JPWO2020131632A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020131632A5
JPWO2020131632A5 JP2021535039A JP2021535039A JPWO2020131632A5 JP WO2020131632 A5 JPWO2020131632 A5 JP WO2020131632A5 JP 2021535039 A JP2021535039 A JP 2021535039A JP 2021535039 A JP2021535039 A JP 2021535039A JP WO2020131632 A5 JPWO2020131632 A5 JP WO2020131632A5
Authority
JP
Japan
Prior art keywords
repeat
nuclease
strand break
target site
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021535039A
Other languages
Japanese (ja)
Other versions
JP7449291B2 (en
JP2022514567A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/066317 external-priority patent/WO2020131632A1/en
Publication of JP2022514567A publication Critical patent/JP2022514567A/en
Publication of JPWO2020131632A5 publication Critical patent/JPWO2020131632A5/ja
Priority to JP2024031173A priority Critical patent/JP2024052928A/en
Application granted granted Critical
Publication of JP7449291B2 publication Critical patent/JP7449291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

一部のそのような方法では、1つまたは複数のアッセイは、イントロン含有C9orf72 RNA転写物を検出するための定量ポリメラーゼ連鎖反応(qPCR)を含む。一部のそのような方法では、1つまたは複数のアッセイがC9orf72センスまたはアンチセンスRNA転写物を含むRNA病巣を測定することを含み、必要に応じてRNA病巣は蛍光in situハイブリダイゼーションによって測定される。一部のそのような方法では、1つまたは複数のアッセイがジペプチドリピートタンパク質の蓄積を測定することを含み、必要に応じてジペプチドリピートタンパク質はpolyGAジペプチドリピートタンパク質またはpolyGPジペプチドリピートタンパク質であり、必要に応じてジペプチドリピートタンパク質の蓄積は免疫組織化学によって測定される。
本発明の実施形態において、例えば以下の項目が提供される。
(項目1)
標的ゲノム遺伝子座においてリピート配列のコピー数が増加している改変された細胞を生成するための方法であって、
(a)前記標的ゲノム遺伝子座において前記リピート配列の複数のコピーを含むリピート伸長配列を含む細胞の集団を提供するステップと;
(b)細胞の前記集団の中にヌクレアーゼ剤または前記ヌクレアーゼ剤をコードする核酸を導入するステップであって、前記ヌクレアーゼ剤は、前記リピート伸長配列の5’末端または3’末端の近傍のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成して、改変された細胞の集団を生成するステップと;
(c)改変された細胞の前記集団の中の前記リピート配列のコピー数を定量化し、前記リピート配列のコピー数が増加している改変された細胞を選択するステップと
を含む方法。
(項目2)
外因性の修復鋳型が細胞の前記集団に導入されない、項目1に記載の方法。
(項目3)
前記ヌクレアーゼ標的部位が、前記リピート伸長配列の5’末端もしくは3’末端から約50、約40、約30、約20もしくは約10ヌクレオチド以内にあるか、または前記リピート伸長配列の5’末端もしくは3’末端と重なる、項目1または2に記載の方法。
(項目4)
前記ヌクレアーゼ標的部位が、前記リピート伸長配列の5’末端もしくは3’末端から約25、約24、約23、約22、約21、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3もしくは約2ヌクレオチド以内にあるか、または前記リピート伸長配列の5’末端もしくは3’末端と重なる、項目3に記載の方法。
(項目5)
前記ヌクレアーゼ標的部位が前記リピート伸長配列の5’末端または3’末端と重なる、項目4に記載の方法。
(項目6)
前記ヌクレアーゼ標的部位が前記リピート伸長配列の5’末端の近傍にある、前記項目のいずれかに記載の方法。
(項目7)
前記ヌクレアーゼ標的部位が前記リピート伸長配列の3’末端の近傍にある、項目1から5のいずれか一項に記載の方法。
(項目8)
前記ヌクレアーゼ標的部位が前記リピート伸長配列の外側にある、前記項目のいずれかに記載の方法。
(項目9)
前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の5’末端または3’末端から約50、約40、約30、約20または約10ヌクレオチド以内にある、前記項目のいずれかに記載の方法。
(項目10)
前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の5’末端または3’末端から約25、約24、約23、約22、約21、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3または約2ヌクレオチド以内にある、項目9に記載の方法。
(項目11)
前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の5’末端の近傍にある、前記項目のいずれかに記載の方法。
(項目12)
前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の3’末端の近傍にある、項目1から10のいずれか一項に記載の方法。
(項目13)
前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の外側にある、前記項目のいずれかに記載の方法。
(項目14)
前記ヌクレアーゼ標的部位が、前記細胞による前記二本鎖切断または前記一本鎖切断の修復の後にも保持される、前記項目のいずれかに記載の方法。
(項目15)
前記二本鎖切断または前記一本鎖切断の修復が、前記リピート伸長配列の外側に挿入も欠失ももたらさない、前記項目のいずれかに記載の方法。
(項目16)
前記ヌクレアーゼ剤が、前記リピート伸長配列の5’末端または3’末端の近傍で二本鎖切断を形成する、前記項目のいずれかに記載の方法。
(項目17)
前記ヌクレアーゼ剤が、前記リピート伸長配列の5’末端または3’末端の近傍で一本鎖切断を形成するニッカーゼである、項目1から15のいずれか一項に記載の方法。
(項目18)
第1のヌクレアーゼ剤または前記第1のヌクレアーゼ剤をコードする核酸および第2のヌクレアーゼ剤または前記第2のヌクレアーゼ剤をコードする核酸が前記細胞に導入され、前記第1のヌクレアーゼ剤は、前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成し、前記第2のヌクレアーゼ剤は、前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する、前記項目のいずれかに記載の方法。
(項目19)
前記第1のヌクレアーゼ剤が、前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成し、前記第2のヌクレアーゼ剤が、前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する、項目18に記載の方法。
(項目20)
前記第1のヌクレアーゼ剤が、前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成し、前記第2のヌクレアーゼ剤が、前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する、項目18に記載の方法。
(項目21)
前記ヌクレアーゼ剤が、ジンクフィンガーヌクレアーゼ(ZFN)、転写活性化因子様エフェクターヌクレアーゼ(TALEN)またはClustered Regularly Interspaced Short Palindromic Repeats(CRISPR)結合(Cas)タンパク質およびガイドRNAである、前記項目のいずれかに記載の方法。
(項目22)
前記ヌクレアーゼ剤が前記Casタンパク質および前記ガイドRNAである、項目21に記載の方法。
(項目23)
前記Casタンパク質がCas9タンパク質である、項目22に記載の方法。
(項目24)
前記リピート伸長配列が異種のリピート伸長配列である、前記項目のいずれかに記載の方法。
(項目25)
前記リピート伸長配列が、少なくとも約10、少なくとも約20、少なくとも約30、少なくとも約40、少なくとも約50、少なくとも約60、少なくとも約70、少なくとも約80、または少なくとも約90コピーの前記リピート配列を含む、前記項目のいずれかに記載の方法。
(項目26)
前記リピート配列のコピーが前記リピート伸長配列の中で連続している、前記項目のいずれかに記載の方法。
(項目27)
前記リピート配列が、トリヌクレオチドリピート、テトラヌクレオチドリピート、ペンタヌクレオチドリピート、ヘキサヌクレオチドリピートまたはドデカヌクレオチドリピートである、前記項目のいずれかに記載の方法。
(項目28)
前記リピート配列が配列番号1~12のいずれか1つを含む、前記項目のいずれかに記載の方法。
(項目29)
(i)前記リピート配列が配列番号2を含み、前記標的ゲノム遺伝子座がHTT、AR、ATN1、ATXN1、ATXN2、ATXN3、CACNA1A、ATXN7、PPP2R2BまたはTBP遺伝子座であるか;
(ii)前記リピート配列が配列番号3を含み、前記標的ゲノム遺伝子座がFMR1遺伝子座であるか;
(iii)前記リピート配列が配列番号4を含み、前記標的ゲノム遺伝子座がDMPK、JPH3、ATXN8またはTCF4遺伝子座であるか;
(iv)前記リピート配列が配列番号5を含み、前記標的ゲノム遺伝子座がFXN遺伝子座であるか;
(v)前記リピート配列が配列番号6を含み、前記標的ゲノム遺伝子座がAFF2遺伝子座であるか;
(vi)前記リピート配列が配列番号7を含み、前記標的ゲノム遺伝子座がPABPN1遺伝子座であるか;
(vii)前記リピート配列が配列番号8を含み、前記標的ゲノム遺伝子座がCNBP遺伝子座であるか;
(viii)前記リピート配列が配列番号9を含み、前記標的ゲノム遺伝子座がATXN10遺伝子座であるか;
(ix)前記リピート配列が配列番号10を含み、前記標的ゲノム遺伝子座がTK2またはBEAN1遺伝子座であるか;
(x)前記リピート配列が配列番号11を含み、前記標的ゲノム遺伝子座がNOP56遺伝子座であるか;
(xi)前記リピート配列が配列番号1を含み、前記標的ゲノム遺伝子座がC9ORF72遺伝子座であるか;または
(xii)前記リピート配列が配列番号12を含み、前記標的ゲノム遺伝子座がCSTB遺伝子座である、
項目28に記載の方法。
(項目30)
前記リピート配列が配列番号1を含み、前記標的ゲノム遺伝子座がC9ORF72遺伝子座である、項目29に記載の方法。
(項目31)
前記ヌクレアーゼ剤がCas9タンパク質およびガイドRNAであり、前記ヌクレアーゼ標的部位が配列番号28または33を含む、項目30に記載の方法。
(項目32)
前記細胞が非ヒト動物細胞である、前記項目のいずれかに記載の方法。
(項目33)
前記細胞が、非ヒト動物の胚性幹細胞、胚性幹細胞由来の運動ニューロン、脳細胞、皮質細胞、ニューロン細胞、筋細胞、心臓細胞または胚細胞である、前記項目のいずれかに記載の方法。
(項目34)
前記細胞が非ヒト動物の1細胞期胚である、項目1から32のいずれか一項に記載の方法。
(項目35)
前記細胞がげっ歯動物細胞である、前記項目のいずれかに記載の方法。
(項目36)
前記細胞がマウス細胞またはラット細胞である、項目35に記載の方法。
(項目37)
前記細胞がマウス細胞である、項目36に記載の方法。
(項目38)
前記細胞がマウス胚性幹細胞またはマウス1細胞期の胚である、項目37に記載の方法。
(項目39)
前記細胞がヒト誘導多能性幹細胞である、項目1から31のいずれか一項に記載の方法。
(項目40)
前記細胞がin vitroにある、前記項目のいずれかに記載の方法。
(項目41)
前記細胞がin vivoにある、項目1から38のいずれか一項に記載の方法。
(項目42)
複数回のステップ(a)~(c)を含み、第1回の後の各回のステップ(a)における細胞の前記集団が、前回のステップ(c)で選択される前記改変された細胞から増大した細胞のクローン集団である、前記項目のいずれかに記載の方法。
(項目43)
少なくとも3回または少なくとも4回を含む、項目42に記載の方法。
(項目44)
1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目45)
1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目46)
1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目47)
1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目48)
1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目49)
1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目50)
1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目51)
1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目52)
1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目53)
1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目54)
1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目55)
1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、項目42または43に記載の方法。
(項目56)
前記第1のヌクレアーゼ標的部位が前記第2のヌクレアーゼ標的部位と同じである、項目46、47、50、51、54または55に記載の方法。
(項目57)
前記ヌクレアーゼ標的部位が前記リピート伸長配列の外側にあり、前記ヌクレアーゼ標的部位が前記リピート伸長配列の5’末端または3’末端から約50、約40、約30、約20または約10ヌクレオチド以内にあり、前記ヌクレアーゼ剤がCas9タンパク質およびガイドRNAである、前記項目のいずれかに記載の方法。
(項目58)
前記ヌクレアーゼ剤が前記リピート伸長配列の5’末端または3’末端の近傍で一本鎖切断を形成するニッカーゼであり、前記ヌクレアーゼ標的部位が、前記細胞による前記一本鎖切断の修復の後にも保持され、前記一本鎖切断の修復が前記リピート伸長配列の外側に挿入も欠失ももたらさない、項目57に記載の方法。
(項目59)
内因性C9orf72遺伝子座に挿入された異種のヘキサヌクレオチドリピート伸長配列をそのゲノムに含む、非ヒト動物または非ヒト動物細胞であって、前記異種のヘキサヌクレオチドリピート伸長配列は、配列番号1で示すヘキサヌクレオチド配列の約100より多いリピートを含む、非ヒト動物または非ヒト動物細胞。
(項目60)
前記異種のヘキサヌクレオチドリピート伸長配列が、配列番号1で示すヘキサヌクレオチド配列の少なくとも約300リピートを含む、項目59に記載の非ヒト動物または非ヒト動物細胞。
(項目61)
前記ヘキサヌクレオチドリピート伸長が、配列番号1で示すヘキサヌクレオチド配列の少なくとも約500リピートを含む、項目60に記載の非ヒト動物または非ヒト動物細胞。
(項目62)
前記ヘキサヌクレオチドリピート伸長が、配列番号1で示すヘキサヌクレオチド配列の少なくとも約600リピートを含む、項目61に記載の非ヒト動物または非ヒト動物細胞。
(項目63)
前記リピートが前記異種リピート伸長配列の中で連続している、項目59から62のいずれか一項に記載の非ヒト動物または非ヒト動物細胞。
(項目64)
前記異種のヘキサヌクレオチドリピート伸長配列が前記内因性C9orf72遺伝子座の第1の非コード内因性エクソンと第2エクソンの間に位置する、項目59から63のいずれか一項に記載の非ヒト動物または非ヒト動物細胞。
(項目65)
前記内因性C9orf72遺伝子座がヒトC9ORF72ヌクレオチド配列を含む、項目59から64のいずれか一項に記載の非ヒト動物または非ヒト動物細胞。
(項目66)
前記ヒトC9ORF72ヌクレオチド配列が配列番号46および/または配列番号47を含む、項目65に記載の非ヒト動物または非ヒト動物細胞。
(項目67)
