JPWO2020095577A1 - Method for Producing Fine Fibrous Cellulose Dispersion - Google Patents

Method for Producing Fine Fibrous Cellulose Dispersion Download PDF

Info

Publication number
JPWO2020095577A1
JPWO2020095577A1 JP2020556684A JP2020556684A JPWO2020095577A1 JP WO2020095577 A1 JPWO2020095577 A1 JP WO2020095577A1 JP 2020556684 A JP2020556684 A JP 2020556684A JP 2020556684 A JP2020556684 A JP 2020556684A JP WO2020095577 A1 JPWO2020095577 A1 JP WO2020095577A1
Authority
JP
Japan
Prior art keywords
dispersion
cellulose
fine fibrous
fibrous cellulose
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556684A
Other languages
Japanese (ja)
Other versions
JP7252975B2 (en
Inventor
隼人 加藤
隼人 加藤
康太郎 伊藤
康太郎 伊藤
芽衣 ▲高▼木
芽衣 ▲高▼木
喜威 山田
喜威 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Publication of JPWO2020095577A1 publication Critical patent/JPWO2020095577A1/en
Application granted granted Critical
Publication of JP7252975B2 publication Critical patent/JP7252975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

固形分濃度1wt%以上の微細繊維状セルロース分散体を、希釈溶媒とともに撹拌機で予備分散する工程と、前記予備分散する工程で得られた混合物を、インライン静止型流体混合装置を通過させることにより本分散する工程とを含む。By pre-dispersing a fine fibrous cellulose dispersion having a solid content concentration of 1 wt% or more together with a diluting solvent with a stirrer, and passing the mixture obtained in the pre-dispersion step through an in-line static fluid mixing device. Including the step of main dispersion.

Description

本発明は、希釈された微細繊維状セルロース分散体の製造方法に関する。 The present invention relates to a method for producing a diluted fine fibrous cellulose dispersion.

植物繊維を細かく解すことで得られる微細繊維状セルロースは、ミクロフィブリルセルロース(以下「MFC」という場合がある)及びセルロースナノファイバー(以下「CNF」という場合がある)を包含する。微細繊維状セルロースは、約1nm〜数10μm程度の繊維径の微細繊維であり、強度や剛性を高める機能を有するため、補強用途で用いられている。 Fine fibrous cellulose obtained by finely breaking plant fibers includes microfibrillose cellulose (hereinafter sometimes referred to as "MFC") and cellulose nanofibers (hereinafter sometimes referred to as "CNF"). Fine fibrous cellulose is a fine fiber having a fiber diameter of about 1 nm to several tens of μm, and has a function of increasing strength and rigidity, and is therefore used for reinforcing applications.

微細繊維状セルロースは、通常、水に分散している状態で得られ、固形分濃度が非常に低い。そのため、微細繊維状セルロースの水分散体をそのまま輸送する際には、大量の水を運ぶこととなり輸送に係る費用が高いという問題がある。そのため、乾燥品とする技術が開発されているが、微細繊維状セルロースは、一旦乾燥させると、高回転数かつ長時間の撹拌により分散処理を行わない限りは、微細繊維状セルロースとして再分散させることが難しかった(特許文献1等)。また、乾燥品とするために熱を加えると、変色してしまうという問題もあった。そのため、乾燥品とせず、高固形分濃度化して輸送することが行われている。 Fine fibrous cellulose is usually obtained in a state of being dispersed in water and has a very low solid content concentration. Therefore, when the aqueous dispersion of fine fibrous cellulose is transported as it is, there is a problem that a large amount of water is transported and the transportation cost is high. Therefore, a technique for producing a dried product has been developed. However, once the fine fibrous cellulose is dried, it is redispersed as fine fibrous cellulose unless it is dispersed by stirring at a high rotation speed and for a long time. It was difficult (Patent Document 1 etc.). In addition, there is a problem that discoloration occurs when heat is applied to make a dried product. Therefore, instead of making it a dried product, it is transported with a high solid content concentration.

