CN110846407A - Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway - Google Patents

Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway Download PDF

Info

Publication number
CN110846407A
CN110846407A CN201911239846.XA CN201911239846A CN110846407A CN 110846407 A CN110846407 A CN 110846407A CN 201911239846 A CN201911239846 A CN 201911239846A CN 110846407 A CN110846407 A CN 110846407A
Authority
CN
China
Prior art keywords
gene
dna
seq
sequence corresponding
probe sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911239846.XA
Other languages
Chinese (zh)
Inventor
刘松柏
杜佳慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Vocational Health College
Original Assignee
Suzhou Vocational Health College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Vocational Health College filed Critical Suzhou Vocational Health College
Priority to CN201911239846.XA priority Critical patent/CN110846407A/en
Publication of CN110846407A publication Critical patent/CN110846407A/en
Priority to CN202011398481.8A priority patent/CN112375820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention provides a probe library, a detection method and a kit for detecting effectiveness of a DNA nucleotide excision repair path, wherein the probe library consists of probes shown in SEQ ID NO. 1-298, and the detection kit prepared from the probe library can be used for detecting genes related to the DNA nucleotide excision repair path. The probe library is used for enriching target DNA fragments to be analyzed, and then sequencing is carried out on the enriched DNA fragments through a sequencing means, so that the effectiveness of gene detection is realized. The gene related to the DNA nucleotide excision repair pathway can be used for predicting the occurrence tendency of tumors, evaluating the malignancy degree and clinical prognosis of the tumors and guiding the screening and research and development of new drugs, so the invention has important guiding significance on the research direction of gene functionality.

