JPWO2020121504A1 - Friction member, friction material composition for underlaying material and underlaying material - Google Patents

Friction member, friction material composition for underlaying material and underlaying material Download PDF

Info

Publication number
JPWO2020121504A1
JPWO2020121504A1 JP2020559660A JP2020559660A JPWO2020121504A1 JP WO2020121504 A1 JPWO2020121504 A1 JP WO2020121504A1 JP 2020559660 A JP2020559660 A JP 2020559660A JP 2020559660 A JP2020559660 A JP 2020559660A JP WO2020121504 A1 JPWO2020121504 A1 JP WO2020121504A1
Authority
JP
Japan
Prior art keywords
friction
underlaying
mass
underlaying material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020559660A
Other languages
Japanese (ja)
Other versions
JP7184094B2 (en
Inventor
良尚 高橋
良尚 高橋
光朗 海野
光朗 海野
真理 光本
真理 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2020121504A1 publication Critical patent/JPWO2020121504A1/en
Application granted granted Critical
Publication of JP7184094B2 publication Critical patent/JP7184094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

上張り材、下張り材及びバックプレートをこの順に有する摩擦部材であって、前記下張り材が、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、前記下張り材が、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなるものである、摩擦部材に関する。A friction member having an upholstery material, an underlaying material, and a back plate in this order, and the underlaying material does not contain copper, or even if it contains copper, the copper content is less than 0.5% by mass as a copper element. The present invention relates to a friction member, wherein the underlaying material is formed by blending two or more kinds of carbonaceous particles having different average particle diameters (D50).

Description

本発明は、摩擦部材、下張り材用摩擦材組成物、下張り材用摩擦材組成物の製造方法、及び下張り材に関する。 The present invention relates to a friction member, a friction material composition for an underlaying material, a method for producing a friction material composition for an underlaying material, and an underlaying material.

二輪車、四輪自動車等に取り付けられている制動用の摩擦部材であるディスクブレーキパッドとして、鉄等の金属からなるバックプレートの一方の面に下張り材を介して上張り材が固着された摩擦部材が用いられている。
ディスクブレーキパッドは、使用時における水分の付着等に起因する錆の発生を抑制するために、バックプレート及び摩擦材の側面に塗料を塗装して用いられている。
ディスクブレーキパッドの塗装方法の一つに粉体塗装法がある。粉体塗装法は、ディスクブレーキパッドを帯電させ、粉体塗料を表面に電気的に付着させた後、焼き付け炉で加熱し、粉体塗料を溶融させてディスクブレーキパッドの表面に塗膜を形成する方法である(例えば、特許文献1参照)。
As a disc brake pad, which is a friction member for braking that is attached to two-wheeled vehicles, four-wheeled vehicles, etc., a friction member in which an upholstery material is fixed to one surface of a back plate made of metal such as iron via an underlaying material. Is used.
Disc brake pads are used by painting the sides of the back plate and friction material with paint in order to suppress the generation of rust caused by the adhesion of moisture during use.
There is a powder coating method as one of the coating methods for disc brake pads. In the powder coating method, the disc brake pad is charged, the powder paint is electrically adhered to the surface, and then heated in a baking furnace to melt the powder paint to form a coating film on the surface of the disc brake pad. (See, for example, Patent Document 1).

近年、摩擦材に使用される銅が、ブレーキの摩耗粉として飛散し、河川、湖、海洋等を汚染することが示唆されており、国内及び諸外国において、摩擦材における銅の使用量を制限する動きが高まっている。しかしながら、銅は摩擦材を構成する素材の中でも導電性が高いものであり、銅の使用を制限すると、ディスクブレーキパッドの導電性が低下する。導電性の低下は、粉体塗装時における塗料の静電付着量の減少を招き、その結果、塗装の造膜量が減少して耐食性を備えた良好な塗膜を得ることが難しくなる。 In recent years, it has been suggested that copper used for friction materials scatters as abrasion powder for brakes and contaminates rivers, lakes, oceans, etc., limiting the amount of copper used in friction materials in Japan and other countries. The movement to do is increasing. However, copper has high conductivity among the materials constituting the friction material, and if the use of copper is restricted, the conductivity of the disc brake pad decreases. The decrease in conductivity causes a decrease in the amount of electrostatic adhesion of the paint during powder coating, and as a result, the amount of film formation in the coating is reduced, making it difficult to obtain a good coating film having corrosion resistance.

銅を含まない摩擦材において良好な塗膜を得る手段として、摩擦材組成物に特定の黒鉛を含有させる、あるいは黒鉛量を増量することで摩擦材の導電性を高める方法が提案されている(例えば、特許文献2参照)。しかしながら、摩擦材中の黒鉛を増量すると、黒鉛が有する潤滑作用が高まりすぎ、摩擦係数が低下する問題が生じるため、黒鉛の増量による導電性の向上には限界がある。 As a means for obtaining a good coating film on a friction material containing no copper, a method of increasing the conductivity of the friction material by adding a specific graphite to the friction material composition or increasing the amount of graphite has been proposed. For example, see Patent Document 2). However, if the amount of graphite in the friction material is increased, the lubricating action of graphite is excessively increased, causing a problem that the friction coefficient is lowered. Therefore, there is a limit to the improvement of conductivity by increasing the amount of graphite.

また、摩擦材表面の導電性を高める方法として、塗装工程前に、粉体塗装面の一部又は全部に炭素系粒子分散液を塗布する塗装前処理工程を追加する摩擦材の製造方法が提案されている(特許文献3参照)。 Further, as a method for increasing the conductivity of the surface of the friction material, a method for manufacturing a friction material is proposed in which a pre-coating process of applying a carbon-based particle dispersion liquid to a part or all of the powder-coated surface is added before the coating process. (See Patent Document 3).

特開2003−166574号公報Japanese Unexamined Patent Publication No. 2003-166574 国際公開2014/147807号International Publication 2014/147807 特開2018−146106号公報JP-A-2018-146106

特許文献3の方法によると、摩擦材組成物中の黒鉛の含有量を増量しなくても、粉体塗装時における塗料の静電付着量が十分であり、塗料の造膜が良好であるディスクブレーキパッドを提供することができる。しかしながら、ディスクブレーキパッドの生産性の観点からは、より簡便な方法で、良好な摩擦性能を有しながらも、導電性を高め、粉体塗装性を向上させる技術が望まれている。 According to the method of Patent Document 3, a disc in which the electrostatic adhesion amount of the paint at the time of powder coating is sufficient and the film formation of the paint is good without increasing the content of graphite in the friction material composition. Brake pads can be provided. However, from the viewpoint of the productivity of disc brake pads, a technique for improving conductivity and powder coatability while having good frictional performance by a simpler method is desired.

本発明は、上記事情に鑑みなされたものであり、上張り材、下張り材及びバックプレートをこの順に有する摩擦部材であって、下張り材が銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満である組成においても、良好な摩擦性能を有しながら、粉体塗装性に優れる摩擦部材、該摩擦部材に用いられる下張り材用摩擦材組成物及びその製造方法、並びに下張り材を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a friction member having an upholstery material, an underlaying material, and a back plate in this order, and the underlaying material does not contain copper, or even if it contains copper. A friction member having good friction performance and excellent powder coatability even when the content is less than 0.5% by mass as a copper element, a friction material composition for an underlaying material used for the friction member, and a friction material composition for an underlaying material used for the friction member. It is an object of the present invention to provide the manufacturing method and the underlaying material.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、下記の本発明によって、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、下記[1]〜[15]に関する。
[1]上張り材、下張り材及びバックプレートをこの順に有する摩擦部材であって、
前記下張り材が、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、
且つ、前記下張り材が、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなるものである、摩擦部材。
[2]前記2種以上の炭素質粒子のうち、少なくとも1種の炭素質粒子が、平均粒子径(D50)が8〜60μmの炭素質粒子(A)であり、且つ、別の少なくとも1種の炭素質粒子が、平均粒子径(D50)が7μm以下の炭素質粒子(B)である、上記[1]に記載の摩擦部材。
[3]前記炭素質粒子(A)の配合量が、前記下張り材100質量部に対して、1〜11質量部であり、前記炭素質粒子(B)の配合量が、前記下張り材100質量部に対して、0.1〜10質量部である、上記[1]又は[2]に記載の摩擦部材。
[4]前記2種以上の炭素質粒子が、黒鉛である、上記[1]〜[3]のいずれかに記載の摩擦部材。
[5]銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなる、下張り材用摩擦材組成物。
[6]前記2種以上の炭素質粒子のうち、少なくとも1種の炭素質粒子が、平均粒子径(D50)が8〜60μmの炭素質粒子(A)であり、且つ、別の少なくとも1種の炭素質粒子が、平均粒子径(D50)が7μm以下の炭素質粒子(B)である、上記[5]に記載の下張り材用摩擦材組成物。
[7]前記炭素質粒子(A)の配合量が、前記下張り材用摩擦材組成物100質量部に対して、1〜11質量部であり、前記炭素質粒子(B)の配合量が、前記下張り材用摩擦材組成物100質量部に対して、0.1〜10質量部である、上記[6]に記載の下張り材用摩擦材組成物。
[8]前記2種以上の炭素質粒子が、黒鉛である、上記[5]〜[7]のいずれかに記載の下張り材用摩擦材組成物。
[9]上記[5]〜[8]のいずれかに記載の下張り材用摩擦材組成物を成形してなる下張り材。
[10]上記[5]〜[8]のいずれかに記載の下張り材用摩擦材組成物を製造する方法であって、
平均粒子径(D50)が異なる2種以上の炭素質粒子を配合する、下張り材用摩擦材組成物の製造方法。
[11]銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、炭素質粒子を含有し、該炭素質粒子が、体積基準の頻度分布を示す粒径分布曲線において、2つ以上のピークを有するものである、下張り材用摩擦材組成物。
[12]前記2つ以上のピークが、8〜60μmの範囲に極大を有する第1のピークと、7μm以下の範囲に極大を有する第2のピークと、を含むものである、上記[11]に記載の下張り材用摩擦材組成物。
[13]前記炭素質粒子が、黒鉛である、上記[11]又は[12]に記載の下張り材用摩擦材組成物。
[14]上記[11]〜[13]のいずれかに記載の下張り材用摩擦材組成物を成形してなる下張り材。
[15]上張り材、上記[14]に記載の下張り材及びバックプレートをこの順に有する摩擦部材。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by the following invention, and have completed the present invention.
That is, the present invention relates to the following [1] to [15].
[1] A friction member having an upholstery material, an underlaying material, and a back plate in this order.
The underlaying material does not contain copper, or even if it contains copper, the copper content is less than 0.5% by mass as a copper element.
Moreover, the friction member is formed by blending two or more kinds of carbonaceous particles having different average particle diameters (D 50) in the underlaying material.
[2] Of the two or more types of carbonaceous particles, at least one type of carbonic particles is carbonaceous particles (A) having an average particle diameter (D 50 ) of 8 to 60 μm, and at least another one. The friction member according to the above [1], wherein the carbonaceous particles of the seed are carbonic particles (B) having an average particle diameter (D 50) of 7 μm or less.
[3] The blending amount of the carbonic particles (A) is 1 to 11 parts by mass with respect to 100 parts by mass of the underlaying material, and the blending amount of the carbonic particles (B) is 100 parts by mass of the underlaying material. The friction member according to the above [1] or [2], which is 0.1 to 10 parts by mass with respect to the parts.
[4] The friction member according to any one of the above [1] to [3], wherein the two or more kinds of carbonaceous particles are graphite.
[5] Two or more kinds of carbonaceous particles that do not contain copper, or even if they contain copper, the content of copper is less than 0.5% by mass as a copper element and the average particle size (D 50) is different. Friction material composition for underlaying material, which is made by blending.
[6] Of the two or more types of carbonaceous particles, at least one type of carbonic particles is carbonaceous particles (A) having an average particle diameter (D 50 ) of 8 to 60 μm, and at least another one. The friction material composition for an underlaying material according to the above [5], wherein the carbonaceous particles of the seed are carbonic particles (B) having an average particle diameter (D 50) of 7 μm or less.
[7] The blending amount of the carbonic particles (A) is 1 to 11 parts by mass with respect to 100 parts by mass of the friction material composition for the underlaying material, and the blending amount of the carbonic particles (B) is The friction material composition for an underlaying material according to the above [6], which is 0.1 to 10 parts by mass with respect to 100 parts by mass of the friction material composition for an underlaying material.
[8] The friction material composition for an underlaying material according to any one of the above [5] to [7], wherein the two or more kinds of carbonaceous particles are graphite.
[9] An underlaying material obtained by molding the friction material composition for an underlaying material according to any one of the above [5] to [8].
[10] A method for producing a friction material composition for an underlaying material according to any one of the above [5] to [8].
A method for producing a friction material composition for an underlaying material, which comprises two or more kinds of carbonaceous particles having different average particle diameters (D 50).
[11] Copper is not contained, or even if it is contained, the content of copper is less than 0.5% by mass as a copper element, and carbonaceous particles are contained, and the carbonaceous particles are based on the volume. A friction material composition for an underlaying material, which has two or more peaks in a particle size distribution curve showing a frequency distribution.
[12] The above-mentioned [11], wherein the two or more peaks include a first peak having a maximum in the range of 8 to 60 μm and a second peak having a maximum in the range of 7 μm or less. Friction material composition for underlayment material.
[13] The friction material composition for an underlaying material according to the above [11] or [12], wherein the carbonaceous particles are graphite.
[14] An underlaying material obtained by molding the friction material composition for an underlaying material according to any one of the above [11] to [13].
[15] A friction member having an upholstery material, an underlaying material according to the above [14], and a back plate in this order.