しかし、高固形分濃度の微細繊維状セルロース分散体は、粘度が高く固いゲル状であるため、そのまま補強したい材料に対して添加・混合した場合には、当該材料に対して微細繊維状セルロースが均一に分散されず、混合して得られた組成物は、強度等の向上が十分ではなかった。また、高固形分濃度の微細繊維状セルロース分散体を、補強したい材料に対して均一に分散させる目的で、分散体の粘度を下げて柔らかいゲル状とするために従来のアジテータ方式の撹拌装置を用いて希釈すると、均一に希釈ができずゲル粒が残ってしまう。したがって、この方法で希釈された微細繊維状セルロース分散体を、補強したい材料に対して添加・混合した場合には、当該材料に対して微細繊維状セルロースを均一に分散させることが困難であった。また、高剪断力を付与することが可能なホモジナイザーを用いて高固形分濃度の微細繊維状セルロース分散体を希釈する場合には、ゲル粒が残らず均一な希釈が可能であったが、剪断力により微細繊維状セルロースの繊維長が短くなる問題があった。そのため、この方法で希釈された微細繊維状セルロース分散体は、強度や剛性を高める機能が損なわれ、補強効果に劣るものであった。 However, since the fine fibrous cellulose dispersion having a high solid content concentration has a high viscosity and is in the form of a hard gel, when it is added or mixed with the material to be reinforced as it is, the fine fibrous cellulose is added to the material. The composition obtained by mixing without being uniformly dispersed did not sufficiently improve the strength and the like. Further, for the purpose of uniformly dispersing the fine fibrous cellulose dispersion having a high solid content concentration in the material to be reinforced, a conventional agitator type agitator is used to reduce the viscosity of the dispersion to form a soft gel. When diluted by using, it cannot be diluted uniformly and gel particles remain. Therefore, when the fine fibrous cellulose dispersion diluted by this method is added and mixed with the material to be reinforced, it is difficult to uniformly disperse the fine fibrous cellulose with respect to the material. .. Further, when the fine fibrous cellulose dispersion having a high solid content concentration was diluted with a homogenizer capable of imparting a high shearing force, uniform dilution was possible without leaving any gel particles, but shearing was possible. There is a problem that the fiber length of the fine fibrous cellulose is shortened by the force. Therefore, the fine fibrous cellulose dispersion diluted by this method is inferior in the reinforcing effect because the function of increasing the strength and the rigidity is impaired.

よって、高固形分濃度の微細繊維状セルロース分散体に対して、繊維長の短縮を引き起こさないように希釈を行い、均一に希釈された微細繊維状セルロース分散体を製造する方法が求められていた。 Therefore, there has been a demand for a method for producing a uniformly diluted fine fibrous cellulose dispersion by diluting the fine fibrous cellulose dispersion having a high solid content concentration so as not to cause a shortening of the fiber length. ..

特開2015−134873号公報Japanese Unexamined Patent Publication No. 2015-134873

そこで、本発明は、高固形分濃度の微細繊維状セルロース分散体に対して、繊維長の短縮を引き起こさないように希釈を行い、均一に希釈された微細繊維状セルロース分散体を製造する方法を提供することを目的とする。 Therefore, the present invention provides a method for producing a uniformly diluted fine fibrous cellulose dispersion by diluting a fine fibrous cellulose dispersion having a high solid content concentration so as not to cause a shortening of the fiber length. The purpose is to provide.

本発明者らは、かかる目的を達成するため鋭意検討した結果、特定の混合装置を用いて分散させることが極めて有効であることを見出し、本発明を完成した。 As a result of diligent studies to achieve such an object, the present inventors have found that it is extremely effective to disperse using a specific mixing device, and have completed the present invention.