Description

Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway
Technical Field
The invention belongs to the technical field of gene detection, and particularly relates to a probe library, a detection method and a kit for detecting effectiveness of a DNA nucleotide excision repair pathway.
Background
The abnormal DNA damage repair pathway is closely related to the occurrence tendency of tumors and neurological diseases and the sensitivity of DNA damage inducing antitumor drugs to cells. The DNA nucleotide excision repair pathway mainly repairs nucleotide damaged by endogenous oxygen free radicals, DNA intrastrand cross-linking damage caused by ultraviolet irradiation, and DNA damage caused by alkylating agent antitumor drugs such as cisplatin, and is one of the most important ways in a DNA repair mechanism. The repair process is divided into two modes of genome-wide nucleotide excision repair (GG-NER) and transcription-accompanied nucleotide excision repair (TC-NER), and the two repair processes are basically the same except that the recognition mode of the damage site is different. In the GG-NER pathway, XPC as a damage sensing element forms a complex with RAD23B and CETN2 protein with the help of UV-DDB complex and continuously searches for a damage site, and RAD23B is separated from the complex when the XPC complex is combined at the DNA damage site. In the TC-NER pathway, recognition of the lesion site is indirectly accomplished by the RNA polymerase Pol II arresting transcription after encountering the lesion site during transcription. During transcription, RNApol II forms a functional complex with UVSSA, USP7 and CSB, and when a damage site is encountered and transcription stops, RNA Pol II forms a complex with CSA-CSB and causes reverse translocation of RNA Pol II, which provides space for repair of DNA damage. After the DNA damage site is recognized, the transcription initiation factor TFIIH complex is recruited to the damage site, and the CAK sub-complex is detached therefrom. The TFIIH complex then uses its helicase activity to unwind the double helix structure near the lesion, the single-stranded DNA binding protein RPA seals the single-stranded non-damaged DNA, and XPF-ERCC1 is recruited to cleave the 5 'end of the lesion site, after which XPG cleaves the 3' end of the lesion site using endonuclease activity, creating a cleavage gap of 22-30 nucleotides. And then, directly loading the PCNA to the XPF-ERCC1 shearing position, and recruiting a DNA synthesis related protein complex to fill and sew up the gap to finish the damage repair process of the DNA.
Synthetic Lethality (Synthetic Lethality) strategy has been widely used in recent years in the study of tumors. The concept of synthetic lethality in tumor studies is: when the function of two important genes that are not in the same repair pathway is suppressed from one of them, the cell is not lethal, but after the function of both genes is suppressed, the cell is dead. In clinic, if one of the mutations exists in the tumor cells, and the gene is normal in normal cells, the other gene can be used as a target point, and the function of the other gene is inhibited, so that the aims of specifically killing the tumor cells and individually treating the tumor cells are fulfilled.
Early researches show that genetic mutation of a germ line and somatic mutation in specific tissues of genes involved in DNA nucleotide excision repair pathways are highly related to tumor generation and treatment effects, and have a causal relationship with the generation of non-tumor diseases such as neurodevelopmental defect and premature senility. Wherein, the mutation of XPA, XPB, XPC, XPG gene and so on is highly related to the ultraviolet radiation sensitivity, the occurrence of skin cancer; the polymorphism of XPA and XPC genes is highly related to the occurrence of lung cancer and bladder cancer; the polymorphism of the XPG gene is highly related to the sensitivity of tumor chemotherapy; in addition, the ERCC1 gene polymorphism is highly correlated with skin cancer and lung cancer. The mutation of the genes causes the change (attenuation or deletion) of the effectiveness of the DNA nucleotide excision repair pathway, and has important significance for the generation, prognosis and treatment strategy formulation of tumors and neurological diseases.
Disclosure of Invention
The invention aims to provide a probe library, a detection method and a kit for detecting effectiveness of a DNA nucleotide excision repair pathway.
In order to achieve the purpose, the invention provides the following technical scheme:
a kit for detecting effectiveness of a DNA nucleotide excision repair pathway comprises a probe library which is composed of probes shown in SEQ ID NO. 1-298 and aims at genes related to the DNA nucleotide excision repair pathway.
Further, the gene related to the DNA nucleotide excision repair pathway includes LIG1, PCNA, old1, old2, old3, old4, RFC1, RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3, RPA4, CCNH, CDK 4, CETN 4, CUL 44, CUL4, DDB 4, ERCC4, GTF2H4, MMS 4, MNAT 4, POLE, pool 4, xple 4, xa 4, uvoc 4, RPA4, or rbc 4.
Further, probe sequences corresponding to the gene LIG1 are shown in SEQ ID NO. 1-11, probe sequences corresponding to the gene PCNA are shown in SEQ ID NO. 12-15, probe sequences corresponding to the gene POLD1 are shown in SEQ ID NO. 16-28, probe sequences corresponding to the gene POLD2 are shown in SEQ ID NO. 29-33, probe sequences corresponding to the gene POLD3 are shown in SEQ ID NO. 34-37, probe sequences corresponding to the gene POLD4 are shown in SEQ ID NO. 38-40, probe sequences corresponding to the gene RFC1 are shown in SEQ ID NO. 41-50, probe sequences corresponding to the gene RFC2 are shown in SEQ ID NO. 51-54, probe sequences corresponding to the gene RFC3 are shown in SEQ ID NO. 55-58, probe sequences corresponding to the gene RFC4 are shown in SEQ ID NO. 59-62, probe sequences corresponding to the gene RFC5 are shown in SEQ ID NO. 63-65, and probe sequences corresponding to RPA1 are shown in SEQ ID NO. 71-71, the probe sequence corresponding to the gene RPA2 is shown as SEQ ID NO. 72-75, the probe sequence corresponding to the gene RPA3 is shown as SEQ ID NO. 76-78, the probe sequence corresponding to the gene RPA4 is shown as SEQ ID NO. 79-80, the probe sequence corresponding to the gene CCNH is shown as SEQ ID NO. 81-83, the probe sequence corresponding to the gene CDK7 is shown as SEQ ID NO. 84-86, the probe sequence corresponding to the gene CETN2 is shown as SEQ ID NO. 87-90, the probe sequence corresponding to the gene CUL3 is shown as SEQ ID NO. 91-98, the probe sequence corresponding to the gene CUL4A is shown as SEQ ID NO. 99-106, the probe sequence corresponding to the gene CUL5 is shown as SEQ ID NO. 107-114, the probe sequence corresponding to the gene DDB1 is shown as SEQ ID NO. 115-127, the probe sequence corresponding to the gene DDB2 is shown as SEQ ID NO. 128-1, and the probe sequence corresponding to SEQ ID NO.132, the probe sequence corresponding to the gene ERCC2 is shown as SEQ ID NO. 135-144, the probe sequence corresponding to the gene ERCC3 is shown as SEQ ID NO. 145-150, the probe sequence corresponding to the gene ERCC4 is shown as SEQ ID NO. 151-156, the probe sequence corresponding to the gene ERCC5 is shown as SEQ ID NO. 157-165, the probe sequence corresponding to the gene ERCC6 is shown as SEQ ID NO. 166-177, the probe sequence corresponding to the gene ERCC8 is shown as SEQ ID NO. 178-181, the probe sequence corresponding to the gene GTF2H1 is shown as SEQ ID NO. 182-188, the probe sequence corresponding to the gene GTF2H2 is shown as SEQ ID NO. 189-177, the probe sequence corresponding to the gene GTF2H3 is shown as SEQ ID NO. 198-202, the probe sequence corresponding to the gene GTF2H4 is shown as SEQ ID NO.203, the probe sequence corresponding to the gene GTF2H 3876 is shown as SEQ ID NO. 48325, the probe sequence corresponding to SEQ ID NO. 220, the probe sequence corresponding to the gene MNAT1 is shown as SEQ ID NO. 221-223, the probe sequence corresponding to the gene POLE is shown as SEQ ID NO. 224-246, the probe sequence corresponding to the gene POLE2 is shown as SEQ ID NO. 247-250, the probe sequence corresponding to the gene POLE3 is shown as SEQ ID NO. 251-253, the probe sequence corresponding to the gene POLE4 is shown as SEQ ID NO. 254-255, the probe sequence corresponding to the gene RAD23A is shown as SEQ ID NO. 256-258, the probe sequence corresponding to the gene RAD23B is shown as SEQ ID NO. 259-262, the probe sequence corresponding to the gene RBX1 is shown as SEQ ID NO.263, the probe sequence corresponding to the gene TCEA1 is shown as SEQ ID NO. 264-266-258, the probe sequence corresponding to the gene ELOC is shown as SEQ ID NO.267, and the probe sequence corresponding to the ELOB is shown as SEQ ID NO. 271; the probe sequence corresponding to the gene UVSSA is shown as SEQID NO. 272-277; the probe sequence corresponding to the gene XAB2 is shown as SEQ ID NO. 278-286; the probe sequence corresponding to the gene XPA is shown as SEQ ID NO. 287-289; the probe sequence corresponding to the gene XPC is shown in SEQ ID NO. 290-298.
A method of detecting a gene associated with a DNA nucleotide excision repair pathway comprising the steps of:
(1) obtaining a DNA sample library of a subject;
(2) hybridizing all probes shown as SEQ ID NO. 1-298 in the kit of claim 1 with the DNA sample library;
(3) and (3) separating the hybridization product in the step (2), releasing the gene segment hybridized with the probe in the kit, and sequencing the separated gene segment by adopting a sequencing technology so as to detect the mutation condition of the gene.
Further, the DNA sample library in the step (1) is composed of double-stranded DNA fragments;
the step (1) comprises the following steps: extracting whole genome DNA, and then fragmenting the whole genome DNA; or mRNA is extracted, fragmented, and then double-stranded cDNA is synthesized using the fragmented mRNA as a template.
Further, the probe in the step (2) is selectively labeled.
Further, the probe in the step (2) is labeled with biotin.
Has the advantages that: the invention develops a probe library, a detection method and a kit for detecting the effectiveness of a DNA nucleotide excision repair pathway, which mainly have the following meanings:
1. by analyzing the variation condition of the DNA nucleotide excision repair pathway participating in the gene, the effectiveness (attenuation or deletion) of the DNA nucleotide excision repair pathway in human tissues or cells is evaluated, the occurrence tendency of tumors and neurological diseases is predicted, and patients are guided to take corresponding preventive measures.
2. The effectiveness (attenuation or deletion) of the DNA nucleotide excision repair channel in the cells of the tumor patients is evaluated by analyzing the variation condition of the DNA nucleotide excision repair channel participating in the gene, and the method has important guiding significance for the evaluation of the malignancy degree and the clinical prognosis of the tumor.
3. The effectiveness (attenuation or deletion) of the DNA nucleotide excision repair pathway in cells of tumor patients is evaluated by analyzing the variation condition of the DNA nucleotide excision repair pathway participating in genes, and the method has important guiding significance for the selection of radiation and chemotherapy drugs and the formulation of treatment strategies (such as synthetic lethal schemes and the like).
4. The effectiveness (weakening or deletion) of the DNA nucleotide excision repair channel in the cells of the tumor patients is evaluated by analyzing the variation condition of the DNA nucleotide excision repair channel participating in the gene, and the method has important guiding significance for the selection of new therapeutic targets, the research and development of targeted drugs and the like.
Drawings
FIG. 1 is a flow chart of the detection method of the present invention.
Detailed Description
The present invention is further described below with reference to specific examples, which are only exemplary and do not limit the scope of the present invention in any way. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention, and that such changes and modifications may be made without departing from the spirit and scope of the invention.
The invention provides a method for repairing a gene related to a pathway by DNA base excision, which mainly comprises the following steps:
(1) obtaining a DNA sample library of a subject; extracting whole genome DNA, and then fragmenting the whole genome DNA; or extracting mRNA, fragmenting the mRNA, and synthesizing double-stranded cDNA by using the fragmented mRNA as a template;
(2) designing a DNA probe hybridized with the gene aiming at the gene segment to be detected, and screening a plurality of probes from the DNA probe library as a DNA probe library;
(3) hybridizing the DNA probe library with the DNA sample library, and enriching the DNA sample library to obtain a DNA fragment of the gene to be detected;
(4) and (4) separating the hybridization product in the step (3), releasing the gene segment hybridized with the probe in the kit, and sequencing the separated gene segment by adopting a sequencing technology so as to detect the mutation condition of the gene.
In the implementation process, each probe in the DNA probe library may be labeled with biotin, and then the magnetic beads labeled with streptavidin are used to adsorb the hybridization product after hybridization, releasing the enriched gene fragment to be detected from the magnetic beads, and then sequencing the gene fragment.
The specific experimental process is as follows:
first, prepare cDNA/DNA sample library
1. Preparation of DNA sample library
1.1 DNA extraction
Human genome DNA is extracted by a commercial DNA extraction kit, and the quality and the concentration of a DNA template are detected by a spectrophotometry and a gel electrophoresis system for the extracted DNA. The absorbance of the DNA template at 260nm is more than 0.05, and the ratio of the absorbance A260/A280 is between 1.8 and 2, which is qualified.
1.2 DNA fragmentation
Mu.g of qualified genomic DNA was diluted to 100. mu.L with TE buffer. And (3) fragmenting the DNA by using a tissue homogenizer, wherein the fragment length is 150-200 bases.
The DNA was purified using a commercial purification kit.
1.3 quality testing of DNA sample libraries
And (5) carrying out qualitative and quantitative analysis on the DNA by using a biological analyzer, and determining that the length peak value of the DNA fragment is reasonable.
2. Preparation of cDNA sample library
2.1 mRNA extraction
Human mRNA is extracted by adopting a commercial mRNA extraction kit, and the quality and the concentration of the extracted mRNA are detected by using a spectrophotometry and a gel electrophoresis system. The absorbance A260/A280 ratio is between 1.8 and 2.
2.2 fragmentation of mRNA
Fragmenting mRNA by using a commercial kit; the mRNA was purified by column chromatography using a commercial kit.
2.3 Synthesis of first and second Strand cDNA of mRNA Using a commercial reagent cDNA Synthesis kit
The cDNA was purified by column chromatography using a commercial kit.
3. cDNA/DNA end repair
The DNA fragment is end-repaired using Klenow fragment, T4 DNA polymerase and T4 polynucleotide kinase, since Klenow fragment has 5 '-3' polymerase activity and 3 '-5' polymerase activity, but lacks 5 '-3' exonuclease activity. Therefore, the DNA fragment can be conveniently and accurately subjected to end repair. And (4) carrying out column purification on the repaired DNA fragment.
The cDNA/DNA was filled in at the 5 'protruding sticky ends and blunt-ended at the 3' protruding sticky ends using T4 polymerase and Klenow E.coli polymerase fragments to generate blunt ends for subsequent blunt end ligation. The reaction was carried out in a PCR amplification apparatus at 20 ℃ for 30 min.
TABLE 1
Figure 699734DEST_PATH_IMAGE002
4. Adding base A to the 3' end of cDNA/DNA sample
A DNA fragment having a cohesive end A was obtained by adding a base A to the 3' -end of the end-repaired DNA fragment using Klenow having 3' -5 ' exonuclease activity, and the reaction was carried out in a PCR amplification apparatus at 37 ℃ for 30 min. The treated DNA fragment was subjected to column purification.
TABLE 2
Figure 820137DEST_PATH_IMAGE004
5. Adding linkers at both ends of cDNA/DNA
TABLE 3
6. Isolating cDNA fragments of appropriate length
The DNA fragments were separated using an electrophoresis gel, and 150-and 250-base cDNA fragments were excised on the gel in accordance with the DNA molecular weight.
Gel samples containing the cDNA library were column purified using a commercial kit.
7. Quality detection of cDNA fragment sample library
And (3) carrying out qualitative and quantitative analysis on the cDNA by using a bioanalyzer, and confirming that the length peak value of the separated cDNA fragment is reasonable.
PCR conditions were as follows: placing in a PCR amplification apparatus, pre-denaturing at 95 deg.C for 10 s, denaturing at 95 deg.C for 30 s, annealing at 65 deg.C for 30 s, extending at 72 deg.C for 1min, co-circulating 20 times (cDNA sample bank) or 5-8 times (DNA sample bank), and finally extending at 72 deg.C for 5 min.