前記非ヒト動物がげっ歯動物であるかまたは前記非ヒト動物細胞がげっ歯動物細胞である、項目59から66のいずれか一項に記載の非ヒト動物または非ヒト動物細胞。
(項目68)
前記げっ歯動物がラットもしくはマウスであるかまたは前記非ヒト動物細胞がラット細胞もしくはマウス細胞である、項目67に記載の非ヒト動物または非ヒト動物細胞。
(項目69)
前記異種のヘキサヌクレオチドリピート伸長配列についてヘテロ接合性である、項目59から68のいずれか一項に記載の非ヒト動物または非ヒト動物細胞。
(項目70)
(a)野生型C9orf72遺伝子座を含む対照非ヒト動物または対照非ヒト動物細胞と比較したイントロン配列を保持するC9orf72転写物の発現の増加;および/または
(b)野生型C9orf72遺伝子座を含む対照非ヒト動物または対照非ヒト動物細胞と比較したRNA病巣の数の増加;および/または
(c)野生型C9orf72遺伝子座を含む対照非ヒト動物または対照非ヒト動物細胞と比較したジペプチドリピートタンパク質のレベルの増加
を示す、項目59から69のいずれか一項に記載の非ヒト動物または非ヒト動物細胞。
(項目71)
胚性幹細胞、胚性幹細胞由来の運動ニューロン、脳細胞、皮質細胞、ニューロン細胞、筋細胞、心臓細胞または胚細胞である、項目59から70のいずれか一項に記載の非ヒト動物細胞。
(項目72)
1細胞期の胚である、項目59から70のいずれか一項に記載の非ヒト動物細胞。
(項目73)
in vitroにある、項目59から72のいずれか一項に記載の非ヒト動物細胞。
(項目74)
in vivoにある、項目59から72のいずれか一項に記載の非ヒト動物細胞。
(項目75)
その生殖細胞系列ゲノムに、前記内因性C9orf72遺伝子座に挿入された前記異種のヘキサヌクレオチドリピート伸長配列を含む、項目59から70のいずれか一項に記載の非ヒト動物。
(項目76)
内因性C9orf72遺伝子座に挿入された異種のヘキサヌクレオチドリピート伸長配列を含む非ヒト動物ゲノムであって、前記異種のヘキサヌクレオチドリピート伸長配列は配列番号1で示すヘキサヌクレオチド配列の約100より多いリピートを含む、非ヒト動物ゲノム。
(項目77)
異種のヘキサヌクレオチドリピート伸長配列を含む非ヒト動物C9orf72遺伝子であって、前記異種のヘキサヌクレオチドリピート伸長配列は配列番号1で示すヘキサヌクレオチド配列の約100より多いリピートを含む、非ヒト動物C9orf72遺伝子。
(項目78)
標的ゲノム遺伝子座においてリピート配列の複数のコピーを含むリピート伸長配列を含む、前記標的ゲノム遺伝子座において前記リピート配列のコピー数が増加している改変された細胞を生成するための方法で使用するためのヌクレアーゼ剤であって、前記リピート伸長配列の5’末端または3’末端の近傍のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成するように設計されるヌクレアーゼ剤。
(項目79)
C9orf72遺伝子座のヘキサヌクレオチドリピート伸長配列と関連した疾患または状態の処置のための治療薬候補を評価する方法であって、
(a)項目59から70および75のいずれか一項に記載の非ヒト動物または項目59から74のいずれか一項に記載の非ヒト動物細胞に候補薬剤を投与するステップと;
(b)前記候補薬剤が前記疾患または状態と関連した1つまたは複数の徴候または症状に影響を及ぼすかどうか決定するために1つまたは複数のアッセイを実行するステップと;
(c)前記疾患または状態と関連した前記1つまたは複数の徴候または症状に影響を及ぼす前記候補薬剤を治療薬候補として識別するステップと
を含む方法。
(項目80)
前記候補薬剤が前記非ヒト動物にin vivo投与され、前記候補薬剤の投与の後に前記非ヒト動物から単離される細胞において前記1つまたは複数のアッセイがin vitroで実行される、項目79に記載の方法。
(項目81)
前記候補薬剤が非ヒト胚性幹細胞由来の運動ニューロンにin vitro投与される、項目79に記載の方法。
(項目82)
前記1つまたは複数のアッセイが、イントロン含有C9orf72 RNA転写物を検出するための定量ポリメラーゼ連鎖反応(qPCR)を含む、項目79から81のいずれか一項に記載の方法。
(項目83)
前記1つまたは複数のアッセイがC9orf72センスまたはアンチセンスRNA転写物を含むRNA病巣を測定することを含み、必要に応じて前記RNA病巣は蛍光in situハイブリダイゼーションによって測定される、項目79から82のいずれか一項に記載の方法。
(項目84)
前記1つまたは複数のアッセイがジペプチドリピートタンパク質の蓄積を測定することを含み、必要に応じて前記ジペプチドリピートタンパク質はpolyGAジペプチドリピートタンパク質またはpolyGPジペプチドリピートタンパク質であり、必要に応じてジペプチドリピートタンパク質の前記蓄積は免疫組織化学によって測定される、項目79から83のいずれか一項に記載の方法。
In some such methods, the one or more assays comprises quantitative polymerase chain reaction (qPCR) to detect intron-containing C9orf72 RNA transcripts. In some such methods, one or more assays comprise measuring RNA foci comprising C9orf72 sense or antisense RNA transcripts, optionally the RNA foci are measured by fluorescence in situ hybridization. be. In some such methods, the one or more assays comprise measuring accumulation of dipeptide repeat proteins, optionally the dipeptide repeat proteins are polyGA dipeptide repeat proteins or polyGP dipeptide repeat proteins, optionally Accumulation of dipeptide repeat proteins is accordingly measured by immunohistochemistry.
In embodiments of the present invention, for example, the following items are provided.
(Item 1)
A method for generating a modified cell having increased copy number of repeat sequences at a target genomic locus, comprising:
(a) providing a population of cells comprising repeat expansion sequences comprising multiple copies of said repeat sequence at said target genomic locus;
(b) introducing into said population of cells a nuclease agent or a nucleic acid encoding said nuclease agent, said nuclease agent having a nuclease target near the 5' or 3' end of said repeat extension sequence; forming a double-strand break or a single-strand break at the site to generate a population of modified cells;
(c) quantifying the copy number of the repeat sequence in the population of modified cells and selecting modified cells with increased copy number of the repeat sequence;
method including.
(Item 2)
2. The method of item 1, wherein no exogenous repair template is introduced into said population of cells.
(Item 3)
The nuclease target site is within about 50, about 40, about 30, about 20 or about 10 nucleotides from the 5' or 3' end of the repeat extension sequence, or the 5' or 3' end of the repeat extension sequence. 3. The method of item 1 or 2, wherein the 'end overlaps.
(Item 4)
The nuclease target site is about 25, about 24, about 23, about 22, about 21, about 20, about 19, about 18, about 17, about 16, about within 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3 or about 2 nucleotides, or said repeat extension A method according to item 3, overlapping the 5' or 3' end of the sequence.
(Item 5)
5. The method of item 4, wherein the nuclease target site overlaps the 5' or 3' end of the repeat extension sequence.
(Item 6)
A method according to any of the preceding items, wherein said nuclease target site is near the 5' end of said repeat extension sequence.
(Item 7)
6. The method of any one of items 1-5, wherein said nuclease target site is near the 3' end of said repeat extension sequence.
(Item 8)
A method according to any of the preceding items, wherein said nuclease target site is outside said repeat extension sequence.
(Item 9)
The site at which the nuclease agent forms a double-strand or single-strand break is within about 50, about 40, about 30, about 20, or about 10 nucleotides from the 5' or 3' end of the repeat extension sequence A method according to any of the preceding items.
(Item 10)
the site at which the nuclease agent forms a double-strand or single-strand break is about 25, about 24, about 23, about 22, about 21, about 20 from the 5' or 3' end of the repeat extension sequence; about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3 or within about 2 nucleotides.
(Item 11)
A method according to any of the preceding items, wherein the site at which the nuclease agent forms a double-strand or single-strand break is near the 5' end of the repeat extension sequence.
(Item 12)
11. The method of any one of items 1-10, wherein the site at which the nuclease agent forms a double-strand or single-strand break is near the 3' end of the repeat extension sequence.
(Item 13)
A method according to any of the preceding items, wherein the site at which the nuclease agent forms a double-strand or single-strand break is outside the repeat extension sequence.
(Item 14)
A method according to any of the preceding items, wherein said nuclease target site is retained following repair of said double-strand break or said single-strand break by said cell.
(Item 15)
The method of any of the preceding items, wherein repair of said double-strand break or said single-strand break does not result in insertions or deletions outside of said repeat extension sequence.
(Item 16)
A method according to any of the preceding items, wherein the nuclease agent forms a double-stranded break near the 5' or 3' end of the repeat extension sequence.
(Item 17)
16. The method of any one of items 1-15, wherein the nuclease agent is a nickase that creates a single-strand break near the 5' or 3' end of the repeat extension sequence.
(Item 18)
A first nuclease agent or nucleic acid encoding said first nuclease agent and a second nuclease agent or nucleic acid encoding said second nuclease agent are introduced into said cell, wherein said first nuclease agent comprises said repeat Forming a double-strand or single-strand break at a first nuclease target site near the 5' end of the extended sequence, said second nuclease agent forming a second nuclease break near the 3' end of said repeat extended sequence; A method according to any of the preceding items, wherein a double-strand break or a single-strand break is formed at the nuclease target site of .
(Item 19)
The first nuclease agent forms a double-stranded break at a first nuclease target site near the 5' end of the repeat extension sequence, and the second nuclease agent forms a double-strand break at the 3' end of the repeat extension sequence. 19. The method of item 18, wherein the double-strand break is formed at the second nuclease target site in the vicinity of .
