-11-16 제이에프이 스틸 가부시키가이샤 Ferritic stainless-steel sheet and method for manufacturing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191150A (en) 2015-03-30 2016-11-10 新日鐵住金ステンレス株式会社 Stainless steel sheet excellent in toughness and production method thereof

Also Published As

Publication number Publication date
US20210363604A1 (en) 2021-11-25
KR20230142630A (en) 2023-10-11
CN112888802A (en) 2021-06-01
WO2020084987A1 (en) 2020-04-30
MX2021004713A (en) 2021-06-04
TWI718712B (en) 2021-02-11
JPWO2020084987A1 (en) 2021-02-15
CA3114743C (en) 2023-03-07
TW202020182A (en) 2020-06-01
KR20210064281A (en) 2021-06-02
CA3114743A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
CN110225988B (en) Hot rolled ferritic stainless steel sheet and method for producing same
CN109642286B (en) Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same
KR101705135B1 (en) Ferritic stainless steel sheet
JP6432720B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
CN110366601B (en) Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
CN107835865B (en) Hot-rolled ferritic stainless steel sheet, hot-rolled annealed sheet, and methods for producing same
CN110337503B (en) Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
JP6536763B1 (en) Ferritic stainless steel sheet and method for manufacturing the same
JP6304469B1 (en) Ferritic stainless steel hot rolled annealed steel sheet and method for producing the same
CN113166831B (en) Ferritic stainless steel sheet and method for producing same
JP2017095789A (en) Ferritic stainless steel hot rolled steel sheet for flange and manufacturing method therefor
JP7038799B2 (en) Ferritic stainless hot-rolled annealed steel sheet and its manufacturing method
JP2024075381A (en) Ferritic stainless steel plate and exhaust part

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210204

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210402

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210406

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211207

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220201

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220308

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7038799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150