And (3) purifying the PCR amplification product by a column by using a commercial kit.
8. Amplification of DNA templates
And (3) carrying out polymerase chain reaction on the treated DNA sample by using a PCR amplification instrument to increase the content of the DNA so as to meet the requirement of hybridization with the probe.
TABLE 4
Figure 932766DEST_PATH_IMAGE008
PCR conditions were as follows: placing in a PCR amplification apparatus, pre-denaturing at 95 deg.C for 10 s, denaturing at 95 deg.C for 30 s, annealing at 65 deg.C for 30 s, extending at 72 deg.C for 1min, co-circulating 20 times (cDNA sample bank) or 5-8 times (DNA sample bank), and finally extending at 72 deg.C for 5 min.
And (3) purifying the PCR amplification product by a column by using a commercial kit.
9. Quality detection of amplified cDNA/DNA sample library
And (3) carrying out cDNA/DNA qualitative and quantitative analysis by using a bioanalyzer, and confirming that the length peak value of the purified fragment is reasonable and about 200 bp.
Second, design principle of probe
According to a human reference genome HG19, the gene related to the DNA base excision repair pathway and all coding sequences thereof are obtained by combining Ensembl, CCDS, Gencode, VEGA, SNP and CytoBand databases.
The design of the probe has several major considerations:
(1) specificity of
Stringent specificity parameters may be effective in reducing probe binding in non-target regions, but also limit regions of a part of exons that have a lower degree of reproducibility, resulting in reduced coverage of the probe design. Too loose specificity parameters will directly reduce the amount of data on the target area, resulting in reduced capture efficiency and increased sequencing costs. Therefore, a reasonable specificity parameter is key to balancing coverage and capture efficiency. We consider a probe with a sequence similarity across the genome of no more than 3 as the optimal threshold for specificity parameters.
(2) Stability of binding
The indicators of the binding ability of the probe to the template are the minimum free energy (. DELTA.G) and the melting temperature (Tm), and since these two parameters are somewhat complicated to calculate, the binding ability of the probe to the template is generally indirectly expressed by a more direct and simple GC content. In general, the greater the GC content, the greater the binding stability. In fact, the closer the GC content is to 50% of the probe, the better the capture effect. The higher the GC content, the better the binding ability of the probe to the target DNA fragment is, however, the better the binding ability to the target DNA fragment is to its original complementary fragment (consistent length on the one hand, no mutation mismatch on the other hand), and therefore, the higher the concentration of the probe is needed to promote it to take some advantage in competition for binding to the DNA complementary fragment.
We will prefer to design probes with GC contents close to 50%, and for unavoidable GC extremes we will add modified bases to the probes and thus alter the GC extremes.
(3) Concentration of Probe
As can be seen from the above binding stability, the capture effect of the probes with different binding capacities is greatly different. Too high and too low binding capacity are detrimental to capture, and therefore, different concentrations of probes for different GC contents need to be set in order to maximize uniformity of capture efficiency. Through summarizing historical capture data, different probe concentration parameters are set for probes with different GC contents, the concentration base number of the probe with the GC content of 40-60% is set to be 1, then the concentration base numbers of the probes with the GC contents of 30-40% and 60-70% are 1 x 22, and the concentration base numbers of the probes with the GC contents of 20-30% and 70-80% are 1 x 24.
(4) Position of the probe
1. The optimal probe placement position is 100% coincident with the target region, but due to the effects of randomly interrupted libraries, sequence repeatability, GC content, mutation types, etc., the actual probe design strategy is as follows:
2. since libraries are typically generated by random disruption, to maximize capture of target libraries, probes are typically designed in a tiling fashion;
3. if the target area has a repeated sequence area, the probe design can be extended to two sides to search areas with better specificity under the condition of ensuring the coverage of the target area during design;
4. if the target area is an extreme GC area, in the design process, under the condition of ensuring the coverage of the target area, a probe is designed by extending and searching areas with more proper GC content to two sides;
different design considerations are also required for different mutation types:
1. for insertions or deletions exceeding 60bp, probes need to be designed on both sides of a mutation breakpoint besides the probes need to be covered, and the closer to the breakpoint, the better;
2. for CNV regions exceeding 10 kbp, the optimal probe design strategy is to place sparse probes at intervals, so that on one hand, CNV can be detected, and on the other hand, the sequencing cost can be reduced;
3. for intron regions where fusion occurs, if the fusion site is not defined, then full coverage of the entire intron is required; if the fusion site is defined, probes need to be designed on both sides of the fusion site.
4. For short-chain repeat regions such as MSI and STR, probes need to be designed to extend 60bp on both sides in addition to the probes covering them.
Hybridization of DNA capture probes
1. Hybridization of DNA sample libraries with biotinylated DNA Probe libraries
The cDNA/DNA sample pool was mixed with hybridization buffer at 95 ℃ for 5 minutes, and then maintained at 65 ℃. The reaction was performed in a PCR amplificator.
The mixture was then mixed with a pool of probes at 65 ℃ for 5 minutes. The hybridization reaction was placed in a PCR amplification apparatus and incubated at 65 ℃ for 24 hours.
Fourthly, obtaining the hybridized gene segment
1. Preparation of streptavidin magnetic beads
The separation of the hybridization products was performed using Dynabeads streptavidin magnetic beads. The beads were placed on a homogenizer and mixed, requiring 50. mu.L of beads per sample.
And (3) washing magnetic beads: mixing 50 μ L of magnetic beads and 200 μ L of binding buffer solution, separating and purifying the magnetic beads and the buffer solution by an external magnetic field, discarding the buffer solution, and repeating the steps for three times.
2. Isolation of the hybridization product
The hybridization product was mixed well with streptavidin magnetic beads and shaken for 30 minutes at room temperature. Separating and purifying the magnetic beads by an external magnetic field.
To the beads, 500. mu.L of washing buffer was added, incubated at 65 ℃ for 10 minutes, and the beads were isolated and purified by an external magnetic field. The above steps were repeated three times.
3. cDNA/DNA enrichment sample Release
Mixing the magnetic beads with 50 mu L of elution buffer solution, incubating for 10 minutes at room temperature, separating and discarding the magnetic beads through an external magnetic field, and collecting supernatant, wherein the supernatant is the enriched gene segments related to the DNA base excision repair pathway.
Fifth, PCR amplification and purification
The enriched gene fragments were further amplified in preparation for loading into a sequencing instrument.
TABLE 5
Reactive materials Volume (μ L)
Post-adapter cDNA/DNA sample library 20
10 XDNA polymerase buffer 5
DNA polymerase 1
Joint positive primer 1
Linker reverse primer 1
Ultrapure water The total volume is compensated to 50 mu L
PCR conditions were as follows: placing in a PCR amplification apparatus, pre-denaturing at 95 deg.C for 10 s, denaturing at 95 deg.C for 30 s, annealing at 65 deg.C for 30 s, extending at 72 deg.C for 1min, co-circulating 20 times (cDNA sample bank) or 5-8 times (DNA sample bank), and finally extending at 72 deg.C for 5 min.
And (3) purifying the PCR amplification product by a column by using a commercial kit.
Sixthly, detecting gene mutation by adopting next generation sequencing technology
The next generation of commercial sequencing instruments were used for sequencing and the sequencing results were analyzed using the existing sequencing software analysis package.
Example 1 detection of mutations in XPA, ERCC1, POLD1, PCNA, ERCC2 genes
Firstly, constructing a sample library
1. Extraction of DNA
The sample DNA was extracted using a commercial kit according to the conventional DNA extraction method for tissue samples.
2. DNA fragmentation
The DNA sample was fragmented using a DNA fragmenter to a fragment length of 150-200 bp.
3. DNA sample pool quality detection
And (5) carrying out qualitative and quantitative analysis on the DNA by using a biological analyzer, and determining that the length peak value of the DNA fragment is reasonable.
4. DNA end repair
The DNA was filled in at the 5 'protruding sticky ends and blunt-ended at the 3' protruding sticky ends using T4 polymerase and Klenow E.coli polymerase fragments to generate blunt ends for subsequent blunt end ligation. The reaction system is shown in Table 1, and the reaction is carried out in a PCR amplification instrument at 20 ℃ for 30 min.
5. Adding base A to the 3' end of the DNA sample
The reaction was carried out in a PCR amplification apparatus at 37 ℃ for 30 minutes, and the reaction system is shown in Table 2.
6. Adding linkers at both ends of DNA
The reaction system is shown in Table 3.
7. DNA fragment sample library obtained by amplification
The Polymerase Chain Reaction (PCR) was carried out in a PCR amplification apparatus, and the reaction system is shown in Table 4.
PCR conditions were as follows: placing in a PCR amplification apparatus, pre-denaturing at 95 deg.C for 10 s, denaturing at 95 deg.C for 30 s, annealing at 65 deg.C for 30 s, extending at 72 deg.C for 1min, co-circulating 20 times (cDNA sample bank) or 5-8 times (DNA sample bank), and finally extending at 72 deg.C for 5 min.
8. Quality detection of amplified DNA sample libraries
And (3) carrying out qualitative and quantitative analysis on the DNA by using a biological analyzer, and confirming that the length peak value of the purified fragment is reasonable and about 200 bp.
If the concentration of the obtained DNA sample library is low, the sample is dried at low temperature (below 45 ℃) by a vacuum concentrator and then dissolved with nuclease-free water to reach the required concentration.
Secondly, preparing a DNA probe library of XPA, ERCC1, POLD1, PCNA and ERCC2 genes
According to the above-mentioned method and idea of designing a probe, a probe having Biotin (Biotin) at the 5' end was designed and synthesized for the test.
Thirdly, hybridizing the DNA sample library with a biotinylated DNA probe library
The DNA pool was mixed with a hybridization buffer (10 mM Tris-HCl, 2% bovine serum albumin, pH 8.0) (after mixing, the concentration of the DNA pool did not exceed 50 ng/. mu.L at most) under reaction conditions of 95 ℃ for 5 minutes, and then maintained at 65 ℃. The reaction was performed in a PCR amplificator.
Then, with a DNA sample library: the probe pool was added to the above mixture at a molar ratio of 1:100 under reaction conditions of 65 ℃ for 5 minutes. The hybridization reaction was placed in a PCR amplification apparatus and incubated at 65 ℃ for 24 hours.
Fourthly, obtaining the hybrid enriched XPA, ERCC1, POLD1, PCNA and ERCC2 gene segments
1. Preparation of streptavidin magnetic beads
Dynabeads streptavidin magnetic beads are placed on a mixing instrument to be mixed uniformly, 50 mu L of magnetic beads and 200 mu L of binding buffer (10 mM Tris-HCl, 2% bovine serum albumin, pH8.0) are mixed uniformly on the mixing instrument, the magnetic beads and the buffer are separated and purified by using an external magnetic field, the buffer is discarded, and the steps are repeated three times, and 200 mu L of binding buffer is added each time.
2. Isolation of the hybridization product
The hybridization reaction mixture in step three was mixed with the treated streptavidin magnetic beads of step four and shaken for 30 minutes at room temperature. The magnetic beads were separated and purified from the buffer using an external magnetic field, and then 500. mu.l of a washing buffer (phosphate buffer, 0.1% Tween-20, 0.1% SDS, pH 7.4) was added to the magnetic beads, incubated at 65 ℃ for 10 minutes, and mixed uniformly every 5 minutes. And separating and purifying the magnetic beads and the buffer solution by using an external magnetic field, and repeating the steps for three times.
3. Release of enriched DNA samples
The beads were mixed with 50. mu.l of elution buffer (10 mM sodium hydroxide solution), incubated at room temperature for 10 minutes, and mixed uniformly every 5 minutes. And separating and purifying the magnetic beads and the buffer solution by using an external magnetic field, reserving supernatant, and discarding the magnetic beads, wherein the supernatant contains the enriched XPA, ERCC1, POLD1, PCNA and ERCC2 gene fragment DNA sample library.
Fifth, PCR amplification and purification
The enriched DNA sample library was further amplified in preparation for loading into a sequencing instrument, and the reaction system is shown in table 5.
PCR conditions were as follows: placing in a PCR amplification apparatus, pre-denaturing at 95 deg.C for 10 s, denaturing at 95 deg.C for 30 s, annealing at 65 deg.C for 30 s, extending at 72 deg.C for 1min, co-circulating 20 times (cDNA sample bank) or 5-8 times (DNA sample bank), and finally extending at 72 deg.C for 5 min.
Sixthly, verification of detection sensitivity
Mutant and wild type plasmids are constructed aiming at XPA (c.683G > A), ERCC1 (c.796G > C), POLD1 (c.356G > A), PCNA (c.683G > T) and ERCC2 (c.2251A > T) mutations in a channel, samples with different abundances are mixed according to the copy number proportion of the mutant in the wild type, the sensitivity is examined by adopting the probe library for capturing and sequencing, and each sample is repeatedly tested for 3 times, and the results are as follows:
TABLE 6
Gene to be tested 5% plasmid 1% plasmid 0.5% plasmid
XPA 5.23% 1.11% 0.65%
ERCC1 5.12% 0.98% 0.58%
POLD1 4.89% 0.96% 0.49%
PCNA 4.92% 1.07% 0.55%
ERCC2 5.22% 1.20% 0.44%
As can be seen from the table, the detection probe library and the detection method provided by the invention have better detection sensitivity for low-abundance samples, and can reach the detection sensitivity level of about 0.5%.
The optimized probe pool was used to detect 51 pathway-associated genes in 10 tumor samples of lung cancer patients, 7 of which were missense mutated in exon regions in at least 1 pathway-associated gene (70%), and 3 of which were missense mutated in exon regions in more than 5 pathway-associated genes (30%).
Sequence listing
<110> Suzhou academy of health and occupational technology
<120> probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway
<141>2019-12-04
<160>298
<170>SIPOSequenceListing 1.0
<210>1
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>1
cgaataaacc gagggaagcg aagggagatg cccttgtcac tatccacctg cggaagcggg 60
atggagactc ctgcggtcca gccccagcga ccccctgctc 100
<210>2
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>2
cgatcaccac caggtccagg gtgtcaccca cgccatcaag gtagtccttc ttcagctggg 60
agaaggggag gcaagagatg agaaggggga gcgcccaagg 100
<210>3
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>3
ggaaaggggc tcacgtacca gggactgcag ggccggcagg gagaagagag atgagacatc 60
tttgtgagaa taaagacaat aagccctaaa tgtgaggcga 100
<210>4
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>4
cttccagggc gtggatctgt cacgatggga gaagggaggg gaaatcagct gagtcccctc 60
atgtggcctc agctttctct tctgacccca cctgcactgg 100
<210>5
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>5
cgggaacctc gctggggtgg cgggtgagaa caagataggg gaagcctttc tagaactcac 60
acagtttgga aagagagctc ggcctgctcc cagaagcctg 100
<210>6
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>6
gtccgctcag ggacctgggg agagagcagg ccagggaagg gggcttgtct gcacctcccc 60
aatcttgcct cctcccttct ctgatctcct cgaccttgat 100
<210>7
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>7
ctgaggtaga ggacagggag gaggtctgga ggcgacaggg ccaccacgga gcgcagcaag 60
ttgctcagcg tctccaccat ccggagcctg gaggagggga 100
<210>8
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>8
tccctccttt cctggagccc ctggctcctc ttccttcact tcttttttga ctgctggctt 60
ccggggggct aggaatgaag acagaaaaca gtgggtcttt 100
<210>9
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>9
ctttctttcg gggtctcctc ttctgacgat agacagaacg gtcagatggc aaaaaaatcc 60
cattgaacct acaagggcat tttgactctg gagacagtct 100
<210>10
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>10
gtccagggca ggcttctgga agaggaaaga acagttctag agtgagcggg ggaaggaggg 60
actccatttt ccaaaagttg agagtagagg ggactgaaac 100
<210>11
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>11
gtggaaaaat gacctagagg agcataaaag ggggtaaaaa aaggagaata acagcaccaa 60
taccctgcct atctatgctg tatcctataa cttccttttt 100
<210>12
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>12
ctcagtgcaa aagttagttg aactggttca ttcatctcta tggtaaccta caaaacaaaa 60