(Item 20)
The first nuclease agent forms a single-strand break at a first nuclease target site near the 5' end of the repeat extension sequence, and the second nuclease agent forms a single-strand break at the 3' end of the repeat extension sequence. 19. The method of item 18, wherein a single-strand break is formed at the second nuclease target site in the vicinity of .
(Item 21)
Any of the preceding items, wherein the nuclease agent is a zinc finger nuclease (ZFN), a transcription activator-like effector nuclease (TALEN) or a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) binding (Cas) protein and guide RNA. the method of.
(Item 22)
22. The method of item 21, wherein said nuclease agent is said Cas protein and said guide RNA.
(Item 23)
23. The method of item 22, wherein the Cas protein is a Cas9 protein.
(Item 24)
A method according to any of the preceding items, wherein the repeat-expansion sequence is a heterologous repeat-expansion sequence.
(Item 25)
said repeat extension sequence comprises at least about 10, at least about 20, at least about 30, at least about 40, at least about 50, at least about 60, at least about 70, at least about 80, or at least about 90 copies of said repeat sequence; A method according to any of the preceding items.
(Item 26)
A method according to any of the preceding items, wherein the copies of the repeat sequence are contiguous within the repeat extension sequence.
(Item 27)
The method according to any of the preceding items, wherein the repeat sequence is a trinucleotide repeat, tetranucleotide repeat, pentanucleotide repeat, hexanucleotide repeat or dodecanucleotide repeat.
(Item 28)
The method of any of the preceding items, wherein said repeat sequence comprises any one of SEQ ID NOs: 1-12.
(Item 29)
(i) said repeat sequence comprises SEQ ID NO: 2 and said target genomic locus is HTT, AR, ATN1, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, PPP2R2B or TBP locus;
(ii) said repeat sequence comprises SEQ ID NO: 3 and said target genomic locus is the FMR1 locus;
(iii) said repeat sequence comprises SEQ ID NO: 4 and said target genomic locus is a DMPK, JPH3, ATXN8 or TCF4 locus;
(iv) said repeat sequence comprises SEQ ID NO: 5 and said target genomic locus is the FXN locus;
(v) said repeat sequence comprises SEQ ID NO: 6 and said target genomic locus is the AFF2 locus;
(vi) said repeat sequence comprises SEQ ID NO: 7 and said target genomic locus is the PABPN1 locus;
(vii) said repeat sequence comprises SEQ ID NO:8 and said target genomic locus is a CNBP locus;
(viii) said repeat sequence comprises SEQ ID NO: 9 and said target genomic locus is the ATXN10 locus;
(ix) said repeat sequence comprises SEQ ID NO: 10 and said target genomic locus is the TK2 or BEAN1 locus;
(x) said repeat sequence comprises SEQ ID NO: 11 and said target genomic locus is the NOP56 locus;
(xi) said repeat sequence comprises SEQ ID NO: 1 and said target genomic locus is the C9ORF72 locus; or
(xii) said repeat sequence comprises SEQ ID NO: 12 and said target genomic locus is the CSTB locus;
29. The method of item 28.
(Item 30)
30. The method of item 29, wherein said repeat sequence comprises SEQ ID NO: 1 and said target genomic locus is the C9ORF72 locus.
(Item 31)
31. The method of item 30, wherein said nuclease agent is Cas9 protein and guide RNA and said nuclease target site comprises SEQ ID NO:28 or 33.
(Item 32)
The method of any of the preceding items, wherein the cells are non-human animal cells.
(Item 33)
The method of any of the preceding items, wherein the cells are non-human animal embryonic stem cells, embryonic stem cell-derived motor neurons, brain cells, cortical cells, neuronal cells, muscle cells, heart cells or embryonic cells.
(Item 34)
33. The method of any one of items 1-32, wherein the cell is a one-cell stage embryo of a non-human animal.
(Item 35)
The method of any of the preceding items, wherein the cells are rodent cells.
(Item 36)
36. The method of item 35, wherein said cells are mouse cells or rat cells.
(Item 37)
37. The method of item 36, wherein said cells are mouse cells.
(Item 38)
38. The method of item 37, wherein said cells are mouse embryonic stem cells or mouse 1-cell stage embryos.
(Item 39)
32. The method of any one of items 1-31, wherein said cells are human induced pluripotent stem cells.
(Item 40)
The method of any of the preceding items, wherein said cell is in vitro.
(Item 41)
39. The method of any one of items 1-38, wherein said cell is in vivo.
(Item 42)
comprising multiple rounds of steps (a)-(c), wherein said population of cells in each round of step (a) after the first round is expanded from said modified cells selected in the previous step (c); The method according to any of the preceding items, which is a clonal population of cells that have been isolated from each other.
(Item 43)
43. The method of item 42, comprising at least 3 times or at least 4 times.
(Item 44)
a first modified cell run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence for the first time; said first modified cell with a second nuclease agent that produces and a second time forms a double-strand or single-strand break at a second nuclease target site near the 3' end of said repeat extension sequence; 44. A method according to item 42 or 43, wherein said method is performed on said cell to generate a second modified cell.
(Item 45)
a first modified cell run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for the first time; said first modified cell with a second nuclease agent that produces and a second time forms a double-strand or single-strand break at a second nuclease target site near the 5' end of said repeat extension sequence; 44. A method according to item 42 or 43, wherein said method is performed on said cell to generate a second modified cell.
(Item 46)
a first modified cell run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence for the first time; said first modified cell with a second nuclease agent that produces and a second time forms a double-strand or single-strand break at a second nuclease target site near the 5' end of said repeat extension sequence; 44. A method according to item 42 or 43, wherein said method is performed on said cell to generate a second modified cell.
(Item 47)
a first modified cell run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for the first time; said first modified cell with a second nuclease agent that produces and a second time forms a double-strand or single-strand break at a second nuclease target site near the 3' end of said repeat extension sequence; 44. A method according to item 42 or 43, wherein said method is performed on said cell to generate a second modified cell.
(Item 48)
a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 5' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 3' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 49)
a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 3' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 5' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 50)
a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 5' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 5' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 51)
a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 3' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 3' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 52)
a first run with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 3' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 53)
a first run with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 5' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 54)
a first run with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 5' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 55)
