JPWO2020160540A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020160540A5
JPWO2020160540A5 JP2021544483A JP2021544483A JPWO2020160540A5 JP WO2020160540 A5 JPWO2020160540 A5 JP WO2020160540A5 JP 2021544483 A JP2021544483 A JP 2021544483A JP 2021544483 A JP2021544483 A JP 2021544483A JP WO2020160540 A5 JPWO2020160540 A5 JP WO2020160540A5
Authority
JP
Japan
Prior art keywords
internal cavity
assembly
laser beam
state device
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021544483A
Other languages
Japanese (ja)
Other versions
JP2022523725A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2020/016403 external-priority patent/WO2020160540A1/en
Publication of JP2022523725A publication Critical patent/JP2022523725A/en
Publication of JPWO2020160540A5 publication Critical patent/JPWO2020160540A5/ja
Pending legal-status Critical Current

Links

Claims (60)

レーザービームの特性を実質的に低下させることなく、高品質の青色レーザービームを長期間にわたって提供するための、高パワー高輝度の固体レーザーアセンブリであって、
a.内部キャビティを画定するハウジングであって、該内部キャビティが該ハウジングの外部にある環境から隔離されるようにしたハウジングと;
b.固体デバイスであって、該固体デバイスの伝搬面から、410nmから500nmの範囲の波長および該伝搬面で少なくとも約0.5MW/cm2のパワー密度を有するレーザービームを、レーザービーム経路に沿って伝搬させるための固体デバイスと;
c.該固体デバイスと光連通し、該レーザービーム経路上にある光学アセンブリと;
を有しており、
d.該固体デバイスおよび該光学アセンブリは、該ハウジング内で該内部キャビティ内に配置され、それによって、該固体デバイスおよび該光学アセンブリは、外部環境から隔離されており;
e.該ハウジングは、該光学アセンブリと光連通し該レーザービーム経路上にあるハウジング伝搬面を含み、該ハウジング伝搬面によって、該レーザービームが該レーザービーム経路に沿って該ハウジングから該外部環境に伝達されるようにされており;
f.該ハウジング伝搬面を出る際の該レーザービームは、(i)少なくとも100Wのパワー、および(ii)100mm-mrad未満のBPPのビーム特性を有しており、
g.該内部キャビティにはシリコンベースの汚染源がなく、それにより該固体デバイスの動作中に該内部キャビティ内でのSiO2の生成が回避されて、該内部キャビティはSiO2の蓄積を回避され、それにより該ビーム特性の劣化速度が2.3%/khrs以下となるようにされている、アセンブリ。
A high power, high brightness, solid state laser assembly for providing a high quality blue laser beam for an extended period of time without substantially degrading laser beam properties, comprising:
a. a housing defining an internal cavity such that the internal cavity is isolated from the environment external to the housing;
b. A solid state device propagating from a propagation plane of said solid state device a laser beam having a wavelength in the range of 410 nm to 500 nm and a power density at said propagation plane of at least about 0.5 MW/cm along a laser beam path. a solid state device for;
c. an optical assembly in optical communication with the solid state device and in the laser beam path;
and
d. the solid state device and the optical assembly are disposed within the internal cavity within the housing, thereby isolating the solid state device and the optical assembly from an external environment;
e. The housing includes a housing propagation surface in optical communication with the optical assembly and on the laser beam path, the housing propagation surface transmitting the laser beam along the laser beam path from the housing to the external environment. is designed to;
f. the laser beam upon exiting the housing propagation surface has a beam characteristic of (i) a power of at least 100 W and (ii) a BPP of less than 100 mm-mrad;
g. The internal cavity is free of silicon-based contamination sources, thereby avoiding the formation of SiO2 within the internal cavity during operation of the solid-state device, and the internal cavity is free from accumulation of SiO2, thereby preventing the beam from An assembly adapted to have a property degradation rate of 2.3%/khrs or less.
a.該固体デバイスは、ラマンファイバーレーザー、ダイオードレーザー、および結晶ベースのラマンレーザーからなる群から選択され、該光学アセンブリは、コリメート光学系、集束光学系、レンズ、ミラー、およびビーム結合光学系からなる群から選択され;
b.該ビーム特性は、約20nm以下の帯域幅をさらに含み、
c.該ハウジング伝搬面は、ウインドウおよびファイバー面からなる群から選択され;
d.該BPPは約40mm-mrad未満であり、
e.該伝搬面でのパワー密度は約1MW/cm2から約1,000MW/cm2である、
請求項1に記載のアセンブリ。
a. The solid-state device is selected from the group consisting of Raman fiber lasers, diode lasers, and crystal-based Raman lasers, and the optical assembly consists of collimating optics, focusing optics, lenses, mirrors, and beam combining optics. selected from;
b. the beam characteristics further include a bandwidth of about 20 nm or less;
c. the housing propagation face is selected from the group consisting of a window and a fiber face;
d. the BPP is less than about 40 mm-mrad;
e. power density at the propagation plane is from about 1 MW/cm to about 1,000 MW/cm;
The assembly of Claim 1.
該固体デバイスは、ラマンファイバーレーザー、ダイオードレーザー、および結晶ベースのラマンレーザーからなる群から選択され;該レーザービームのパワーは約100Wから約1,000Wであり;
b.該ビーム特性は、約20nm以下の帯域幅をさらに含み;
c.該伝搬面でのパワー密度は約0.5MW/cm2から約1,000MW/cm2であり、
d.該ビーム特性の劣化速度は、2.0%/khrs未満である、
請求項1又は2に記載のアセンブリ。
the solid-state device is selected from the group consisting of Raman fiber lasers, diode lasers, and crystal-based Raman lasers; the power of the laser beam is from about 100 W to about 1,000 W;
b. the beam properties further include a bandwidth of about 20 nm or less;
c. the power density at the propagation plane is from about 0.5 MW/cm to about 1,000 MW/cm;
d. the beam property degradation rate is less than 2.0%/khrs;