gattcatcat tgaaaaacat caagaaagtt gcaatctatt 100
<210>13
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>13
atagtctgaa actttctcct ggtctaccaa aagaaagcag atgcttttga gaaatactga 60
cacagagttt tgattttctg tagcttcgtg actcggtaaa 100
<210>14
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>14
gtgtaatgat atcttcattg ccggcgcatt ttagtatttt ggacatacta gaagacagga 60
gacacatgct ttaaaatcaa cgccgtctgc tgaagggctg 100
<210>15
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>15
ggcctcgttg atgaggtcct tgagtgcctc caacaccttc ttgaggatgg agccctggac 60
caggcgcgcc tcgaacatgg tggcggagtg gcaacaacgc 100
<210>16
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>16
gcccctcatc ttccaacagt tggagattga ccattatgtg ggtgagttta ggggttatgg 60
gtgagtgctg gggccctgcg ctcctggggc agaggccggg 100
<210>17
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>17
gagtgagtgc tcccccagga tcagcgggtt ggagggtccc ctcgggaggc cattggctgg 60
tcccagcttc ttccatccac aggcatgttt gggtaccacg 100
<210>18
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>18
cggacatcgt cggctgcaac tggctggagc tcccagctgg gaaatacgcc ctgaggctga 60
aggagaaggt gcagggcttc ccagggcagg gctgggtggg 100
<210>19
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>19
cgcctggcgc tcaccctgcg gccctgtgcc cccatcctgg gtgccaaggt gcagagctac 60
gagaaggagg aggacctgct gcaggtagct ctcgctccac 100
<210>20
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>20
cgcgtgcaga tggacatgct gcaggtatgg gcgggaggtg gggtgtgtcc ctgtccttgg 60
aaggccactg cccaggcccg cagcccacca gcccacccac 100
<210>21
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>21
cgagggtcac tggcgtgccc ctcagctacc tgctcagtcg tggccagcag gtcaaggtcg 60
tatcccagct gttgcggcag gtcagtagcc gagacttgtc 100
<210>22
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>22
acctgtgtta caccacgctc cttcggcccg ggactgcaca gaaactgggg tatagtgccc 60
aattcagcat gtgtcccccg aggcccatct gggccttccc 100
<210>23
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>23
ggcgcccagg tgggcaagtt gccgtgcctg gagatctcac aggtgggcac tcgggcccct 60
ggaaggcaac tgggggcagg tgggccccct gtgtaggaga 100
<210>24
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>24
cggactgggt gtcaggtcac ttcccgtcgc ccatccggct ggagtttgag aaggtgcgtg 60
gctgggtcag gggctctgca tttaggtgcc ctcatcaggg 100
<210>25
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>25
atcaccaagg agctgacccg cgcggcctcc gactatgccg gcaagcaggc ccacgtggag 60
ctggccgaga ggtcctgcgc ggggcgggtg gcctggccag 100
<210>26
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>26
tgccgaggct gtgctactgc gtacgggggc accaggggac tgggggcacc ctgggggggc 60
agaggagatc accggcccac cacctgcctc ctctcctgca 100
<210>27
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>27
gaaggaggtg agagggccgg gaggtgagga ggggccaggt ggggaggcgg gggcgccctg 60
ctcagccgct gccgtcccca ggtatcccat ctgaatgccc 100
<210>28
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>28
cctggacctg aggcctggtg accttgcaag catcccatgg ggcgggggcg ggaccaggga 60
gaattaataa agttctggac ttttgctata tggtgctttg 100
<210>29
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>29
ttgtagaagg ggtaacaacc tggaggagaa ggggcagctc tgaggagggt tccgcctcag 60
cactagcact ctgcacagga tgtggggctg cagcccctcc 100
<210>30
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>30
ttggtgggat caaactcgcc tggcatcacg tccacgggca ctgaggcctg gaaggcacag 60
ggcagggaga gctcacaggg ccccgaagga gccccctaca 100
<210>31
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>31
gacaccagta gcacaaacct gcgggagaag gtggggtcct ccagggtgcc gagaagggag 60
gcagcccctc ctaggtgcaa ctcaaagatt ccactgacca 100
<210>32
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>32
ctgggtgtat gtatttactc cgaggaggct gggggagcag gttgtgctgg aatgcagaga 60
caggaggtat aatcttgggg ccagagccca ccaaagctct 100
<210>33
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>33
tgtgggccct ctgggcagcc tgctcagaaa acatggccac actcctgact tgcttggtcc 60
acacagcttc gcccaggcca aggaggttca ctgcgaaaac 100
<210>34
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>34
cttgcagaac tgcagcaagt aagcgtctta atgttccttg tgggcttctt tacgaattga 60
ttttgtaaga tgtttacaca gtggctgcct cttaagagtg 100
<210>35
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>35
atccagcaaa aaagcagagc ctgttaaggt gctgcagaag gaaaaaaaaa ggtaggaaaa 60
ttttgttgct tattggggaa gagtctttac tgggggtgag 100
<210>36
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>36
ccgtctccac ctcttgaacc agtgccaaag actgagcctg aacctccttc tgtcaaggta 60
aaattatact gggattcttg catgtccatg catcctttgt 100
<210>37
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>37
tgggcaaagc caacagacag gtgtccatta ctggcttctt ccagaggaaa taaactgcca 60
tctctggtag atcagagact tggagtggtc aagggagaag 100
<210>38
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>38
accagcgctg cagccgtgtg atccctgcca gggtgggaag aagactctgg agacttgtgg 60
ggggtggggt agagtctgag ctggagaatg tgtgtgttgg 100
<210>39
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>39
tggggctcct cccctgcaat gacagctgct cttcagtacg aggttggctt cagtctcctg 60
cccctcacct cccagccttc ctcaccaccg ctttgcctct 100
<210>40
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>40
tccctcctct tcacaaccgg gtaggaatca gtgatgagcc gcttccggcc catggcggcc 60
acccaggcag gcagagaagg aggcaactgc ggggaagagg 100
<210>41
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>41
ctgtgtctag atgcctttat agcttgaagt gagtatggag taaggtgggc ttccttattg 60
taagctcttg tgaaggctgc tttcacctat atgaaaggag 100
<210>42
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>42
aaactgggtc atgtaccccc tcatcaactc tccaggaaga acactggcat aaatggcctg 60
aaaaaaaatc aattgcagtc cagaatttat gttccgtaca 100
<210>43
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>43
atctgacttg tccacaagtg acatgtgagc agtctcctct ccagctgcaa acactttccg 60
ggcaacatca aatgggccct gaaaaaagag agggacacac 100
<210>44
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>44
cttctttaaa tgcaatagac atcatagcac cctgaaattg acaagggagg agtcctcaat 60
gatttttaac tcatataatc aggtatttta aaaatattta 100
<210>45
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>45
agaggctgct ccatctgacc caggttgagg agcaatggga tgagacaaaa acaaaataac 60
aattgctcaa aaactgctgc tctgtagaaa attatgtaac 100
<210>46
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>46
acgctgcttt aaaactagag ccatcatctt tgccggaaaa tttaccaaac tttgctgcta 60
ggaaaaaaga agttccagag tgtcaaccta tatcacctaa 100
<210>47
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>47
atcagattca acaggccatc ttcatcaata atttttgtcc ccaaggctgc ggcctgttga 60
ttaaaaatgt aaaccatcaa aactgcatcc tgcatcctac 100
<210>48
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>48
cagaatcttc aggacttaca gactttggga acagggaaag gaaaatgaac aaagtcatac 60
agaattcatg caaaatttaa aatacatatc tagaaataaa 100
<210>49
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>49
gtcctttcga gcctaaacaa attttaaaag tgtcaaatgt gacaaataat agaaaaacta 60
ttaccataaa atctgttgtt aaaatccatc aaaattttaa 100
<210>50
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>50
ccaggtttag aagatactgg cagtttttct ggtggctttt tggcattttt tacctgcaac 60
gtctcctctg actctgaatc tgtatgtgag agaaaaataa 100
<210>51
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>51
tcttctggtg agtagcccag atgccacaag tgagcaagaa tctagacaaa ggagacagaa 60
aaggctgctt accactttaa actgtaagaa gacatgtgat 100
<210>52
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>52
ggtcagcttt gtgtaccgga ggactgcaca gcgggactga atgggctctg aacagagacg 60
ggacagtagt gaggcttccc tgcagaggcc ggcatcatcc 100
<210>53
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>53
cctcacaacg tcaatgcccc tgaaagaatg acaggttttt actggcacct tctgagacca 60
attcagttgc cttcacaagg acttttaaac aatcggtata 100
<210>54
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>54
tgttgggcac atttccttcc cttgcaaaga cctacggcga aaatgatcat taaaaccggt 60
taaaacttgc ttctggatga ctacataaaa aagatagaaa 100
<210>55
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>55
aactttatgg tgttggagtg gaaaaattga gaattgaaca tcagaccatc acagtaagca 60
tttcactttg aggccctgaa agtaatttat agcggggact 100
<210>56
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>56
tctacatcta aagtgatccc acctattcgt agtaggtgct tggcggttcg tgtgcctgct 60
cccagcattg aagatgtagg tcaagttaca cttttctgaa 100
<210>57
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>57
tatctgaggg agactgcaaa tgctattgtc agtcagcaaa ctccacaaag gtaccagtat 60
aaaatgatga cagtaaagct ttcattatca ggatatcata 100
<210>58
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>58
acttggaagc gtttgtggcc aaattcatgg cactttataa gaagttcatg gaggatggat 60
tggaaggcat gatgttctga cttctgtcag ttattcttgc 100
<210>59
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>59
aatcctataa taaaaaaaac ttttggtatg atgacttaat attcctttcc ccaaagttag 60
taagctgact ttaccttgac cacagcttct agtttgtcaa 100
<210>60
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>60
gcttttctta agtctccttc tgacacttta acaagataag ctattccctg aagagaaaag 60
agttgttttt aacctatgat ggccaattaa ggatttataa100
<210>61
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>61
tcatagaatc tgcttcatcc agaatcacaa tcttaaaagg cggacacggc ttcccactga 60
ttcagagaaa cacataagag ttgaacatta atatgtatat 100
<210>62
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>62
ttaagaaatg cttgcatggt acttcaccct ggtcaggtgc aagacagaaa aaaaaagctt 60
ttattgaaac ttttattgcg aatcagcacc ataggaaagc 100
<210>63
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>63
tcctgaactc atggttcccc gcctggaaca tgtcgtggaa gaagagaagt gagtattttg 60
cgggcctttg gggatggagt gtagtagaaa caggcttgtg 100
<210>64
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>64
aacatcctgg actggatgtt gaatcaagat ttcaccacag cctacagaag tatcctttct 60
catgacctcc tggccaccga gacctgaagg tggccccagg 100
<210>65
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>65
cattgctgca tttcaagtca ccagagacct gattgttgca gaggcctaga tgctctgagg 60
gccattcaca attctcaggg ctcagcagtg atgggagaac 100
<210>66
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>66
aagcagttgg agtgaagatt ggcaatccag tgccctataa tgaaggtaaa atgctttggc 60
gtaggttgta gcactcaaat gaatacctct ttatatattc 100
<210>67
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>67
cactccttac cagtccaagt gagttgttgc atagagtaag ttcagagtgt acttatgaaa 60
tcggagaagc tattatggac tcttgagtta tttatgcgtg 100
<210>68
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>68
tcacggggat tgatgacctc gagaacaagt cgaaagactc acttgtaggt aagctcgtgt 60
atgagaagga agagcaggga tgactagctt tctttgcagt 100
<210>69
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>69
gagcctctcc gtgctgtctt caagcactat cattgcgaat cctgacatcc cagaggccta 60
taagcttcgt ggatggtagg ttttgtgggg ctaaacaaag 100
<210>70
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>70
agaaagtgat tgatcaacag aatggattgt accgctgtga gaagtgcgac accgaatttc 60
ccaatttcaa gtaccgcatg atcctgtcag taagtagcct 100
<210>71
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>71
gatctttcat attcagagtc agggtcaaag tggagaccta caacgtaagt aagggcctgg 60
gcagcagggt tggtggtggg gaggtgctgt ttgtcaccta 100
<210>72
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>72
aaagttcaac ccttcaggtc ttggacaagc cttaatcaaa ttcaacacct gaagattcaa 60
atcagaaaga ttttagcaat tattttggat cagcctcccc 100
<210>73
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>73
taggtgctct ccctgctgag ggctgaatta agaaataagt tagcaatatt agaaaatcca 60
tcaagttaaa cagtctttac tacttaaaat agctcgttaa 100
<210>74
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>74
cacaatgtgc tgggctcggg ctctctgaaa agaaaaaaca tgcaaaattc aattaagaaa 60
gtaataacta ccactcattc aacacctgcc atgtgccaag 100
<210>75
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>75
cctgttttga acaacaggat tagtgcctgt gccacgtccc acgcctccga gaaacccgca 60
ggctcccgga ggcttcgccc cttcaaacac tgcccgagtc 100
<210>76
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>76
gatctgaaag aaacatttaa gcaaacattt aatctacaat ggaaagttgt aacatcaatt 60
attatctaag atatttttac ctatttcctt tttctcaccc 100
<210>77
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>77
ccttggcggt tactcttcca accacttcca caattccaga gatttcttca tcaagctaag 60
acacagaaca agacatcgat ttggtgatat cacattttca 100
<210>78
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>78
agcatgccgg cgttgatgcg cgacctgggc aagtccatca tgtccaccat gattatggtc 60
caagactgcg gctggcggga aacccacgga cgactgaaac 100
<210>79
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>79
tgtttgaccc tgtgttcaag gttaggggaa ttatagtttc ccaggtctcc atcgtggggg 60
taatcagagg ggcagagaag gcttcaaatc acatttgtta 100
<210>80
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>80
gggctcagct ctgcgacctt agcgtcaagg ccatcaagga agcgattgat tatctgaccg 60
ttgagggcca catctatccc actgtggatc gggagcattt 100
<210>81
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>81
acttctttac taagtttctc atgcctatgt ggatacaaaa aaagaattta aactgaataa 60
gcaaacctcc ttctcatagt aagggagctg gttacttttc 100
<210>82
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>82
tgaggactag atacattgaa ttcatctact ttgcaggcca aaaatgcaca agtgagccta 60
gaggaaaaaa taaggaggca ggaggcaggg ggtgggtggg 100
<210>83
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>83
tgtggtacat tatggaatcg tgaccaggtc cagagggtct gcagacgaga acccaaacgc 60
atcagcgtcc tggcgtaaaa cacccgtacc cccaccgaag 100
<210>84
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>84
gttgtaacca ggtaagaatc tcttaaagct acatgtgcag gagtttgatc agaaatgagc 60
atcaactggc ttctctgaac tatcttggca gagttaagga 100
<210>85
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>85
gaatatttga aactttgggc acaccaactg aggaacagtg gccggtaagc ctttatgcat 60
tttctttgaa atgtaattag gactctgtaa agttcttaaa 100
<210>86
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>86
gaaaagaaca gaggccttag aacaaggtaa gattcccact tttaaaagaa attaaatgaa 60
tttagaaaac tccaaatagc tcgtgtatgg ctagcgactg 100
<210>87
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>87
gatcagcttc atcaatcatt tcctatatga cagtaaagat tcaggttaat ttataaacta 60
atgccaaaag gtgactaagt aatagacttt ttttttttta 100
<210>88
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>88
tcatcaaaga gcttgaaagc tttcaggatt tcttctttag tatctttctc agacttaaca 60
agtagaacat aaaacacatg agtaggggga caccacggtt 100
<210>89
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>89
gggccctcat tgccacctat aaagaaaaca ggatcgtctc aataagcaca tctaaagtag 60
caggagcaaa aataacagtg ttgagagcat taagccagca 100
<210>90
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>90
tcttcagtaa gctcaggctt agggctcatt ctttttcgct gagaacttga tgccatgttt 60
gccttcttaa agttggaggc ctttatatgt tatgcaatac 100
<210>91
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>91
tctatctcat gttttctgtc gtcgtctact ttctgccttg tttctttcct ctctgggtcg 60
gattcacctt gtttggcagc aactaaaata gaaataaaga 100
<210>92
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>92
gcaatatgtg cttccgtgta ttagagccag ttacttgtgc acctccaaca ccaacttcag 60
atccatcttc ctgtttcatt tttaaaaaaa tataaacaaa 100
<210>93
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>93
ccacctaaag atacctatgt aaaacagaaa gagatattcc cctcaaaatt aactaggatt 60
tgctttctgt tctgtttaga cattgtgtta gatttaccaa 100
<210>94
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>94
taacgttcaa atacatcttt ttcttgcata aacctaaaaa ggaccattgc tttatccaat 60
attgtttcta cttcttgttc tgttagctgc aaaattaaga 100
<210>95
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>95
acattgtttt caaaccattt ggcacacgac taaataactt gtacatgcaa ccaaggtcta 60
caaatcagaa aacacaaatt ggctacatta aagattaaag 100
<210>96
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>96
tccttcgaga cctaaaatca ttaacatctg gcaagcattt cttattgcgc ctctgtcgaa 60
aaaagttatt atcacttgat aattaaatta catttaaaaa 100
<210>97
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>97
gatttagcgt ttgaagaaag ttgttattca atgaatttag tacatcttct cgcacctagt 60
aacagaagag ttcattagtt tgcacacaca catccacaca 100
<210>98
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>98
ttcttaacat ctactacata caaaggacaa gaagtcttta gtcctctgtg aataattttc 60
tacaagaaaa aatttagaac agggtgggtg ggggaaaggg 100
<210>99
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>99
aggtgaggcg gcggccgggg ctggggacgc cgctcctgcc ccgcgtgacg cagacgcggc 60
cgggcggccg ctccgggtgc ctcgcaggct ctcgccgggg 100
<210>100
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>100
cggagcctgt tgcggagcct cctgggcatg ctgtctgacc tgcaggtgag tgctgcctgt 60
gcggaagata cctgggtacc tgcccagcta cttgcaccag 100
<210>101
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>101
agagggagac agagtaatca cttacttgga ccacagcaca cagtaagtac cgtttgctcg 60
ctgagcgttc gtatcttcac catggctgga aggttctcct 100
<210>102
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>102
aggagtcctt tgagacgttc atcaacaaga gacccaacaa gcctgcagaa ctgatcggta 60
gaaaaatatt tgtttttttt gtttgtttgt ttttgagaca 100
<210>103
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>103
ggtaagtatg tggggcctgg gctcctcccc tgtaactgag ggttgctgcc ccgtgtgtta 60
ccccgatctc actccctcct ttgctgtgtc cagagtgcgg 100
<210>104
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>104
ggaagtgcac ttaaccccag aagtaagtgt gcagaaagca tgctgtccgc tcccgctgtc 60
atgcccttac caggcacaga tatgttgcct tcaagaattg 100
<210>105
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>105
taaaaatggc cacggggata ggtacgaaaa ctgcagagtg catagctcca tgagttgttc 60
ttaaagcatg tatttgtttt aagataagac atagacttgg 100
<210>106
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>106
taatgaagat gagaaagact cttggtcata atcttctagt ttctgaatta tataatcagc 60
tgaaatttcc agtaaaggta aatgtaacat tagcataatt 100
<210>107
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>107
attaagcaag cacaggcagt aagttctaca tgcttatttt agacttgttt taaaactact 60
cagataatat catattttat tattttgaaa gtagaacttc 100
<210>108
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>108
agattgggag aagcttttga ttctcagctg gttattggag taagagaatc ctatggtatg 60