本発明によると、上張り材、下張り材及びバックプレートをこの順に有する摩擦部材であって、下張り材が銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満である組成においても、良好な摩擦性能を有しながら、粉体塗装性に優れる摩擦部材、該摩擦部材に用いられる下張り材用摩擦材組成物及びその製造方法、並びに下張り材を提供することができる。 According to the present invention, it is a friction member having an upholstery material, an underlaying material and a back plate in this order, and the underlaying material does not contain copper, or even if the underlaying material contains copper, the copper content is 0.5 as a copper element. Provided are a friction member having good friction performance and excellent powder coatability even in a composition of less than mass%, a friction material composition for an underlaying material used for the friction member, a method for producing the same, and an underlaying material. can do.

ディスクブレーキパッドを示す模式図(上面図)である。It is a schematic view (top view) which shows the disc brake pad. 図1におけるA−A断面の模式図である。It is a schematic diagram of the AA cross section in FIG.

以下、本発明について詳細に説明する。但し、以下の実施形態において、その構成要素は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。さらに、本明細書において、下張り材又は下張り材用摩擦材組成物中の各成分の含有量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、下張り材又は下張り材用摩擦材組成物中に存在する当該複数種の物質の合計の含有量を意味する。
また、本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
Hereinafter, the present invention will be described in detail. However, in the following embodiments, the components are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. Further, in the present specification, the content of each component in the underlaying material or the friction material composition for the underlaying material is the underlaying material or the underlaying material when a plurality of substances corresponding to the respective components are present, unless otherwise specified. It means the total content of the plurality of kinds of substances present in the friction material composition for materials.
The present invention also includes aspects in which the items described in the present specification are arbitrarily combined.

[摩擦部材]
本実施形態の摩擦部材は、
上張り材、下張り材及びバックプレートをこの順に有する摩擦部材であって、
前記下張り材が、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、
且つ、前記下張り材が、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなるものである、摩擦部材である。
[Friction member]
The friction member of this embodiment is
A friction member having an upholstery material, an underlaying material, and a back plate in this order.
The underlaying material does not contain copper, or even if it contains copper, the copper content is less than 0.5% by mass as a copper element.
Moreover, the underlaying material is a friction member formed by blending two or more kinds of carbonaceous particles having different average particle diameters (D 50).

図1及び図2を参照しながら本実施形態の摩擦部材の構成を説明すると、本実施形態の摩擦部材4は、上張り材1、下張り材2及びバックプレート3をこの順に有する。
ここで、上張り材1は、摩擦部材4の摩擦面となる摩擦材であり、下張り材2は、摩擦部材4の摩擦面となる上張り材1とバックプレート3との間に介在し、剪断強度及び耐クラック性向上を目的とした層のことである。但し、本実施形態の摩擦部材は、図1及び図2の構成に限定されるものではなく、例えば、バックプレート3と下張り材2との間に、バックプレート3の接着効果を高めるための表面改質を目的としたプライマー層を介在させた摩擦部材であってもよく、前記バックプレート3において、前記下張り材2を有する側とは反対側にシムを有する摩擦部材であってもよい。シムは摩擦部材の制振性向上のために用いられるスペーサーである。
以下、本実施形態の摩擦部材を構成する各部材について説明する。
Explaining the configuration of the friction member of the present embodiment with reference to FIGS. 1 and 2, the friction member 4 of the present embodiment has an upholstery member 1, an underlayment member 2, and a back plate 3 in this order.
Here, the upholstery member 1 is a friction material which is a friction surface of the friction member 4, and the underlay material 2 is interposed between the upholstery material 1 which is a friction surface of the friction member 4 and the back plate 3. A layer intended to improve shear strength and crack resistance. However, the friction member of the present embodiment is not limited to the configurations of FIGS. 1 and 2, and for example, a surface for enhancing the adhesive effect of the back plate 3 between the back plate 3 and the underlaying material 2. It may be a friction member having a primer layer interposed therebetween for the purpose of modification, or may be a friction member having a shim on the side of the back plate 3 opposite to the side having the underlaying material 2. The shim is a spacer used to improve the vibration damping property of the friction member.
Hereinafter, each member constituting the friction member of the present embodiment will be described.

<下張り材>
本実施形態の摩擦部材が有する下張り材は、
銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなるものである。
本実施形態の摩擦部材が有する下張り材は、上記炭素質粒子を含有することによって、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満である組成においても、優れた摩擦性能を有しながらも、良好な粉体塗装が可能となる。その原因については定かではないが、次にように考えられる。
黒鉛に代表される炭素質粒子はそれ自体が導電体であるため、その粒子径が大きい程、導電パスは形成され易くなる。一方、炭素質粒子の粒子サイズが大きくなる程、形成される導電パスは局所的なものとなり、摩擦材全体としての導電性の均質性は十分ではなくなる傾向にある。これに対して、本実施形態の摩擦部材が有する下張り材においては、相対的に大きいサイズの炭素質粒子を高頻度で含有することで導電パスを適切に形成しつつ、該炭素質粒子よりも相対的に小さいサイズの炭素質粒子を高頻度で含有させることによって、摩擦材全体の導電性を均質に保ちながら向上させることができ、これによって、多量の黒鉛を添加せずとも良好な粉体塗装が可能になったものと推測される。
<Underlay material>
The underlaying material included in the friction member of the present embodiment is
Contains two or more types of carbonaceous particles that do not contain copper, or even if they do, the copper content is less than 0.5% by mass as a copper element and the average particle size (D 50) is different. It is made up of.
The underlaying material contained in the friction member of the present embodiment does not contain copper by containing the above-mentioned carbonaceous particles, or even if it contains copper, the content of copper is less than 0.5% by mass as a copper element. In terms of composition, good powder coating is possible while having excellent frictional performance. The cause is not clear, but it is thought to be as follows.
Since carbonaceous particles typified by graphite are themselves conductors, the larger the particle size, the easier it is for a conductive path to be formed. On the other hand, as the particle size of the carbonaceous particles becomes larger, the formed conductive path becomes more local, and the homogeneity of the conductivity of the friction material as a whole tends to be insufficient. On the other hand, in the underlaying material of the friction member of the present embodiment, the conductive path is appropriately formed by containing the relatively large size carbonaceous particles at a high frequency, and the underlaying material is larger than the carbonic particles. Frequent inclusion of relatively small size carbonaceous particles can improve the conductivity of the entire friction material while maintaining homogeneity, which allows good powder without the addition of large amounts of graphite. It is presumed that painting became possible.

(炭素質粒子)
配合する炭素質粒子の種類の数は、平均粒子径(D50)が異なる2種以上であればよく、2種であることが好ましい。但し、所望する性能に応じて、3種以上であってもよく、4種以上であってもよく、また、6種以下であってもよく、5種以下であってもよい。
本実施形態において、炭素質粒子の平均粒子径はミー(Mie)散乱理論に基づくレーザー回折散乱法により測定することができる。具体的にはレーザー回折散乱式粒度分布測定装置により、炭素質粒子の粒度分布を体積基準で作成し、そのメディアン径を平均粒子径とすることで測定することができる。測定サンプルは、イオン交換水に添加した炭素質粒子を50〜300Wの超音波によって1〜10分間分散処理させたものを使用することができる。炭素質粒子の分散性を高めるため、界面活性剤(例えば東京化成工業株式会社製「Tween−20」)をイオン交換水100質量%に対して0.5〜5質量%添加することができる。レーザー回折散乱式粒度分布測定装置としては、株式会社堀場製作所製「LA−950」等を使用することができる
(Carbonate particles)
The number of types of carbonaceous particles to be blended may be two or more having different average particle diameters (D 50), and is preferably two. However, depending on the desired performance, the number may be 3 or more, 4 or more, 6 or less, or 5 or less.
In this embodiment, the average particle size of the carbonaceous particles can be measured by a laser diffraction scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of carbonaceous particles on a volume basis with a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, carbonaceous particles added to ion-exchanged water can be dispersed by ultrasonic waves of 50 to 300 W for 1 to 10 minutes. In order to enhance the dispersibility of the carbonaceous particles, a surfactant (for example, "Tween-20" manufactured by Tokyo Chemical Industry Co., Ltd.) can be added in an amount of 0.5 to 5% by mass based on 100% by mass of ion-exchanged water. As the laser diffraction / scattering type particle size distribution measuring device, "LA-950" manufactured by HORIBA, Ltd. or the like can be used.

前記2種以上の炭素質粒子のうち、少なくとも1種の炭素質粒子は、平均粒子径(D50)が8〜60μmである炭素質粒子(A)であることが好ましい。炭素質粒子(A)の平均粒子径(D50)は、下張り材の耐摩耗性向上の観点からは、10〜55μmが好ましく、20〜50μmがより好ましく、30〜45μmがさらに好ましい。また、炭素質粒子(A)の平均粒子径(D50)は、導電性付与の観点からは、8〜45μmが好ましく、9〜30μmがより好ましく、10〜25μmがさらに好ましい。Of the two or more types of carbonaceous particles, at least one type of carbonic particles is preferably carbonaceous particles (A) having an average particle diameter (D 50) of 8 to 60 μm. The average particle size (D 50 ) of the carbonaceous particles (A) is preferably 10 to 55 μm, more preferably 20 to 50 μm, and even more preferably 30 to 45 μm from the viewpoint of improving the wear resistance of the underlaying material. The average particle size (D 50 ) of the carbonaceous particles (A) is preferably 8 to 45 μm, more preferably 9 to 30 μm, and even more preferably 10 to 25 μm from the viewpoint of imparting conductivity.