a first run with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence to produce a first modified cell; a second modification performed on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 3' end of said repeat extension sequence to 44. A method according to item 42 or 43, wherein the method produces a modified cell.
(Item 56)
56. The method of items 46, 47, 50, 51, 54 or 55, wherein said first nuclease target site is the same as said second nuclease target site.
(Item 57)
said nuclease target site is outside said repeat extension sequence and said nuclease target site is within about 50, about 40, about 30, about 20 or about 10 nucleotides from the 5' or 3' end of said repeat extension sequence; , the method of any of the preceding items, wherein the nuclease agent is Cas9 protein and guide RNA.
(Item 58)
the nuclease agent is a nickase that forms a single-strand break near the 5' or 3' end of the repeat extension sequence, and the nuclease target site is retained after repair of the single-strand break by the cell; 58. The method of item 57, wherein repair of said single-strand break does not result in insertions or deletions outside of said repeat extension sequence.
(Item 59)
A non-human animal or non-human animal cell comprising in its genome a heterologous hexanucleotide repeat extension sequence inserted at the endogenous C9orf72 locus, wherein said heterologous hexanucleotide repeat extension sequence is the hexanucleotide repeat extension sequence shown in SEQ ID NO: 1 A non-human animal or non-human animal cell comprising more than about 100 repeats of a nucleotide sequence.
(Item 60)
60. The non-human animal or non-human animal cell of item 59, wherein said heterologous hexanucleotide repeat extension sequence comprises at least about 300 repeats of the hexanucleotide sequence set forth in SEQ ID NO:1.
(Item 61)
61. The non-human animal or non-human animal cell of item 60, wherein said hexanucleotide repeat extension comprises at least about 500 repeats of the hexanucleotide sequence set forth in SEQ ID NO:1.
(Item 62)
62. The non-human animal or non-human animal cell of item 61, wherein said hexanucleotide repeat extension comprises at least about 600 repeats of the hexanucleotide sequence set forth in SEQ ID NO:1.
(Item 63)
63. The non-human animal or non-human animal cell of any one of items 59-62, wherein said repeats are continuous within said heterologous repeat extension sequence.
(Item 64)
64. The non-human animal of any one of items 59-63, wherein said heterologous hexanucleotide repeat extension sequence is located between the first non-coding endogenous exon and the second exon of said endogenous C9orf72 locus, or non-human animal cells.
(Item 65)
65. The non-human animal or non-human animal cell of any one of items 59-64, wherein said endogenous C9orf72 locus comprises a human C9ORF72 nucleotide sequence.
(Item 66)
66. The non-human animal or non-human animal cell of item 65, wherein said human C9ORF72 nucleotide sequence comprises SEQ ID NO:46 and/or SEQ ID NO:47.
(Item 67)
67. The non-human animal or non-human animal cell of any one of items 59-66, wherein said non-human animal is a rodent or said non-human animal cell is a rodent cell.
(Item 68)
68. The non-human animal or non-human animal cell of item 67, wherein said rodent is a rat or mouse or said non-human animal cell is a rat or mouse cell.
(Item 69)
69. The non-human animal or non-human animal cell of any one of items 59-68, which is heterozygous for said heterologous hexanucleotide repeat extension sequence.
(Item 70)
(a) increased expression of C9orf72 transcripts that retain intronic sequences compared to a control non-human animal or control non-human animal cell containing a wild-type C9orf72 locus; and/or
(b) an increase in the number of RNA foci compared to a control non-human animal or control non-human animal cell containing the wild-type C9orf72 locus; and/or
(c) increased levels of dipeptide repeat proteins compared to control non-human animals or control non-human animal cells containing the wild-type C9orf72 locus;
70. The non-human animal or non-human animal cell of any one of items 59-69, which exhibits
(Item 71)
71. The non-human animal cell according to any one of items 59-70, which is an embryonic stem cell, an embryonic stem cell-derived motor neuron, a brain cell, a cortical cell, a neuronal cell, a muscle cell, a cardiac cell or an embryonic cell.
(Item 72)
71. The non-human animal cell according to any one of items 59-70, which is a 1-cell stage embryo.
(Item 73)
73. The non-human animal cell of any one of items 59-72, in vitro.
(Item 74)
73. Non-human animal cell according to any one of items 59-72, in vivo.
(Item 75)
71. The non-human animal of any one of items 59-70, comprising in its germline genome said heterologous hexanucleotide repeat extension sequence inserted at said endogenous C9orf72 locus.
(Item 76)
A non-human animal genome comprising a heterologous hexanucleotide repeat expansion sequence inserted into an endogenous C9orf72 locus, said heterologous hexanucleotide repeat expansion sequence comprising more than about 100 repeats of the hexanucleotide sequence shown in SEQ ID NO:1. non-human animal genomes, including;
(Item 77)
A non-human animal C9orf72 gene comprising a heterologous hexanucleotide repeat extension sequence, said heterologous hexanucleotide repeat extension sequence comprising greater than about 100 repeats of the hexanucleotide sequence shown in SEQ ID NO:1.
(Item 78)
for use in a method for generating a modified cell having increased copy number of said repeat sequence at said target genomic locus comprising a repeat extension sequence comprising multiple copies of said repeat sequence at said target genomic locus which is designed to form a double-strand or single-strand break at a nuclease target site near the 5' or 3' end of said repeat extension sequence.
(Item 79)
1. A method of evaluating a therapeutic drug candidate for treatment of a disease or condition associated with a hexanucleotide repeat expansion sequence of the C9orf72 locus, comprising:
(a) administering a candidate agent to the non-human animal of any one of items 59-70 and 75 or the non-human animal cell of any one of items 59-74;
(b) performing one or more assays to determine whether said candidate agent affects one or more signs or symptoms associated with said disease or condition;
(c) identifying said candidate agent affecting said one or more signs or symptoms associated with said disease or condition as a candidate therapeutic agent;
method including.
(Item 80)
80. The method of paragraph 79, wherein the candidate agent is administered to the non-human animal in vivo and the one or more assays are performed in vitro on cells isolated from the non-human animal after administration of the candidate agent. the method of.
(Item 81)
80. The method of item 79, wherein said candidate agent is administered in vitro to non-human embryonic stem cell-derived motor neurons.
(Item 82)
82. The method of any one of items 79-81, wherein said one or more assays comprises quantitative polymerase chain reaction (qPCR) to detect intron-containing C9orf72 RNA transcripts.
(Item 83)
of paragraphs 79 to 82, wherein said one or more assays comprise measuring RNA foci comprising C9orf72 sense or antisense RNA transcripts, optionally said RNA foci being measured by fluorescence in situ hybridization. A method according to any one of paragraphs.
(Item 84)
Said one or more assays comprise measuring the accumulation of dipeptide repeat proteins, optionally said dipeptide repeat proteins are polyGA dipeptide repeat proteins or polyGP dipeptide repeat proteins, optionally said 84. The method of any one of items 79-83, wherein accumulation is measured by immunohistochemistry.