ttctgaactt ttatgatcat aatttctgtt tcatggaaat 100
<210>109
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>109
attaaaagaa gaagaaaaac gagcactacg ttatttagaa acaagacgag aatgtaactc 60
cgttgaagca gtaagtaatt ttgtaattgt acattttatg 100
<210>110
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>110
ctgaaactat tactactgta agtttttttt caatggcaat gatagatata tatcaaggct 60
attttttaaa tgtaggatta ttgaaaatag tgagcggtta 100
<210>111
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>111
gcaaagctta aagaagtggt acatgaattt tttgtatttc aacttttaaa attaccttac 60
tttgaatttg tgttttgctt ataggacttt ctgtgatagt 100
<210>112
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>112
gtatctgaag atttgaacca agcttttaag gaaatgcaca aaaataataa attggcatta 60
ccaggtatta ttttataatt acatgtatat attttttaaa 100
<210>113
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>113
aaaatcagct ttgaaaatct taagcttgca actgaactcc ctgatgctga acttaggagg 60
actttatggg ttggtttatg tttttttgtt tttaagactg 100
<210>114
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>114
agaagagaat gaaggaatag ttcaactacg aatactaaga acccaggttt gtaatgttga 60
cagaatgtct gaagtttaaa aaaactttag tttttttttt 100
<210>115
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>115
ctgtggctgg ttctgtcttc cgctcggtgt gaaaggatct ccaggtggat gggtgagtta 60
aggaacacgt gcttatcagg aaacaccctc ctcagtcatc 100
<210>116
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>116
cgtggcaaaa gacattgaca aactcgccca ggtggaaaag accaacctcc tggaggtgct 60
gccgctcctc gtcagtggtg gcagcgctga aaggcggtaa100
<210>117
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>117
gtcttcaggt agagggccat gatgttgttg tagtggttgc actcagtgcg cagctccttc 60
tctgttgtcc actcatagag ccgcacctgg gaagggcatt 100
<210>118
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>118
gtaagtgttg gggtctttgc ccagcttgca ggaaaccaga ctgagggcat attcattctg 60
cagaaactgg tgggcatgaa gcactagaga gtagagagat 100
<210>119
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>119
actgggacac ttcctggtag cagatcttcc tgcagaacaa gtacagaaca acagtgtcac 60
ttagaaagtc agaagcaccc tacaccaacc cccacttccc 100
<210>120
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>120
aagacgttgg tggtagaaagagaacgaaaa gtcctcaata cggtgggctg ggtgcccaaa 60
gtcaccttct tacggtcgct caacagacct acagagagaa 100
<210>121
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>121
tgtgtggctg aacaaagaag aatatggcag aggaaggaat ccaaggctca aagaagtcct 60
agagaaaaga ggaggaaagc gagcagacag aaaaacacac 100
<210>122
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>122
aactctgcag cagaatggag ggcctgggtc agcctgggac cagcttcccc acctcacaac 60
cttctcacca gcacctacag ctggcactag acccatcctt 100
<210>123
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>123
tccggatgat ccgcaaagaa ccttccttga aagccccaga gcaagtgacc agctgcaagc 60
agagaaaacg tttctaaaga accccctcaa gatactgggc 100
<210>124
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>124
aggtctggaa gaaagtcagc aacgtgaaag aaatgagaat ggaccctacg tgggatccag 60
atactaccca catctcagac atctgctgag aaaactccca 100
<210>125
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>125
agggctctgg gactgcagga aagacagcaa aattagaatg ctcagcactc tgggtctgcc 60
aaaccaggac tggcaaaagt acaggtctag ttagccccaa 100
<210>126
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>126
gtcaatgatg ccaataatgc cggtctctga ggggcggcca atgcggtcct gagaaacaaa 60
atcgggatta gggaagaacc tcaacatcca cagagcaaca 100
<210>127
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>127
cggtgaccac atagatctct aatctcgtgt ttttggcaat caacaggttt aagtcttcgg 60
ccgaagtaaa gtgtcctgaa agaacagacc ctctaacttt 100
<210>128
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>128
cctggccatc tgtccagcag gtaaggcatt ttttgcctca agtcctcaag ggtttacacg 60
tgcattttta ctattgcatg ctcccaaatt agatgatggc 100
<210>129
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>129
gctgcaagac tttaaaggca acattctacg agtttttgcc agctcagaca ccatcaagtg 60
agtagtttaa ctagcagggg aaagggcttc taagcttagg 100
<210>130
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>130
ggaaagccag cttcctctac tcgctgccgc acaggcatcc tgtcaacgca ggtgtgatat 60
cccagacctc atctctcctg cagaccctgc ctgtctgacc 100
<210>131
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>131
tgaggacgat cgacgtgttc gatggaaact cagggaagat gatgtgtcag ctctatgacc 60
cagaatcttc tggcatcagt tcggtgaggc ttgggtcctc 100
<210>132
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>132
cgcccagctt cctcggggct gggataacag gatacagggc agccgggagg tgaggtatca 60
gattatagat ttgcttcatt atggtcagtc ataagaattg 100
<210>133
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>133
ttcagtacgg gattgcccct ctggggaggg acgaagggca gaagccatca atagggatga 60
cccttgataa ccacagggcc ctcctccacc tcttcttgca 100
<210>134
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>134
gctggcggcc ctgagggctg gggcaccccc tctttgtcct tcccagggtc catctggagc 60
ctgaaaggga aggtgccagg agcgagtgag ccactggcgt 100
<210>135
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>135
aggtgctcct ggatccagcg gggcagcttc ccccgcttgt ccccacgggc aaaccgctgt 60
gggcagaagc gcaggccagg gacagaaggt cattcgggga 100
<210>136
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>136
ctctgtgtgt agacgtaggg gacgccaaac atgatgacgg cccgcccgta gtggtgcact 60
ggtgggcaga ggagaggggg cgaggggggt tacaagtgtg 100
<210>137
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>137
ctcaataaag agcagcttgt tcctctggat gttctcaagg atcccctggg gaaggaccca 60
gggaggtcag ggtgggttca gggcacagcc atcctggtta 100
<210>138
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>138
gatgtccagc ggggacagtg tctgtggcgg gacagtggga gggatctcag caggactggg 60
cagggaccag gaggcccatg gagggaggtc agggactagg 100
<210>139
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>139
ttggcaatgg tcggggttct gtcgtcaaag ggctcgatga tgatggtgaa gcctgcagag 60
ggcaggcaag gaggggtgag attaccccac tacagccaca 100
<210>140
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>140
tggagccagg cactgcctct gcgaggagac gctatcagcg gcgacgggga ggcgggaaag 60
ggactggggg gcagcggggg gtcggggctc accctgcagc 100
<210>141
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>141
agacgttgtc tggagaaggg ggagagagcc ggctcaggca ggcctgcagg ggcctcactc 60
agaggggctg gcatcccttt ggcccctggc gcccccctca 100
<210>142
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>142
caaattcctg ggacaagagt gccaggggtc agggaggctg cctgccccag gctacctgtc 60
ctgcctccct ccctcagccc tgccctccag taacctcata 100
<210>143
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>143
ttctcataga agttgagcaa ctttcgaagc tcttcaatca cctactccaa agttgggggg 60
cagggggagc ttgtgctcat tggaggcaca aacccctgcc 100
<210>144
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>144
actgtcttcc cggtgcctga gggcatctcc aggactccat gaccctgcat gttggggacc 60
agaggggcaa cacacagggt ctcagaacct tgggcacaca 100
<210>145
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>145
tgtaagagct gctgttgctc ttcttttgtc gaaaacgcca agtcttcctc ctccatgcca 60
gcgagtttcg tgatcacctg caaagcccaa gccagcagac 100
<210>146
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>146
gatgagatct gaatgaggac atttgcttcc ggcagatcaa acgaagtgtc acctacctac 60
agaaacaagt tggaaggttt ttatatatga ggaaaaaaaa 100
<210>147
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>147
gttttgattg ccacatattc ccggtaaaat tcaggagaca tagggcacca gacctgtaat 60
acagtaagaa ccaggggtca ttttacaagt ttaaacacca 100
<210>148
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>148
cagatctggc tgtcgtcaat ggtggaccac atcttgaact gggctttcca ctgctccaca 60
gaaacagctg agttgcccag caccagacag cgttttctga 100
<210>149
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>149
cactgctttc agcagtctta gaaatctgtg agagaggtag gtgctgaacg tgcacacaac 60
atttaattct gctgttatca agcaatgggt gaagttgtaa 100
<210>150
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>150
actggctctg caatagccac caagaagtct tgggcatatt tgtaaactgg agagaaggct 60
tccaagaaga tatggccatc gggagcctga gagataccaa 100
<210>151
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>151
ttgacttctt gactgataga ataccttcag atttaattac tggtaagaat ttgaaatctt 60
attattagta tgtaaatttg tacttttttt tttttaagta 100
<210>152
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>152
atgtctaaag gaactaaaat gccataaccc atcgcttgaa gtggaagatt tatctttaga 60
aaatgctatt ggaaaacctt ttgacaaggt actctttttc 100
<210>153
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>153
gaaaaaatat ctgaaaaaat ggaaattaaa gaaggggaag gtatcttgtg gggttaagtc 60
tttaaatgtg ttttttattt cggtatttgg tatggaaatt 100
<210>154
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>154
tcacaaaaga cctaaagacc cccaaaacaa agaacgggct tctaccaaag aaagaaccct 60
caaaaagaaa aaacggaagt tgaccttaac tcaaatggta 100
<210>155
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>155
tctcactgct ttgcggaaag aaaaggaagc ttttgaaaaa ctcataaggt aatacataga 60
aaatcagtat gaaagcccca actacattgg aaacctctgg 100
<210>156
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>156
ggctctttaa ataacggccg cctctacagc cagtgcatct ccatgtcccg ctactacaag 60
cgtcccgtgc ttctgattga gtttgaccct agcaagcctt 100
<210>157
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>157
ttcgtcctat ttttgtgttt gatggggatg ctccactatt gaagaaacag actttggtaa 60
gtgtcgtata gtttttagta agtgtcaaat aatttttttc 100
<210>158
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>158
gacctctatg ttttgcctcc tttacaagag gaagaaaaac acaggtaaat gtttaactat 60
ttaagaatat tattttagtc attgctacat tcagacacat 100
<210>159
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>159
ctgatatgaa agagttcacc aagcgcagaa gaacattatt tgaagcaatg ccagaggtga 60
aatatgcaac agtacattca tgcttagaat taagaacttc 100
<210>160
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>160
agctcagaag aggagctgga gagtgaaaat cgaaggcagg cccgtgggag gaacgcacct 60
gctgctgtag acgaaggctc catatcaccc cggactcttt 100
<210>161
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>161
ttaatttcca ttccaaaggc cgtggaacca atggaaattg actcggaaga aagtgaatct 60
gatggtacgt gtctgtgctt ttgtagaaat ctggaacggt 100
<210>162
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>162
ggatcgctgc tactgtcacc ggacagatgt tcctggaaag ccaggtgggt gcaggcagct 60
tgggtttcct ttaccacctt cttcagaccc ctgggggaat 100
<210>163
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>163
cctggaacct ctcctaaaat tctcgtaagg tcttttattt ctttaatttg gataattgtg 60
taaataccca aataagcaaa tagaactatt atttacagca 100
<210>164
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>164
tgaatctctg tttcctgtat taaagcaact cgatgcccag caggtaatca tggtggaccc 60
ttctcctaag ttcaggatga agggtaggct gtggttgaca 100
<210>165
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>165
aggggaagaa aaaggaaaac ctaattaaaa aatatgtatc ctctataatt agttatgaca 60
gccatttgta atgaatttgt cgcaaagacg taataaaatt 100
<210>166
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>166
tctgcctcca ccagtacata atctgggctg gctccatcca tgatggcatc gtgcttcatg 60
acactgtgca cgccaactag caagaaaaga aatagcaaag 100
<210>167
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>167
ttgggtgtct gaacatctga tccagttcct gtaaagagga aaaacaccac taatactata 60
ttgtatcatc ttgtgcaatt gattacttta aattaaatga 100
<210>168
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>168
ttcttcaatg gtgcccgcag tcaggagcct gtacacagtc acttgcttct tctggcctat 60
tctccatgct cgctcccggg cctgcaacag agagagagag 100
<210>169
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>169
atcttgagat aggtatactt ttgggctcta aggaatactt caagtatgtc cagcatctgt 60
ttggaggtgg gggataggag tttgcaaagc aaatacacat 100
<210>170
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>170
atcaacgaaa ttttggtaga ctttatgctg ctcatctgta agacggcaaa ataagaccta 60
cggacgggaa aaacaaggaa actataattt caaaaaaaaa 100
<210>171
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>171
gggaagatga agtcaaagag cgaccacagc tctcggaggt tattttgcat cggtgagcca 60
gacagaatga tccgatgagg ggtgcgaaac tatttgagga 100
<210>172
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>172
atgcatcact gttgttggac agacaattac agttggaccc aacccctcaa acctgcatcc 60
aaacgtccaa gaagaaaaca accatgaaag agcatataca 100
<210>173
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>173
gtcaaattca gcatcacttt cctcagaatc gtcctccagc ttcagacgtt tctctttgtc 60
ctgcagtctc agtttattcc atctcctacc atgaaaataa 100
<210>174
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>174
cctgatgtcc cattgaactg agcttatcaa gaagtgcaat actggtgaaa aagttattga 60
atacaaaatg gtattgtcca gggtgtgcct ctgtaagtgc 100
<210>175
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>175
cctcatcaga aacaggtgct gtagcatttt caggtggttg tatcactata gcacttgctt 60
ctatgctgtc atctgtctct aaaaggtcag ttatttcatg 100
<210>176
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>176
accaaaaggt gtcatctggc cagtgcggat gagctcttcc caggcagtct cctggacagg 60
catgagcatg ctgccaagac tggatggccc cggctctgaa 100
<210>177
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>177
gtcgtacatg acctgaaaaa taagataaat tgtctatttt gcactctgat aacattttta 60
tagcataata taaagagaaa aatgctaaaa acatgtccct 100
<210>178
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>178
aaaacaaatt ctgaactgca gccacaggag acagtgaatt tcaatccttt tttactgtta 60
ttacaaactt ttccatagtt cacctgtagg attaaaataa 100
<210>179
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>179
aaacatcctg atgctcttct cacatcccat aattttactc tactgtcagc actgagaaga 60
aataaatgtt acattgacat atgtagctag gacaatgact 100
<210>180
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>180
caaacagtgc ttggtggaga ctggagacat atgatgacta taaactgttt cctcaaaatt 60
aaatacatct gcagtctggt aatcaaaaga catttaaaaa 100
<210>181
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>181
tgaaccacct gataacatgc tgataataaa aaagttcaca ttaatttatc attttattta 60
ttatttagtc catttattta tgattgcaaa tttctaaaaa 100
<210>182
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>182
caaattcaag aggaaagcaa ataaagaact ggaagagaag aacaggtggg aggaaaagaa 60
tagccttttg aaagagatac tgggttctct atagtctcct 100
<210>183
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>183
aacttctgat atcattgagt ccatatttag gacctatcca gcaggtaaga agaatcagtt 60
ctttcagatg gttaaaatat atggatatat tctatagtat100
<210>184
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>184
actactagat ttaacagctt tggaagataa accattagat gaggtaagaa gcaataaaag 60
aagttttgag agaaaagagt cttttcctag tcttcaacat 100
<210>185
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>185
gccagcagtc aaaagggtat gggcaaaaaa atatgaacca tttggggctc aagtttctcc 60
aaatacttta tgtgactgca agtactgtat acgcttattt 100
<210>186
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>186
tattagacaa gaaatggaag cttatacacc caagttaact caggtaggtg acttctactg 60
tttgaaggcc agaattccca tagttccttc ctcagtttat 100
<210>187
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>187
tggtcctgct ttcctgttaa tacgccattcctagaagaaa aggttagaac cagttctgaa 60
gacagccaga taattgtggt agtgacttac aagaagtttt 100
<210>188
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>188
agctccacac atggcagtca cggcgtctga tgaagaaaac gtgaggtggc catgatgctt 60
acaggttttg tgagattgag agaactatga cctgcagcaa 100
<210>189
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>189
catggctatg cagactctaa agttagtatt atacattatg tataattgaa ttagaagttt 60
tttaaatgag ttaagttgaa gtgatgtgtt aatatggggc 100
<210>190
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>190
gcagctaaaa ttagagtatc tgttactgga ttgtctgcag aagttcgcgt ttgcactgta 60
cttgctcgtg aaactggtgg tatatatata atttatttaa 100
<210>191
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>191
tgttgaatgt aaaatctgtg gtaagaaaac aactattcat tattcagtaa atcttgaatg 60
acttcttaat ctgtattgct gctaaaatta atgtaaatgt 100
<210>192
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>192
tccagctcct tcaggtgttt gattccagca tgtagtatac attgtatgtg ttaaaaagaa 60
atttgcaact gtgaataaaa ggacttcttt agaagaagct 100
<210>193
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>193
cccctgacat ccataacaaa atctgaaaaa aaagtttaac aatgtttttt cttagaattt 60
actcattaaa atagttcaac aaaatctcac taactagaat 100
<210>194
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>194
taatgtaagc cctggctcag tattgccatc caaatgcctg tagggggaaa aagggtaata 60
tataatgatc tgaaaagtta gagcgggaaa gcatgctatc 100
<210>195
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>195
tacttctcga cttgtatgtc caggcatgtg tcttaaaaga aagataaaat acactccaat 60
taggtacaac aaattatact accaaaaaat ttacccagaa 100
<210>196
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>196
tacaaagtat tccaacaact gtttaaacaa aaaaagacat actagataaa ggcaaaataa 60
caatcataaa gaacacgtcc aactgatgtt tgtgaaacct 100
<210>197
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>197
ttaagtgatc cagattcatc ttctttaaga atctccctat aagtcataat tatttgtttg 60
aaaagacaag ctaaaatgat tactagccca aatgaaatga 100
<210>198
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>198
attcatgaat cgttccaaca aacttgctgt gatagcaagt cacattcaag aaaggtatga 60
ccattgtgattgcttttgct cttcagtgct taatattcat 100
<210>199
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>199
ctcagcaaat gaagttattg ttgaagagat taaagatcta atgaccaaaa gtaacaactt 60
ttaaacattg ttattttgca aatagtgttg attttggagg 100
<210>200
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>200
agggctgctt gcttctgtca tcgaaatctc attgaaattg gttatgtctg ttctgtgtgt 60
ttgtcaagta agttaatgta cctagttttt cttttttttc 100
<210>201
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>201
cgagtaagta tctttgagat tgtgtgggtg gctaatactt cacagctcta gaacattaaa 60
aaatgttttc ctctctgtaa tttcaggaca gcctttaaaa 100
<210>202
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>202
atttctctgc ctccagtgct gaaagccaag aaaaagaaac tgaaagtgtc tgcctgagga 60
taaaatattt tccccatctt ttagagctgt taatagaaat 100
<210>203
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>203
cagcctttgc cacaggctgc tgtagctctg tgggtaaaga aggaattcag caagtaagtc 60
tcagccagat acaaatttct caacagctac atttcccaaa 100