また、前記2種以上の炭素質粒子のうち、少なくとも1種の炭素質粒子は、平均粒子径(D50)が7μm以下である炭素質粒子(B)であることが好ましい。炭素質粒子(B)の平均粒子径(D50)は、6μm以下がより好ましく、5μm以下がさらに好ましく、4μm以下が特に好ましい。炭素質粒子(B)の平均粒子径(D50)は、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよい。Further, among the two or more kinds of carbonaceous particles, at least one kind of carbonic particles is preferably carbonaceous particles (B) having an average particle diameter (D 50) of 7 μm or less. The average particle size (D 50 ) of the carbonaceous particles (B) is more preferably 6 μm or less, further preferably 5 μm or less, and particularly preferably 4 μm or less. The average particle size (D 50 ) of the carbonaceous particles (B) may be 0.1 μm or more, 0.5 μm or more, or 1 μm or more.

前記2種以上の炭素質粒子として、炭素質粒子(A)と炭素質粒子(B)とを配合することが好ましい。そのとき、炭素質粒子(A)の平均粒子径(D50)と、炭素質粒子(B)の平均粒子径(D50)との差は、下張り材への導電性付与の観点から、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。また、同様の観点から、10μm以上であってもよく、20μm以上であってもよく、30μm以上であってもよい。
また上記の差は、炭素質粒子の下張り材内での偏析防止の観点から、50μm以下が好ましく、45μm以下がより好ましく、40μm以下がさらに好ましい。また、同様の観点から、30μm以下であってもよく、20μm以下であってもよく、10μm以下であってもよい。
As the two or more kinds of carbonaceous particles, it is preferable to blend the carbonic particles (A) and the carbonic particles (B). At that time, the difference between the average particle size (D 50 ) of the carbonaceous particles (A) and the average particle size (D 50 ) of the carbonic particles (B) is 1 μm from the viewpoint of imparting conductivity to the underlay material. The above is preferable, 3 μm or more is more preferable, and 5 μm or more is further preferable. Further, from the same viewpoint, it may be 10 μm or more, 20 μm or more, or 30 μm or more.
Further, the above difference is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less, from the viewpoint of preventing segregation of the carbonic particles in the underlaying material. Further, from the same viewpoint, it may be 30 μm or less, 20 μm or less, or 10 μm or less.

本実施形態の摩擦部材が有する下張り材においては、炭素質粒子として、炭素質粒子(A)及び炭素質粒子(B)以外の炭素質粒子も配合してもよいが、配合しなくてもよい。 In the underlaying material of the friction member of the present embodiment, carbonaceous particles other than the carbonic particles (A) and the carbonic particles (B) may be blended as the carbonaceous particles, but may not be blended. ..

下張り材中における炭素質粒子(A)の配合量は、下張り材100質量部に対して、1〜11質量部が好ましく、2〜10質量部がより好ましく、3〜9質量部がさらに好ましい。
下張り材中における炭素質粒子(B)の配合量は、下張り材100質量部に対して、0.1〜10質量部が好ましく、0.3〜7質量部がより好ましく、0.5〜5質量部がさらに好ましい。
下張り材中における炭素質粒子の合計配合量は、下張り材100質量部に対して、3〜11.5質量部が好ましく、5〜11質量部がより好ましく、7〜10.5質量部がさらに好ましく、7.5〜10質量部が特に好ましい。
The blending amount of the carbonaceous particles (A) in the underlaying material is preferably 1 to 11 parts by mass, more preferably 2 to 10 parts by mass, and even more preferably 3 to 9 parts by mass with respect to 100 parts by mass of the underlaying material.
The blending amount of the carbonaceous particles (B) in the underlaying material is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 7 parts by mass, and 0.5 to 5 parts by mass with respect to 100 parts by mass of the underlaying material. Parts by mass are even more preferred.
The total amount of carbonaceous particles in the underlayment is preferably 3 to 11.5 parts by mass, more preferably 5 to 11 parts by mass, and further 7 to 10.5 parts by mass with respect to 100 parts by mass of the underlay material. Preferably, 7.5 to 10 parts by mass is particularly preferable.

本実施形態において、炭素質粒子としては、例えば、カーボンブラック、コークス、黒鉛、膨張黒鉛、膨張化黒鉛、易黒鉛、難黒鉛等が挙げられ、これらの中でも、耐摩耗性及び導電性に優れるという観点から、黒鉛であることが好ましい。
黒鉛の種類は特に限定されず、人造黒鉛であってもよく、天然黒鉛であってもよく、人造黒鉛と天然黒鉛とを併用してもよい。
炭素質粒子の形状は特に限定されず、例えば、球状、板状、柱状、鱗片状、繊維状、不定形状、ストラクチャー構造を有するもの等が挙げられ、これらのうちの1つの形状を有する炭素質粒子と、上記1つの形状とは異なる形状を有する炭素質粒子とを混合して用いてもよい。これらの中でも、炭素質粒子の形状は、導電性付与の観点から、球状、不定形状、繊維状が好ましい。
In the present embodiment, examples of the carbonaceous particles include carbon black, coke, graphite, expanded graphite, expanded graphite, easy graphite, difficult graphite, and the like, and among these, it is said that they are excellent in abrasion resistance and conductivity. From the viewpoint, graphite is preferable.
The type of graphite is not particularly limited, and may be artificial graphite, natural graphite, or a combination of artificial graphite and natural graphite.
The shape of the carbonaceous particles is not particularly limited, and examples thereof include spherical, plate-like, columnar, scaly, fibrous, amorphous, and structural structures, and carbonaceous particles having one of these shapes. The particles and carbonaceous particles having a shape different from the above one shape may be mixed and used. Among these, the shape of the carbonaceous particles is preferably spherical, indefinite, or fibrous from the viewpoint of imparting conductivity.

本実施形態の摩擦部材が有する下張り材は、さらに、結合材、有機充填材、炭素質粒子以外の無機充填材(以下、単に「無機充填材」ともいう)及び繊維基材からなる群から選択される1種以上を含有することが好ましい。 The underlaying material contained in the friction member of the present embodiment is further selected from the group consisting of a binder, an organic filler, an inorganic filler other than carbonaceous particles (hereinafter, also simply referred to as “inorganic filler”), and a fiber base material. It is preferable to contain one or more kinds of the above.

(結合材)
結合材は、炭素質粒子、有機充填材、無機充填材、繊維基材等を結合して一体化し、所定の形状と強度を与える機能を有する。
結合材としては特に制限はなく、下張り材に通常用いられる結合材を用いることができる。
結合剤としては、例えば、熱硬化性樹脂が好適に用いられる。
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂等が挙げられる。フェノール樹脂は、未変性フェノール樹脂であってもよく、変性フェノール樹脂、エラストマー分散フェノール樹脂等であってもよく、変性フェノール樹脂としては、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂等が挙げられる。エラストマー分散フェノール樹脂としては、アクリルエラストマー分散フェノール樹脂、シリコーンエラストマー分散フェノール樹脂等が挙げられる。これらの中でも、良好な耐熱性、成形性及び摩擦係数を与えるという観点から、未変性フェノール樹脂、アクリル変性フェノール樹脂、シリコーン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂が好ましい。
結合材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Binder)
The binder has a function of binding and integrating carbonaceous particles, an organic filler, an inorganic filler, a fiber base material, and the like to give a predetermined shape and strength.
The binder is not particularly limited, and a binder usually used for the underlayment can be used.
As the binder, for example, a thermosetting resin is preferably used.
Examples of the thermosetting resin include phenol resin, epoxy resin, polyimide resin, melamine resin and the like. The phenol resin may be an unmodified phenol resin, a modified phenol resin, an elastomer-dispersed phenol resin, or the like, and the modified phenol resin includes an acrylic-modified phenol resin, a silicone-modified phenol resin, a cashew-modified phenol resin, and the like. Examples thereof include epoxy-modified phenolic resins and alkylbenzene-modified phenolic resins. Examples of the elastomer-dispersed phenol resin include an acrylic elastomer-dispersed phenol resin and a silicone elastomer-dispersed phenol resin. Among these, an unmodified phenol resin, an acrylic-modified phenol resin, a silicone-modified phenol resin, and an alkylbenzene-modified phenol resin are preferable from the viewpoint of providing good heat resistance, moldability, and friction coefficient.
As the binder, one type may be used alone, or two or more types may be used in combination.

下張り材中における結合材の含有量は、下張り材100質量部に対して、5〜30質量部が好ましく、7〜25質量部がより好ましく、9〜20質量部がさらに好ましく、10〜15質量部が特に好ましい。結合材の含有量を上記範囲とすることで、下張り材の強度を保ち、弾性率が高くなることによる鳴き等の制振性悪化をより抑制できる。 The content of the binder in the underlaying material is preferably 5 to 30 parts by mass, more preferably 7 to 25 parts by mass, further preferably 9 to 20 parts by mass, and 10 to 15 parts by mass with respect to 100 parts by mass of the underlaying material. Part is particularly preferable. By setting the content of the binder within the above range, the strength of the underlaying material can be maintained, and deterioration of vibration damping properties such as squealing due to an increase in elastic modulus can be further suppressed.

(有機充填材)
有機充填材は、制振性、耐摩耗性等を向上させるための摩擦調整剤としての機能を発現し得るものである。ここで、本実施形態おいて、有機充填材は繊維形状のもの(例えば後述の有機繊維)を含まない。有機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Organic filler)
The organic filler can exhibit a function as a friction modifier for improving vibration damping property, wear resistance and the like. Here, in the present embodiment, the organic filler does not include those having a fiber shape (for example, organic fibers described later). As the organic filler, one type may be used alone, or two or more types may be used in combination.

有機充填材としては、カシューパーティクル、ゴム、メラミンダスト等の有機充填材を含有していてもよい。これらの中でも、摩擦係数の安定性及び耐摩耗性を良好にする観点並びに鳴きを抑制する観点から、カシューパーティクル、ゴムが好ましい。カシューパーティクル及びゴムは併用してもよいし、カシューパーティクルをゴムで被覆したものを用いてもよい。
有機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
The organic filler may contain an organic filler such as cashew particles, rubber, and melamine dust. Among these, cashew particles and rubber are preferable from the viewpoint of improving the stability and wear resistance of the friction coefficient and suppressing squeal. Cashew particles and rubber may be used in combination, or cashew particles coated with rubber may be used.
As the organic filler, one type may be used alone, or two or more types may be used in combination.

カシューパーティクルは、カシューナッツシェルオイルを硬化させたものを粉砕して得られ、一般的に、カシューダストと称されることもある。
カシューパーティクルは、一般的に、硬化反応に使用する硬化剤の種類に応じて、茶系、茶黒系、黒系等に分類される。カシューパーティクルは、分子量等を調整することで、耐熱性及び音振性、さらに相手材であるロータへの被膜形成性等を制御し易くすることが可能である。
カシューパーティクルの平均粒子径は、分散性の観点から、850μm以下が好ましく、750μm以下がより好ましく、600μm以下がさらに好ましい。カシューパーティクルの平均粒子径の下限値に特に制限はなく、200μm以上であってもよく、300μm以上であってもよく、400μm以上であってもよい。
Cashew particles are obtained by crushing hardened cashew nut shell oil, and are also commonly referred to as cashew dust.
Cashew particles are generally classified into brown-based, brown-black-based, black-based, and the like according to the type of curing agent used in the curing reaction. By adjusting the molecular weight and the like of the cashew particles, it is possible to easily control the heat resistance, the sound vibration property, and the film forming property on the rotor which is the mating material.
From the viewpoint of dispersibility, the average particle size of cashew particles is preferably 850 μm or less, more preferably 750 μm or less, and even more preferably 600 μm or less. The lower limit of the average particle size of the cashew particles is not particularly limited, and may be 200 μm or more, 300 μm or more, or 400 μm or more.