3. Assembly according to claim 1 or 2.
該内部キャビティが、少なくとも1%の酸素を含むガスを含み、該固体デバイスの動作中に炭素ベースの汚染物質からCO2が内部キャビティ内に生成され、これにより、該固体デバイスの該伝搬面と該光学アセンブリが炭素の蓄積を回避するようにした、請求項1から3の何れか一項に記載のアセンブリ。 The internal cavity comprises a gas containing at least 1% oxygen, and CO2 is produced within the internal cavity from carbon-based contaminants during operation of the solid-state device, thereby forming a polarizer between the propagating surface of the solid-state device and the 4. An assembly according to any one of the preceding claims, wherein the optical assembly avoids carbon build-up. 該内部キャビティが、少なくとも10%の酸素を含むガスを含み、該固体デバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、これにより、該固体デバイスの該伝搬面と該光学アセンブリが炭素の蓄積を回避するようにした、請求項1から3の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas containing at least 10% oxygen, and CO2 is generated within the internal cavity from carbon-based contaminants during operation of the solid state device, whereby the propagating surface of the solid state device and the 4. An assembly according to any one of the preceding claims, wherein the optical assembly avoids carbon build-up. 該内部キャビティが、少なくとも40%の酸素を含むガスを含み、該固体デバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、これにより、該固体デバイスの該伝搬面と該光学アセンブリが炭素の蓄積を回避するようにした、請求項1から3の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas containing at least 40% oxygen, and CO2 is produced within the internal cavity from carbon-based contaminants during operation of the solid state device, whereby the propagating surface of the solid state device and the 4. An assembly according to any one of the preceding claims, wherein the optical assembly avoids carbon build-up. 該内部キャビティが、少なくとも60%の酸素を含むガスを含み、該固体デバイスの動作中に炭素ベースの汚染物質からCO2が内部キャビティ内に生成され、これにより、該固体デバイスの該伝搬面と該光学アセンブリが炭素の蓄積を回避するようにした、請求項1から3の何れか一項に記載のアセンブリ。 The internal cavity comprises a gas containing at least 60% oxygen, and CO2 is produced within the internal cavity from carbon-based contaminants during operation of the solid-state device, thereby forming a gas between the propagating surface of the solid-state device and the 4. An assembly according to any one of the preceding claims, wherein the optical assembly avoids carbon build-up. 該ビーム特性の劣化速度が2.0%/khrs以下である、請求項1から7の何れか一項に記載のアセンブリ。 8. An assembly according to any one of the preceding claims, wherein the rate of deterioration of beam properties is less than or equal to 2.0%/khrs. 該ビーム特性の劣化速度が1.8%/khrs以下である、請求項1から7の何れか一項に記載のアセンブリ。 8. An assembly according to any one of the preceding claims, wherein the beam property degradation rate is less than or equal to 1.8%/khrs. 該パワー密度が、該伝搬面で少なくとも約1MW/cm2である、請求項1からの何れか一項に記載のアセンブリ。 10. The assembly of any one of claims 1-9 , wherein the power density is at least about 1 MW/cm2 in the propagation plane. 該パワー密度が、該伝搬面で少なくとも約5MW/cm2である、請求項1からの何れか一項に記載のアセンブリ。 10. The assembly of any one of claims 1-9 , wherein the power density is at least about 5 MW/cm2 in the propagation plane. 該パワー密度は、該伝搬面で少なくとも約10MW/cm2である、請求項1からの何れか一項に記載のアセンブリ。 10. The assembly of any one of claims 1-9 , wherein the power density is at least about 10 MW/cm2 in the propagation plane. 該パワー密度は、該伝搬面で少なくとも約20MW/cm2である、請求項1からの何れか一項に記載のアセンブリ。 10. The assembly of any one of claims 1-9 , wherein the power density is at least about 20 MW/cm2 in the propagation plane. 該固体デバイスがTO-9Canを含む、請求項1から13の何れか一項に記載のアセンブリ。 14. The assembly of any one of claims 1-13 , wherein the solid state device comprises TO-9Can. 該内部キャビティはシリコンベースの汚染物質の供給源がなく、それによって、該固体デバイスの動作中に該内部キャビティ内にSiO2が生成されない、請求項1から14の何れか一項に記載のアセンブリ。 15. The assembly of any one of claims 1-14 , wherein the internal cavity is free of sources of silicon-based contaminants, whereby no SiO2 is generated within the internal cavity during operation of the solid state device. レーザービームの特性を実質的に低下させることなく、高品質の青色レーザービームを長期間にわたって提供するための、高パワー高輝度の固体レーザーアセンブリであって、
a.内部キャビティを画定するハウジングであって、該内部キャビティが該ハウジングの外部にある環境から隔離されるようにしたハウジングと;
b.複数のレーザービームを複数のファセットから複数のレーザービーム経路に沿って伝搬させるための複数のダイオードレーザーデバイスであって、該複数のレーザービームが400nmから500nmの範囲の波長を有し、各レーザービームが該ファセットにおいて少なくとも約0.5MW/cm2のパワー密度を有する、複数のダイオードレーザーデバイスと;
c.該ダイオードレーザーデバイスと光連通し、該レーザービーム経路上にある光学アセンブリと;
を有しており、
d.該光学アセンブリは、該複数のレーザービームを結合して、結合レーザービーム経路に沿う結合レーザービームを提供し;
e.該複数のダイオードレーザーデバイスおよび該光学アセンブリは、該ハウジング内で該内部キャビティに配置され、それによって、該複数のダイオードレーザーデバイスおよび該光学アセンブリが外部環境から隔離され;
f.該ハウジングは、該光学アセンブリと該光連通して該結合レーザービーム経路上にあるハウジング伝搬面を含み、それにより、該結合レーザービームが該結合レーザービーム経路に沿って該ハウジングから該外部環境に伝達されるようにされ;
g.該ハウジング伝搬面を出る際の該結合レーザービームは、(i)少なくとも100Wのパワー、および(ii)40mm-mrad未満のBPPのビーム特性を有しており、
h.該内部キャビティにはシリコンベースの汚染源がなく、それにより該複数のダイオードレーザーデバイスの動作中に該内部キャビティ内でSiO2が生成されず、これにより、該内部キャビティはSiO2の蓄積を回避し、該ビーム特性の劣化速度が2.3%/khrs以下となるようにされている、アセンブリ。
A high power, high brightness, solid state laser assembly for providing a high quality blue laser beam for an extended period of time without substantially degrading laser beam properties, comprising:
a. a housing defining an internal cavity such that the internal cavity is isolated from the environment external to the housing;
b. A plurality of diode laser devices for propagating a plurality of laser beams from a plurality of facets along a plurality of laser beam paths, the plurality of laser beams having a wavelength ranging from 400 nm to 500 nm, each laser beam has a power density at the facet of at least about 0.5 MW/cm; and
c. an optical assembly in optical communication with the diode laser device and in the laser beam path;
and
d. the optical assembly combines the plurality of laser beams to provide a combined laser beam along a combined laser beam path;
e. the plurality of diode laser devices and the optical assembly are disposed within the housing in the internal cavity, thereby isolating the plurality of diode laser devices and the optical assembly from an external environment;
f. The housing includes a housing propagation surface in optical communication with the optical assembly and on the combined laser beam path such that the combined laser beam travels along the combined laser beam path from the housing to the external environment. to be communicated;
g. the combined laser beam upon exiting the housing propagation surface has beam characteristics of (i) a power of at least 100 W and (ii) a BPP of less than 40 mm-mrad;
h. The internal cavity is free of silicon-based contamination sources, so that no SiO2 is generated within the internal cavity during operation of the multiple diode laser device, thereby avoiding the accumulation of SiO2 in the internal cavity, An assembly adapted to have a rate of beam property degradation of 2.3%/khrs or less.