本発明は以下を提供する。
(1) 固形分濃度1wt%以上の微細繊維状セルロース分散体を、希釈溶媒とともに撹拌機で予備分散する工程と、前記予備分散する工程で得られた混合物を、インライン静止型流体混合装置を通過させることにより本分散する工程とを含む、希釈された微細繊維状セルロース分散体の製造方法。
(2) 前記インライン静止型流体混合装置は、管体を有し、前記管体内の上流側に乱流撹拌を起こすための交差する少なくとも2枚の板を設けることを特徴とする(1)に記載の微細繊維状セルロース分散体の製造方法。
(3) 前記少なくとも2枚の板の下流側の前記管体内周壁に突起状物を複数設けることを特徴とする(1)または(2)に記載の微細繊維状セルロース分散体の製造方法。
(4) 前記インライン静止型流体混合装置に対して、前記混合物を、流速2m/秒以上で通過させる(1)〜(3)の何れかに記載の微細繊維状セルロース分散体の製造方法。
The present invention provides:
(1) A step of pre-dispersing a fine fibrous cellulose dispersion having a solid content concentration of 1 wt% or more with a diluting solvent with a stirrer and a mixture obtained in the step of pre-dispersing the mixture pass through an in-line stationary fluid mixer. A method for producing a diluted fine fibrous cellulose dispersion, which comprises a step of subjecting the mixture to the present dispersion.
(2) The in-line stationary fluid mixing device has a tubular body, and is characterized in that at least two intersecting plates for causing turbulent agitation are provided on the upstream side of the tubular body (1). The method for producing a fine fibrous cellulose dispersion according to the above method.
(3) The method for producing a fine fibrous cellulose dispersion according to (1) or (2), wherein a plurality of protrusions are provided on the peripheral wall of the tube on the downstream side of at least two plates.
(4) The method for producing a fine fibrous cellulose dispersion according to any one of (1) to (3), wherein the mixture is passed through the in-line stationary fluid mixing device at a flow rate of 2 m / sec or more.

本発明によれば、高固形分濃度の微細繊維状セルロース分散体を、繊維長の短縮を引き起こさないように希釈を行い、均一に希釈された微細繊維状セルロース分散体を製造する方法を提供することができる。 According to the present invention, there is provided a method for producing a uniformly diluted fine fibrous cellulose dispersion by diluting a fine fibrous cellulose dispersion having a high solid content concentration so as not to cause a shortening of the fiber length. be able to.

本発明の製造方法に用いることができるOHRミキサーの断面を示す概略図である。It is the schematic which shows the cross section of the OHR mixer which can be used in the manufacturing method of this invention.

以下、図面を参照して本発明を詳細に説明する。本発明において「〜」は端値を含む。すなわち「X〜Y」はその両端の値XおよびYを含む。 Hereinafter, the present invention will be described in detail with reference to the drawings. In the present invention, "~" includes a fractional price. That is, "X to Y" includes the values X and Y at both ends thereof.

本発明は、希釈された微細繊維状セルロース分散体の製造方法であって、固形分濃度1wt%以上の微細繊維状セルロース分散体を、希釈溶媒とともに撹拌機で予備分散する工程と、前記予備分散する工程で得られた混合物を、インライン静止型流体混合装置を通過させることにより本分散する工程とを含むものである。 The present invention is a method for producing a diluted fine fibrous cellulose dispersion, wherein the fine fibrous cellulose dispersion having a solid content concentration of 1 wt% or more is pre-dispersed together with a diluting solvent with a stirrer, and the pre-dispersion. This includes a step of subjecting the mixture obtained in the above step to the present dispersion by passing it through an in-line stationary fluid mixing device.

(予備分散する工程)
本発明の予備分散する工程においては、固形分濃度1wt%以上の微細繊維状セルロース分散体を、希釈溶媒とともに撹拌機で予備分散する。予備分散する工程を設けることにより、本分散する工程におけるインライン静止型流体混合装置の配管内でのサンプルの詰まりを防止することができる。
(Pre-dispersion process)
In the step of pre-dispersing the present invention, a fine fibrous cellulose dispersion having a solid content concentration of 1 wt% or more is pre-dispersed together with a diluting solvent with a stirrer. By providing the pre-dispersion step, it is possible to prevent the sample from being clogged in the piping of the in-line static fluid mixing device in the main dispersion step.