Claims (47)

標的ゲノム遺伝子座においてリピート配列のコピー数が増加している改変された細胞を生成するための方法であって、
(a)前記標的ゲノム遺伝子座において前記リピート配列の複数のコピーを含むリピート伸長配列を含む細胞の集団を提供するステップと;
(b)細胞の前記集団の中にヌクレアーゼ剤または前記ヌクレアーゼ剤をコードする核酸を導入するステップであって、前記ヌクレアーゼ剤は、前記リピート伸長配列の5’末端または3’末端の近傍のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成して、改変された細胞の集団を生成するステップと;
(c)改変された細胞の前記集団の中の前記リピート配列のコピー数を定量化し、前記リピート配列のコピー数が増加している改変された細胞を選択するステップと
を含む方法。
A method for generating a modified cell having increased copy number of repeat sequences at a target genomic locus, comprising:
(a) providing a population of cells comprising repeat expansion sequences comprising multiple copies of said repeat sequence at said target genomic locus;
(b) introducing into said population of cells a nuclease agent or a nucleic acid encoding said nuclease agent, said nuclease agent having a nuclease target near the 5' or 3' end of said repeat extension sequence; forming a double-strand break or a single-strand break at the site to generate a population of modified cells;
(c) quantifying the copy number of said repeat sequence in said population of modified cells and selecting modified cells with increased copy number of said repeat sequence.
外因性の修復鋳型が細胞の前記集団に導入されない、請求項1に記載の方法。 2. The method of claim 1, wherein no exogenous repair template is introduced into said population of cells. 前記ヌクレアーゼ標的部位が、前記リピート伸長配列の5’末端もしくは3’末端から約50、約40、約30、約20もしくは約10ヌクレオチド以内にあるか、または前記リピート伸長配列の5’末端もしくは3’末端と重なる、請求項1または2に記載の方法。 The nuclease target site is within about 50, about 40, about 30, about 20 or about 10 nucleotides from the 5' or 3' end of the repeat extension sequence, or the 5' or 3' end of the repeat extension sequence. 3. The method of claim 1 or 2, wherein the 'end overlaps. 前記ヌクレアーゼ標的部位が、前記リピート伸長配列の5’末端もしくは3’末端から約25、約24、約23、約22、約21、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3もしくは約2ヌクレオチド以内にあるか、または前記リピート伸長配列の5’末端もしくは3’末端と重なる、請求項3に記載の方法。 The nuclease target site is about 25, about 24, about 23, about 22, about 21, about 20, about 19, about 18, about 17, about 16, about within 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3 or about 2 nucleotides, or said repeat extension 4. The method of claim 3, overlapping the 5' or 3' end of the sequence. 前記ヌクレアーゼ標的部位が前記リピート伸長配列の5’末端または3’末端と重なる、請求項4に記載の方法。 5. The method of claim 4, wherein said nuclease target site overlaps the 5' or 3' end of said repeat extension sequence. 前記ヌクレアーゼ標的部位が前記リピート伸長配列の5’末端の近傍にある、請求項1から5のいずれか一項に記載の方法。 6. The method of any one of claims 1-5, wherein the nuclease target site is near the 5' end of the repeat extension sequence. 前記ヌクレアーゼ標的部位が前記リピート伸長配列の3’末端の近傍にある、請求項1から5のいずれか一項に記載の方法。 6. The method of any one of claims 1-5, wherein the nuclease target site is near the 3' end of the repeat extension sequence. 前記ヌクレアーゼ標的部位が前記リピート伸長配列の外側にある、請求項1から7のいずれか一項に記載の方法。 8. The method of any one of claims 1-7, wherein said nuclease target site is outside said repeat extension sequence. 前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の5’末端または3’末端から約50、約40、約30、約20または約10ヌクレオチド以内にある、請求項1から8のいずれか一項に記載の方法。 The site at which the nuclease agent forms a double-strand or single-strand break is within about 50, about 40, about 30, about 20, or about 10 nucleotides from the 5' or 3' end of the repeat extension sequence A method according to any one of claims 1 to 8 . 前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の5’末端または3’末端から約25、約24、約23、約22、約21、約20、約19、約18、約17、約16、約15、約14、約13、約12、約11、約10、約9、約8、約7、約6、約5、約4、約3または約2ヌクレオチド以内にある、請求項9に記載の方法。 the site at which the nuclease agent forms a double-strand or single-strand break is about 25, about 24, about 23, about 22, about 21, about 20 from the 5' or 3' end of the repeat extension sequence; about 19, about 18, about 17, about 16, about 15, about 14, about 13, about 12, about 11, about 10, about 9, about 8, about 7, about 6, about 5, about 4, about 3 or within about 2 nucleotides. 前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の5’末端の近傍にある、請求項1から10のいずれか一項に記載の方法。 11. The method of any one of claims 1-10 , wherein the site at which the nuclease agent forms a double-strand or single-strand break is near the 5' end of the repeat extension sequence. 前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の3’末端の近傍にある、請求項1から10のいずれか一項に記載の方法。 11. The method of any one of claims 1-10, wherein the site at which the nuclease agent forms a double-strand or single-strand break is near the 3' end of the repeat extension sequence. 前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が、前記リピート伸長配列の外側にある、請求項1から12のいずれか一項に記載の方法。 13. The method of any one of claims 1-12, wherein the sites at which the nuclease agent forms double-strand or single-strand breaks are outside the repeat extension sequences. 前記ヌクレアーゼ標的部位が、前記細胞による前記二本鎖切断または前記一本鎖切断の修復の後にも保持される、請求項1から13のいずれか一項に記載の方法。 14. The method of any one of claims 1-13, wherein the nuclease target site is retained after repair of the double-strand break or the single-strand break by the cell. 前記二本鎖切断または前記一本鎖切断の修復が、前記リピート伸長配列の外側に挿入も欠失ももたらさない、請求項1から14のいずれか一項に記載の方法。 15. The method of any one of claims 1-14, wherein repair of the double-strand break or the single-strand break does not result in insertions or deletions outside of the repeat extension sequence. 前記ヌクレアーゼ剤が、前記リピート伸長配列の5’末端または3’末端の近傍で二本鎖切断を形成する、請求項1から15のいずれか一項に記載の方法。 16. The method of any one of claims 1-15 , wherein the nuclease agent forms a double-stranded break near the 5' or 3' end of the repeat extension sequence. 前記ヌクレアーゼ剤が、前記リピート伸長配列の5’末端または3’末端の近傍で一本鎖切断を形成するニッカーゼである、請求項1から15のいずれか一項に記載の方法。 16. The method of any one of claims 1-15, wherein the nuclease agent is a nickase that creates a single-strand break near the 5' or 3' end of the repeat extension sequence. 第1のヌクレアーゼ剤または前記第1のヌクレアーゼ剤をコードする核酸および第2のヌクレアーゼ剤または前記第2のヌクレアーゼ剤をコードする核酸が前記細胞に導入され、前記第1のヌクレアーゼ剤は、前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成し、前記第2のヌクレアーゼ剤は、前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する、請求項1から17のいずれか一項に記載の方法。 A first nuclease agent or nucleic acid encoding said first nuclease agent and a second nuclease agent or nucleic acid encoding said second nuclease agent are introduced into said cell, wherein said first nuclease agent comprises said repeat Forming a double-strand or single-strand break at a first nuclease target site near the 5' end of the extended sequence, said second nuclease agent forming a second nuclease break near the 3' end of said repeat extended sequence; 18. The method of any one of claims 1 to 17, wherein the method forms a double-strand break or a single-strand break at the nuclease target site of . 前記第1のヌクレアーゼ剤が、前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成し、前記第2のヌクレアーゼ剤が、前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する、請求項18に記載の方法。 The first nuclease agent forms a double-stranded break at a first nuclease target site near the 5' end of the repeat extension sequence, and the second nuclease agent forms a double-strand break at the 3' end of the repeat extension sequence. 19. The method of claim 18, wherein the double-strand break is formed at the second nuclease target site in the vicinity of . 前記第1のヌクレアーゼ剤が、前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成し、前記第2のヌクレアーゼ剤が、前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する、請求項18に記載の方法。 The first nuclease agent forms a single-strand break at a first nuclease target site near the 5' end of the repeat extension sequence, and the second nuclease agent forms a single-strand break at the 3' end of the repeat extension sequence. 19. The method of claim 18, wherein a single-strand break is formed at a second nuclease target site in the vicinity of . 前記ヌクレアーゼ剤が、ジンクフィンガーヌクレアーゼ(ZFN)、転写活性化因子様エフェクターヌクレアーゼ(TALEN)またはClustered Regularly Interspaced Short Palindromic Repeats(CRISPR)結合(Cas)タンパク質およびガイドRNAである、請求項1から20のいずれか一項に記載の方法。 21. Any of claims 1-20, wherein the nuclease agent is a zinc finger nuclease (ZFN), a transcription activator-like effector nuclease (TALEN) or a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) binding (Cas) protein and guide RNA. or the method described in paragraph 1 . 前記ヌクレアーゼ剤が前記Casタンパク質および前記ガイドRNAである、請求項21に記載の方法。 22. The method of claim 21, wherein said nuclease agent is said Cas protein and said guide RNA. 前記Casタンパク質がCas9タンパク質である、請求項22に記載の方法。 23. The method of claim 22, wherein said Cas protein is Cas9 protein. 前記リピート伸長配列が異種のリピート伸長配列である、請求項1から23のいずれか一項に記載の方法。 24. The method of any one of claims 1-23, wherein said repeat expansion sequence is a heterologous repeat expansion sequence. 前記リピート伸長配列が、少なくとも約10、少なくとも約20、少なくとも約30、少なくとも約40、少なくとも約50、少なくとも約60、少なくとも約70、少なくとも約80、または少なくとも約90コピーの前記リピート配列を含む、請求項1から24のいずれか一項に記載の方法。 said repeat extension sequence comprises at least about 10, at least about 20, at least about 30, at least about 40, at least about 50, at least about 60, at least about 70, at least about 80, or at least about 90 copies of said repeat sequence; 25. The method of any one of claims 1-24 . 前記リピート配列のコピーが前記リピート伸長配列の中で連続している、請求項1から25のいずれか一項に記載の方法。 26. The method of any one of claims 1-25, wherein the copies of the repeat sequence are contiguous within the repeat extension sequence. 前記リピート配列が、トリヌクレオチドリピート、テトラヌクレオチドリピート、ペンタヌクレオチドリピート、ヘキサヌクレオチドリピートまたはドデカヌクレオチドリピートである、請求項1から26のいずれか一項に記載の方法。 27. The method of any one of claims 1-26, wherein the repeat sequence is a trinucleotide repeat, tetranucleotide repeat, pentanucleotide repeat, hexanucleotide repeat or dodecanucleotide repeat. 前記リピート配列が配列番号1~12のいずれか1つを含む、請求項1から27のいずれか一項に記載の方法。 28. The method of any one of claims 1-27, wherein the repeat sequence comprises any one of SEQ ID NOs: 1-12. (i)前記リピート配列が配列番号2を含み、前記標的ゲノム遺伝子座がHTT、AR、ATN1、ATXN1、ATXN2、ATXN3、CACNA1A、ATXN7、PPP2R2BまたはTBP遺伝子座であるか;
(ii)前記リピート配列が配列番号3を含み、前記標的ゲノム遺伝子座がFMR1遺伝子座であるか;
(iii)前記リピート配列が配列番号4を含み、前記標的ゲノム遺伝子座がDMPK、JPH3、ATXN8またはTCF4遺伝子座であるか;
(iv)前記リピート配列が配列番号5を含み、前記標的ゲノム遺伝子座がFXN遺伝子座であるか;