a.該ビーム特性が約15nm以下の帯域幅をさらに含み;
b.該ハウジング伝搬面は、ウインドウおよびファイバー面からなる群から選択され;
c.該BPPが約15mm-mrad未満であり;
d.該ファセットの伝搬面でのパワー密度は約0.5MW/cm2から約1,000MW/cm2である;
請求項16に記載のアセンブリ。
a. said beam characteristic further comprising a bandwidth of about 15 nm or less;
b. the housing propagation face is selected from the group consisting of a window and a fiber face;
c. the BPP is less than about 15 mm-mrad;
d. power density at the propagation plane of the facet is from about 0.5 MW/cm2 to about 1,000 MW/cm2;
17. Assembly according to claim 16.
a.該ビーム特性が約15nm以下の帯域幅をさらに含み、該結合レーザービームのパワーは少なくとも約500Wであり;
b.該ハウジング伝搬面は、ウインドウおよびファイバー面からなる群から選択され;
c.該BPPは約30mm-mrad未満であり;
d.該ファセットの伝搬面でのパワー密度は約0.5MW/cm2から約1,000MW/cm2である、
請求項16または17に記載のアセンブリ。
a. said beam characteristic further comprising a bandwidth of about 15 nm or less, and said combined laser beam power is at least about 500 W;
b. the housing propagation face is selected from the group consisting of a window and a fiber face;
c. the BPP is less than about 30 mm-mrad;
d. power density at the propagation plane of the facet is from about 0.5 MW/cm to about 1,000 MW/cm;
18. Assembly according to claim 16 or 17 .
該内部キャビティが、少なくとも1%の酸素を含むガスを含み、これにより、該複数のダイオードレーザーデバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、それにより、該ファセットの伝搬面および該光学アセンブリが炭素の蓄積を回避するようにされた、請求項16から18の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas comprising at least 1% oxygen, whereby CO2 is produced within the internal cavity from carbon-based contaminants during operation of the plurality of diode laser devices, whereby the facets are 19. An assembly according to any one of claims 16 to 18 , wherein the propagation surface of and said optical assembly are adapted to avoid carbon build-up. 該内部キャビティが、少なくとも10%の酸素を含むガスを含み、これにより、該複数のダイオードレーザーデバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、それにより、該ファセットの伝搬面および該光学アセンブリが炭素の蓄積を回避するようにされた、請求項16から18の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas comprising at least 10% oxygen, whereby CO2 is generated within the internal cavity from carbon-based contaminants during operation of the plurality of diode laser devices, whereby the facets are 19. An assembly according to any one of claims 16 to 18 , wherein the propagation surface of and said optical assembly are adapted to avoid carbon build-up. 該内部キャビティが、少なくとも40%の酸素を含むガスを含み、これにより、該複数のダイオードレーザーデバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、それにより、該ファセットの伝搬面および該光学アセンブリが炭素の蓄積を回避するようにされた、請求項16から18の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas comprising at least 40% oxygen, whereby CO2 is produced within the internal cavity from carbon-based contaminants during operation of the plurality of diode laser devices, whereby the facets are 19. An assembly according to any one of claims 16 to 18 , wherein the propagation surface of and said optical assembly are adapted to avoid carbon build-up. 該内部キャビティが、少なくとも60%の酸素を含むガスを含み、これにより、該複数のダイオードレーザーデバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、それにより、該ファセットの伝搬面および該光学アセンブリが炭素の蓄積を回避するようにされた、請求項16から18の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas comprising at least 60% oxygen, whereby CO2 is produced within the internal cavity from carbon-based contaminants during operation of the plurality of diode laser devices, whereby the facets are 19. An assembly according to any one of claims 16 to 18 , wherein the propagation surface of and said optical assembly are adapted to avoid carbon build-up. 該内部キャビティが、少なくとも20%の酸素を含むガスを含み、これにより、該複数のダイオードレーザーデバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成され、それにより、該ファセットの伝搬面および該光学アセンブリが炭素の蓄積を回避するようにされた、請求項16から18の何れか一項に記載のアセンブリ。 wherein the internal cavity comprises a gas comprising at least 20% oxygen, whereby CO2 is produced within the internal cavity from carbon-based contaminants during operation of the plurality of diode laser devices, whereby the facets are 19. An assembly according to any one of claims 16 to 18 , wherein the propagation surface of and said optical assembly are adapted to avoid carbon build-up. 該内部キャビティのシリコンベースの汚染物質の量が、0.001g未満である、請求項16から23の何れか一項に記載のアセンブリ。 24. The assembly of any one of claims 16-23 , wherein the amount of silicon-based contaminants in the internal cavity is less than 0.001 g. 該内部キャビティのシリコンベースの汚染物質の量が、0.0001g未満である、請求項16から23に記載の何れか一項にアセンブリ。 24. The assembly of any one of claims 16-23 , wherein the amount of silicon-based contaminants in the internal cavity is less than 0.0001 g. 該内部キャビティのシリコンベースの汚染物質の量が、0.00001g未満である、請求項16から23の何れか一項に記載のアセンブリ。 24. The assembly of any one of claims 16-23 , wherein the amount of silicon-based contaminants in the internal cavity is less than 0.00001 g. 該内部キャビティのシリコンの量が0.01ppm未満である、請求項16から23の何れか一項に記載のアセンブリ。 24. The assembly of any one of claims 16-23 , wherein the amount of silicon in the internal cavity is less than 0.01 ppm. 該内部キャビティのシリコンの量が0.001ppm未満である、請求項16から23の何れか一項に記載のアセンブリ。 24. The assembly of any one of claims 16-23 , wherein the amount of silicon in the internal cavity is less than 0.001 ppm. 該内部キャビティのシリコンの量が0.001ppm未満である、請求項16から23の何れか一項に記載のアセンブリ。 24. The assembly of any one of claims 16-23 , wherein the amount of silicon in the internal cavity is less than 0.001 ppm. 複数のダイオードレーザーデバイスがTO-9Canを含む、請求項16から29の何れか一項に記載のアセンブリ。 30. The assembly of any one of claims 16-29 , wherein the plurality of diode laser devices comprises TO- 9Can . 該内部キャビティがシリコンベースの汚染物質の供給源がなく、それによって、該複数のダイオードレーザーデバイスの動作中に、該内部キャビティ内にSiO2が生成されない、請求項16から30の何れか一項に記載のアセンブリ。 31. Any one of claims 16 to 30 , wherein the internal cavity is free of sources of silicon-based contaminants, whereby no SiO2 is generated within the internal cavity during operation of the plurality of diode laser devices . Assembly as described. 該パワー密度が、該ファセットの伝搬面で少なくとも約5MW/cm2である、請求項16から31の何れか一項に記載のアセンブリ。32. The assembly of any one of claims 16-31, wherein the power density is at least about 5 MW/cm2 in the propagation plane of the facets. 該パワー密度が、該ファセットの伝搬面で少なくとも約10MW/cm2である、請求項16から31の何れか一項に記載のアセンブリ。32. The assembly of any one of claims 16-31, wherein the power density is at least about 10 MW/cm2 in the propagation plane of the facets. 該パワー密度が、該ファセットの伝搬面で少なくとも約20MW/cm2である、請求項16から31の何れか一項に記載のアセンブリ。32. The assembly of any one of claims 16-31, wherein the power density is at least about 20 MW/cm2 in the propagation plane of the facets. レーザービームの特性を実質的に低下させることなく、高品質の青色レーザービームを長期間にわたって提供する高パワー高輝度の固体レーザーアセンブリであって、
a.隔離された環境をなす内部キャビティを画定するハウジングと;
b.該ハウジングの該内部キャビティの該隔離された環境内に配置されて、青色レーザービームが伝搬、透過、または反射する複数の光学活性面であって、該光学活性面の少なくとも1つが固体レーザーデバイス上に配置されている、複数の光学活性面と;
を有し、
c.該レーザービームは、1つまたは複数の該光学活性面で少なくとも約0.5MW/cm2のパワー密度を有し、
d.該内部キャビティにはシリコンベースの汚染源がなく、それにより該固体レーザーデバイスの動作中に該内部キャビティ内でのSiO2の生成が回避され、該内部キャビティが酸素を含むガスを含み、これにより、該固体レーザーデバイスの動作中に炭素ベースの汚染物質からCO2が内部キャビティ内に生成され;
e.これにより、該複数の光学活性面が炭素およびSiO2の蓄積を回避して、該青色レーザービームのパワーの劣化速度が2.3%/khrs以下となるようにされた;
アセンブリ。
A high power, high brightness, solid state laser assembly that provides a high quality blue laser beam for an extended period of time without substantially degrading laser beam properties, comprising:
a. a housing defining an internal cavity that provides an isolated environment;
b. a plurality of optically active surfaces disposed within the isolated environment of the internal cavity of the housing for propagating, transmitting, or reflecting a blue laser beam, at least one of the optically active surfaces being on a solid state laser device; a plurality of optically active surfaces disposed in;
has
c. said laser beam has a power density of at least about 0.5 MW/cm at one or more of said optically active surfaces;
d. The internal cavity is free of silicon-based contamination sources, thereby avoiding the formation of SiO2 within the internal cavity during operation of the solid-state laser device, and the internal cavity contains an oxygen-containing gas, whereby the CO2 is produced within the internal cavity from carbon-based contaminants during operation of the solid-state laser device;
e. This avoided the accumulation of carbon and SiO on the plurality of optically active surfaces such that the power degradation rate of the blue laser beam was less than or equal to 2.3%/khrs;
assembly.