(微細繊維状セルロース)
本発明で用いる、微細繊維状セルロースは、セルロースを原料とする微細繊維である。微細繊維状セルロースの平均繊維径は、特に限定されないが、1nm〜10μm程度である。微細繊維状セルロースの平均繊維径および平均繊維長は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。微細繊維状セルロースは、セルロースを解繊することによって製造することができる。
(Fine fibrous cellulose)
The fine fibrous cellulose used in the present invention is a fine fiber made from cellulose as a raw material. The average fiber diameter of the fine fibrous cellulose is not particularly limited, but is about 1 nm to 10 μm. The average fiber diameter and average fiber length of the fine fibrous cellulose are obtained from the results of observing each fiber using a scanning electron microscope (SEM), an atomic force microscope (AFM), or a transmission electron microscope (TEM). It can be obtained by averaging the fiber diameter and fiber length. Fine fibrous cellulose can be produced by defibrating cellulose.

本発明に用いる微細繊維状セルロースの平均アスペクト比は、通常50以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出することができる:
アスペクト比=平均繊維長/平均繊維径
The average aspect ratio of the fine fibrous cellulose used in the present invention is usually 50 or more. The upper limit is not particularly limited, but is usually 1000 or less. The average aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length / average fiber diameter

セルロース原料は、セルロースを含んでいればよく、特に限定されないが、例えば、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、晒クラフトパルプ(BKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等が挙げられる。セルロース原料としては、これらのいずれかであってもよいし2種類以上の組み合わせであってもよいが、好ましくは植物又は微生物由来のセルロース原料(例えば、セルロース繊維)であり、より好ましくは植物由来のセルロース原料(例えば、セルロース繊維)である。 The cellulose raw material may contain cellulose and is not particularly limited, but for example, plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (conifer unbleached kraft pulp (NUKP)), Coniferous bleached kraft pulp (NBKP), broadleaf unbleached kraft pulp (LUKP), broadleaf bleached kraft pulp (LBKP), bleached kraft pulp (BKP), coniferous unbleached sulphite pulp (NUSP), coniferous bleached sulphite pulp (NBSP) Thermomechanical pulp (TMP), recycled pulp, used paper, etc.), animals (for example, squirrels), algae, microorganisms (for example, acetic acid bacteria (acetobacter)), microbial products, etc. can be mentioned. It may be a combination of two or more kinds, but it is preferably a pulp raw material derived from a plant or a microorganism (for example, cellulose fiber), and more preferably a cellulose raw material derived from a plant (for example, cellulose fiber). ).

セルロース原料の数平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は30〜60μm程度、広葉樹クラフトパルプの場合は10〜30μm程度である。その他のパルプの場合、一般的な精製を経たものは50μm程度である。例えばチップ等の数cm大のものを精製したものである場合、リファイナー、ビーター等の離解機で機械的処理を行い、50μm程度に調整することが好ましい。 The number average fiber diameter of the cellulose raw material is not particularly limited, but is about 30 to 60 μm in the case of softwood kraft pulp, which is a general pulp, and about 10 to 30 μm in the case of hardwood kraft pulp. In the case of other pulp, the one that has undergone general purification is about 50 μm. For example, when a chip or the like having a size of several cm is purified, it is preferable to perform mechanical treatment with a dissociator such as a refiner or a beater to adjust the size to about 50 μm.

セルロースは、グルコース単位あたり3つのヒドロキシル基を有しており、各種の化学変性を行うことが可能である。本発明においては、解繊の進行を促進するという観点から、化学変性して得られたセルロース原料(化学変性セルロース)を解繊して製造された化学変性微細繊維状セルロースを用いることが好ましい。 Cellulose has three hydroxyl groups per glucose unit and can undergo various chemical denaturations. In the present invention, from the viewpoint of promoting the progress of defibration, it is preferable to use chemically modified fine fibrous cellulose produced by defibrating a cellulose raw material (chemically modified cellulose) obtained by chemically modifying.

