JPWO2020216460A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020216460A5
JPWO2020216460A5 JP2021563342A JP2021563342A JPWO2020216460A5 JP WO2020216460 A5 JPWO2020216460 A5 JP WO2020216460A5 JP 2021563342 A JP2021563342 A JP 2021563342A JP 2021563342 A JP2021563342 A JP 2021563342A JP WO2020216460 A5 JPWO2020216460 A5 JP WO2020216460A5
Authority
JP
Japan
Prior art keywords
oxide
vanadium
titanium
coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021563342A
Other languages
Japanese (ja)
Other versions
JP2022530128A (en
JP7421571B2 (en
Publication date
Priority claimed from EP19171394.0A external-priority patent/EP3730210A1/en
Application filed filed Critical
Publication of JP2022530128A publication Critical patent/JP2022530128A/en
Publication of JPWO2020216460A5 publication Critical patent/JPWO2020216460A5/ja
Application granted granted Critical
Publication of JP7421571B2 publication Critical patent/JP7421571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の触媒は、1~20重量%、好ましくは2~10重量%のコーティングを含む。本発明で使用するとき、用語「触媒」は、セラミックキャンドルフィルタ基材及びコーティングを包含する。 The catalyst of the present invention contains 1 to 20% by weight of coating, preferably 2 to 10% by weight. As used herein, the term "catalyst" includes ceramic candle filter substrates and coatings.