少なくとも約10%の酸素を含む、請求項35に記載のアセンブリ。36. The assembly of Claim 35, comprising at least about 10% oxygen. 少なくとも約20%の酸素を含む、請求項35に記載のアセンブリ。36. The assembly of Claim 35, comprising at least about 20% oxygen. 少なくとも約40%の酸素を含む、請求項35に記載のアセンブリ。36. The assembly of Claim 35, comprising at least about 40% oxygen. 少なくとも約60%の酸素を含む、請求項35に記載のアセンブリ。36. The assembly of Claim 35, comprising at least about 60% oxygen. 該複数の光学活性面が炭素及びSiO2の蓄積がない、請求項35から39の何れか一項に記載のアセンブリ。40. The assembly of any one of claims 35-39, wherein the plurality of optically active surfaces are free of carbon and SiO2 accumulation. 該劣化速度が2.0%/khrs以下である、請求項1から40の何れか一項に記載のアセンブリ。 41. The assembly of any one of claims 1-40, wherein the degradation rate is 2.0%/ khrs or less. 該劣化速度が1.8%/khrs以下である、請求項1から40の何れか一項に記載のアセンブリ。 41. The assembly of any one of claims 1-40, wherein the degradation rate is 1.8%/ khrs or less. 5,000時間以上の延長された寿命を有することを特徴とする、請求項1から42の何れか一項に記載のアセンブリ。43. Assembly according to any one of the preceding claims, characterized in that it has an extended life of 5,000 hours or more. 10,000時間以上の延長された寿命を有することを特徴とする、請求項1から42の何れか一項に記載のアセンブリ。 43. Assembly according to any one of the preceding claims, characterized in that it has an extended life of 10,000 hours or more. 30,000時間以上の延長された寿命を有することを特徴とする、請求項1から42の何れか一項に記載のアセンブリ。 43. Assembly according to any one of the preceding claims, characterized in that it has an extended life of 30,000 hours or more. 50,000時間以上の延長された寿命を有することを特徴とする、請求項1から42の何れか一項に記載のアセンブリ。 43. Assembly according to any one of the preceding claims, characterized in that it has an extended life of 50,000 hours or more. 70,000時間以上の延長された寿命を有することを特徴とする、請求項1から42の何れか一項に記載のアセンブリ。 43. Assembly according to any one of the preceding claims, characterized in that it has an extended life of 70,000 hours or more. レーザービームの特性を実質的に低下させることなく、高品質の青色レーザービームを長期間にわたって提供する、レーザーシステムに統合するための、高パワー高輝度の固体レーザーデバイスパッケージであって、
a.外部にある外部環境から隔離された内部キャビティを画定するハウジングであって、
b.該内部キャビティの一部を画定するウインドウを有するハウジングと;
c.固体デバイスであって、該固体デバイスの伝搬面から、レーザービーム経路に沿って、410nmから500nmの範囲の波長を有し、該伝搬面で少なくとも約0.5MW/cm2のパワー密度を有するレーザービームを伝搬させるための固体デバイスと;
を有し、
d.該ウインドウが、該固体デバイスと光連通してレーザービーム経路上にあり、
e.該固体デバイスは、該ハウジング内で該内部キャビティに配置され、前記ウインドウの内面が該外部環境に露出しておらず、それによって該固体デバイスおよび前記ウインドウの前記内面が外部環境から隔離されており;
f.それにより、該レーザービームは、該レーザービーム経路に沿って該ハウジングから該ウインドウを通って該外部環境に伝達され;
g.該内部キャビティにはシリコンベースの汚染源がなく、それにより該固体デバイスの動作中に該内部キャビティ内でのSiO2の生成が回避されて、該内部キャビティがSiO2の蓄積を回避し、それにより該レーザービーム特性の劣化速度は2.3%/khrs以下とされ;
h.該内部キャビティは少なくとも1%の酸素を含むガスを含み、それにより、該固体デバイスの動作中に炭素ベースの汚染物質からCO2が該内部キャビティ内に生成されて、該固体デバイスの該伝搬面および該ウインドウの該内面に炭素が蓄積されないままとなるようにされた、パッケージ。
A high power, high brightness, solid state laser device package for integration into a laser system that provides a high quality blue laser beam for an extended period of time without substantially degrading laser beam properties, comprising:
a. A housing defining an internal cavity isolated from an external environment, comprising:
b. a housing having a window defining a portion of the internal cavity;
c. A laser beam having a wavelength in the range of 410 nm to 500 nm along the laser beam path from a plane of propagation of the solid state device and having a power density of at least about 0.5 MW/cm2 at the plane of propagation. a solid state device for propagating the
has
d. the window is on the laser beam path in optical communication with the solid state device;
e. The solid-state device is disposed within the housing in the internal cavity, wherein the inner surface of the window is not exposed to the external environment, thereby isolating the solid-state device and the inner surface of the window from the external environment. ;
f. thereby transmitting the laser beam along the laser beam path from the housing through the window to the external environment;
g. The internal cavity is free of silicon-based contamination sources, thereby avoiding the formation of SiO2 within the internal cavity during operation of the solid-state device, thereby avoiding the accumulation of SiO2 in the internal cavity, thereby preventing the laser from the rate of deterioration of beam properties is less than or equal to 2.3%/khrs;
h. The internal cavity comprises a gas containing at least 1% oxygen, whereby CO2 is generated within the internal cavity from carbon-based contaminants during operation of the solid-state device to produce the propagating surface of the solid-state device and A package wherein the inner surface of the window remains free of carbon build-up.