(v)前記リピート配列が配列番号6を含み、前記標的ゲノム遺伝子座がAFF2遺伝子座であるか;
(vi)前記リピート配列が配列番号7を含み、前記標的ゲノム遺伝子座がPABPN1遺伝子座であるか;
(vii)前記リピート配列が配列番号8を含み、前記標的ゲノム遺伝子座がCNBP遺伝子座であるか;
(viii)前記リピート配列が配列番号9を含み、前記標的ゲノム遺伝子座がATXN10遺伝子座であるか;
(ix)前記リピート配列が配列番号10を含み、前記標的ゲノム遺伝子座がTK2またはBEAN1遺伝子座であるか;
(x)前記リピート配列が配列番号11を含み、前記標的ゲノム遺伝子座がNOP56遺伝子座であるか;
(xi)前記リピート配列が配列番号1を含み、前記標的ゲノム遺伝子座がC9ORF72遺伝子座であるか;または
(xii)前記リピート配列が配列番号12を含み、前記標的ゲノム遺伝子座がCSTB遺伝子座である、
請求項28に記載の方法。
(i) said repeat sequence comprises SEQ ID NO: 2 and said target genomic locus is HTT, AR, ATN1, ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, PPP2R2B or TBP locus;
(ii) said repeat sequence comprises SEQ ID NO: 3 and said target genomic locus is the FMR1 locus;
(iii) said repeat sequence comprises SEQ ID NO: 4 and said target genomic locus is a DMPK, JPH3, ATXN8 or TCF4 locus;
(iv) said repeat sequence comprises SEQ ID NO: 5 and said target genomic locus is the FXN locus;
(v) said repeat sequence comprises SEQ ID NO: 6 and said target genomic locus is the AFF2 locus;
(vi) said repeat sequence comprises SEQ ID NO: 7 and said target genomic locus is the PABPN1 locus;
(vii) said repeat sequence comprises SEQ ID NO:8 and said target genomic locus is a CNBP locus;
(viii) said repeat sequence comprises SEQ ID NO: 9 and said target genomic locus is the ATXN10 locus;
(ix) said repeat sequence comprises SEQ ID NO: 10 and said target genomic locus is the TK2 or BEAN1 locus;
(x) said repeat sequence comprises SEQ ID NO: 11 and said target genomic locus is the NOP56 locus;
(xi) said repeat sequence comprises SEQ ID NO: 1 and said target genomic locus is the C9ORF72 locus; or (xii) said repeat sequence comprises SEQ ID NO: 12 and said target genomic locus is the CSTB locus. be,
29. The method of claim 28.
前記リピート配列が配列番号1を含み、前記標的ゲノム遺伝子座がC9ORF72遺伝子座である、請求項29に記載の方法。 30. The method of claim 29, wherein said repeat sequence comprises SEQ ID NO: 1 and said target genomic locus is the C9ORF72 locus. 前記ヌクレアーゼ剤がCas9タンパク質およびガイドRNAであり、前記ヌクレアーゼ標的部位が配列番号28または33を含む、請求項30に記載の方法。 31. The method of claim 30, wherein said nuclease agent is Cas9 protein and guide RNA and said nuclease target site comprises SEQ ID NO:28 or 33. 前記細胞が非ヒト動物細胞である、請求項1から31のいずれか一項に記載の方法。 32. The method of any one of claims 1-31 , wherein said cells are non-human animal cells. 前記細胞が、非ヒト動物の胚性幹細胞、胚性幹細胞由来の運動ニューロン、脳細胞、皮質細胞、ニューロン細胞、筋細胞、心臓細胞または胚細胞である、請求項1から32のいずれか一項に記載の方法。 33. Any one of claims 1-32, wherein the cells are non-human animal embryonic stem cells, embryonic stem cell-derived motor neurons, brain cells, cortical cells, neuronal cells, muscle cells, cardiac cells or embryonic cells. The method described in . 前記細胞が非ヒト動物の1細胞期胚である、請求項1から32のいずれか一項に記載の方法。 33. The method of any one of claims 1-32, wherein the cell is a one-cell stage embryo of a non-human animal. 前記細胞がげっ歯動物細胞である、請求項1から34のいずれか一項に記載の方法。 35. The method of any one of claims 1-34, wherein said cells are rodent cells. 前記細胞がマウス細胞またはラット細胞である、請求項35に記載の方法。 36. The method of claim 35, wherein said cells are mouse cells or rat cells. 前記細胞がマウス細胞である、請求項36に記載の方法。 37. The method of claim 36, wherein said cells are mouse cells. 前記細胞がマウス胚性幹細胞またはマウス1細胞期の胚である、請求項37に記載の方法。 38. The method of claim 37, wherein said cells are mouse embryonic stem cells or mouse 1-cell stage embryos. 前記細胞がヒト誘導多能性幹細胞である、請求項1から31のいずれか一項に記載の方法。 32. The method of any one of claims 1-31, wherein said cells are human induced pluripotent stem cells. 前記細胞がin vitroにある、請求項1から39のいずれか一項に記載の方法。 40. The method of any one of claims 1-39 , wherein said cell is in vitro. 前記細胞がin vivoにある、請求項1から38のいずれか一項に記載の方法。 39. The method of any one of claims 1-38, wherein said cell is in vivo. 複数回のステップ(a)~(c)を含み、第1回の後の各回のステップ(a)における細胞の前記集団が、前回のステップ(c)で選択される前記改変された細胞から増大した細胞のクローン集団である、請求項1から41のいずれか一項に記載の方法。 comprising multiple rounds of steps (a)-(c), wherein said population of cells in each round of step (a) after the first round is expanded from said modified cells selected in the previous step (c); 42. The method of any one of claims 1-41 , which is a clonal population of cells that have been isolated. 少なくとも3回または少なくとも4回を含む、請求項42に記載の方法。 43. The method of claim 42, comprising at least 3 times or at least 4 times. (I)1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(II)1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(III)1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(IV)1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断または一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(V)1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(VI)1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(V)1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(VI)1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で二本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で二本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(VII)1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(VIII)1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(IX)1回目に前記リピート伸長配列の5’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の5’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
(X)1回目に前記リピート伸長配列の3’末端の近傍の第1のヌクレアーゼ標的部位で一本鎖切断を形成する第1のヌクレアーゼ剤で実行されて第1の改変された細胞を生成し、2回目に前記リピート伸長配列の3’末端の近傍の第2のヌクレアーゼ標的部位で一本鎖切断を形成する第2のヌクレアーゼ剤で前記第1の改変された細胞に対して実行されて第2の改変された細胞を生成する、
請求項42または43に記載の方法。
(I) a first modified run with a first nuclease agent that first creates a double-strand break or a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence; said first modification with a second nuclease agent that, a second time, forms a double-strand or single-strand break at a second nuclease target site proximal to the 3' end of said repeat extension sequence; to generate a second modified cell;
(II) a first modified run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for the first time; said first modification with a second nuclease agent that, a second time, forms a double-strand or single-strand break at a second nuclease target site proximal to the 5' end of said repeat extension sequence; to generate a second modified cell;
(III) a first modified run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence for the first time; said first modification with a second nuclease agent that, a second time, forms a double-strand or single-strand break at a second nuclease target site proximal to the 5' end of said repeat extension sequence; to generate a second modified cell;
(IV) a first modified run with a first nuclease agent that forms a double-strand break or a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for the first time; said first modification with a second nuclease agent that, a second time, forms a double-strand or single-strand break at a second nuclease target site proximal to the 3' end of said repeat extension sequence; to generate a second modified cell;
(V) performing a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 5' end of said repeat extension sequence for a first time to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 3′ end of said repeat extension sequence; generating 2 modified cells,
(VI) performing a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for a first time to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 5' end of said repeat extension sequence; generating 2 modified cells,
(V) performing a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 5' end of said repeat extension sequence for a first time to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 5' end of said repeat extension sequence; generating 2 modified cells,
(VI) performing a first run with a first nuclease agent that forms a double-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for a first time to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that forms a double-strand break at a second nuclease target site near the 3′ end of said repeat extension sequence; generating 2 modified cells,
(VII) performing a first run with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 3′ end of said repeat extension sequence; generating 2 modified cells,
(VIII) run with a first nuclease agent that first creates a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 5′ end of said repeat extension sequence; generating 2 modified cells,
(IX) performing a first round with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 5' end of said repeat extension sequence to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 5′ end of said repeat extension sequence; generating 2 modified cells,
(X) performing a first run with a first nuclease agent that creates a single-strand break at a first nuclease target site near the 3' end of said repeat extension sequence for the first time to produce a first modified cell; , a second time on said first modified cell with a second nuclease agent that creates a single-strand break at a second nuclease target site near the 3′ end of said repeat extension sequence; generating 2 modified cells,
44. A method according to claim 42 or 43.
選択肢(III)、(IV)、(V)、(VI)、(IX)または(X)における前記第1のヌクレアーゼ標的部位が前記第2のヌクレアーゼ標的部位と同じである、請求項4に記載の方法。 45. Claim 44, wherein said first nuclease target site in options (III), ( IV ), (V), (VI), (IX) or (X) is the same as said second nuclease target site. described method. 前記ヌクレアーゼ剤が二本鎖切断または一本鎖切断を形成する部位が前記リピート伸長配列の5’末端または3’末端から約50、約40、約30、約20または約10ヌクレオチド以内にあり、前記ヌクレアーゼ剤がCas9タンパク質およびガイドRNAである、請求項1から45のいずれか一項に記載の方法。 the site at which the nuclease agent forms a double-strand or single-strand break is within about 50, about 40, about 30, about 20, or about 10 nucleotides from the 5' or 3' end of the repeat extension sequence; 46. The method of any one of claims 1-45 , wherein the nuclease agent is Cas9 protein and guide RNA. 前記ヌクレアーゼ剤が前記リピート伸長配列の5’末端または3’末端の近傍で一本鎖切断を形成するニッカーゼであり、前記ヌクレアーゼ標的部位が、前記細胞による前記一本鎖切断の修復の後にも保持され、前記一本鎖切断の修復が前記リピート伸長配列の外側に挿入も欠失ももたらさない、請求項46に記載の方法。