結果を図2に示す。
本願は特許請求の範囲に記載の発明に係るものであるが、本願の開示は以下も包含する:
1. 窒素酸化物の選択的触媒還元(SCR)で使用するための触媒であって、
セラミックキャンドルフィルタ基材と、
チタンの酸化物を含む酸化金属担体、及びバナジウムの酸化物を含む触媒金属酸化物を含み、バナジウム/チタンの質量比が0.03~0.27であるコーティングと、を含み、
質量比は、バナジウム金属及びチタン金属の質量に基づいて計算され、
前記触媒は、1~20重量%の触媒活性物質を含み、
前記触媒金属酸化物は、前記酸化金属担体の表面上に吸着されている、触媒。
2. バナジウムの酸化物を含む前記コーティングの前記触媒金属酸化物が、五酸化バナジウム(V )を含む、前記1.に記載の触媒。
3. バナジウムの酸化物を含む前記コーティングの前記触媒金属酸化物が、加えて、タングステン及び/又はモリブデン及び/又はアンチモンの酸化物を含む、前記2.に記載の触媒。
4. チタンの酸化物を含む前記コーティングの前記酸化金属担体が、二酸化チタンを含む、前記1.~3.のいずれか一項に記載の触媒。
5. チタンの酸化物を含む前記コーティングの前記酸化金属担体が、加えて、アルミニウム、セリウム、ジルコニウム、又は混合物の酸化物、これらの酸化物のうちの少なくとも1つを含む混合酸化物若しくは化合物を含む、前記4.に記載の触媒。
6. 前記酸化金属担体が、1~1000nmの一次粒径を有する単一の又は凝集した二酸化チタンのナノ粒子のいずれかからなる、前記1.~5.のいずれか一項に記載の触媒。
7. バナジウム/チタンの質量比は0.03~0.27であり、質量比は、バナジウム金属及びチタン金属の質量に基づいて計算される、前記1.~6.のいずれか一項に記載の触媒。
8. 白金族金属を含まない、前記1.~7.のいずれか一項に記載の触媒。
9. 前記1.~8のいずれか一項に記載の触媒を調製するためのプロセスであって、
a)セラミックキャンドルフィルタ基材を用意するステップと、
b)酸化チタンを含む酸化金属担体の粒子上に分散されたバナジウム化合物を含む1つ以上の触媒金属前駆体化合物を含む、水性含浸液体を用意するステップであって、
前記含浸液体は、
i.前記1つ以上の触媒金属前駆体化合物及び前記酸化金属担体を水に添加し、このように得られた混合物に酸を連続的に添加して、前記1つ以上の触媒前駆体金属化合物の表面電荷が負であり、前記酸化金属担体のゼータ電位が正である値で、前記混合物のpHを維持するステップと、
ii.前記1つ以上の触媒金属前駆体化合物を前記酸化金属担体の表面上に吸着させるステップと、任意選択的に、
iii.このように調製されたウォッシュコートスラリーの7超のpH値を得る量で、分散剤を、このように調製された混合物に添加するステップと、
iv.任意選択的に前記混合物を粉砕するステップと、によって調製される、水性含浸液体を用意するステップと、
c)前記得られた含浸液体を、前記セラミックキャンドルフィルタ基材に含浸させるステップと、
d)前記含浸されたセラミックキャンドルフィルタ基材を、150~600℃の温度で乾燥及び熱活性化して、前記1つ以上の金属前駆体化合物をそれらの触媒活性形態に変換するステップと、を含む、プロセス。
10. バナジウム化合物を含む前記触媒金属前駆体化合物が、メタバナジン酸アンモニウムである、前記9.に記載のプロセス。
11. 前記水性含浸液体が、その液体に可溶性の第一級アミンを含む、前記9.又は10.に記載のプロセス。
12. 前記第一級アミンが、モノエチルアミンである、前記11.に記載のプロセス。
13. 自動車及び固定発生源からのオフガスを処理するための、並びに前記オフガスに含有される窒素酸化物を選択的に還元するための方法であって、前記オフガスを、前記1.~9.のいずれか一項に記載の触媒に通過させる、方法。
The results are shown in Figure 2.
Although this application relates to the invention described in the claims, the disclosure of this application also includes the following:
1. A catalyst for use in selective catalytic reduction (SCR) of nitrogen oxides, the catalyst comprising:
Ceramic candle filter base material,
an oxidized metal support comprising an oxide of titanium; and a coating comprising a catalytic metal oxide comprising an oxide of vanadium, the mass ratio of vanadium/titanium being from 0.03 to 0.27;
The mass ratio is calculated based on the mass of vanadium metal and titanium metal,
The catalyst contains 1 to 20% by weight of catalytically active material,
The catalyst, wherein the catalytic metal oxide is adsorbed on the surface of the oxidized metal support.
2. 1. wherein the catalytic metal oxide of the coating comprising an oxide of vanadium comprises vanadium pentoxide (V 2 O 5 ). Catalysts described in.
3. 2. wherein said catalytic metal oxide of said coating comprising an oxide of vanadium additionally comprises an oxide of tungsten and/or molybdenum and/or antimony; Catalysts described in.
4. 1. wherein the oxidized metal support of the coating comprising an oxide of titanium comprises titanium dioxide. ~3. The catalyst according to any one of the following.