固体デバイスが単一のダイオードレーザーからなる、請求項48に記載のパッケージ。 49. The package of claim 48 , wherein the solid state device consists of a single diode laser. 該ダイオードレーザーがTO-9Canである、請求項49に記載のパッケージ。 50. The package of Claim 49 , wherein said diode laser is a TO-9Can. 該固体デバイスが複数のダイオードレーザーからなる、請求項48に記載のパッケージ。 49. The package of Claim 48 , wherein said solid state device comprises a plurality of diode lasers. 該複数のダイオードレーザーがTO-9Canである、請求項51に記載のパッケージ。 52. The package of claim 51 , wherein said plurality of diode lasers are TO-9Can. 該パワー密度が少なくとも約10MW/cm2であり、該レーザービームが少なくとも約2Wのパワーを有し、該劣化速度が2.0%/khrs未満である、請求項48から52の何れか一項に記載のパッケージ。 53. Any one of claims 48-52, wherein the power density is at least about 10 MW/cm2, the laser beam has a power of at least about 2 W, and the degradation rate is less than 2.0%/ khrs . Package as described. 該パワー密度が少なくとも約5MW/cm2であり、該レーザービームが少なくとも約1.5Wのパワーを有し、該劣化速度が1.8%/khrsである、請求項48から52の何れか一項に記載のパッケージ。 53. Any one of claims 48-52, wherein the power density is at least about 5 MW/cm2, the laser beam has a power of at least about 1.5 W, and the degradation rate is 1.8%/ khrs . package as described. 該パワー密度が少なくとも約15MW/cm2であり、該レーザービームが少なくとも約5Wのパワーを有し、該劣化速度が2.3%/khrsである、請求項48から52の何れか一項に記載のパッケージ。 53. Any one of claims 48-52, wherein the power density is at least about 15 MW/cm2, the laser beam has a power of at least about 5 W, and the degradation rate is 2.3%/ khrs . package. 少なくとも10%の酸素を含む、請求項48から55の何れか一項に記載のパッケージ。 56. Package according to any one of claims 48 to 55 , comprising at least 10% oxygen. 少なくとも40%の酸素を含む、請求項48から55の何れか一項に記載のパッケージ。 56. The package of any one of claims 48-55 , comprising at least 40% oxygen. 少なくとも60%の酸素を含む、請求項48から55の何れか一項に記載のパッケージ。 56. Package according to any one of claims 48 to 55 , comprising at least 60% oxygen. 該シリコンベースの汚染物質の供給源が、シロキサン、重合シロキサン、線状シロキサン、環状シロキサン、シクロメチコーン、およびポリシロキサンからなる群から選択される、請求項48から58の何れか一項に記載のパッケージ。 59. Any one of claims 48-58 , wherein the source of silicon-based contaminants is selected from the group consisting of siloxanes, polymeric siloxanes, linear siloxanes, cyclic siloxanes, cyclomethicones, and polysiloxanes. package . 該炭素ベースの汚染物質の供給源が、溶媒残留物、油、指紋、および炭化水素からなる群から選択される、請求項4から58の何れか一項に記載のパッケージ。
59. The package of any one of claims 48-58 , wherein the source of carbon-based contaminants is selected from the group consisting of solvent residues, oils, fingerprints, and hydrocarbons.
JP2021544483A 2019-02-02 2020-02-03 High reliability, high power, high brightness blue laser diode system and its manufacturing method Pending JP2022523725A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962800474P 2019-02-02 2019-02-02
US62/800,474 2019-02-02
PCT/US2020/016403 WO2020160540A1 (en) 2019-02-02 2020-02-03 High reliability high power, high brightness blue laser diode systems and methods of making

Publications (2)

Publication Number Publication Date
JP2022523725A JP2022523725A (en) 2022-04-26
JPWO2020160540A5 true JPWO2020160540A5 (en) 2023-01-20

Family

ID=71841696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021544483A Pending JP2022523725A (en) 2019-02-02 2020-02-03 High reliability, high power, high brightness blue laser diode system and its manufacturing method

Country Status (7)

Country Link
US (1) US11862927B2 (en)
EP (1) EP3917718A4 (en)
JP (1) JP2022523725A (en)
KR (1) KR20210123322A (en)
CN (1) CN113573840A (en)
CA (1) CA3127651A1 (en)
WO (1) WO2020160540A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612957B2 (en) 2016-04-29 2023-03-28 Nuburu, Inc. Methods and systems for welding copper and other metals using blue lasers

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1119679B (en) 1979-03-05 1986-03-10 Fiat Auto Spa EQUIPMENT FOR CARRYING OUT TREATMENTS ON METAL PIECES BY MEANS
US4679198A (en) 1986-04-04 1987-07-07 North American Philips Corporation Solid-state tunable laser
US4879449A (en) 1987-01-30 1989-11-07 Duley Walter W Means of enhancing laser processing efficiency of metals
US4857699A (en) 1987-01-30 1989-08-15 Duley Walter W Means of enhancing laser processing efficiency of metals
US4847479A (en) 1988-06-06 1989-07-11 Trw Inc. System for controlling the wavelength and colinearity of multiplexed laser beams
US4930855A (en) 1988-06-06 1990-06-05 Trw Inc. Wavelength multiplexing of lasers
FR2637210B1 (en) 1988-09-30 1990-11-09 Thomson Hybrides Microondes LASER BEAM WELDING METHOD OF TWO METAL PARTS, AND ELECTRONIC BOX WELDED BY THIS METHOD
US4973819A (en) 1989-09-26 1990-11-27 Mcdonnell Douglas Corporation Gantry with a laser mounted numerically controlled carriage
ATE124465T1 (en) 1990-01-11 1995-07-15 Battelle Memorial Institute IMPROVEMENT OF MATERIAL PROPERTIES.
US5392308A (en) 1993-01-07 1995-02-21 Sdl, Inc. Semiconductor laser with integral spatial mode filter
US5379310A (en) 1993-05-06 1995-01-03 Board Of Trustees Of The University Of Illinois External cavity, multiple wavelength laser transmitter
US5392305A (en) * 1993-07-14 1995-02-21 Corning Incorporated Packaging of high power semiconductor lasers
US5526155A (en) 1993-11-12 1996-06-11 At&T Corp. High-density optical wavelength division multiplexing
BE1007779A3 (en) * 1993-11-25 1995-10-17 Philips Electronics Nv An opto-electronic semiconductor device having a radiation-emitting semiconductor diode and a method of such a device.