化学変性としては、例えば、酸化(カルボキシル化)、カルボキシメチル化、カチオン化、エステル化等が挙げられる。中でも、酸化(カルボキシル化)、カルボキシメチル化がより好ましい。 Examples of the chemical denaturation include oxidation (carboxylation), carboxymethylation, cationization, esterification and the like. Of these, oxidation (carboxylation) and carboxymethylation are more preferable.

(化学変性)
(酸化)
本発明において、酸化(カルボキシル化)したセルロースを解繊して得られた酸化微細繊維状セルロースを用いる場合、酸化セルロース(カルボキシル化セルロースとも呼ぶ)は、上記のセルロース原料を公知の方法で酸化(カルボキシル化)することにより得ることができる。特に限定されるものではないが、酸化の際には、化学変性微細繊維状セルロースの絶乾重量に対して、カルボキシル基の量が0.6〜2.0mmol/gとなるように調整することが好ましく、1.0mmol/g〜2.0mmol/gになるように調整することがさらに好ましい。
(Chemical denaturation)
(Oxidation)
In the present invention, when the oxidized fine fibrous cellulose obtained by defibrating the oxidized (carboxylated) cellulose is used, the oxidized cellulose (also referred to as carboxylated cellulose) oxidizes the above-mentioned cellulose raw material by a known method. It can be obtained by carboxylation). Although not particularly limited, at the time of oxidation, the amount of carboxyl groups should be adjusted to 0.6 to 2.0 mmol / g with respect to the absolute dry weight of the chemically modified fine fibrous cellulose. Is preferable, and it is more preferable to adjust the concentration to 1.0 mmol / g to 2.0 mmol / g.

酸化(カルボキシル化)方法の一例として、セルロース原料を、N−オキシル化合物と、臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する方法を挙げることができる。この酸化反応により、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にアルデヒド基と、カルボキシル基(−COOH)またはカルボキシレート基(−COO)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5重量%以下が好ましい。As an example of the oxidation (carboxylation) method, a cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. The method can be mentioned. This oxidation reaction, C6-position primary hydroxyl groups of the glucopyranose ring of the cellulose surface is selectively oxidized, and an aldehyde group on the surface, a carboxyl group (-COOH) or carboxylate groups (-COO -) and cellulosic fibers having a Can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by weight or less.

N−オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6−テトラメチルピペリジン−1−オキシラジカル(TEMPO)およびその誘導体(例えば4−ヒドロキシTEMPO)が挙げられる。 The N-oxyl compound is a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it is a compound that promotes the desired oxidation reaction. For example, 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivative (for example, 4-hydroxy TEMPO) can be mentioned.

N−オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01〜10mmolが好ましく、0.01〜1mmolがより好ましく、0.05〜0.5mmolがさらに好ましい。また、反応系に対し0.1〜4mmol/L程度が好ましい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material. For example, 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is further preferable with respect to 1 g of cellulose that has been completely dried. Further, it is preferably about 0.1 to 4 mmol / L with respect to the reaction system.

臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1〜100mmolが好ましく、0.1〜10mmolがより好ましく、0.5〜5mmolがさらに好ましい。 The bromide is a compound containing bromine, and examples thereof include alkali metals bromide that can be dissociated and ionized in water. Further, the iodide is a compound containing iodine, and an example thereof includes an alkali metal iodide. The amount of bromide or iodide used can be selected within the range in which the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, still more preferably 0.5 to 5 mmol, relative to 1 g of dry cellulose.

酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の使用量としては、例えば、絶乾1gのセルロースに対して、0.5〜500mmolが好ましく、0.5〜50mmolがより好ましく、1〜25mmolがさらに好ましく、3〜10mmolが最も好ましい。また、例えば、N−オキシル化合物1molに対して1〜40molが好ましい。 As the oxidizing agent, known ones can be used, and for example, halogen, hypohalogenic acid, subhalogenic acid, perhalogenic acid or salts thereof, halogen oxide, peroxide and the like can be used. Of these, sodium hypochlorite, which is inexpensive and has a low environmental load, is preferable. The amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of dry cellulose. Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.