5. the oxidized metal support of the coating comprising an oxide of titanium additionally comprises an oxide of aluminum, cerium, zirconium or a mixture, a mixed oxide or a compound comprising at least one of these oxides; Above 4. Catalysts described in.
6. 1. wherein said metal oxide support consists of either single or aggregated titanium dioxide nanoparticles having a primary particle size of 1 to 1000 nm. ~5. The catalyst according to any one of the following.
7. The mass ratio of vanadium/titanium is 0.03 to 0.27, and the mass ratio is calculated based on the mass of vanadium metal and titanium metal. ~6. The catalyst according to any one of the following.
8. 1 above, which does not contain platinum group metals. ~7. The catalyst according to any one of the following.
9. Said 1. 8. A process for preparing a catalyst according to any one of claims 1 to 8, comprising:
a) providing a ceramic candle filter substrate;
b) providing an aqueous impregnating liquid comprising one or more catalytic metal precursor compounds comprising a vanadium compound dispersed on particles of an oxidized metal support comprising titanium oxide;
The impregnating liquid is
i. The one or more catalytic metal precursor compounds and the oxidized metal support are added to water, and an acid is continuously added to the mixture thus obtained to improve the surface of the one or more catalytic metal precursor compounds. maintaining the pH of the mixture at a value where the charge is negative and the zeta potential of the oxidized metal support is positive;
ii. adsorbing the one or more catalytic metal precursor compounds onto the surface of the oxidized metal support; and optionally,
iii. adding a dispersant to the mixture thus prepared in an amount to obtain a pH value of greater than 7 of the washcoat slurry thus prepared;
iv. optionally grinding the mixture; and providing an aqueous impregnating liquid prepared by
c) impregnating the ceramic candle filter substrate with the obtained impregnating liquid;
d) drying and thermally activating the impregnated ceramic candle filter substrate at a temperature of 150-600°C to convert the one or more metal precursor compounds into their catalytically active form; ,process.
10. Item 9 above, wherein the catalytic metal precursor compound containing a vanadium compound is ammonium metavanadate. The process described in.
11. Item 9 above, wherein the aqueous impregnating liquid contains a primary amine soluble in the liquid. or 10. The process described in.
12. 11. above, wherein the primary amine is monoethylamine. The process described in.
13. 1. A method for treating off-gas from motor vehicles and stationary sources and for selectively reducing nitrogen oxides contained in said off-gas, comprising: ~9. a method according to any one of the preceding claims.