US5502292A (en) 1994-08-04 1996-03-26 Midwest Research Institute Method for laser welding ultra-thin metal foils
DE59510499D1 (en) 1995-01-11 2003-01-16 Dilas Diodenlaser Gmbh OPTICAL ARRANGEMENT FOR USE IN A LASER DIODE ARRANGEMENT
DE19506093C2 (en) 1995-02-22 2000-12-07 Dilas Diodenlaser Gmbh Diode laser device
DE19514285C1 (en) 1995-04-24 1996-06-20 Fraunhofer Ges Forschung Device for forming workpieces with laser diode radiation
DE19780124B4 (en) 1996-02-23 2007-02-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement for forming the geometric cross section of a plurality of solid-state and / or semiconductor lasers
US6028722A (en) 1996-03-08 2000-02-22 Sdl, Inc. Optical beam reconfiguring device and optical handling system for device utilization
US6331692B1 (en) 1996-10-12 2001-12-18 Volker Krause Diode laser, laser optics, device for laser treatment of a workpiece, process for a laser treatment of workpiece
US6212310B1 (en) 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
DE19645150C2 (en) 1996-10-28 2002-10-24 Fraunhofer Ges Forschung Optical arrangement for symmetrizing the radiation from laser diodes
NL1004483C2 (en) 1996-11-11 1998-05-14 Omega Laser Systems B V Welding device.
US5578227A (en) 1996-11-22 1996-11-26 Rabinovich; Joshua E. Rapid prototyping system
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
US5998759A (en) 1996-12-24 1999-12-07 General Scanning, Inc. Laser processing
US5986794A (en) 1997-02-01 1999-11-16 Laserline Gesellschaft Fur Entwicklung Und Vertrieb Von Diodenlasern Mbh Laser optics and diode laser
JPH1154852A (en) * 1997-08-06 1999-02-26 Nikon Corp Optical device for ultraviolet laser
US5987043A (en) 1997-11-12 1999-11-16 Opto Power Corp. Laser diode arrays with offset components
US7765022B2 (en) 1998-06-30 2010-07-27 The P.O.M. Group Direct metal deposition apparatus utilizing rapid-response diode laser source
DE19839902C1 (en) 1998-09-02 2000-05-25 Laserline Ges Fuer Entwicklung Optical arrangement for use in a laser diode arrangement and diode laser
US6327292B1 (en) 1998-09-08 2001-12-04 Massachusetts Institute Of Technology External cavity laser source using spectral beam combining in two dimensions
US6192062B1 (en) 1998-09-08 2001-02-20 Massachusetts Institute Of Technology Beam combining of diode laser array elements for high brightness and power
US6208679B1 (en) 1998-09-08 2001-03-27 Massachusetts Institute Of Technology High-power multi-wavelength external cavity laser
US7045015B2 (en) 1998-09-30 2006-05-16 Optomec Design Company Apparatuses and method for maskless mesoscale material deposition
US20040056006A1 (en) 1998-10-01 2004-03-25 The Welding Institute Welding method
US6129884A (en) 1999-02-08 2000-10-10 3D Systems, Inc. Stereolithographic method and apparatus with enhanced control of prescribed stimulation production and application
US6343169B1 (en) 1999-02-25 2002-01-29 Lightchip, Inc. Ultra-dense wavelength division multiplexing/demultiplexing device
US7014885B1 (en) 1999-07-19 2006-03-21 The United States Of America As Represented By The Secretary Of The Navy Direct-write laser transfer and processing
US7394842B2 (en) 2000-01-04 2008-07-01 Research Foundation Of The University Of Central Florida, Inc. Volume bragg lasers based on high efficiency diffractive elements in photo-thermo-refractive glass
CN1161654C (en) 2000-03-21 2004-08-11 诺日士钢机株式会社 Laser beam scanning mechanism and photo processing device
US6584133B1 (en) 2000-11-03 2003-06-24 Wisconsin Alumni Research Foundation Frequency-narrowed high power diode laser array method and system
EP1241746A1 (en) 2001-03-14 2002-09-18 Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre Narrow band high power fibre lasers
US6575863B2 (en) 2001-04-03 2003-06-10 Borgwarner, Inc. Inwardly cambered rocker joint for a power transmission chain
US20020149137A1 (en) 2001-04-12 2002-10-17 Bor Zeng Jang Layer manufacturing method and apparatus using full-area curing
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6788724B2 (en) * 2001-07-06 2004-09-07 Intel Corporation Hermetically sealed external cavity laser system and method
US6876679B1 (en) * 2001-08-20 2005-04-05 Dennis Bowler Systems and methods of operating an incoherently beam combined laser
US6975659B2 (en) 2001-09-10 2005-12-13 Fuji Photo Film Co., Ltd. Laser diode array, laser device, wave-coupling laser source, and exposure device
JP2003080604A (en) 2001-09-10 2003-03-19 Fuji Photo Film Co Ltd Laminate shaping apparatus
US6714581B2 (en) 2001-10-01 2004-03-30 Christopher J. Corcoran Compact phase locked laser array and related techniques
US6816536B2 (en) * 2001-11-30 2004-11-09 Spectra Physics, Inc. Method and apparatus for in situ protection of sensitive optical materials
US6646785B2 (en) 2002-01-31 2003-11-11 Corning Incorporated Fiber ring amplifiers and lasers
US7358157B2 (en) 2002-03-27 2008-04-15 Gsi Group Corporation Method and system for high-speed precise laser trimming, scan lens system for use therein and electrical device produced thereby
US7110425B2 (en) * 2002-04-03 2006-09-19 Fuji Photo Film Co., Ltd. Laser module and production process thereof
JP4084068B2 (en) * 2002-04-03 2008-04-30 富士フイルム株式会社 Laser module
JP4115732B2 (en) * 2002-04-03 2008-07-09 富士フイルム株式会社 Laser module and manufacturing method thereof
US6671303B1 (en) * 2002-06-10 2003-12-30 Coherent, Inc. Closed-loop purging system for laser
US7830945B2 (en) 2002-07-10 2010-11-09 Fujifilm Corporation Laser apparatus in which laser diodes and corresponding collimator lenses are fixed to block, and fiber module in which laser apparatus is coupled to optical fiber
US7070154B2 (en) 2002-08-05 2006-07-04 All-Type Welding And Fabrication, Inc. Storage bracket for a snow plow
US6959022B2 (en) 2003-01-27 2005-10-25 Ceramoptec Gmbh Multi-clad optical fiber lasers and their manufacture
KR20040070091A (en) * 2003-01-31 2004-08-06 후지 샤신 필름 가부시기가이샤 Fiber module and method of manufacturing the same