下張り材がカシューパーティクルを含有する場合、その含有量は、下張り材100質量部に対して、0.5〜10質量部が好ましく、1〜7質量部がより好ましく、2〜5質量部がさらに好ましい。カシューパーティクルの含有量が上記下限値以上であると、下張り材に適度な柔軟性を付与することができるため、音振性を改善できる傾向にあり、上記上限値以下であると、耐熱性及び耐クラック性の低下を抑制できる傾向にある。 When the underlaying material contains cashew particles, the content thereof is preferably 0.5 to 10 parts by mass, more preferably 1 to 7 parts by mass, and further 2 to 5 parts by mass with respect to 100 parts by mass of the underlaying material. preferable. When the content of cashew particles is not less than the above lower limit value, appropriate flexibility can be imparted to the underlaying material, so that the sound vibration property tends to be improved. There is a tendency to suppress a decrease in crack resistance.

ゴムとしては、下張り材に通常用いられるゴムを用いることができ、例えば、天然ゴム、合成ゴム等が挙げられる。合成ゴムとしては、アクリロニトリル−ブタジエンゴム(NBR)、アクリルゴム、イソプレンゴム、ポリブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、シリコーンゴム、タイヤトレッドゴムの粉砕粉等が挙げられる。これらの中でも、耐熱性、柔軟性及び製造コストのバランスの観点から、アクリロニトリル−ブタジエンゴム(NBR)、タイヤトレッドゴムの粉砕粉が好ましい。 As the rubber, rubber usually used for the underlaying material can be used, and examples thereof include natural rubber and synthetic rubber. Examples of the synthetic rubber include acrylonitrile-butadiene rubber (NBR), acrylic rubber, isoprene rubber, polybutadiene rubber (BR), styrene butadiene rubber (SBR), silicone rubber, and crushed powder of tire tread rubber. Among these, pulverized powder of acrylonitrile-butadiene rubber (NBR) and tire tread rubber is preferable from the viewpoint of balance between heat resistance, flexibility and manufacturing cost.

下張り材がゴムを含有する場合、その含有量は、下張り材100質量部に対して、0.5〜10質量部が好ましく、1〜7質量部がより好ましく、2〜5質量部がさらに好ましい。ゴムの含有量が上記範囲であると、下張り材の弾性率が高くなること、及び鳴き等の制振性が悪化することを避けることができる傾向にあり、また、耐熱性の悪化及び熱履歴による強度低下を避けることができる傾向にある。 When the underlaying material contains rubber, the content thereof is preferably 0.5 to 10 parts by mass, more preferably 1 to 7 parts by mass, still more preferably 2 to 5 parts by mass with respect to 100 parts by mass of the underlaying material. .. When the rubber content is within the above range, it tends to be possible to avoid increasing the elastic modulus of the underlaying material and deteriorating the vibration damping property such as squeal, and also the deterioration of heat resistance and heat history. There is a tendency that the decrease in strength due to the above can be avoided.

下張り材が有機充填材を含有する場合、その合計含有量は、下張り材100質量部に対して、1〜15質量部が好ましく、3〜10質量部がより好ましく、5〜8質量部がさらに好ましい。有機充填材の合計含有量が上記範囲であると、下張り材の弾性率が高くなること、並びに鳴き等の制振性の悪化及び耐摩耗性の悪化を避けることができる傾向にあり、また、耐熱性の悪化及び熱履歴による強度低下を避けることができる傾向にある。 When the underlaying material contains an organic filler, the total content thereof is preferably 1 to 15 parts by mass, more preferably 3 to 10 parts by mass, and further 5 to 8 parts by mass with respect to 100 parts by mass of the underlaying material. preferable. When the total content of the organic filler is within the above range, the elastic modulus of the underlaying material tends to be high, and deterioration of vibration damping properties such as squealing and deterioration of wear resistance tend to be avoided. There is a tendency that deterioration of heat resistance and decrease in strength due to heat history can be avoided.

(無機充填材)
無機充填材は、下張り材の耐熱性、耐摩耗性、摩擦係数の安定性等の悪化を避けるための摩擦調整剤としての機能を発現し得るものである。ここで、本実施形態においては、無機充填材は繊維形状のもの(例えば後述の無機繊維)を含まない。
無機充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Inorganic filler)
The inorganic filler can exhibit a function as a friction modifier for avoiding deterioration of heat resistance, wear resistance, stability of friction coefficient, etc. of the underlaying material. Here, in the present embodiment, the inorganic filler does not include those having a fiber shape (for example, inorganic fibers described later).
As the inorganic filler, one kind may be used alone, or two or more kinds may be used in combination.

無機充填材としては特に制限はなく、下張り材に通常用いられる無機充填材を用いることができる。無機充填材としては、例えば、三硫化アンチモン、硫化スズ、二硫化モリブデン、硫化ビスマス、硫化亜鉛等の金属硫化物;チタン酸カリウム、チタン酸リチウムカリウム、チタン酸ナトリウム、チタン酸マグネシウムカリウム等のチタン酸塩;マイカ、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ドロマイト、バーミキュライト、硫酸カルシウム、粒状チタン酸カリウム、タルク、クレー、ゼオライト、クロマイト、酸化ジルコニウム、酸化チタン、酸化マグネシウム、四酸化三鉄、酸化亜鉛、α−アルミナ、γ−アルミナ;鉄粉末、鋳鉄粉末、アルミニウム粉末、ニッケル粉末、スズ粉末、亜鉛粉末、及び上記金属のうちの少なくとも1つの金属を含有する合金粉末等の金属粉末などが挙げられる。これらの中でも、水酸化カルシウム、硫酸バリウムが好ましい。 The inorganic filler is not particularly limited, and an inorganic filler usually used for the underlaying material can be used. Examples of the inorganic filler include metal sulfides such as antimony trisulfide, tin sulfide, molybdenum disulfide, bismuth sulfide, and zinc sulfide; titanium such as potassium titanate, lithium potassium titanate, sodium titanate, and magnesium potassium titanate. Acids; mica, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate, barium sulfate, dolomite, vermiculite, calcium sulfate, granular potassium titanate, talc, clay, zeolite, chromate, zirconium oxide, titanium oxide, It contains magnesium oxide, triiron tetroxide, zinc oxide, α-alumina, γ-alumina; iron powder, cast iron powder, aluminum powder, nickel powder, tin powder, zinc powder, and at least one of the above metals. Examples include metal powders such as alloy powders. Among these, calcium hydroxide and barium sulfate are preferable.

下張り材が水酸化カルシウムを含有する場合、その含有量は、下張り材100質量部に対して、0.2〜7質量部が好ましく、0.5〜5質量部がより好ましく、1〜3質量部がさらに好ましい。
下張り材が硫酸バリウムを含有する場合、その含有量は、下張り材100質量部に対して、10〜60質量部が好ましく、30〜55質量部がより好ましく、40〜50質量部がさらに好ましい。
下張り材が無機充填材を含有する場合、その合計含有量は、下張り材100質量部に対して、20〜65質量部が好ましく、30〜60質量部がより好ましく、45〜55質量部がさらに好ましい。
When the underlaying material contains calcium hydroxide, the content thereof is preferably 0.2 to 7 parts by mass, more preferably 0.5 to 5 parts by mass, and 1 to 3 parts by mass with respect to 100 parts by mass of the underlaying material. The portion is more preferable.
When the underlaying material contains barium sulfate, the content thereof is preferably 10 to 60 parts by mass, more preferably 30 to 55 parts by mass, still more preferably 40 to 50 parts by mass with respect to 100 parts by mass of the underlaying material.
When the underlaying material contains an inorganic filler, the total content thereof is preferably 20 to 65 parts by mass, more preferably 30 to 60 parts by mass, and further preferably 45 to 55 parts by mass with respect to 100 parts by mass of the underlaying material. preferable.

(繊維基材)
下張り材は、さらに、繊維基材を含有することが好ましい。
繊維基材は、下張り材において補強作用を示すものである。
繊維基材としては、有機繊維、無機繊維が挙げられる。
繊維基材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Fiber base material)
The underlay material preferably further contains a fiber base material.
The fiber base material exhibits a reinforcing action in the underlaying material.
Examples of the fiber base material include organic fibers and inorganic fibers.
As the fiber base material, one type may be used alone, or two or more types may be used in combination.

−有機繊維−
有機繊維とは、有機物を主成分とする繊維状の材料である。
有機繊維としては、麻、木綿、アラミド繊維、セルロース繊維、アクリル繊維等が挙げられる。これらの中でも、耐熱性の観点から、アラミド繊維が好ましい。
下張り材が有機繊維を含有する場合、その含有量は、下張り材100質量部に対して、0.5〜10質量部が好ましく、1〜7質量部がより好ましく、2〜5質量部がさらに好ましい。有機繊維の含有量が上記下限値以上であると、良好なせん断強度、耐クラック性及び耐摩耗性が発現する傾向にあり、上記上限値以下であると、下張り材中の有機繊維と他材料の偏在によるせん断強度及び耐クラック性の悪化を効果的に抑制することができる。
-Organic fiber-
The organic fiber is a fibrous material containing an organic substance as a main component.
Examples of the organic fiber include hemp, cotton, aramid fiber, cellulose fiber, acrylic fiber and the like. Among these, aramid fiber is preferable from the viewpoint of heat resistance.
When the underlaying material contains organic fibers, the content thereof is preferably 0.5 to 10 parts by mass, more preferably 1 to 7 parts by mass, and further 2 to 5 parts by mass with respect to 100 parts by mass of the underlaying material. preferable. When the content of the organic fiber is at least the above lower limit value, good shear strength, crack resistance and wear resistance tend to be exhibited, and when it is at least the above upper limit value, the organic fiber and other materials in the underlaying material are exhibited. Deterioration of shear strength and crack resistance due to uneven distribution can be effectively suppressed.

−無機繊維−
無機繊維とは、金属及び金属合金以外の無機物を主成分とする繊維状の材料であり、下張り材の機械強度及び耐摩耗性を向上する効果を発現し得るものである。
無機繊維としては、鉱物繊維、ガラス繊維、繊維状ウォラストナイト、金属繊維、炭素繊維、セラミック繊維、生分解性セラミック繊維、ロックウール、チタン酸カリウム繊維、シリカアルミナ繊維、耐炎化繊維等が挙げられる。これらの中でも、鉱物繊維、ガラス繊維が好ましい。
-Inorganic fiber-
The inorganic fiber is a fibrous material containing an inorganic substance other than a metal and a metal alloy as a main component, and can exhibit the effect of improving the mechanical strength and wear resistance of the underlaying material.
Examples of the inorganic fiber include mineral fiber, glass fiber, fibrous wollastonite, metal fiber, carbon fiber, ceramic fiber, biodegradable ceramic fiber, rock wool, potassium titanate fiber, silica alumina fiber, flame resistant fiber and the like. Be done. Among these, mineral fiber and glass fiber are preferable.