Claims (11)

窒素酸化物の選択的触媒還元(SCR)で使用するための触媒を調製するためのプロセスであって、
前記触媒は、
・セラミックキャンドルフィルタ基材と、
・チタンの酸化物を含む酸化金属担体、及びバナジウムの酸化物を含む触媒金属酸化物を含み、バナジウム/チタンの質量比が0.03~0.27であるコーティングと、を含み、
質量比は、バナジウム金属及びチタン金属の質量に基づいて計算され、
前記触媒は、1~20重量%の前記コーティングを含み、および
前記触媒金属酸化物は、前記酸化金属担体の表面上に吸着されており、
前記プロセスは、
a)セラミックキャンドルフィルタ基材を用意するステップと、
b)酸化チタンを含む酸化金属担体の粒子上に分散されたバナジウム化合物を含む1つ以上の触媒金属前駆体化合物を含む、水性含浸液体を用意するステップであって、
前記含浸液体は、
i.前記1つ以上の触媒金属前駆体化合物及び前記酸化金属担体を水に添加し、このように得られた混合物に酸を連続的に添加して、前記1つ以上の触媒前駆体金属化合物の表面電荷が負であり、前記酸化金属担体のゼータ電位が正である値で、前記混合物のpHを維持するステップと、
ii.前記1つ以上の触媒金属前駆体化合物を前記酸化金属担体の表面上に吸着させるステップと、任意選択的に、
iii.このように調製されたウォッシュコートスラリーの7超のpH値を得る量で、分散剤を、このように調製された混合物に添加するステップと、
iv.任意選択的に前記混合物を粉砕するステップと、によって調製される、水性含浸液体を用意するステップと、
c)前記得られた含浸液体を、前記セラミックキャンドルフィルタ基材に含浸させるステップと、
d)前記含浸されたセラミックキャンドルフィルタ基材を、150~600℃の温度で乾燥及び熱活性化して、前記1つ以上の金属前駆体化合物をそれらの触媒活性形態に変換するステップと、を含む、プロセス。
A process for preparing a catalyst for use in selective catalytic reduction (SCR) of nitrogen oxides, the process comprising:
The catalyst is
・Ceramic candle filter base material,
- a coating comprising an oxidized metal support comprising an oxide of titanium and a catalytic metal oxide comprising an oxide of vanadium, the mass ratio of vanadium/titanium being 0.03 to 0.27;
The mass ratio is calculated based on the mass of vanadium metal and titanium metal,
the catalyst comprises 1-20% by weight of the coating, and
the catalytic metal oxide is adsorbed on the surface of the oxidized metal support;
The process includes:
a) providing a ceramic candle filter substrate;
b) providing an aqueous impregnating liquid comprising one or more catalytic metal precursor compounds comprising a vanadium compound dispersed on particles of an oxidized metal support comprising titanium oxide;
The impregnating liquid is
i. The one or more catalytic metal precursor compounds and the oxidized metal support are added to water, and an acid is continuously added to the mixture thus obtained to improve the surface of the one or more catalytic metal precursor compounds. maintaining the pH of the mixture at a value where the charge is negative and the zeta potential of the oxidized metal support is positive;
ii. adsorbing the one or more catalytic metal precursor compounds onto the surface of the oxidized metal support; and optionally,
iii. adding a dispersant to the mixture thus prepared in an amount to obtain a pH value of greater than 7 of the washcoat slurry thus prepared;
iv. optionally grinding the mixture; and providing an aqueous impregnating liquid prepared by
c) impregnating the ceramic candle filter substrate with the obtained impregnating liquid;
d) drying and thermally activating the impregnated ceramic candle filter substrate at a temperature of 150-600°C to convert the one or more metal precursor compounds into their catalytically active form; ,process.
バナジウム化合物を含む前記触媒金属前駆体化合物が、メタバナジン酸アンモニウムである、請求項に記載のプロセス。 2. The process of claim 1 , wherein the catalytic metal precursor compound comprising a vanadium compound is ammonium metavanadate. 前記水性含浸液体が、その液体に可溶性の第一級アミンを含む、請求項又はに記載のプロセス。 3. A process according to claim 1 or 2 , wherein the aqueous impregnating liquid comprises a primary amine soluble therein. 前記第一級アミンが、モノエチルアミンである、請求項に記載のプロセス。 4. The process of claim 3 , wherein the primary amine is monoethylamine. バナジウムの酸化物を含む前記コーティングの前記触媒金属酸化物が、五酸化バナジウム(VThe catalytic metal oxide of the coating comprising an oxide of vanadium is vanadium pentoxide (V 2 O 5 )を含む、請求項1~4のいずれか一項に記載のプロセス。) The process according to any one of claims 1 to 4. バナジウムの酸化物を含む前記コーティングの前記触媒金属酸化物が、加えて、タングステン及び/又はモリブデン及び/又はアンチモンの酸化物を含む、請求項5に記載のプロセス。6. Process according to claim 5, wherein the catalytic metal oxide of the coating comprising oxides of vanadium additionally comprises oxides of tungsten and/or molybdenum and/or antimony. チタンの酸化物を含む前記コーティングの前記酸化金属担体が、二酸化チタンを含む、請求項1~6のいずれか一項に記載のプロセス。Process according to any one of claims 1 to 6, wherein the oxidized metal carrier of the coating comprising an oxide of titanium comprises titanium dioxide. チタンの酸化物を含む前記コーティングの前記酸化金属担体が、加えて、アルミニウム、セリウム、ジルコニウム、又は混合物の酸化物、これらの酸化物のうちの少なくとも1つを含む混合酸化物若しくは化合物を含む、請求項7に記載のプロセス。the oxidized metal carrier of the coating comprising an oxide of titanium additionally comprises an oxide of aluminum, cerium, zirconium or a mixture, a mixed oxide or a compound comprising at least one of these oxides; Process according to claim 7. 前記酸化金属担体が、1~1000nmの一次粒径を有する単一の又は凝集した二酸化チタンのナノ粒子のいずれかからなる、請求項1~8のいずれか一項に記載のプロセス。Process according to any one of claims 1 to 8, wherein the oxidized metal support consists of either single or aggregated titanium dioxide nanoparticles with a primary particle size of 1 to 1000 nm. 前記コーティング中のバナジウム/チタンの質量比が0.03~0.27であり、質量比は、バナジウム金属及びチタン金属の質量に基づいて計算される、請求項1~9のいずれか一項に記載のプロセス。10. According to any one of claims 1 to 9, the mass ratio of vanadium/titanium in the coating is between 0.03 and 0.27, the mass ratio being calculated based on the mass of vanadium metal and titanium metal. Process described. 前記触媒が白金族金属を含まない、請求項1~10のいずれか一項に記載のプロセス。Process according to any one of claims 1 to 10, wherein the catalyst is free of platinum group metals.
JP2021563342A 2019-04-26 2019-08-26 Catalytic ceramic candle filter for composite particulate matter removal and selective catalytic reduction (SCR) of nitrogen oxides Active JP7421571B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19171394.0A EP3730210A1 (en) 2019-04-26 2019-04-26 Catalyst ceramic candle filter for combined particulate removal and the selective catalytic reduction (scr) of nitrogen-oxides
EP19171394.0 2019-04-26
PCT/EP2019/072708 WO2020216460A1 (en) 2019-04-26 2019-08-26 Catalyst ceramic candle filter for combined particulate removal and the selective catalytic reduction (scr) of nitrogen-oxides