TWI286229B (en) * 2003-01-31 2007-09-01 Fujifilm Corp Connecting device for photo fiber
US6906281B2 (en) 2003-03-03 2005-06-14 Dana Corporation Method for laser welding of metal
JP3801143B2 (en) * 2003-03-11 2006-07-26 ソニー株式会社 Method for assembling light emitting device
JP2004289010A (en) * 2003-03-24 2004-10-14 Sony Corp Light emitting device
US7006549B2 (en) 2003-06-11 2006-02-28 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
JP2005109413A (en) * 2003-10-02 2005-04-21 Fuji Photo Film Co Ltd Laser module
US7034992B2 (en) 2003-10-08 2006-04-25 Northrop Grumman Corporation Brightness enhancement of diode light sources
JP4865998B2 (en) * 2003-11-20 2012-02-01 パナソニック株式会社 Light source, optical pickup device, and electronic device
US20050248820A1 (en) 2004-03-31 2005-11-10 Christophe Moser System and methods for spectral beam combining of lasers using volume holograms
WO2005119862A1 (en) * 2004-06-02 2005-12-15 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device and method for fabricating same
JP2006066875A (en) * 2004-07-26 2006-03-09 Fuji Photo Film Co Ltd Laser module
JP2006054366A (en) * 2004-08-13 2006-02-23 Fuji Photo Film Co Ltd Laser module
JP2006140441A (en) * 2004-10-13 2006-06-01 Sharp Corp Method and apparatus for manufacturing nitride semiconductor laser light source
JP2006120923A (en) * 2004-10-22 2006-05-11 Fuji Photo Film Co Ltd Semiconductor laser device
US7233442B1 (en) 2005-01-26 2007-06-19 Aculight Corporation Method and apparatus for spectral-beam combining of high-power fiber lasers
US7391561B2 (en) 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
JP4964512B2 (en) * 2005-08-02 2012-07-04 シャープ株式会社 Nitride semiconductor light emitting device
US8162020B2 (en) 2005-08-24 2012-04-24 Battery Patent Trust Infra-red thermal imaging of laser welded battery module enclosure components
FR2893872B1 (en) 2005-11-25 2008-10-17 Air Liquide CUTTING PROCESS WITH FIBER STEEL LASER C-MN
US7570856B1 (en) 2005-12-07 2009-08-04 Lockheed Martin Corporation Apparatus and method for an erbium-doped fiber for high peak-power applications
JP2007201411A (en) * 2005-12-27 2007-08-09 Sanyo Electric Co Ltd Semiconductor laser equipment and its manufacturing method
US7515346B2 (en) 2006-07-18 2009-04-07 Coherent, Inc. High power and high brightness diode-laser array for material processing applications
US20080085368A1 (en) 2006-10-10 2008-04-10 Gauthier Ben M Method and Apparatus for Coating a Substrate
JP2008171971A (en) * 2007-01-11 2008-07-24 Sharp Corp Mounting device and mounting method of semiconductor light source device
DE102007008027A1 (en) 2007-02-13 2008-08-21 Curamik Electronics Gmbh Diode laser arrangement and method for producing such an arrangement
EP2185344B1 (en) 2007-08-23 2018-06-13 3D Systems, Inc. Automatic geometric calibration using laser scanning reflectometry
US7949017B2 (en) 2008-03-10 2011-05-24 Redwood Photonics Method and apparatus for generating high power visible and near-visible laser light
US8374206B2 (en) 2008-03-31 2013-02-12 Electro Scientific Industries, Inc. Combining multiple laser beams to form high repetition rate, high average power polarized laser beam
US20120273470A1 (en) * 2011-02-24 2012-11-01 Zediker Mark S Method of protecting high power laser drilling, workover and completion systems from carbon gettering deposits
US20170191314A1 (en) * 2008-08-20 2017-07-06 Foro Energy, Inc. Methods and Systems for the Application and Use of High Power Laser Energy
US8049966B2 (en) 2008-11-04 2011-11-01 Massachusetts Institute Of Technology External-cavity one-dimensional multi-wavelength beam combining of two-dimensional laser elements
EP2219064B1 (en) 2009-02-13 2020-09-16 Laserline Gesellschaft für Entwicklung und Vertrieb von Diodenlasern mbH Laser lens and diode laser
US8792157B2 (en) 2009-05-11 2014-07-29 Ofs Fitel, Llc Systems and methods for cascaded raman lasing at high power levels
DE102009053261A1 (en) * 2009-11-11 2011-05-12 Jenoptik Automatisierungstechnik Gmbh Device for spot welding with laser beam
US8441718B2 (en) 2009-11-23 2013-05-14 Lockheed Martin Corporation Spectrally beam combined laser system and method at eye-safer wavelengths
CN101771142B (en) 2010-02-10 2012-09-19 力佳电源科技(深圳)有限公司 Tab material of flexible-packaging lithium battery as well as electroplating method and application method thereof
US8452145B2 (en) 2010-02-24 2013-05-28 Corning Incorporated Triple-clad optical fibers and devices with triple-clad optical fibers
WO2011109760A2 (en) 2010-03-05 2011-09-09 TeraDiode, Inc. Wavelength beam combining system and method
US9256073B2 (en) 2010-03-05 2016-02-09 TeraDiode, Inc. Optical cross-coupling mitigation system for multi-wavelength beam combining systems
US8488245B1 (en) 2011-03-07 2013-07-16 TeraDiode, Inc. Kilowatt-class diode laser system
JP5832455B2 (en) 2010-03-05 2015-12-16 テラダイオード, インコーポレーテッド Selective rearrangement and rotation wavelength beam combining system and method
US8670180B2 (en) 2010-03-05 2014-03-11 TeraDiode, Inc. Wavelength beam combining laser with multiple outputs
US9175568B2 (en) 2010-06-22 2015-11-03 Honeywell International Inc. Methods for manufacturing turbine components
US20120113513A1 (en) * 2010-10-22 2012-05-10 The Regents Of The University Of Colorado, A Body Corporate Self-cleaning of optical surfaces in low-pressure reactive gas environments in advanced optical systems
US8724222B2 (en) 2010-10-31 2014-05-13 TeraDiode, Inc. Compact interdependent optical element wavelength beam combining laser system and method
US20130162952A1 (en) 2010-12-07 2013-06-27 Laser Light Engines, Inc. Multiple Laser Projection System
US9093822B1 (en) 2010-12-20 2015-07-28 TeraDiode, Inc. Multi-band co-bore-sighted scalable output power laser system
GB2487437A (en) 2011-01-24 2012-07-25 Univ Southampton A first resonant optical fiber cavity and an second resonant enhancement cavity arranged in the first cavity.