鉱物繊維は、スラグウール等の高炉スラグ、バサルトファイバー等の玄武岩、その他の天然岩石等を主成分として溶融紡糸した人造無機繊維である。鉱物繊維としては、例えば、SiO、Al、CaO、MgO、FeO、NaO等を含有する鉱物繊維、又はこれら化合物を1種もしくは2種以上含有する鉱物繊維等が挙げられる。鉱物繊維としては、アルミニウム元素を含む鉱物繊維が好ましく、Alを含有する鉱物繊維がより好ましく、AlとSiOとを含有する鉱物繊維がさらに好ましい。
鉱物繊維の平均繊維長は、せん断強度の低下を抑制する観点から、500μm以下が好ましく、400μm以下がより好ましく、340μm以下がさらに好ましい。また、鉱物繊維の平均繊維長は、例えば、100μm以上であってもよく、120μm以上であってもよい。
鉱物繊維の平均繊維径(直径)に特に制限はないが、通常、1〜20μmであり、2〜15μmであってもよい。
The mineral fiber is an artificial inorganic fiber melt-spun mainly from blast furnace slag such as slag wool, basalt such as basalt fiber, and other natural rocks. Examples of the mineral fiber include a mineral fiber containing SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like, or a mineral fiber containing one or more of these compounds. As the mineral fiber, a mineral fiber containing an aluminum element is preferable, a mineral fiber containing Al 2 O 3 is more preferable, and a mineral fiber containing Al 2 O 3 and SiO 2 is further preferable.
The average fiber length of the mineral fiber is preferably 500 μm or less, more preferably 400 μm or less, still more preferably 340 μm or less, from the viewpoint of suppressing a decrease in shear strength. Further, the average fiber length of the mineral fiber may be, for example, 100 μm or more, or 120 μm or more.
The average fiber diameter (diameter) of the mineral fiber is not particularly limited, but is usually 1 to 20 μm, and may be 2 to 15 μm.

鉱物繊維は、人体有害性の観点から、生体溶解性であることが好ましい。ここでいう生体溶解性の鉱物繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有する鉱物繊維である。具体的には、化学組成が、アルカリ酸化物及びアルカリ土類酸化物の総量(ナトリウム、カリウム、カルシウム、マグネシウム及びバリウムの酸化物の総量)が18質量%以上で、且つ、(a)短期吸入暴露による生体内耐久試験で、長さが20μm超の繊維の半減期が10日未満であること、(b)短期気管内注入による生体内耐久試験で、長さが20μm超の繊維の半減期が40日未満であること、(c)腹腔内投与試験で有意な発ガン性が無いこと、又は、(d)長期吸入暴露試験で発ガン性と結びつく病理所見又は腫瘍形成が無いこと、のいずれかを満たす繊維((EU指令97/69/ECのNota Q(発癌性適用除外)参照)を示す。このような生体分解性鉱物繊維としては、SiO−Al−CaO−MgO−FeO(−KO−NaO)系繊維等が挙げられ、SiO、Al、CaO、MgO、FeO、KO及びNaO等から選択される少なくとも2種を任意の組み合わせで含有する鉱物繊維が挙げられる。The mineral fiber is preferably biosoluble from the viewpoint of harm to the human body. The biosoluble mineral fiber referred to here is a mineral fiber having a characteristic that even if it is taken into the human body, it is partially decomposed in a short time and excreted from the body. Specifically, the chemical composition is such that the total amount of alkali oxides and alkaline earth oxides (total amount of oxides of sodium, potassium, calcium, magnesium and barium) is 18% by mass or more, and (a) short-term inhalation. In-vivo endurance test by exposure shows that the half-life of fibers over 20 μm in length is less than 10 days, and (b) in-vivo endurance test by short-term intratracheal injection shows half-life of fibers over 20 μm in length. Is less than 40 days, (c) no significant carcinogenicity in the intraperitoneal administration test, or (d) no pathological findings or tumorigenesis associated with carcinogenicity in the long-term inhalation exposure test. A fiber satisfying any of the above conditions (see Nota Q (exclusion of carcinogenicity) of EU Directive 97/69 / EC) is shown. Examples of such biodegradable mineral fibers include SiO 2- Al 2 O 3- CaO-MgO. -FeO (-K 2 O-Na 2 O) -based fibers and the like can be mentioned, and at least two types selected from SiO 2 , Al 2 O 3 , CaO, MgO, FeO, K 2 O, Na 2 O and the like are optional. Examples thereof include mineral fibers contained in the combination of.

下張り材が鉱物繊維を含有する場合、その含有量は、下張り材100質量部に対して、5〜30質量部が好ましく、10〜25質量部がより好ましく、13〜20質量部がさらに好ましい。
下張り材がガラス繊維を含有する場合、その含有量は、下張り材100質量部に対して、1〜25質量部が好ましく、5〜20質量部がより好ましく、7〜15質量部がさらに好ましい。
下張り材が無機繊維を含有する場合、その合計含有量は、下張り材100質量部に対して、10〜50質量部が好ましく、15〜40質量部がより好ましく、20〜30質量部がさらに好ましい。無機繊維の合計含有量が上記範囲であると、より一層下張り材の機械強度及び耐摩耗性を向上させることができる。
When the underlay material contains mineral fibers, the content thereof is preferably 5 to 30 parts by mass, more preferably 10 to 25 parts by mass, and even more preferably 13 to 20 parts by mass with respect to 100 parts by mass of the underlay material.
When the underlaying material contains glass fiber, the content thereof is preferably 1 to 25 parts by mass, more preferably 5 to 20 parts by mass, and further preferably 7 to 15 parts by mass with respect to 100 parts by mass of the underlaying material.
When the underlay material contains inorganic fibers, the total content thereof is preferably 10 to 50 parts by mass, more preferably 15 to 40 parts by mass, still more preferably 20 to 30 parts by mass with respect to 100 parts by mass of the underlay material. .. When the total content of the inorganic fibers is in the above range, the mechanical strength and wear resistance of the underlaying material can be further improved.

(その他の材料)
下張り材は、上記各成分のみからなるものであってもよく、必要に応じて、上記各成分以外のその他の成分を含有していてもよい。
(Other materials)
The underlaying material may be composed of only the above-mentioned components, and may contain other components other than the above-mentioned components, if necessary.

(銅含有量)
下張り材は、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、0.2質量%以下が好ましく、0.05質量%以下がより好ましい。銅の含有量が上記範囲であると、環境中に摩耗粉として放出されても、河川等の汚染を引き起こさないものとすることができる。なお、銅の含有量は、繊維状、粉末状等の銅、銅合金及び銅化合物に含まれる銅元素(Cu)の、下張り材全体における含有量を示す。
(Copper content)
The underlaying material does not contain copper, or even if it contains copper, the copper content is less than 0.5% by mass as a copper element, preferably 0.2% by mass or less, and more preferably 0.05% by mass or less. preferable. When the copper content is in the above range, it can be prevented from causing pollution of rivers and the like even if it is released as abrasion powder into the environment. The copper content indicates the content of copper element (Cu) contained in fibrous or powdery copper, copper alloys and copper compounds in the entire underlay material.

(鉄含有量)
下張り材は、鉄系金属を含有しないことが好ましいが、鉄系金属を含有する場合には、下張り材中における鉄系金属の含有量は、鉄元素として0.5質量%未満が好ましく、0.2質量%以下がより好ましく、0.05質量%以下がさらに好ましい。鉄の含有量が上記範囲であると、耐錆性を良好なものとすることができ、バックプレートとの接着界面での発錆による耐久性低下を抑制できる。
(Iron content)
The underlay material preferably does not contain an iron-based metal, but when it contains an iron-based metal, the content of the iron-based metal in the underlay material is preferably less than 0.5% by mass as an iron element, and is 0. .2% by mass or less is more preferable, and 0.05% by mass or less is further preferable. When the iron content is in the above range, the rust resistance can be made good, and the deterioration of durability due to rusting at the bonding interface with the back plate can be suppressed.

(アスベスト含有量)
下張り材は、NAO(Non-Asbestos-Organic)材に分類されるものであり、いわゆるノンアスベスト摩擦材(アスベストを含有しない摩擦材、又は含有する場合であってもアスベストの含有量が極微量の摩擦材)である。下張り材はアスベストを含有しないことが好ましいが、アスベストを含有する場合には、下張り材中におけるアスベストの含有量は、0.2質量%以下が好ましい。
(Asbestos content)
The underlaying material is classified as NAO (Non-Asbestos-Organic) material, and is a so-called non-asbestos friction material (friction material that does not contain asbestos, or even if it contains asbestos, the content of asbestos is extremely small. Friction material). The underlay material preferably does not contain asbestos, but when it contains asbestos, the content of asbestos in the underlay material is preferably 0.2% by mass or less.

下張り材の厚みは、1mm以上が好ましく、1〜5mmがより好ましく、1〜4mmがさらに好ましい。下張り材の厚みが1mm以上であると、上張り材とバックプレート間の断熱効果が高くなり、バックプレートのクラック及び割れを効果的に抑制することができる。 The thickness of the underlaying material is preferably 1 mm or more, more preferably 1 to 5 mm, still more preferably 1 to 4 mm. When the thickness of the underlaying material is 1 mm or more, the heat insulating effect between the upholstery material and the back plate is enhanced, and cracks and cracks in the back plate can be effectively suppressed.

下張り材は、後述する本実施形態の下張り材用摩擦材組成物を用いて製造することができる。 The underlaying material can be produced by using the friction material composition for the underlaying material of the present embodiment described later.

<上張り材>
上張り材は、上張り材用摩擦材組成物を成形してなるものであり、摩擦部材の摩擦面となる摩擦材である。上張り材用摩擦材組成物としては、特に制限はなく、公知の上張り材用摩擦材組成物を利用することができる。具体的には、有機充填材、無機充填材、繊維基材及び結合材を含有し、銅を含まないか、又は銅を含んでいても該銅の含有量は銅元素として0.5質量%未満である上張り材用摩擦材組成物を用いることが好ましい。有機充填材、無機充填材、繊維基材及び結合材については、下張り材において説明したものと同様のものを使用することができる。
<Upholstery material>
The upholstery material is formed by molding a friction material composition for an upholstery material, and is a friction material that serves as a friction surface of the friction member. The friction material composition for the upholstery material is not particularly limited, and a known friction material composition for the upholstery material can be used. Specifically, it contains an organic filler, an inorganic filler, a fiber base material and a binder, and does not contain copper, or even if it contains copper, the content of the copper is 0.5% by mass as a copper element. It is preferable to use a friction material composition for an upholstery material which is less than. As the organic filler, the inorganic filler, the fiber base material and the binder, the same ones as described in the underlaying material can be used.

<バックプレート>
バックプレートは、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属、繊維強化プラスチック等を用いることができる。バックプレートとしては、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチック等が挙げられる。プライマー層及び接着層としては、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。
<Back plate>
The back plate is usually used as a friction member in order to improve the mechanical strength of the friction member, and as a material, metal, fiber reinforced plastic or the like can be used. Examples of the back plate include iron, stainless steel, inorganic fiber reinforced plastic, carbon fiber reinforced plastic and the like. The primer layer and the adhesive layer may be those usually used for friction members such as brake shoes.