セルロースの酸化は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4〜40℃が好ましく、また15〜30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8〜12、好ましくは10〜11程度に維持することが好ましい。反応媒体は、取扱容易性や、副反応が生じにくいこと等から、水が好ましい。 Oxidation of cellulose allows the reaction to proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40 ° C, and may be room temperature of about 15 to 30 ° C. As the reaction progresses, carboxyl groups are generated in the cellulose, so that the pH of the reaction solution is lowered. In order to allow the oxidation reaction to proceed efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at 8 to 12, preferably about 10 to 11. Water is preferable as the reaction medium because it is easy to handle and side reactions are unlikely to occur.

酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5〜6時間、例えば、0.5〜4時間程度である。 The reaction time in the oxidation reaction can be appropriately set according to the degree of progress of oxidation, and is usually about 0.5 to 6 hours, for example, about 0.5 to 4 hours.

また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 Further, the oxidation reaction may be carried out in two steps. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt produced as a by-product in the first-stage reaction. Can be oxidized well.

酸化(カルボキシル化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位および6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50〜250g/mであることが好ましく、50〜220g/mであることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100重量部とした際に、0.1〜30重量部であることが好ましく、5〜30重量部であることがより好ましい。オゾン処理温度は、0〜50℃であることが好ましく、20〜50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1〜360分程度であり、30〜360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化および分解されることを防ぐことができ、酸化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。As another example of the oxidation (carboxylation) method, there is a method of oxidizing by contacting a gas containing ozone with a cellulose raw material. By this oxidation reaction, the hydroxyl groups at at least the 2nd and 6th positions of the glucopyranose ring are oxidized, and the cellulose chain is decomposed. Ozone concentration in the ozone containing gas is preferably 50 to 250 g / m 3, more preferably 50~220g / m 3. The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by weight, more preferably 5 to 30 parts by weight, when the solid content of the cellulose raw material is 100 parts by weight. The ozone treatment temperature is preferably 0 to 50 ° C, more preferably 20 to 50 ° C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the ozone treatment conditions are within these ranges, it is possible to prevent the cellulose from being excessively oxidized and decomposed, and the yield of the oxidized cellulose becomes good. After the ozone treatment, the additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfate, and peracetic acid. For example, the additional oxidation treatment can be performed by dissolving these oxidizing agents in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and immersing the cellulose raw material in the solution.

酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。 The amount of the carboxyl group of cellulose oxide can be adjusted by controlling the reaction conditions such as the amount of the oxidizing agent added and the reaction time described above.

(カルボキシメチル化)
本発明において、カルボキシメチル化したセルロースを解繊して得られたカルボキシメチル化微細繊維状セルロース用いる場合、カルボキシメチル化したセルロースは、上記のセルロース原料を公知の方法でカルボキシメチル化することにより得てもよいし、市販品を用いてもよい。いずれの場合も、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01〜0.50となるものが好ましい。そのようなカルボキシメチル化したセルロースを製造する方法の一例として次のような方法を挙げることができる。セルロースを発底原料にし、溶媒として3〜20重量倍の水及び/又は低級アルコール、具体的には水、メタノール、エタノール、N−プロピルアルコール、イソプロピルアルコール、N−ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、低級アルコールを混合する場合の低級アルコールの混合割合は、60〜95重量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5〜20倍molの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0〜70℃、好ましくは10〜60℃、かつ反応時間15分〜8時間、好ましくは30分〜7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05〜10.0倍mol添加し、反応温度30〜90℃、好ましくは40〜80℃、かつ反応時間30分〜10時間、好ましくは1時間〜4時間、エーテル化反応を行う。
(Carboxymethylation)
In the present invention, when carboxymethylated fine fibrous cellulose obtained by defibrating carboxymethylated cellulose is used, the carboxymethylated cellulose is obtained by carboxymethylating the above-mentioned cellulose raw material by a known method. Alternatively, a commercially available product may be used. In either case, the degree of carboxymethyl group substitution per anhydrous glucose unit of cellulose is preferably 0.01 to 0.50. The following method can be mentioned as an example of a method for producing such carboxymethylated cellulose. Using cellulose as a base material, 3 to 20 times by weight of water and / or lower alcohol as a solvent, specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary Use a single medium such as butanol or a mixed medium of two or more kinds. When the lower alcohol is mixed, the mixing ratio of the lower alcohol is 60 to 95% by weight. As the mercerizing agent, 0.5 to 20 times mol of alkali metal hydroxide per anhydrous glucose residue of the bottoming material, specifically sodium hydroxide and potassium hydroxide is used. The bottoming material, the solvent, and the mercerizing agent are mixed, and the mercerization treatment is carried out at a reaction temperature of 0 to 70 ° C., preferably 10 to 60 ° C., and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Then, 0.05 to 10.0 times mol of the carboxymethylating agent is added per glucose residue, the reaction temperature is 30 to 90 ° C., preferably 40 to 80 ° C., and the reaction time is 30 minutes to 10 hours, preferably 1 hour. The etherification reaction is carried out for ~ 4 hours.