the nuclease agent is a nickase that forms a single-strand break near the 5' or 3' end of the repeat extension sequence, and the nuclease target site is retained after repair of the single-strand break by the cell; 47. The method of claim 46 , wherein repair of said single-strand break does not result in insertions or deletions outside of said repeat extension sequence.


JP2021535039A 2018-12-20 2019-12-13 Nuclease-mediated repeat expansion Active JP7449291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024031173A JP2024052928A (en) 2018-12-20 2024-03-01 Nuclease-mediated repeat extension

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862782461P 2018-12-20 2018-12-20
US62/782,461 2018-12-20
US201962829995P 2019-04-05 2019-04-05
US62/829,995 2019-04-05
PCT/US2019/066317 WO2020131632A1 (en) 2018-12-20 2019-12-13 Nuclease-mediated repeat expansion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024031173A Division JP2024052928A (en) 2018-12-20 2024-03-01 Nuclease-mediated repeat extension

Publications (3)

Publication Number Publication Date
JP2022514567A JP2022514567A (en) 2022-02-14
JPWO2020131632A5 true JPWO2020131632A5 (en) 2022-11-15
JP7449291B2 JP7449291B2 (en) 2024-03-13

Family

ID=69160420

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021535039A Active JP7449291B2 (en) 2018-12-20 2019-12-13 Nuclease-mediated repeat expansion
JP2024031173A Pending JP2024052928A (en) 2018-12-20 2024-03-01 Nuclease-mediated repeat extension

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024031173A Pending JP2024052928A (en) 2018-12-20 2024-03-01 Nuclease-mediated repeat extension

Country Status (12)

Country Link
US (2) US11690362B2 (en)
EP (1) EP3732291A1 (en)
JP (2) JP7449291B2 (en)
KR (1) KR20210105914A (en)
CN (2) CN116064550A (en)
AU (2) AU2019403015B2 (en)
BR (1) BR112021011703A2 (en)
CA (1) CA3120799A1 (en)
IL (2) IL301193A (en)
MX (1) MX2021007400A (en)
SG (1) SG11202105189RA (en)
WO (1) WO2020131632A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116064550A (en) 2018-12-20 2023-05-05 瑞泽恩制药公司 Nuclease-mediated repeat amplification
BR112023025224A2 (en) 2021-06-04 2024-02-27 Alnylam Pharmaceuticals Inc HUMAN CHROMOSOME 9 (C9ORF72) OPEN READING BOARD 72 IRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
CN114736931A (en) * 2022-01-18 2022-07-12 赛业(苏州)生物科技有限公司 Method for knocking out mouse Abhd12 gene by using CRISPR/Cas9 system and application
WO2023235726A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr interference therapeutics for c9orf72 repeat expansion disease
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
CN114958852A (en) * 2022-06-09 2022-08-30 赛业(苏州)生物科技有限公司 Construction method and application of Ifnar1 gene knockout mouse animal model