<摩擦部材の製造方法>
本実施形態の摩擦部材は、例えば、上張り材用摩擦材組成物と下張り材用摩擦材組成物をそれぞれ別々に、レーディゲミキサー(「レーディゲ」は登録商標)、加圧ニーダー、アイリッヒミキサー(「アイリッヒ」は登録商標)等の混合機を用いて混合し、混合後の上張り材用摩擦材組成物と下張り材用摩擦材組成物とを成形金型にて一体で予備成形し、バックプレートの一方の面に、下張り材用予備成形体及び上張り材用予備成形体を重ね合わせ、例えば、成形温度130〜160℃、成形圧力20〜50MPaの条件で2〜10分間で成形し、得られた成形物を、例えば、150〜250℃で2〜10時間熱処理することで製造される。また、必要に応じて、塗装、スコーチ処理、研磨処理を行ってもよい。上記工程の中で、予備成形工程を省略して混合物を直接熱成形してもよい。
<Manufacturing method of friction member>
The friction member of the present embodiment is, for example, a friction material composition for an upholstery material and a friction material composition for an underlaying material separately, a Reedige mixer (“Redigue” is a registered trademark), a pressure kneader, and Eirich. Mix using a mixer such as a mixer (“Eich” is a registered trademark), and pre-mold the friction material composition for the upholstery material and the friction material composition for the underlayment material after mixing integrally with a molding mold. , The preformed body for the underlaying material and the preformed body for the upholstery material are superposed on one surface of the back plate, and molded in 2 to 10 minutes under the conditions of, for example, a molding temperature of 130 to 160 ° C. and a molding pressure of 20 to 50 MPa. Then, the obtained molded product is produced by, for example, heat-treating at 150 to 250 ° C. for 2 to 10 hours. Further, if necessary, painting, scorch treatment, and polishing treatment may be performed. In the above steps, the preforming step may be omitted and the mixture may be directly thermoformed.

本実施形態の摩擦部材は、ディスクブレーキパッド用又はドラムブレーキライニング用として好適である。また、上張り材用摩擦材組成物と下張り材用摩擦材組成物を目的形状に成形、加工、貼り付け等の工程を施すことにより、クラッチフェーシング、電磁ブレーキ、保持ブレーキ等の摩擦材としても使用することができる。 The friction member of this embodiment is suitable for disc brake pads or drum brake linings. In addition, by performing processes such as molding, processing, and pasting the friction material composition for the upholstery material and the friction material composition for the underlaying material into the desired shape, it can also be used as a friction material for clutch facing, electromagnetic brakes, holding brakes, etc. Can be used.

[下張り材用摩擦材組成物]
本実施形態の下張り材用摩擦材組成物は、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなるものである。
本実施形態の下張り材用摩擦材組成物が含有する各成分についての説明は、硬化性樹脂等の化学状態変化を除き、上記した本実施形態の摩擦部材が有する下張り材が含有する成分についての説明と同じである。例えば、上記した下張り材中の各成分の含有量は、下張り材用摩擦材組成物中の各成分の含有量と読み替えることができる。
本実施形態の下張り材用摩擦材組成物は、平均粒子径(D50)が異なる2種以上の炭素質粒子、及び必要に応じて配合される上記各成分を配合して製造することができる。
[Friction material composition for underlaying material]
The friction material composition for an underlaying material of the present embodiment does not contain copper, or even if it contains copper, the content of copper is less than 0.5% by mass as a copper element, and the average particle size (D 50). ) Are two or more kinds of different carbonaceous particles.
The description of each component contained in the friction material composition for an underlaying material of the present embodiment describes the components contained in the underlaying material contained in the friction member of the present embodiment described above, except for changes in the chemical state of the curable resin and the like. Same as the description. For example, the content of each component in the underlaying material described above can be read as the content of each component in the friction material composition for the underlaying material.
The friction material composition for an underlaying material of the present embodiment can be produced by blending two or more kinds of carbonaceous particles having different average particle diameters (D 50) and the above-mentioned components to be blended as necessary. ..

[第2実施態様の下張り材用摩擦材組成物]
また、本発明は次の第2実施態様の下張り材用摩擦材組成物も提供する。
第2実施態様の下張り材用摩擦材組成物は、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、炭素質粒子を含有し、該炭素質粒子が、体積基準の頻度分布を示す粒径分布曲線において、2つ以上のピークを有するものである。
以下、第2実施態様の下張り材用摩擦材組成物について詳細に説明する。
[Friction material composition for underlaying material of the second embodiment]
The present invention also provides a friction material composition for an underlaying material according to the following second embodiment.
The friction material composition for an underlaying material of the second embodiment does not contain copper, or even if it contains copper, the content of copper is less than 0.5% by mass as a copper element and contains carbonaceous particles. However, the carbonaceous particles have two or more peaks in the particle size distribution curve showing the frequency distribution based on the volume.
Hereinafter, the friction material composition for the underlaying material of the second embodiment will be described in detail.

<炭素質粒子>
第2実施態様の下張り材用摩擦材組成物が含有する炭素質粒子は、体積基準の頻度分布を示す粒径分布曲線において、2つ以上のピークを有するものである。
なお、本実施形態において、炭素質粒子についての体積基準の頻度分布を示す粒径分布曲線は、例えば、以下の方法によって測定されるものである。
(1)炭素質粒子が粉末状である場合
上記した炭素質粒子の平均粒子径と同じ方法によって測定することができる。
(2)炭素質粒子が下張り材中に含有された状態である場合
下張り材を切削して形成した断面を、走査型電子顕微鏡/エネルギー分散型X線分光法を用いて観察し、この500〜3000倍の断面観察において任意に選び出した1000個の粒子径(円相当径)を測定し、横軸を粒子径、縦軸を粒子の存在比率としてプロットした体積基準の粒径分布曲線を得る。
すなわち、下張り材用摩擦材組成物中における炭素質粒子の粒径分布曲線を得るに当たっては、炭素質粒子を単離可能であれば上記(1)の方法に従って測定すればよく、単離できない場合は、上記(2)の方法に従って下張り材中に含有された状態として測定すればよい。
<Carbonate particles>
The carbonaceous particles contained in the friction material composition for an underlaying material of the second embodiment have two or more peaks in a particle size distribution curve showing a volume-based frequency distribution.
In the present embodiment, the particle size distribution curve showing the volume-based frequency distribution of carbonaceous particles is measured by, for example, the following method.
(1) When the carbonaceous particles are in the form of powder The measurement can be performed by the same method as the average particle size of the carbonaceous particles described above.
(2) When carbonaceous particles are contained in the underlaying material A cross section formed by cutting the underlaying material is observed using a scanning electron microscope / energy-dispersed X-ray spectroscopy, and these 500 to The particle size (equivalent to a circle) of 1000 particles arbitrarily selected in a 3000-fold cross-sectional observation is measured, and a volume-based particle size distribution curve is obtained by plotting the horizontal axis as the particle size and the vertical axis as the abundance ratio of particles.
That is, in obtaining the particle size distribution curve of the carbonaceous particles in the friction material composition for the underlaying material, if the carbonic particles can be isolated, they may be measured according to the method (1) above, and if they cannot be isolated. May be measured as being contained in the underlaying material according to the method (2) above.

炭素質粒子は、体積基準の頻度分布を示す粒径分布曲線におけるピーク(以下、単に「ピーク」というときは、体積基準の頻度分布を示す粒径分布曲線におけるピークを意味する。)の数は、2つ以上であればよく、2つであることが好ましい。但し、所望する性能に応じて、3つ以上であってもよく、4つ以上であってもよく、また、6つ以下であってもよく、5つ以下であってもよい。 For carbonaceous particles, the number of peaks on the particle size distribution curve showing the volume-based frequency distribution (hereinafter, the term "peak" simply means the peak on the particle size distribution curve showing the volume-based frequency distribution) is It may be two or more, and preferably two. However, depending on the desired performance, it may be 3 or more, 4 or more, 6 or less, or 5 or less.

炭素質粒子が有する2つ以上のピークのうちの任意のピーク(但し、最も小粒径側のピークを除く)を第1のピーク、該第1のピークよりも小粒径側に存在する任意のピークを第2のピークとしたとき、上記2つ以上のピークは、8〜60μmの範囲に極大を有する第1のピークと、7μm以下の範囲に極大を有する第2のピークと、を含むものであることが好ましい。 Any peak of the two or more peaks of the carbonaceous particles (excluding the peak on the smallest particle size side) is the first peak, and any peak on the particle size side of the first peak. The two or more peaks include a first peak having a maximum in the range of 8 to 60 μm and a second peak having a maximum in the range of 7 μm or less. It is preferable that it is a particle.

上記第1のピークの極大の範囲は、下張り材の耐摩耗性向上の観点からは、10〜55μmが好ましく、20〜50μmがより好ましく、30〜45μmがさらに好ましい。また、導電性向上の観点からは、8〜45μmが好ましく、9〜30μmがより好ましく、10〜25μmがさらに好ましい。
上記第2のピークの極大の範囲は、下張り材の耐摩耗性向上の観点からは、7μm以下が好ましく、6μm以下がより好ましく、5μm以下がさらに好ましく、4μm以下が特に好ましい。また、第2のピークの極大の範囲は、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよい。
The maximum range of the first peak is preferably 10 to 55 μm, more preferably 20 to 50 μm, and even more preferably 30 to 45 μm from the viewpoint of improving the wear resistance of the underlaying material. From the viewpoint of improving conductivity, 8 to 45 μm is preferable, 9 to 30 μm is more preferable, and 10 to 25 μm is further preferable.
From the viewpoint of improving the wear resistance of the underlaying material, the maximum range of the second peak is preferably 7 μm or less, more preferably 6 μm or less, further preferably 5 μm or less, and particularly preferably 4 μm or less. Further, the maximum range of the second peak may be 0.1 μm or more, 0.5 μm or more, or 1 μm or more.

上記第1のピークの極大と、上記第2のピークの極大との差は、導電性向上の観点から、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。また、同様の観点から、10μm以上であってもよく、20μm以上であってもよく、30μm以上であってもよい。
また上記の差は、炭素質粒子の下張り材内での偏析防止の観点から、50μm以下が好ましく、45μm以下がより好ましく、40μm以下がさらに好ましい。また、同様の観点から、30μm以下であってもよく、20μm以下であってもよく、10μm以下であってもよい。
上記第1のピークの体積頻度は、上記第2のピークの体積頻度よりも大きいことが好ましい。
The difference between the maximum of the first peak and the maximum of the second peak is preferably 1 μm or more, more preferably 3 μm or more, still more preferably 5 μm or more, from the viewpoint of improving conductivity. Further, from the same viewpoint, it may be 10 μm or more, 20 μm or more, or 30 μm or more.
Further, the above difference is preferably 50 μm or less, more preferably 45 μm or less, still more preferably 40 μm or less, from the viewpoint of preventing segregation of the carbonic particles in the underlaying material. Further, from the same viewpoint, it may be 30 μm or less, 20 μm or less, or 10 μm or less.
The volume frequency of the first peak is preferably higher than the volume frequency of the second peak.