US9025635B2 (en) * 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
WO2012116189A2 (en) * 2011-02-24 2012-08-30 Foro Energy, Inc. Tools and methods for use with a high power laser transmission system
US9014220B2 (en) * 2011-03-10 2015-04-21 Coherent, Inc. High-power CW fiber-laser
US8660164B2 (en) * 2011-03-24 2014-02-25 Axsun Technologies, Inc. Method and system for avoiding package induced failure in swept semiconductor source
KR20140026522A (en) 2011-04-25 2014-03-05 오에프에스 피텔 엘엘씨 Raman distributed feedback fiber laser and high power laser system using the same
JP5252026B2 (en) 2011-05-10 2013-07-31 パナソニック株式会社 Laser welding apparatus and laser welding method
WO2012173839A1 (en) 2011-06-14 2012-12-20 Bae Systems Information And Electronic Systems Integration Inc. Method for beam combination by seeding stimulated brillouin scattering in optical fiber
CN105963074B (en) 2011-07-14 2020-01-17 史密夫及内修公开有限公司 Wound dressing and method of treatment
CN103907249B (en) * 2011-11-30 2015-02-25 松下电器产业株式会社 Nitride semiconductor light-emitting device
US9172208B1 (en) 2012-02-21 2015-10-27 Lawrence Livermore National Security, Llc Raman beam combining for laser brightness enhancement
US9104029B2 (en) 2012-02-22 2015-08-11 TeraDiode, Inc. Multi-wavelength beam combining system and method
US8737445B2 (en) * 2012-04-04 2014-05-27 Osram Opto Semiconductors Gmbh Laser diode assembly
DE102012103160A1 (en) * 2012-04-12 2013-10-17 Osram Opto Semiconductors Gmbh laser diode device
CN107634108B (en) 2012-04-17 2019-12-13 环球太阳能公司 Interconnection of integrated thin film solar cell
WO2013169626A1 (en) 2012-05-05 2013-11-14 Trustees Of Boston University High-power fiber laser employing nonlinear wave mixing with higher-order modes
CN103078752B (en) 2012-12-27 2016-03-30 华为技术有限公司 A kind of method, device and equipment detecting e-mail attack
US8817831B1 (en) * 2013-01-30 2014-08-26 Photonics Industries Int'l. High power UV lasers
US9308583B2 (en) 2013-03-05 2016-04-12 Lawrence Livermore National Security, Llc System and method for high power diode based additive manufacturing
US10971896B2 (en) * 2013-04-29 2021-04-06 Nuburu, Inc. Applications, methods and systems for a laser deliver addressable array
ES2666379T3 (en) * 2013-04-29 2018-05-04 Mark S. Zediker Three-dimensional printing system and method using a visible laser light source
US10562132B2 (en) * 2013-04-29 2020-02-18 Nuburu, Inc. Applications, methods and systems for materials processing with visible raman laser
US9268097B2 (en) 2013-05-03 2016-02-23 TeraDiode, Inc. High power optical fiber ends having partially-doped gratings
US20150136840A1 (en) 2013-11-21 2015-05-21 Medtronic, Inc. Method of joining stacks of thin metal foil layers
KR101530782B1 (en) 2013-12-03 2015-06-22 연세대학교 산학협력단 Method, apparatus and system for image encoding and decoding
US9190807B2 (en) 2013-12-16 2015-11-17 TeraDiode, Inc. Method for improving performance of wavelength beam combining diode laser systems
US10328685B2 (en) 2013-12-16 2019-06-25 General Electric Company Diode laser fiber array for powder bed fabrication or repair
US20160372884A9 (en) 2013-12-27 2016-12-22 Ipg Photonics Corporation High Power Raman-Based Fiber Laser System and Method of Operating the Same
DE112015000994B4 (en) * 2014-02-26 2024-01-18 Panasonic Corporation of North America (n.d.Ges.d. Staates Delaware) Systems for multi-beam laser arrangements with variable beam parameter products
US9178333B2 (en) 2014-03-29 2015-11-03 TeraDiode, Inc. High-power laser diode isolation and thermal management
US10464167B2 (en) * 2014-07-15 2019-11-05 Toyokoh Co., Ltd. Laser irradiation apparatus
US11646549B2 (en) * 2014-08-27 2023-05-09 Nuburu, Inc. Multi kW class blue laser system
DE102014226269A1 (en) 2014-12-17 2016-06-23 Carl Zeiss Smt Gmbh Wavefront measuring device, projection lens with such a measuring device and with such a measuring device cooperating optical wavefront manipulator
US9209605B1 (en) 2015-01-23 2015-12-08 Lumentum Operations Llc Laser diode subassembly and method of generating light
US9711950B2 (en) 2015-05-13 2017-07-18 Trumpf Laser Gmbh Dense wavelength beam combining with variable feedback control
US10399183B2 (en) 2015-06-10 2019-09-03 Ipg Photonics Corporation Multiple beam additive manufacturing
US20200086388A1 (en) 2015-07-15 2020-03-19 Nuburu, Inc. Additive Manufacturing System with Addressable Array of Lasers and Real Time Feedback Control of each Source
US10656328B2 (en) 2016-04-29 2020-05-19 Nuburu, Inc. Monolithic visible wavelength fiber laser
US20200094478A1 (en) 2016-04-29 2020-03-26 Nuburu, Inc. Blue Laser Metal Additive Manufacturing System
WO2017190042A1 (en) * 2016-04-29 2017-11-02 Nuburu, Inc Visible laser welding of electronic packaging, automotive electrics, battery and other components
US11980970B2 (en) * 2016-04-29 2024-05-14 Nuburu, Inc. Visible laser additive manufacturing
KR20190092587A (en) * 2016-12-29 2019-08-07 아이피지 포토닉스 코포레이션 High Temperature Optical Molecular Contamination Getter System
EP3576899A4 (en) * 2017-01-31 2021-02-24 Nuburu, Inc. Methods and systems for welding copper using blue laser
US10634842B2 (en) 2017-04-21 2020-04-28 Nuburu, Inc. Multi-clad optical fiber
WO2018231884A1 (en) * 2017-06-13 2018-12-20 Nuburu, Inc. Very dense wavelength beam combined laser system
CN112352176B (en) 2018-05-04 2023-09-12 努布鲁有限公司 Three-clad optical fiber
US20210399519A1 (en) * 2019-02-02 2021-12-23 Nuburu, Inc. Long Lifetime Laser Diode Packaging
DE112020004127T5 (en) * 2019-10-16 2022-07-21 Panasonic Intellectual Property Management Co., Ltd. SILOXANE REDUCTION FOR LASER SYSTEMS
JP2023531879A (en) * 2020-06-09 2023-07-26 ヌブル インク Dual-wavelength visible laser light source

Similar Documents

Publication Publication Date Title
US7764723B2 (en) High brightness laser module
JP4564502B2 (en) Method and apparatus for providing an optical beam output coupler
US7729585B2 (en) Light source apparatus with modulation function and its driving method
CN1187871C (en) Utilizing locked laser for generating optical pulse series having high repetition rate
US20210399519A1 (en) Long Lifetime Laser Diode Packaging
JP2022553942A (en) Improved siloxane for laser systems
JP2008153297A (en) Semiconductor laser element and optical module using it
JP4129135B2 (en) Semiconductor package
JPWO2020160540A5 (en)
JP4706403B2 (en) Optical wavelength conversion element and optical wavelength converter
US11862927B2 (en) High reliability high power high brightness blue laser diode systems and methods of making the same
JP2002141599A (en) Semiconductor laser module, laser unit, and raman amplifier
WO2003085420A2 (en) Optical collimator for monomode fiber having a graded-index fiber section, corresponding monomode fiber with extended core and method for making same
RU2021125656A (en) HIGHLY RELIABLE HIGH POWER AND HIGH BRIGHTNESS BLUE LIGHT LASER DIODE SYSTEMS AND METHODS OF THEIR MANUFACTURING
US8094300B2 (en) In-situ contaminant removal in optical packages
JP4549313B2 (en) Wavelength conversion laser
Herrick et al. Introduction to optoelectronic devices
Adachi et al. A 1.3-μm lens-integrated horizontal-cavity surface-emitting laser with direct and highly efficient coupling to optical fibers
JP2010034280A (en) External resonator type semiconductor laser
JPWO2021158696A5 (en)
RU2811824C2 (en) Highly reliable laser diode systems of high power and high brightness blue glow and methods of their manufacture
JP2023513104A (en) Long life laser diode package
CA2369507A1 (en) Semiconductor laser module and pumping light source apparatus employing the same
JP2020170829A (en) Laser light-emitting device
KR100333895B1 (en) Method for processing mirror facet of semiconductor laser device