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523226A (en) 1993-05-14 1996-06-04 Biotechnology Research And Development Corp. Transgenic swine compositions and methods
US5670356A (en) 1994-12-12 1997-09-23 Promega Corporation Modified luciferase
US5874304A (en) 1996-01-18 1999-02-23 University Of Florida Research Foundation, Inc. Humanized green fluorescent protein genes and methods
AU8587598A (en) 1997-07-26 1999-02-16 Wisconsin Alumni Research Foundation Trans-species nuclear transfer
US6599692B1 (en) 1999-09-14 2003-07-29 Sangamo Bioscience, Inc. Functional genomics using zinc finger proteins
US20030104526A1 (en) 1999-03-24 2003-06-05 Qiang Liu Position dependent recognition of GNN nucleotide triplets by zinc fingers
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US20050144655A1 (en) 2000-10-31 2005-06-30 Economides Aris N. Methods of modifying eukaryotic cells
US6586251B2 (en) 2000-10-31 2003-07-01 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
US7105348B2 (en) 2000-10-31 2006-09-12 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
WO2002046412A2 (en) 2000-12-07 2002-06-13 Sangamo Biosciences, Inc. Regulation of angiogenesis with zinc finger proteins
US9234187B2 (en) 2001-01-22 2016-01-12 Sangamo Biosciences, Inc. Modified zinc finger binding proteins
US7947469B2 (en) 2001-01-22 2011-05-24 Gendaq, Ltd. Modulation of HIV infection
AUPR451401A0 (en) 2001-04-20 2001-05-24 Monash University A method of nuclear transfer
ATE347593T1 (en) 2002-01-23 2006-12-15 Univ Utah Res Found TARGETED CHROMOSOMAL MUTAGENESIS WITH ZINC FINGER NUCLEASES
DE60316124T3 (en) 2002-03-15 2018-03-22 Cellectis HYBRID AND SINGLE CHAIN MEGANUCLEASES AND ITS APPLICATIONS
EP2368982A3 (en) 2002-03-21 2011-10-12 Sangamo BioSciences, Inc. Methods and compositions for using zinc finger endonucleases to enhance homologous recombination
US7612250B2 (en) 2002-07-29 2009-11-03 Trustees Of Tufts College Nuclear transfer embryo formation method
WO2004037977A2 (en) 2002-09-05 2004-05-06 California Institute Of Thechnology Use of chimeric nucleases to stimulate gene targeting
WO2004031346A2 (en) 2002-09-06 2004-04-15 Fred Hutchinson Cancer Research Center Methods and compositions concerning designed highly-specific nucleic acid binding proteins
US8409861B2 (en) 2003-08-08 2013-04-02 Sangamo Biosciences, Inc. Targeted deletion of cellular DNA sequences
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
EP1591521A1 (en) 2004-04-30 2005-11-02 Cellectis I-Dmo I derivatives with enhanced activity at 37 degrees C and use thereof
EP1789095A2 (en) 2004-09-16 2007-05-30 Sangamo Biosciences Inc. Compositions and methods for protein production
CA2583750C (en) 2004-10-19 2015-11-24 Regeneron Pharmaceuticals, Inc. Methods for generating a rodent having a genetic modification
WO2006097854A1 (en) 2005-03-15 2006-09-21 Cellectis Heterodimeric meganucleases and use thereof
WO2006097784A1 (en) 2005-03-15 2006-09-21 Cellectis I-crei meganuclease variants with modified specificity, method of preparation and uses thereof
CN101117633B (en) 2006-08-03 2011-07-20 上海交通大学附属儿童医院 Nucleus transplantation method
KR101613624B1 (en) 2006-12-14 2016-04-29 다우 아그로사이언시즈 엘엘씨 Optimized non-canonical zinc finger proteins
JP2008307007A (en) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag Human pluripotent stem cell induced from human tissue-originated undifferentiated stem cell after birth
EP3064599B1 (en) 2008-02-15 2018-12-12 Synthetic Genomics, Inc. Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
WO2009126161A1 (en) 2008-04-11 2009-10-15 Utc Fuel Cells, Llc Fuel cell and bipolar plate having manifold sump
US8470594B2 (en) 2008-04-15 2013-06-25 President And Fellows Of Harvard College Methods for identifying agents that affect the survival of motor neurons
EP2206723A1 (en) 2009-01-12 2010-07-14 Bonas, Ulla Modular DNA-binding domains
US20110239315A1 (en) 2009-01-12 2011-09-29 Ulla Bonas Modular dna-binding domains and methods of use
AU2010226313B2 (en) 2009-03-20 2014-10-09 Sangamo Therapeutics, Inc. Modification of CXCR4 using engineered zinc finger proteins
US8772008B2 (en) 2009-05-18 2014-07-08 Sangamo Biosciences, Inc. Methods and compositions for increasing nuclease activity
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
AU2010282239A1 (en) 2009-08-14 2012-03-08 Revivicor, Inc. Multi-transgenic pigs for diabetes treatment
US8354389B2 (en) 2009-08-14 2013-01-15 Regeneron Pharmaceuticals, Inc. miRNA-regulated differentiation-dependent self-deleting cassette
AU2010319894B2 (en) 2009-10-29 2015-03-05 Regeneron Pharmaceuticals, Inc. Multifunctional alleles
ES2527997T5 (en) 2009-12-10 2018-05-17 Regents Of The University Of Minnesota DNA modification induced by the TAL effector
DK2751284T3 (en) 2011-08-31 2017-03-27 Univ Manchester PROCEDURE FOR DIAGNOSTICING A NEURODEGENERATIVE DISEASE
WO2013041577A1 (en) 2011-09-20 2013-03-28 Vib Vzw Methods for the diagnosis of amyotrophic lateral sclerosis and frontotemporal lobar degeneration
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
DK2847335T3 (en) 2012-04-25 2018-08-13 Regeneron Pharma NUCLEASED MEDIUM TARGETING WITH LARGE TARGET VECTORS
ES2728782T3 (en) 2012-05-25 2019-10-28 Univ California Methods and compositions for RNA-directed target DNA modification and for RNA-directed transcription modulation
WO2014033644A2 (en) 2012-08-28 2014-03-06 Novartis Ag Methods of nuclease-based genetic engineering
US10577604B2 (en) 2012-10-15 2020-03-03 Ionis Pharmaceuticals, Inc. Methods for monitoring C9ORF72 expression
US9963699B2 (en) 2012-10-15 2018-05-08 Ionis Pharmaceuticals, Inc. Methods for modulating C9ORF72 expression
CN116064532A (en) 2012-10-23 2023-05-05 基因工具股份有限公司 Composition for cleaving target DNA and use thereof
KR102243092B1 (en) 2012-12-06 2021-04-22 시그마-알드리치 컴퍼니., 엘엘씨 Crispr-based genome modification and regulation
DK3327127T3 (en) 2012-12-12 2021-06-28 Broad Inst Inc PERFORMANCE, MODIFICATION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTIC APPLICATIONS
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
IL308158A (en) 2012-12-17 2023-12-01 Harvard College Rna-guided human genome engineering
SG10201706741VA (en) 2013-02-20 2017-10-30 Regeneron Pharma Genetic modification of rats
EP2922393B2 (en) 2013-02-27 2022-12-28 Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Gene editing in the oocyte by cas9 nucleases
JP6980380B2 (en) 2013-03-15 2021-12-15 ザ ジェネラル ホスピタル コーポレイション Increased specificity of RNA-induced genome editing with shortened guide RNA (tru-gRNA)
WO2014165825A2 (en) 2013-04-04 2014-10-09 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
PL3456831T3 (en) 2013-04-16 2021-12-06 Regeneron Pharmaceuticals, Inc. Targeted modification of rat genome
US20160237455A1 (en) 2013-09-27 2016-08-18 Editas Medicine, Inc. Crispr-related methods and compositions
US10508289B2 (en) 2013-10-25 2019-12-17 Cellectis Rare-cutting endonucleases for efficient and specific targeting DNA sequences comprising highly repetitive motives
RU2685914C1 (en) 2013-12-11 2019-04-23 Регенерон Фармасьютикалс, Инк. Methods and compositions for genome targeted modification
WO2015089351A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
EP3750907A3 (en) 2014-03-18 2021-04-28 University of Massachusetts Raav-based compositions and methods for treating amyotrophic lateral sclerosis
WO2015153760A2 (en) 2014-04-01 2015-10-08 Sangamo Biosciences, Inc. Methods and compositions for prevention or treatment of a nervous system disorder
CA2952697A1 (en) 2014-06-16 2015-12-23 The Johns Hopkins University Compositions and methods for the expression of crispr guide rnas using the h1 promoter
HUE049405T2 (en) 2014-06-23 2020-09-28 Regeneron Pharma Nuclease-mediated dna assembly
US20150376586A1 (en) 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
PT3161128T (en) 2014-06-26 2018-11-21 Regeneron Pharma Methods and compositions for targeted genetic modifications and methods of use
ES2949172T3 (en) 2014-07-16 2023-09-26 Novartis Ag Method of encapsulating a nucleic acid in a lipid nanoparticle host
PL3221457T3 (en) 2014-11-21 2019-09-30 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification using paired guide rnas
HUE043132T2 (en) 2014-12-05 2019-07-29 Regeneron Pharma Non-human animals having a humanized cluster of differentiation 47 gene
WO2016100819A1 (en) 2014-12-19 2016-06-23 Regeneron Pharmaceuticals, Inc. Methods and compositions for targeted genetic modification through single-step multiple targeting
WO2016106236A1 (en) 2014-12-23 2016-06-30 The Broad Institute Inc. Rna-targeting system
US10793855B2 (en) 2015-01-06 2020-10-06 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of C9ORF72 antisense transcript
US11104897B2 (en) 2015-04-27 2021-08-31 Genethon Compositions and methods for the treatment of nucleotide repeat expansion disorders
ES2905181T3 (en) 2015-05-01 2022-04-07 Prec Biosciences Inc Precise deletion of chromosomal sequences in vivo
BR112017025507A2 (en) 2015-05-29 2018-08-07 Regeneron Pharmaceuticals, Inc. rodent, isolated rodent cell or isolated rodent tissue, rodent embryonic stem cell, rodent embryo, and methods for preparing a rodent and for identifying a therapeutic candidate.
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
US11390908B2 (en) 2015-09-02 2022-07-19 University Of Massachusetts Detection of gene loci with CRISPR arrayed repeats and/or polychromatic single guide ribonucleic acids
WO2017109757A1 (en) * 2015-12-23 2017-06-29 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration
CA3018978A1 (en) 2016-03-30 2017-10-05 Intellia Therapeutics, Inc. Lipid nanoparticle formulations for crispr/cas components
WO2017178590A1 (en) 2016-04-14 2017-10-19 Université de Lausanne Treatment and/or prevention of dna-triplet repeat diseases or disorders
WO2018022480A1 (en) 2016-07-25 2018-02-01 Mayo Foundation For Medical Education And Research Treating cancer
SG10202102997UA (en) 2016-09-30 2021-04-29 Regeneron Pharma Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus
EP3532614A1 (en) * 2016-10-28 2019-09-04 Genethon Compositions and methods for the treatment of myotonic dystrophy
CA3039922A1 (en) 2016-10-28 2018-05-03 Genethon Compositions and methods for the treatment of myotonic dystrophy
WO2018165541A1 (en) 2017-03-10 2018-09-13 The Board Of Regents Of The University Of Texas System Treatment of fuchs' endothelial corneal dystrophy
JP7327803B2 (en) 2017-05-09 2023-08-16 ユニバーシティ オブ マサチューセッツ Method of treating amyotrophic lateral sclerosis (ALS)
JP7381476B2 (en) 2017-10-24 2023-11-15 サンガモ セラピューティクス, インコーポレイテッド Methods and compositions for the treatment of rare diseases
CN116064550A (en) 2018-12-20 2023-05-05 瑞泽恩制药公司 Nuclease-mediated repeat amplification
CA3137368A1 (en) 2019-04-23 2020-10-29 Sangamo Therapeutics, Inc. Modulators of chromosome 9 open reading frame 72 gene expression and uses thereof

Similar Documents

Publication Publication Date Title
Shen et al. Massively parallel cis-regulatory analysis in the mammalian central nervous system
Lai et al. Diverse phenotypes and specific transcription patterns in twenty mouse lines with ablated LincRNAs
Kong et al. DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation
JP2020510439A5 (en)
JP2022512773A (en) Prevention of age-related cloned hematopoies and related diseases
Mirceta et al. Fragile sites, chromosomal lesions, tandem repeats, and disease
Tsuda et al. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching
Miosge et al. Systems-guided forward genetic screen reveals a critical role of the replication stress response protein ETAA1 in T cell clonal expansion
JPWO2020131632A5 (en)
Austin et al. Molecular medicine of pulmonary arterial hypertension: from population genetics to precision medicine and gene editing
CN111778278B (en) Construction method and application of Slfn 4-deleted atherosclerosis model mouse
Malik et al. Nuclear mitochondrial interplay in the modulation of the homopolymeric tract length heteroplasmy in the control (D-loop) region of the mitochondrial DNA
Lira-Albarrán et al. DNA methylation profile of liver of mice conceived by in vitro fertilization
RU2021118443A (en) NUCLEASE-MEDIATED REPEAT EXPANSION
TW202313985A (en) Methods of enriching targeted nucleic acid, identifying off-target and evaluating gene editing efficiency
Özulu et al. Noncoding RNA-targeted treatment for schizophrenia: CRISPR/CAS9
Courret et al. High levels of intra-strain structural variation in Drosophila simulans X pericentric heterochromatin
Handler et al. Disrupting ATXN1 nuclear localization in a knock-in SCA1 mouse model improves a spectrum of SCA1-like phenotypes and their brain region associated transcriptomic profiles
CN110878357A (en) Probe library, detection method and kit for detecting effectiveness of DNA cross-damage synthesis repair pathway
CN110846407A (en) Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway
Kojak et al. Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model
CN113652449B (en) Targeting vector, kit, method and application for establishing brain premature senility mouse model based on Cre-Loxp conditional knockout gene
Kingsley et al. Samantha Brooks, Molly McCue, TS Kalbfleisch, James N. MacLeod, Jessica L. Petersen, Carrie J. Finno, and Rebecca R. Bellone.
CN117165631B (en) Construction method of atherosclerosis plaque rapid modeling gene mice
Roy Splice Redirection of MLH3 to Slow Progression of Dna Repeat Expansion Disorders