炭素質粒子が2つのみのピークを有するとき、その一方のピークは、上記した第1のピークの極大の範囲に極大を有し、その他方のピークは、上記した第2のピークの極大の範囲に極大を有することが好ましい。
炭素質粒子が3つ以上のピークを有するとき、少なくとも1つのピークは、上記した第1のピークの極大の範囲に極大を有し、且つ、別の少なくとも1つのピークは、上記した第2のピークの極大の範囲に極大を有することが好ましい。上記した第1のピークの極大の範囲及び上記した第2のピークの極大の範囲以外にピーク(以下、「第3以上のピーク」ともいう)を有していてもよいが、有していなくてもよい。炭素質粒子が第3以上のピークを有する場合においては、その体積頻度は、第1のピーク及び第2のピークよりも小さいことが好ましい。
When the carbonaceous particles have only two peaks, one of the peaks has a maximum in the range of the maximum of the first peak described above, and the other peak has a maximum of the above-mentioned second peak. It is preferable to have a maximum in the range.
When the carbonaceous particles have three or more peaks, at least one peak has a maximum in the range of the maximum of the first peak described above, and another at least one peak has the second peak described above. It is preferable to have a maximum in the range of the maximum of the peak. It may have a peak (hereinafter, also referred to as "third or higher peak") other than the above-mentioned maximum range of the first peak and the above-mentioned maximum range of the second peak, but it does not have it. You may. When the carbonaceous particles have a third or higher peak, the volume frequency thereof is preferably smaller than that of the first peak and the second peak.

第2実施態様の下張り材用摩擦材組成物中における炭素質粒子の含有量は、第2実施態様の下張り材用摩擦材組成物100質量部に対して、3〜11.5質量部が好ましく、5〜11質量部がより好ましく、7〜10.5質量部がさらに好ましく、7.5〜10質量部が特に好ましい。 The content of carbonaceous particles in the friction material composition for underlaying material of the second embodiment is preferably 3 to 11.5 parts by mass with respect to 100 parts by mass of the friction material composition for underlaying material of the second embodiment. , 5 to 11 parts by mass is more preferable, 7 to 10.5 parts by mass is further preferable, and 7.5 to 10 parts by mass is particularly preferable.

第2実施態様の下張り材用摩擦材組成物中における炭素質粒子としては黒鉛が好ましいが、上記した本実施形態の摩擦部材が有する下張り材が含有する炭素質粒子において挙げられたものであってもよい。
第2実施態様の下張り材用摩擦材組成物中における炭素質粒子の形状、その他の態様等は、上記した本実施形態の摩擦部材が有する下張り材が含有する炭素質粒子の説明と同様に説明される。
Graphite is preferable as the carbonaceous particles in the friction material composition for the underlaying material of the second embodiment, but those mentioned in the carbonaceous particles contained in the underlaying material of the friction member of the present embodiment described above. May be good.
The shape of the carbonaceous particles in the friction material composition for the underlaying material of the second embodiment, other aspects, and the like will be described in the same manner as the description of the carbonic particles contained in the underlaying material of the friction member of the present embodiment described above. Will be done.

第2実施態様の下張り材用摩擦材組成物は、さらに、結合材、有機充填材、炭素質粒子以外の無機充填材及び繊維基材からなる群から選択される1種以上を配合してもよい。結合材、有機充填材、無機充填材及び繊維基材についての説明は、上記した本実施形態の摩擦部材における説明と同様に説明される。 The friction material composition for the underlaying material of the second embodiment may further contain one or more selected from the group consisting of a binder, an organic filler, an inorganic filler other than carbonaceous particles, and a fiber base material. good. The description of the binder, the organic filler, the inorganic filler, and the fiber base material will be described in the same manner as the description of the friction member of the present embodiment described above.

[下張り材及び摩擦部材]
本発明は、上記した第2実施態様の下張り材用摩擦材組成物を成形してなる下張り材も提供する。さらに、本発明は、上張り材、上記下張り材及びバックプレートをこの順に有する摩擦部材をも提供する。
下張り材用摩擦材組成物の成形条件、摩擦部材を構成する各部材及び製造方法は、上記した本実施形態の摩擦部材における説明と同様に説明される。
[Underlay material and friction member]
The present invention also provides an underlaying material obtained by molding the friction material composition for an underlaying material according to the second embodiment described above. Furthermore, the present invention also provides a friction member having an upholstery material, the underlaying material and a back plate in this order.
The molding conditions of the friction material composition for the underlaying material, each member constituting the friction member, and the manufacturing method will be described in the same manner as in the above description of the friction member of the present embodiment.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら制限を受けるものではない。
各例で得られたディスクブレーキパッドは、以下の評価方法に従って評価した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by these examples.
The disc brake pads obtained in each example were evaluated according to the following evaluation methods.

[評価方法]
(1)粉体塗装性の評価
各例で作製したディスクブレーキパッドを、旭サナック株式会社製の静電粉体塗装装置「SFC−QTR100」を用いて粉体塗装した。塗装後のディスクブレーキパッドのバックプレート及び下張り材の造膜量(塗膜厚み)を以下の方法によって測定した。
(1−1)バックプレートの造膜量
バックプレートの造膜量は、株式会社ケツト化学研究所製のデュアルタイプ膜厚計「LZ−200J」を用いて塗膜厚みを計測し、以下の基準に基づき評価した。
A:塗膜厚みが20μm超え
B:塗膜厚みが10μm以上20μm以下
C:塗膜厚みが10μm未満
(1−2)下張り材の造膜量
下張り材の造膜量は、塗装後のディスクブレーキパッドを、図1のA−Aの位置で切断し、マイクロスコープ(株式会社キーエンス製)を用いて切断面における塗膜厚みを計測し、以下の基準に基づき評価した。
A:塗膜厚みが15μm超え
B:塗膜厚みが5μm以上15μm以下
C:塗膜厚みが5μm未満
[Evaluation method]
(1) Evaluation of powder coating property The disc brake pads produced in each example were powder coated using an electrostatic powder coating device "SFC-QTR100" manufactured by Asahi Sanac Co., Ltd. The film-forming amount (coating film thickness) of the back plate and the underlaying material of the disc brake pad after coating was measured by the following method.
(1-1) Amount of film formation on the back plate The amount of film formation on the back plate is determined by measuring the coating film thickness using a dual type film thickness meter "LZ-200J" manufactured by Ketsuto Kagaku Kenkyusho Co., Ltd., and using the following criteria. Evaluated based on.
A: The coating film thickness exceeds 20 μm B: The coating film thickness is 10 μm or more and 20 μm or less C: The coating film thickness is less than 10 μm (1-2) The film forming amount of the underlaying material is the disc brake after coating. The pad was cut at the position AA in FIG. 1, and the coating film thickness on the cut surface was measured using a microscope (manufactured by Keyence Co., Ltd.) and evaluated based on the following criteria.
A: Coating film thickness exceeds 15 μm B: Coating film thickness is 5 μm or more and 15 μm or less C: Coating film thickness is less than 5 μm

(2)せん断強度及び発錆面積の測定(耐候性の評価)
塗装後のディスクブレーキパッドを5質量%塩水中に10分間浸漬した後、23℃で120分間空気中に放置し、70℃で30分間乾燥する工程を1サイクルとし、これを500サイクル及び750サイクル行った後、JISD 4415(2007年)に準拠して、せん断強度を測定すると共に、せん断面における発錆面積を測定し、断面積全体に対する発錆面積の比率を求めた。
(2) Measurement of shear strength and rust area (evaluation of weather resistance)
The step of immersing the painted disc brake pad in 5% by mass salt water for 10 minutes, leaving it in the air at 23 ° C. for 120 minutes, and drying it at 70 ° C. for 30 minutes is defined as one cycle, which is 500 cycles and 750 cycles. After that, the shear strength was measured and the rusted area on the sheared surface was measured according to JISD 4415 (2007), and the ratio of the rusted area to the entire cross-sectional area was determined.

(3)摩擦係数の測定(摩擦特性の評価)
下張り材の摩擦性能は、各例で作製したディスクブレーキパッドを50%研磨し、下張り材が摺動面に露出した状態で評価した。
摩擦係数は、自動車技術会規格「JASO C406」に基づいて測定し、第2効力試験における摩擦係数の平均値を算出した。摩擦係数が大きいほど、摩擦性能に優れることを示す。
(3) Measurement of friction coefficient (evaluation of friction characteristics)
The frictional performance of the underlaying material was evaluated in a state where the disc brake pads produced in each example were polished by 50% and the underlaying material was exposed on the sliding surface.
The coefficient of friction was measured based on the Japanese Automotive Standards Organization "JASO C406", and the average value of the coefficient of friction in the second efficacy test was calculated. The larger the coefficient of friction, the better the friction performance.

[ディスクブレーキパッドの作製]
実施例1〜9及び比較例1〜6
表1及び2に示す配合量に従って、上張り材用摩擦材組成物及び下張り材用摩擦材組成物それぞれについて各成分を配合し、別々にレーディゲミキサー(株式会社マツボー製、商品名:レーディゲミキサーM20)で混合して、上張り材用摩擦材組成物及び下張り材用摩擦材組成物を得た。該上張り材用摩擦材組成物及び下張り材用摩擦材組成物を一体で成形プレス(王子機械工業株式会社製)にて予備成形した。得られた予備成形物を成形温度140〜160℃、成形圧力30MPa、成形時間5分間の条件で、成形プレス(三起精工株式会社製)を用いて鋼板製のバックプレート(日立オートモティブシステムズ株式会社製)と共に加熱加圧成形した。得られた成形品を200℃で4.5時間熱処理し、ロータリー研磨機を用いて研磨し、500℃のスコーチ処理を行ってディスクブレーキパッドを得た。なお、実施例及び比較例で得たディスクブレーキパッドは、バックプレートの厚さ6mm、上張り材の厚さ7mm、下張り材の厚さ2mm、摩擦材投影面積52cmである。なお、上記摩擦係数の測定に用いるディスクブレーキパッドは、上張り材の厚さ4mm、下張り材の厚さ4mmで作製し、上張り材を全て研磨し除去することで得た。
得られたディスクブレーキパッドを用いて、前記方法に従って各測定及び評価を行った。結果を表2に示す。
[Making disc brake pads]
Examples 1-9 and Comparative Examples 1-6
According to the blending amounts shown in Tables 1 and 2, each component is blended for each of the friction material composition for the upholstery material and the friction material composition for the underlaying material, and separately made by Lady Gemixer (manufactured by Matsubo Co., Ltd., trade name: Ray). By mixing with a Digemixer M20), a friction material composition for an upholstery material and a friction material composition for an underlaying material were obtained. The friction material composition for the upholstery material and the friction material composition for the underlaying material were integrally preformed by a molding press (manufactured by Oji Machinery Co., Ltd.). The obtained preformed product was subjected to a steel plate back plate (Hitachi Automotive Systems Co., Ltd.) using a molding press (manufactured by Sanki Seiko Co., Ltd.) under the conditions of a molding temperature of 140 to 160 ° C., a molding pressure of 30 MPa, and a molding time of 5 minutes. Manufactured by heating and pressure molding. The obtained molded product was heat-treated at 200 ° C. for 4.5 hours, polished using a rotary polishing machine, and scorch-treated at 500 ° C. to obtain a disc brake pad. The disc brake pads obtained in Examples and Comparative Examples have a back plate thickness of 6 mm, an upholstery material thickness of 7 mm, an underlaying material thickness of 2 mm, and a friction material projection area of 52 cm 2 . The disc brake pad used for measuring the friction coefficient was manufactured with a thickness of the upholstery material of 4 mm and a thickness of the underlaying material of 4 mm, and was obtained by polishing and removing all the upholstery material.
Using the obtained disc brake pads, each measurement and evaluation was performed according to the above method. The results are shown in Table 2.