なお、本明細書において、微細繊維状セルロースの調製に用いる化学変性セルロースの一種である「カルボキシメチル化したセルロース」は、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものをいう。したがって、水溶性高分子の一種であるカルボキシメチルセルロースとは区別される。「カルボキシメチル化したセルロース」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化したセルロース」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。 In the present specification, "carboxymethylated cellulose", which is a kind of chemically modified cellulose used for preparing fine fibrous cellulose, maintains at least a part of the fibrous shape even when dispersed in water. Say something. Therefore, it is distinguished from carboxymethyl cellulose, which is a kind of water-soluble polymer. When the aqueous dispersion of "carboxymethylated cellulose" is observed with an electron microscope, a fibrous substance can be observed. On the other hand, when observing the aqueous dispersion of carboxymethyl cellulose, which is a kind of water-soluble polymer, no fibrous substance is observed. In addition, the peak of cellulose type I crystal can be observed when "carboxymethylated cellulose" is measured by X-ray diffraction, but cellulose type I crystal is not observed in the water-soluble polymer carboxymethyl cellulose.

(カチオン化)
本発明において、前記カルボキシル化セルロースをさらにカチオン化したセルロースを解繊して得られたカチオン化微細繊維状セルロースを使用することができる。当該カチオン変性されたセルロースは、前記カルボキシル化セルロース原料に、グリシジルトリメチルアンモニウムクロリド、3−クロロ−2−ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と、触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を、水または炭素数1〜4のアルコールの存在下で反応させることによって得ることができる。
(Cationation)
In the present invention, cationized fine fibrous cellulose obtained by defibrating cellulose obtained by further cationizing the carboxylated cellulose can be used. The cation-modified cellulose is prepared by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrite or a halohydrin type thereof to the carboxylated cellulose raw material, and an alkali hydroxide as a catalyst. It can be obtained by reacting a metal (sodium hydroxide, potassium hydroxide, etc.) in the presence of water or an alcohol having 1 to 4 carbon atoms.

グルコース単位当たりのカチオン置換度は0.02〜0.50であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのカチオン置換度が0.02より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たカチオン変性されたセルロース原料は洗浄されることが好ましい。当該カチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1〜4のアルコールの組成比率によって調整できる。 The degree of cation substitution per glucose unit is preferably 0.02 to 0.50. By introducing a cationic substituent into cellulose, the celluloses are electrically repelled from each other. Therefore, cellulose into which a cation substituent has been introduced can be easily nano-defibrated. If the degree of cation substitution per glucose unit is less than 0.02, nano-defibration cannot be sufficiently performed. On the other hand, if the degree of cation substitution per glucose unit is larger than 0.50, it may not be obtained as nanofibers because it swells or dissolves. In order to efficiently perform defibration, it is preferable that the cation-modified cellulose raw material obtained above is washed. The degree of cation substitution can be adjusted by the amount of the cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms.