<210>204
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>204
tgacaagtac gccgaggagc gatgggaggt aagcacttgg gagtgtgtgt gtctctgctt 60
gtgcttctac ttcccatggc ccttggggca tggtctccct 100
<210>205
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>205
ttgcagtatt tgcagacagc ccaggtgagg aggcagggcc acttaaccag catgctctgc 60
tcctctcagg tctcactgag agactcctgc ctacagactg 100
<210>206
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>206
gactgtatgc ctacacgggt gaggcgggac agagggcccc tggaagagga ggttgggggt 60
gagggaatgc cagtttatgt tcgtgtttac ctggcagtct 100
<210>207
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>207
aactcggcca agcggctcat ggtggtgacc ccggccgggc acagcgacgt caagcgcttt 60
tggaagcggc agaaacatag ctcctgagag cgcgggactt 100
<210>208
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>208
gaattaatgg accaaaatgc tttttccctt acccagaaat gaaaatactc aatatggacc 60
atttaggaat tataagcagc aactgtgaaa gacttgccac 100
<210>209
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>209
ttgtcatcca ggggtttggc taaggcccga atcacctgtg gtttgtacgg cagcagctgt 60
ggagtcagag gatataatca accttgctca tccaaggcaa 100
<210>210
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>210
gagctgcacc acacagtcag ggcaggacag ggcctccagc agcaaggaaa gaagctaagg 60
ggcaatgggc aaggtagggg atggccacat catgaagatc 100
<210>211
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>211
agacatgagc agagagaagc catcagctgc tgctggacct aattctgggt cactcaggag 60
gcccatgagc tggagaaaaa agagcctttg aggtacatca 100
<210>212
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>212
ctgagggatt tccacctaca gaaaacctgg ccatgtaatg gacccagaga acacttgaac 60
tccaagagaa ccagtacata gtggcagcag ggaccgggac 100
<210>213
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>213
ccatccaaga agaggggcac aatgtgtgtc acactctggg cagctaacct gggggcagag60
tactaggtat gaccaaggag ctaggattct aaagcagccc 100
<210>214
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>214
ctctgacaga cagcaataac gtcactggat tgtgcaacca tattccctgt tgatgagaaa 60
gtgttctctg taaggtttgc ttaaaagcac tttcaggtgt 100
<210>215
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>215
ggtagagagc agccagggtt cctgatgctt ccagtgctgc caccctgctg gaggcgcaga 60
gcagataagc attggctgag cctgggctca cagctctctt 100
<210>216
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>216
taccagtgag cacagctggt ccttgaagcc attcagaggc ctttgatcta gggaagagac 60
agaggccagg ttagaaggaa gccactgcat tccatatccc 100
<210>217
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>217
cacctgcagc tgcctgcaac agcttggcac taggccacac cagtttcatg tccggttcac 60
acaggtggtg cctgcagtct agagaagcag cacatcacag 100
<210>218
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>218
aggatgaggt cttctctctg gataccatgg ggatcattag gtggctggaa aagggagaag 60
ggctgtgggt ttgtgtaaca tttcagacca ccttgaacac 100
<210>219
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>219
tggatgaagc caaaggtgaa gtcagctcct aggctcttta gctctgggaa ggagagaata 60
aggttactat actgtcccac agcacagaaa gtgtgggctt 100
<210>220
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>220
caaaagctgg attgctcgtg cccgagttcg gggttctgga ttctctagag aggacctagg 60
ggaaaacagg atagagagaa cctgcaatta cccagttcaa 100
<210>221
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>221
agcaacttca gggtacaact ctttgaagat cccactgttg acaaggaggt tgagatcagg 60
aaaaaagtgc taaagatgta agtattcctg ctcgaatgat 100
<210>222
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>222
gcaggctttt ttagatgagc tggtatgtat taatgctaat tgtgattgta aaaaacattc 60
ttcaggattt acctttccta gtaggctgga tgatggcatt 100
<210>223
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>223
atatggacca catgttcctg agcttgagat gctaggaaga cttgggtatg tgtcctaaag 60
aactttacat tgaggagctg atatgtggga cttattgctg 100
<210>224
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>224
gcagtacaca ggcatgctgg tctccttcac cccgcggcac ttcaggcaga cctgaaaggg 60
agcagccccg atgggcgcca gccctcccgc gctggccaga100
<210>225
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>225
ctcggttcag cttattcacc tggtttgtga tgttggtgtc cagggacagc acctgcagag 60
accacagccc acatcgggaa ggagctcccg gggcctccct 100
<210>226
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>226
actgcgcctc agcccgtcct tcatgcagtg gtacacggcc acgatgtacg ctgtggagag 60
gcacacacac cacaggccct gagtcgggct gctgcaaaca 100
<210>227
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>227
gtctcctttg aatggatgct gcagaggaag cattgaagac gctgcttcag tgaaatcgac 60
cttgttctca actttccttt atttcccctt gtatctatct 100
<210>228
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>228
gttgtggtactgggtgatct ccttcaccca gcccacgacc atgctcttca ggatcctgaa 60
agagaaggtg cacgacaccc tcgtaccctc agcctcccac 100
<210>229
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>229
tgtggagatg tcctctggta ggttcccaat gggaatgtga aagtacctgc accagggcac 60
aggtcagcac cggggcacat cgccgggtca cagagaccac 100
<210>230
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>230
gtgctctgct gagtacaggg cgccaaggct gggcatctgg ttgctgcgca cctagaccaa 60
cgcaggccac gtcagcctcc ccctgcgcag gaggaagtgg 100
<210>231
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>231
attgaccaca cacacacagc ccaggtgcac cagggcccgg aacagtaacg gaacctggaa 60
gaatcgggca gacaggccgg caagggctgg atggtggggg 100
<210>232
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>232
gtcactgcca acgagcgccc acagcctgaa caggccggcc tggctggtct cgctgatctg 60
aaaggccaca cggacataca gcacatcaca ggacacactg 100
<210>233
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>233
cctccatgtc aggagcactt ggcctcggac tgtcttctga ggcctcggcc atcgtgacct 60
ggaaagaccc agtgaagcct taaatctcag gatctcgggc 100
<210>234
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>234
tctggatggc gcttcccagc cgctcaatgt agtagtccca atccagaatc tgcatgtgca 60
ggaaacgggc acagagaaca gcaggtggca gcagccaaga 100
<210>235
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>235
atcttccagc ttccgagaca tggaacggtt ctcagagatg agctcgaata gctcagagtc 60
aggcatgttg gctgcctaga gaaagacaat gggtaaaaca 100
<210>236
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>236
gaggacggct cagccagctc ctggtactgg tcattggtga agccttcctg agaaacaaga 60
gtgaagaggg ggcagcttca ctcatgatgg cccaaacctg 100
<210>237
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>237
ctgtgaagca gacgatgcca gccatctcca tggagtacca gcgagccctg agaggacacc 60
acaaactggt gggtggggct ggcatggctc ctccaggggg 100
<210>238
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>238
tgagacgctc ttccaccttg gtgatgtgga tcttcttgta ggctttccgg cagtaatcta 60
agcacgacgg agatgggcag agcaggtggg tgagatctcc 100
<210>239
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>239
gtccaccatg gcagagggct gggaggggtg agaaagcact tagggctggg cagagagagc 60
tccgactctg acacgggaag taaagtctca cctgcaggcg 100
<210>240
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>240
ggaagtcaaa ggcggcagga ttctagcaca acagtgagac gacggggtca gaggggaaac 60
acacccacac tagcctgcct caggtttgac gctgtggctg 100
<210>241
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>241
taagtggcga cagcatctga cacagaatac gtggccagag tctgaggaga gaacgccaga 60
gagcagggcc atcaaaaatc aagagcccag ggtcaagtgt 100
<210>242
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>242
gcatgctcag accgtggact gctgcccggg cctccacaaa tggcctgggt tggaaagagg 60
acagacaagc aagtgggcag gtcaggctct aatgcccctt 100
<210>243
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>243
aactcaaaat cttcaatatc ttctgaaaca atctccctgt tggtgatgag gtagccctag 60
ccaagttcat tagcaatcag cacaagtcag aggctgcaaa 100
<210>244
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>244
ggaaaagcat ttcctcggta tctgacattg taccaatgag cctgcaaaac acacagtgtg 60
ctaactagag ttctacatcc aggaaagtct attcttctgt 100
<210>245
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>245
cctcactttg acaagatcct ccacagtgtg gaaggacagc ctgatgtaat ttcgcttcaa 60
acccaccaag tgatttggct ataatgcgaa gagatcacgc 100
<210>246
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>246
actgcactgc ctaagcgctt atcttcatct aaaatctcgg tctacaagag aatcagtcaa 60
cacagacaca agaccatcct ctacacagtt agagaaactt 100
<210>247
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>247
tttatttact aagtcttcac ggaagacagt aatttcctgt gtacagtact gaattctgaa 60
atgaaaacag tagttgaatt tgacttctca gaaaaaaatg 100
<210>248
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>248
gctggtgaat aacctaaaca ataaaagagt aaatgaacaa tacttttcta gtctacaaat 60
caagttaaaa accctttaac catgactttc taataataaa 100
<210>249
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>249
ttggtcatta acagactaga aaaagagaat gcctattttt gactatcata atacacaaag 60
gtgagccaaa agtgaagcaa gagactatac cttctgaaaa 100
<210>250
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>250
aattatcttt tccagtttat cttcaagctc taattcactg atagactgaa gagcttctgt 60
gaggtactta atagcttcac taagaaaagg aaaggaaaaa 100
<210>251
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>251
cttgctcttc cgagtctgtt tttttgtctt tgtccttctt cttttgctct gaggcctcct 60
tcttgccttt ctgctcccgc ctatatgctg taaggacgga 100
<210>252
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>252
agttgttagc actgagagaa gagaaaggct gtcagactcc ctcttgtttg taaggcgtga 60
gtgggaaaag gagcacccag aggtggaacg ggaaagcctg 100
<210>253
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>253
ctgcgaggag accgggggtg agcaaagctg ccgttccagc acctgcttcc ctcctgcccg 60
ttcgtccgcc ccccccgagc tgctcaccgc ctccttgatg 100
<210>254
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>254
agatcccgac gtgacgctag cgggacagga agccatcttc attctggcac gagccgcggt 60
gcgcctgcag cgcgagggca tgcgggagtg ggggaggtgg 100
<210>255
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>255
gctcagcagg gaaaaaggaa aacccttcag aggagagact tgggtagagt ggcactgcag 60
tgtctgggga cagacaaggg agggctgggc tggtttcccc 100
<210>256
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>256
cccacctgcc gccagagagg acaagagccc atcagaggaa tccgccccca cgacgtcccc 60
agagtctgtg tcagggtaag gcgggggcag cagtcccagc 100
<210>257
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>257
ccaggtatcg gagcagccgg ccacggaagc aggtgggtgt gcacatgccg catctgccct 60
ccaggtacct gactcacatt acactccacc ccgcagtgct 100
<210>258
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>258
gaaagaagct atagagaggg taagaggcct ggctgagggg tgactgcagg tgggcaggac 60
ccctaccctc tcctgctcac acttaaccta tcttcccaca 100
<210>259
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>259
gaaaaacttt gtggtggtta tggtgaccaa agtaagtttc aacctcattc tgtatatctt 60
tatgcatgta ggtcttttta aaaatgatga tcacaagtcc 100
<210>260
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>260
agagccagtt tcaacaaccc tgacagagca gtggagtatc ttttaatggt gagaaatatg 60
ttttacttta ctccattctg ttgtttaaga ttaaaatctc 100
<210>261
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>261
ccagcgttac tacagcagat aggtcgagag aatcctcaat tacttcaggt gactaatcag 60
tgtcagtttc acaagtgatt tagagtgtgt cacaatttga 100
<210>262
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>262
ctgccaattt tcttctacag cagaactttg atgaagattg aaagggactt ttttatatct 60
cacacttcac accagtgcat tacactaact tgttcactgg 100
<210>263
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>263
gaattccaaa agtaggtatc tttggttgtt ttgacggggc tttttgactt gcctcaggct 60
gaaaggagcg tggtcttggg ggatggagac atgatacatg 100
<210>264
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>264
ttctttggtc aagtttttcc gcatctcttt cagctcatca ctagccattt cctatgaggt 60
agggggcaat accactcagt tatagacacc ttctatatat 100
<210>265
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>265
atcagctcca attgcaatgt agtcatctaa aaataggcat aaagaattgt caaattattg 60
taacagatta aaagaaaatt ctaataccag gtaattaaac 100
<210>266
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>266
tttctcagtt gatggcccat ctgaaaatta tgaaatctct taagttgcta gcatttgtaa 60
aaactaaaaa ctaaaatact gcgttaacag gctatttgca 100
<210>267
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>267
ttttaaagat ctttgaaaca aagtccagtt tctactagtt aaaacacaaa attaattatc 60
tttagcttac ccattttgtt cttatgaaat tctactttgc 100
<210>268
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>268
tgggagtgga catgcaggct atgggggtgg ggggcactta gaaggagaaa ggcctaaaac 60
tggaatctct tgtccctgag gctggctctg gtctttgtgt 100
<210>269
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>269
cgggcagctc tggcgggctg gaaaacggct cgatgcacag ggcctcaaag gtgtcatctg 60
tggaggaagc agcagagctg caggggggta ttccagctct 100
<210>270
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>270
ccaagagttg gtcatcctga ggagagaagc aggatcttgg gagaggccct acatggggca 60
agtcccaaag acttctgacc agcaactaca cgggaagtca 100
<210>271
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>271
gccggatcat gaggaacacg tcctgggggc ggcgggccgg cgtgagcacg aagcccgggc 60
cccccgcgcg gcccagccgc cccccgccgc ccccggcccg 100
<210>272
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>272
gaccccgcac agcctctgcc gccccccagg gaggcggcac agaggctgag gcaggcgacc 60
acccgggccg tggaagggtg gaatgagaag tttggggagg 100
<210>273
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>273
ctcctcctgc gcgggccagg tgggcccctg ccggtctggc acccctgacc cccgggacgg 60
ggagcagccc tgctgcagta gagacctgcc tgcctctgca 100
<210>274
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>274
aggggaaagg cgcagggtga gtgggcaggc ggcgagcggg aaggggtccc agaggcctca 60
gtgggggagg agaagctgtg ggggggttgt gccctgggcc 100
<210>275
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>275
cttgcctcca ccctcatctg ccaggtgact cccagtgtcc tgtgtgctga gccccctgcc 60
cggcgctgcc acagcctctg cccagagcac tggccggcct 100
<210>276
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>276
gtttgagcct gtgcagcact ggtgccgtgc cccgaggcca gacggccggc tctgtgagcg 60
ccaagaccgg ctgaaggtga ggccgtggcc cgagggcggg 100
<210>277
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>277
ggaagaagag gaggtacccc agcctcacca acctgaaggc tcaggctgat accgcccgcg 60
ctcgcattgg gagaaaagtc ttcgccaagt aagagtggct 100
<210>278
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>278
tgccagctcc tcccgggagg cgtcactcct agggacgggc catgctgcct cagttcccca 60
ccccgggccc ccttgggacc tgtcccagtc ctgtcccgtc 100
<210>279
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>279
cacgtctgcc agaacgcgcc ggtcgtctgc gtggggggca gggcaggggt gggtgtgtgt 60
gcccgtgagc tggctgactc cgccgcagcc cccaaccctg 100
<210>280
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>280
gtacagcagg tacaaggctg ggcggggtag gcggggagag gggagcacgg tcagccgggg 60
ccagtcagaa acccagcccg cccgccaccc cccccatgcc 100
<210>281
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>281
ctgcaggggt ggggatggga aaggttggag ctggttctgg agctgagtcc ggggccccgt 60
ccctccccag ccacaggcag ctcacctgga aggtgccgag 100
<210>282
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>282
tcatccacct gcttgaagtt caccttggtg gccttctcca ggatgacacg ggcctgccgg 60
ggcgggcaga ggcgaggctg agaccctgcc cacctggaca 100
<210>283
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>283
gagctgctcg aagcgggcca ggcgcagctc caggtccaca tcatctggga gccgcgaaca 60
tgtttgtcag gggcggagac ccaggatgca ggtccccgga 100
<210>284
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>284
gtcgcacagc tcgtgccaca gctgcagggc atggggcagt gggggagagt ctcaggctca 60
gtcatggagg gggtggccct cccacccagt tgccggctcc 100
<210>285
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>285
gcacggtcga aggtgcggcg ggtgtgtgtg acgcgcccct ggtccatgag gaactggcag 60
taatctagcc acagacgagg catctggggg tgtggggaga 100
<210>286
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>286
gatgtagcga agccagcatt tgacagagaa ttggttccgc atgatttcct cctcataggg 60
gaggtcctct tcctcctgcc agggccaggg aatgggaaga 100
<210>287
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>287
atgcttcttg actaccccaa acttcaagag acctcttcac aatctacaac acaaaatcca 60
tatttaaata agttgtgatt cagacttgcg aaatattata 100
<210>288
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>288
aatcaaattc cataacaggt cctaagaaaa ggaaaatgaa ctctagtttc cttttttatg 60
actagaacaa tatattttcc tctattttat tagcttatca 100
<210>289
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>289
cgcgggttgc tctaaagccg ccgcctccgg caaagccccg tcggccgccg ccatctctgg 60
cccactccga ggacctagct cccagctcca cgcacgcgca 100
<210>290
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>290
gcttctcctt tttctgcagg caaaaatgaa gtgggagaaa agtgttaagc actgacattt 60
tcaggaaaaa tattaagatg gaaactgtga atgtaaagac 100
<210>291
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>291
acacattccc aaactcgttc cggggcacct gtgtcgggtg agcaagtcag catttggcca 60
gcaggggaac aaggcggcct ggtcctgagc ccttctgatg100
<210>292
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>292
acacaatccc tgtggaacca acacaggaca caaaggtaac tcagtccaca gccccactgc 60
gggaatgcgg gacagtggag agcgcagccc tgcaggctcc 100
<210>293
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>293
ccgcttcagg gcatacagag ggtggttctt atataagcca atggcagtgg gcaaaggctg 60
gtccatgtgt ttagcctgaa actgcaaagg ccagacagac 100
<210>294
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>294
cttcctcgct ggaggagggc ttgctccgtt tctttctgcc tcccttgttc ctcttccctt 60
tggcacttgg cctgcaggtg cccttagcaa aggtttcctc 100
<210>295
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>295
gttccaatga acctggggagaaagcaggca ttccttgtgt cagaggtcag ggcaaagggg 60
aattttcatt tccagccaag aaaataaaaa gagggagtga 100
<210>296
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>296
cgccctccga agatatgtct caaactccag ttttatcttt tcactgcaac aaatagtgaa 60
aaatctggga atgaaggggg gaactgaaac cagactccac 100
<210>297
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>297
ttcatggtag cccctctctt cagatggtgt gccttcttga ggtcacttgg aaagtccctg 60
tgtaaagacc acaggaagga agatgaagaa gactcagaca 100
<210>298
<211>100
<212>DNA
<213> Artificial sequence (chemical Synthesis)
<400>298
tgcgcagttc gcgtccccgc ggctccccgc cggccgcgcg tttccgagcc atgttgcttg 60
tctgggcaaa ttccacttcg cgagtgacgc acccggccgc 100