Figure 2020121504
Figure 2020121504

Figure 2020121504
Figure 2020121504

表2に記載の炭素質粒子の詳細は以下の通りである。
・黒鉛1;平均粒子径(D50)40μm、人造黒鉛、形状:球状
・黒鉛2;平均粒子径(D50)10μm、人造黒鉛、形状:不定形状
・黒鉛3;平均粒子径(D50)4μm、天然黒鉛、形状:不定形状
・黒鉛4;平均粒子径(D50)2μm、人造黒鉛、形状:不定形状
The details of the carbonaceous particles shown in Table 2 are as follows.
-Graphite 1; average particle size (D 50 ) 40 μm, artificial graphite, shape: spherical-Graphite 2; average particle size (D 50 ) 10 μm, artificial graphite, shape: indefinite shape-Graphite 3; average particle size (D 50 ) 4 μm, natural graphite, shape: indefinite shape ・ Graphite 4; average particle size (D 50 ) 2 μm, artificial graphite, shape: indefinite shape

表2から、本実施形態の摩擦部材である実施例1〜9は、良好な摩擦係数を有しつつ、バックプレート及び下張り材の造膜量が多く、粉体塗装性に優れていた。また、これにより得られたディスクブレーキパッドは、せん断強度が高く、発錆面積が小さく、耐候性に優れていた。
一方、1種のみの炭素質粒子を用いた比較例1〜6のうち、炭素質粒子の配合量を4〜8質量部とした比較例1、2及び4〜6は、粉体塗装性及び耐候性に劣っていた。また、炭素質粒子の配合量を12質量部まで増量した比較例3は、粉体塗装性及び耐候性は良好であったが、摩擦係数が大幅に低下した。
From Table 2, Examples 1 to 9, which are the friction members of the present embodiment, have a good friction coefficient, a large amount of film formation on the back plate and the underlaying material, and are excellent in powder coatability. Further, the disc brake pad obtained thereby had high shear strength, a small rust area, and excellent weather resistance.
On the other hand, among Comparative Examples 1 to 6 using only one kind of carbonaceous particles, Comparative Examples 1, 2 and 4 to 6 in which the blending amount of the carbonic particles was 4 to 8 parts by mass are powder coatable and It was inferior in weather resistance. Further, in Comparative Example 3 in which the blending amount of the carbonaceous particles was increased to 12 parts by mass, the powder coating property and the weather resistance were good, but the friction coefficient was significantly reduced.

1 上張り材
2 下張り材
3 バックプレート
4 ディスクブレーキパッド
1 Upholstery 2 Underlayment 3 Back plate 4 Disc brake pads

Claims (15)

上張り材、下張り材及びバックプレートをこの順に有する摩擦部材であって、
前記下張り材が、銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、
且つ、前記下張り材が、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなるものである、摩擦部材。
A friction member having an upholstery material, an underlaying material, and a back plate in this order.
The underlaying material does not contain copper, or even if it contains copper, the copper content is less than 0.5% by mass as a copper element.
Moreover, the friction member is formed by blending two or more kinds of carbonaceous particles having different average particle diameters (D 50) in the underlaying material.
前記2種以上の炭素質粒子のうち、少なくとも1種の炭素質粒子が、平均粒子径(D50)が8〜60μmの炭素質粒子(A)であり、且つ、別の少なくとも1種の炭素質粒子が、平均粒子径(D50)が7μm以下の炭素質粒子(B)である、請求項1に記載の摩擦部材。Of the two or more types of carbonaceous particles, at least one type of carbonic particles is carbonaceous particles (A) having an average particle diameter (D 50 ) of 8 to 60 μm, and at least one other type of carbon. The friction member according to claim 1, wherein the quality particles are carbonaceous particles (B) having an average particle diameter (D 50) of 7 μm or less. 前記炭素質粒子(A)の配合量が、前記下張り材100質量部に対して、1〜11質量部であり、前記炭素質粒子(B)の配合量が、前記下張り材100質量部に対して、0.1〜10質量部である、請求項1又は2に記載の摩擦部材。 The blending amount of the carbonic particles (A) is 1 to 11 parts by mass with respect to 100 parts by mass of the underlaying material, and the blending amount of the carbonic particles (B) is with respect to 100 parts by mass of the underlaying material. The friction member according to claim 1 or 2, which is 0.1 to 10 parts by mass. 前記2種以上の炭素質粒子が、黒鉛である、請求項1〜3のいずれか1項に記載の摩擦部材。 The friction member according to any one of claims 1 to 3, wherein the two or more kinds of carbonaceous particles are graphite. 銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、平均粒子径(D50)が異なる2種以上の炭素質粒子を配合してなる、下張り材用摩擦材組成物。Contains two or more types of carbonaceous particles that do not contain copper, or even if they do, the copper content is less than 0.5% by mass as a copper element and the average particle size (D 50) is different. Friction material composition for underlaying material. 前記2種以上の炭素質粒子のうち、少なくとも1種の炭素質粒子が、平均粒子径(D50)が8〜60μmの炭素質粒子(A)であり、且つ、別の少なくとも1種の炭素質粒子が、平均粒子径(D50)が7μm以下の炭素質粒子(B)である、請求項5に記載の下張り材用摩擦材組成物。Of the two or more types of carbonaceous particles, at least one type of carbonic particles is carbonaceous particles (A) having an average particle diameter (D 50 ) of 8 to 60 μm, and at least one other type of carbon. The friction material composition for an underlaying material according to claim 5, wherein the quality particles are carbonaceous particles (B) having an average particle diameter (D 50) of 7 μm or less. 前記炭素質粒子(A)の配合量が、前記下張り材用摩擦材組成物100質量部に対して、1〜11質量部であり、前記炭素質粒子(B)の配合量が、前記下張り材用摩擦材組成物100質量部に対して、0.1〜10質量部である、請求項6に記載の下張り材用摩擦材組成物。 The blending amount of the carbonic particles (A) is 1 to 11 parts by mass with respect to 100 parts by mass of the friction material composition for the underlaying material, and the blending amount of the carbonic particles (B) is the underlaying material. The friction material composition for an underlaying material according to claim 6, which is 0.1 to 10 parts by mass with respect to 100 parts by mass of the friction material composition for use. 前記2種以上の炭素質粒子が、黒鉛である、請求項5〜7のいずれか1項に記載の下張り材用摩擦材組成物。 The friction material composition for an underlaying material according to any one of claims 5 to 7, wherein the two or more kinds of carbonaceous particles are graphite. 請求項5〜8のいずれか1項に記載の下張り材用摩擦材組成物を成形してなる下張り材。 An underlaying material obtained by molding the friction material composition for an underlaying material according to any one of claims 5 to 8. 請求項5〜8のいずれか1項に記載の下張り材用摩擦材組成物を製造する方法であって、
平均粒子径(D50)が異なる2種以上の炭素質粒子を配合する、下張り材用摩擦材組成物の製造方法。
A method for producing a friction material composition for an underlaying material according to any one of claims 5 to 8.
A method for producing a friction material composition for an underlaying material, which comprises two or more kinds of carbonaceous particles having different average particle diameters (D 50).
銅を含有しないか、又は含有していても銅の含有量は銅元素として0.5質量%未満であり、且つ、炭素質粒子を含有し、該炭素質粒子が、体積基準の頻度分布を示す粒径分布曲線において、2つ以上のピークを有するものである、下張り材用摩擦材組成物。 It does not contain copper, or even if it contains copper, the content of copper is less than 0.5% by mass as a copper element, and it contains carbonaceous particles, and the carbonaceous particles have a volume-based frequency distribution. A friction material composition for an underlaying material, which has two or more peaks in the particle size distribution curve shown. 前記2つ以上のピークが、8〜60μmの範囲に極大を有する第1のピークと、7μm以下の範囲に極大を有する第2のピークと、を含むものである、請求項11に記載の下張り材用摩擦材組成物。 The underlaying material according to claim 11, wherein the two or more peaks include a first peak having a maximum in the range of 8 to 60 μm and a second peak having a maximum in the range of 7 μm or less. Friction material composition. 前記炭素質粒子が、黒鉛である、請求項11又は12に記載の下張り材用摩擦材組成物。 The friction material composition for an underlaying material according to claim 11 or 12, wherein the carbonaceous particles are graphite. 請求項11〜13のいずれか1項に記載の下張り材用摩擦材組成物を成形してなる下張り材。 An underlaying material obtained by molding the friction material composition for an underlaying material according to any one of claims 11 to 13. 上張り材、請求項14に記載の下張り材及びバックプレートをこの順に有する摩擦部材。 A friction member having an upholstery material, an underlaying material according to claim 14, and a back plate in this order.
JP2020559660A 2018-12-14 2018-12-14 Friction member, friction material composition for underlay material, and underlay material Active JP7184094B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046012 WO2020121504A1 (en) 2018-12-14 2018-12-14 Frictional member, frictional material composition for underlay material and underlay material

Publications (2)

Publication Number Publication Date
JPWO2020121504A1 true JPWO2020121504A1 (en) 2021-09-30
JP7184094B2 JP7184094B2 (en) 2022-12-06

Family

ID=71075433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020559660A Active JP7184094B2 (en) 2018-12-14 2018-12-14 Friction member, friction material composition for underlay material, and underlay material

Country Status (2)

Country Link
JP (1) JP7184094B2 (en)
WO (1) WO2020121504A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200013012A1 (en) * 2022-06-20 2023-12-20 Itt Italia Srl COMPOSITION OF FRICTION MATERIAL AND ASSOCIATED FRICTION ELEMENT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186469A (en) * 2016-04-07 2017-10-12 日立化成株式会社 Friction material composition, friction material and friction member using friction material composition
JP2018162385A (en) * 2017-03-27 2018-10-18 日立化成株式会社 Friction material composition, and friction material and friction member using the friction material composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017186469A (en) * 2016-04-07 2017-10-12 日立化成株式会社 Friction material composition, friction material and friction member using friction material composition
JP2018162385A (en) * 2017-03-27 2018-10-18 日立化成株式会社 Friction material composition, and friction material and friction member using the friction material composition

Also Published As

Publication number Publication date
WO2020121504A1 (en) 2020-06-18
JP7184094B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP6760449B2 (en) Non-asbestos friction material composition, friction material and friction member using this
KR101837221B1 (en) Non-asbestos friction material composition, and friction material and friction member using same
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6281755B1 (en) Friction material composition, and friction material and friction member using the same
JP5071604B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6977778B2 (en) Friction member, friction material composition for underlayment material and friction material
JP5790175B2 (en) Non-asbestos friction material composition
JP6481775B2 (en) Friction material composition, friction material and friction member
WO2012169546A1 (en) Non-asbestos friction material composition
WO2012066966A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
KR101969177B1 (en) Friction material composition, friction material using same and friction member
WO2012066967A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
JP7184094B2 (en) Friction member, friction material composition for underlay material, and underlay material
JP2017002230A (en) Friction material composition, and friction material and friction member using same
WO2020255279A1 (en) Friction member, friction material composition, friction material, and vehicle
JP2021152119A (en) Friction member, friction material composition, friction material and vehicle
JP2020158568A (en) Friction member, friction material composition, friction material and automobile
JP7464039B2 (en) Friction member, friction material composition, friction material and vehicle
JP6699785B2 (en) Friction material and friction member
WO2020059005A1 (en) Friction material, friction material composition, friction material composition for lower-layer material, lower-layer material, and vehicle
WO2020044455A1 (en) Friction member, friction material composition, friction material, and wheel
JP6233461B2 (en) Non-asbestos friction material composition
JP2020158567A (en) Friction member, friction material composition, friction material and automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R151 Written notification of patent or utility model registration

Ref document number: 7184094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350