Publications (3)

Publication Number Publication Date
JP2022530128A JP2022530128A (en) 2022-06-27
JPWO2020216460A5 true JPWO2020216460A5 (en) 2023-12-01
JP7421571B2 JP7421571B2 (en) 2024-01-24

Family

ID=72560275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021563342A Active JP7421571B2 (en) 2019-04-26 2019-08-26 Catalytic ceramic candle filter for composite particulate matter removal and selective catalytic reduction (SCR) of nitrogen oxides

Country Status (7)

Country Link
US (1) US20220178291A1 (en)
EP (1) EP3730210A1 (en)
JP (1) JP7421571B2 (en)
KR (1) KR20220003050A (en)
CN (1) CN113613780A (en)
TW (1) TW202106381A (en)
WO (1) WO2020216460A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3843895A1 (en) 2018-08-28 2021-07-07 UMICORE AG & Co. KG Catalyst for use in the selective catalytic reduction (scr) of nitrogen oxides

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4344102B2 (en) 2001-06-06 2009-10-14 バブコック日立株式会社 Catalyst slurry for exhaust gas denitration and method for producing the same
US7879758B2 (en) * 2004-09-30 2011-02-01 Pall Corporation Catalytically active porous element
JP2008221203A (en) 2007-02-13 2008-09-25 Babcock Hitachi Kk Catalyst for removal of nitrogen oxide and method for removal of nitrogen oxide
EP2554238B1 (en) 2011-08-05 2013-12-18 Pall Corporation Catalytic filter system
CA2899149C (en) * 2013-02-14 2020-03-24 Haldor Topsoe A/S Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas
US9895677B2 (en) 2013-03-15 2018-02-20 Haldor Topsoe A/S Catalysed filter based on biosoluble fibers
DK178520B1 (en) * 2014-10-14 2016-05-09 Haldor Topsoe As Process for preparing a catalyzed fabric filter and a catalyzed fabric filter
EP3271050A1 (en) 2015-03-20 2018-01-24 Haldor Topsøe A/S Catalyzed ceramic candle filter and method for cleaning of off- or exhaust gases
US10076743B2 (en) 2015-03-20 2018-09-18 Haldor Topsøe A/S Catalyzed ceramic candle filter and method of cleaning process off- or exhaust gases
EP3356040A1 (en) 2015-10-02 2018-08-08 Haldor Topsøe A/S Method for preparing a catalyst-containing ceramic filter for off-gas or exhaust gas cleaning
CN108025291B (en) 2015-10-28 2021-07-09 优美科股份公司及两合公司 Honeycomb catalyst for removing nitrogen oxides in flue gas and waste gas and preparation method thereof
WO2018018406A1 (en) 2016-07-26 2018-02-01 Basf Corporation Supported catalyst, monolithic selective catalytic reduction (scr) catalyst, preparation method therefor, and method for nitrogen oxides removal
WO2018066659A1 (en) 2016-10-05 2018-04-12 日立造船株式会社 Catalyst support structure and method for manufacturing same
EP3843895A1 (en) 2018-08-28 2021-07-07 UMICORE AG & Co. KG Catalyst for use in the selective catalytic reduction (scr) of nitrogen oxides

Similar Documents

Publication Publication Date Title
US4171288A (en) Catalyst compositions and the method of manufacturing them
KR101821406B1 (en) Catalyst composition for selective catalytic reduction of exhaust gases
JP2015134350A (en) Catalyst composition for selective catalytic reduction of exhaust gas
US11772075B2 (en) Catalyst for use in the selective catalytic reduction (SCR) of nitrogen oxides
JP5880527B2 (en) Exhaust gas purification catalyst
KR102067668B1 (en) Catalyst for selectively reducing nitric oxide and nitric oxide reduction system using the same
JP6956987B1 (en) Manufacturing method of denitration catalyst molded body and denitration catalyst molded body
US11772074B2 (en) Method for production of vanadium catalysts
EP3616786A1 (en) Catalyst for use in the selective catalytic reduction (scr) of nitrogen oxides
JPWO2020216460A5 (en)
JP7421571B2 (en) Catalytic ceramic candle filter for composite particulate matter removal and selective catalytic reduction (SCR) of nitrogen oxides
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same
JP5845268B2 (en) Sulfur-resistant catalyst support material
WO2022157972A1 (en) Denitration catalyst formed body and production method therefor
JP4711014B2 (en) Nanoparticle loading method
WO2023203603A1 (en) Exhaust gas denitration method
JPH1157411A (en) Cleaning method for exhaust gas
JP3632739B2 (en) Titanium oxide-titanium phosphate powder, exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JPH11347408A (en) Catalyst carrier and its production
KR20230164926A (en) Method of preparing catalyst body using silica
CN116688976A (en) Diesel vehicle oxidation catalyst and preparation method thereof
KR20000013127A (en) Divanadium pentaoxide for removing nitrogen oxide using titanium dioxide for pigment as carrier of catalyst
KR20190095799A (en) Catalyst for selectively reducing nitric oxide and nitric oxide reduction system using the same
JPH09155163A (en) Method for catalytic reduction of nitrogen oxides
JPH1057771A (en) Method for catalytically reducing nitrogen oxides