Claims (7)

1. A kit for detecting effectiveness of a DNA nucleotide excision repair pathway is characterized by comprising a probe library which is composed of probes shown in SEQ ID No. 1-298 and aims at genes related to the DNA nucleotide excision repair pathway.
2. The kit for detecting the effectiveness of a DNA nucleotide excision repair pathway according to claim 1, wherein the genes related to the DNA nucleotide excision repair pathway include LIG1, PCNA, POLD1, POLD2, POLD3, POLD4, RFC1, RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3, RPA4, CCNH, CDK 4, CETN 4, CUL 44, CUL4, DDB 4, ERCC 2H4, GTF2H4, MMS 4, p idle, mnle 4, mnf 2H4, uvoc 4, rpb 4, rpc 4, uvelr 4, rpc 4, uvelf 4, rpc 36.
3. The kit for detecting the effectiveness of a DNA nucleotide excision repair pathway according to claim 1, wherein the probe sequence corresponding to gene LIG1 is shown in SEQ ID No. 1-11, the probe sequence corresponding to gene PCNA is shown in SEQ ID No. 12-15, the probe sequence corresponding to gene POLD1 is shown in SEQ ID No. 16-28, the probe sequence corresponding to gene POLD2 is shown in SEQ ID No. 29-33, the probe sequence corresponding to gene POLD3 is shown in SEQ ID No. 34-37, the probe sequence corresponding to gene POLD4 is shown in SEQ ID No. 38-40, the probe sequence corresponding to gene RFC1 is shown in SEQ ID No. 41-50, the probe sequence corresponding to gene RFC2 is shown in SEQ ID No. 51-54, the probe sequence corresponding to gene 3 is shown in SEQ ID No. 55-58, and the probe sequence corresponding to gene RFC4 is shown in SEQ ID No. 59-62, the probe sequence corresponding to the gene RFC5 is shown as SEQ ID NO. 63-65, the probe sequence corresponding to the gene RPA1 is shown as SEQ ID NO. 66-71, the probe sequence corresponding to the gene RPA2 is shown as SEQ ID NO. 72-75, the probe sequence corresponding to the gene RPA3 is shown as SEQ ID NO. 76-78, the probe sequence corresponding to the gene RPA4 is shown as SEQ ID NO. 79-80, the probe sequence corresponding to the gene CCNH is shown as SEQ ID NO. 81-83, the probe sequence corresponding to the gene CDK7 is shown as SEQ ID NO. 84-86, the probe sequence corresponding to the gene CETN2 is shown as SEQ ID NO. 87-90, the probe sequence corresponding to the gene CUL3 is shown as SEQ ID NO. 91-98, the probe sequence corresponding to the gene CUL4A is shown as SEQ ID NO. 99-CU106, the probe sequence corresponding to the gene L5 is shown as SEQ ID NO. 107-98, and the probe sequence corresponding to DDB 127 is shown as SEQ ID NO. 115-1, the probe sequence corresponding to the gene DDB2 is shown as SEQ ID NO. 128-131, the probe sequence corresponding to the gene ERCC1 is shown as SEQ ID NO. 132-134, the probe sequence corresponding to the gene ERCC2 is shown as SEQ ID NO. 135-144, the probe sequence corresponding to the gene ERCC3 is shown as SEQ ID NO. 145-150, the probe sequence corresponding to the gene ERCC4 is shown as SEQ ID NO. 151-156, the probe sequence corresponding to the gene ERCC5 is shown as SEQ ID NO. 157-165, the probe sequence corresponding to the gene ERCC6 is shown as SEQ ID NO. 166-177, the probe sequence corresponding to the gene ERCC8 is shown as SEQ ID NO. 178-181, the probe sequence corresponding to the gene GTF2H1 is shown as SEQ ID NO. 188, the probe sequence corresponding to the gene GTF2H2 is shown as SEQ ID NO. 189-197, the probe sequence corresponding to the gene GTF2H3 is shown as SEQ ID NO.198, the probe sequence corresponding to the gene GTF2H 198 is shown as SEQ ID NO. 202-207, the probe sequence corresponding to the gene GTF2H5 is shown as SEQ ID number 208, the probe sequence corresponding to the gene MMS19 is shown as SEQ ID No. 209-220, the probe sequence corresponding to the gene MNAT1 is shown as SEQ ID No. 221-223, the probe sequence corresponding to the gene POLE is shown as SEQ ID No. 224-246, the probe sequence corresponding to the gene POLE2 is shown as SEQ ID No. 247-250, the probe sequence corresponding to the gene POLE3 is shown as SEQ ID No. 251-253, the probe sequence corresponding to the gene POLE4 is shown as SEQ ID No. 254-255, the probe sequence corresponding to the gene RAD23A is shown as SEQ ID No. 256-258, the probe sequence corresponding to the gene POLE 23B is shown as SEQ ID No. 259-262, the probe sequence corresponding to the gene RBX1 is shown as SEQ ID No.263, the probe sequence corresponding to the gene TCEA1 is shown as SEQ ID No. 264-266, the probe sequence corresponding to the gene ELOC is shown as SEQ ID NO.267, and the probe sequence corresponding to the gene ELOB is shown as SEQ ID NO. 268-271; the probe sequence corresponding to the gene UVSSA is shown as SEQ ID NO. 272-277; the probe sequence corresponding to the gene XAB2 is shown as SEQ ID NO. 278-286; the probe sequence corresponding to the gene XPA is shown as SEQ ID NO. 287-289; the probe sequence corresponding to the gene XPC is shown in SEQ ID NO. 290-298.
4. A method for detecting a gene associated with a DNA nucleotide excision repair pathway comprising the steps of:
(1) obtaining a DNA sample library of a subject;
(2) hybridizing all probes shown as SEQ ID NO. 1-298 in the kit of claim 1 with the DNA sample library;
(3) and (3) separating the hybridization product in the step (2), releasing the gene segment hybridized with the probe in the kit, and sequencing the separated gene segment by adopting a sequencing technology so as to detect the mutation condition of the gene.
5. The method according to claim 4, wherein the DNA sample library in the step (1) is composed of double-stranded DNA fragments;
the step (1) comprises the following steps: extracting whole genome DNA, and then fragmenting the whole genome DNA; or mRNA is extracted, fragmented, and then double-stranded cDNA is synthesized using the fragmented mRNA as a template.
6. The method according to claim 4, wherein the probe in the step (2) is selectively labeled.
7. The method according to claim 6, wherein the probe in the step (2) is labeled with biotin.
CN201911239846.XA 2019-12-06 2019-12-06 Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway Pending CN110846407A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911239846.XA CN110846407A (en) 2019-12-06 2019-12-06 Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway
CN202011398481.8A CN112375820A (en) 2019-12-06 2020-12-04 Kit for detecting key mutant gene of DNA nucleotide excision repair pathway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911239846.XA CN110846407A (en) 2019-12-06 2019-12-06 Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway

Publications (1)

Publication Number Publication Date
CN110846407A true CN110846407A (en) 2020-02-28

Family

ID=69607852

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911239846.XA Pending CN110846407A (en) 2019-12-06 2019-12-06 Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway
CN202011398481.8A Pending CN112375820A (en) 2019-12-06 2020-12-04 Kit for detecting key mutant gene of DNA nucleotide excision repair pathway

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202011398481.8A Pending CN112375820A (en) 2019-12-06 2020-12-04 Kit for detecting key mutant gene of DNA nucleotide excision repair pathway

Country Status (1)

Country Link
CN (2) CN110846407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807141A (en) * 2022-05-13 2022-07-29 复旦大学附属中山医院 Endothelial cell line for inhibiting XPB expression substance and XPB low expression thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154475A (en) * 2011-01-28 2011-08-17 中国人民解放军第二军医大学 Kit for detecting ERCC1 mRNA (Excision Repair Cross Complement Group 1 Messenger Ribonucleic Acid) expression by using fluorescence quantitative PCR (Polymerase Chain Reaction) technology
CN202519261U (en) * 2012-04-17 2012-11-07 马蓉 ERCC1 (excision repair cross complementing 1) gene polymorphism and enzyme digestion detection kit
CN106834515A (en) * 2017-02-22 2017-06-13 南京世和基因生物技术有限公司 A kind of probe library of the exons mutation of detection MET genes 14, detection method and kit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667254B (en) * 2012-09-18 2017-01-11 南京世和基因生物技术有限公司 Enrichment and detection method of target gene fragment
CN108148891A (en) * 2018-03-05 2018-06-12 重庆市肿瘤研究所 The probe preparation method of DNA of tumor cell injury repair related gene capture sequencing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102154475A (en) * 2011-01-28 2011-08-17 中国人民解放军第二军医大学 Kit for detecting ERCC1 mRNA (Excision Repair Cross Complement Group 1 Messenger Ribonucleic Acid) expression by using fluorescence quantitative PCR (Polymerase Chain Reaction) technology
CN202519261U (en) * 2012-04-17 2012-11-07 马蓉 ERCC1 (excision repair cross complementing 1) gene polymorphism and enzyme digestion detection kit
CN106834515A (en) * 2017-02-22 2017-06-13 南京世和基因生物技术有限公司 A kind of probe library of the exons mutation of detection MET genes 14, detection method and kit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RASHDA ABBASI等: "Laryngeal Cancer Risk Associated With Smoking and Alcohol Consumption Is Modified by Genetic Polymorphisms in ERCC5, ERCC6 and RAD23B but Not by Polymorphisms in Five Other Nucleotide Excision Repair Genes", 《INT. J. CANCER》 *
刘博雅等: "DNA损伤修复机制———解读2015年诺贝尔化学奖", 《中国生物化学与分子生物学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807141A (en) * 2022-05-13 2022-07-29 复旦大学附属中山医院 Endothelial cell line for inhibiting XPB expression substance and XPB low expression thereof

Also Published As

Publication number Publication date
CN112375820A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
KR20150090246A (en) Molecular diagnostic test for cancer
KR20140044341A (en) Molecular diagnostic test for cancer
JP2003155255A (en) DETECTION OF DEFICIENCY OF WILD TYPE p53 GENE
KR101169127B1 (en) Diagnostic methods and kits for hepatacellular carcinoma using comparative genomic hybridization
KR20110015409A (en) Gene expression markers for inflammatory bowel disease
KR20160117606A (en) Molecular diagnostic test for predicting response to anti-angiogenic drugs and prognosis of cancer
CN107743524A (en) The method of prostate cancer prognosis
US20230105008A1 (en) Methods and compositions for identifying castration resistant neuroendocrine prostate cancer
Andjelkovic et al. Coalterations of p53 and PTEN tumor suppressor genes in non–small cell lung carcinoma patients
WO2017112738A1 (en) Methods for measuring microsatellite instability
JP2009050189A (en) Method for predicting effectiveness of anti-cancer agent
US11243206B2 (en) Gender-specific markers for diagnosing prognosis and determining treatment strategy for renal cancer patients
CN110846407A (en) Probe library, detection method and kit for detecting effectiveness of DNA nucleotide excision repair pathway
CA2393864A1 (en) Apparatus and methods for drug screening
US20030175761A1 (en) Identification of genes whose expression patterns distinguish benign lymphoid tissue and mantle cell, follicular, and small lymphocytic lymphoma
CN112359116A (en) Kit for detecting DNA (deoxyribonucleic acid) cross-damage synthesis repair pathway key mutant gene
CN110863049A (en) Probe library, detection method and kit for detecting effectiveness of DNA mismatch repair pathway
CN108624686A (en) A kind of probe library, detection method and the kit of detection BRCA1/2 mutation
CN110863035A (en) Probe library, detection method and kit for detecting effectiveness of DNA direct repair pathway
KR101449562B1 (en) 3.4 kb mitochondrial dna deletion for use in the detection of cancer
CN114525344A (en) Kit for detecting or assisting in detecting tumor-related gene variation and application thereof
Tullo et al. Methods for screening tumors for p53 status and therapeutic exploitation
US20070042364A1 (en) Target genes for inflammatory bowel disease
WO2002020787A1 (en) Mutated aqp, method for detecting cancer using the same, dna chip having oligonucleotides of said mutated aqp sequence
CN110791553A (en) Probe library, detection method and kit for detecting effectiveness of DNA base excision repair pathway

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200228