(エステル化)
本発明において、エステル化したセルロースを解繊して得られたエステル化微細繊維状セルロースを使用することができる。当該エステル化セルロースは、前述のセルロース原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース原料のスラリーにリン酸系化合物Aの水溶液を添加する方法により得られる。
(Esterification)
In the present invention, esterified fine fibrous cellulose obtained by defibrating esterified cellulose can be used. The esterified cellulose can be obtained by a method of mixing a powder or an aqueous solution of a phosphoric acid compound A with the above-mentioned cellulose raw material, or a method of adding an aqueous solution of a phosphoric acid compound A to a slurry of a cellulose raw material.

リン酸系化合物Aとしては、リン酸、ポリリン酸、亜リン酸、次亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。これらの中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用できる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩がより好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが好ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3〜7が好ましい。 Examples of the phosphoric acid-based compound A include phosphoric acid, polyphosphoric acid, phosphite, hypophosphoric acid, phosphonic acid, polyphosphonic acid, and esters thereof. These may be in the form of salts. Among these, a compound having a phosphoric acid group is preferable because it is low in cost, easy to handle, and the phosphoric acid group can be introduced into the cellulose of the pulp fiber to improve the defibration efficiency. Compounds having a phosphoric acid group include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, and potassium hypophosphite. , Sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate , Ammonium pyrophosphate, ammonium metaphosphate and the like. These can be used alone or in combination of two or more. Of these, from the viewpoints of high efficiency of introducing phosphoric acid groups, easy defibration in the following defibration steps, and easy industrial application, phosphoric acid, sodium phosphate of phosphoric acid, potassium salt of phosphoric acid, and phosphoric acid Ammonium salt is more preferred. In particular, sodium dihydrogen phosphate and disodium hydrogen phosphate are preferable. Further, the phosphoric acid-based compound A is preferably used as an aqueous solution because the uniformity of the reaction is enhanced and the efficiency of introducing the phosphoric acid group is increased. The pH of the aqueous solution of the phosphoric acid-based compound A is preferably 7 or less because the efficiency of introducing the phosphoric acid group is high, but is preferably 3 to 7 from the viewpoint of suppressing the hydrolysis of pulp fibers.

リン酸エステル化セルロースの製造方法の一例として以下の方法を挙げることができる。固形分濃度0.1〜10重量%のセルロース原料の分散液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース原料を100重量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2〜500重量部であることが好ましく、1〜400重量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるのでコスト面から好ましくない。 The following method can be mentioned as an example of the method for producing phosphoric acid esterified cellulose. A phosphoric acid-based compound A is added to a dispersion of a cellulose raw material having a solid content concentration of 0.1 to 10% by weight with stirring to introduce a phosphoric acid group into the cellulose. When the cellulose raw material is 100 parts by weight, the amount of the phosphoric acid compound A added is preferably 0.2 to 500 parts by weight, more preferably 1 to 400 parts by weight, as the amount of phosphorus element. When the ratio of the phosphoric acid-based compound A is at least the above lower limit value, the yield of the fine fibrous cellulose can be further improved. However, if the upper limit is exceeded, the effect of improving the yield will reach a plateau, which is not preferable from the viewpoint of cost.

この際、セルロース原料、リン酸系化合物Aの他に、これ以外の化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃〜赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本発明で用いる塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられるが、特に限定されない。この中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース原料の固形分100重量部に対して、2〜1000重量部が好ましく、100〜700重量部がより好ましい。反応温度は0〜95℃が好ましく、30〜90℃がより好ましい。反応時間は特に限定されないが、1〜600分程度であり、30〜480分がより好ましい。エステル化反応の条件がこれらの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100〜170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100〜170℃で加熱処理することが好ましい。 At this time, in addition to the cellulose raw material and the phosphoric acid-based compound A, powders or aqueous solutions of other compounds B may be mixed. Compound B is not particularly limited, but a nitrogen-containing compound exhibiting basicity is preferable. "Basic" here is defined as the aqueous solution exhibiting a pink to red color in the presence of a phenolphthalein indicator, or the pH of the aqueous solution being greater than 7. The basic nitrogen-containing compound used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but a compound having an amino group is preferable. For example, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like can be mentioned, but are not particularly limited. Of these, urea, which is low in cost and easy to handle, is preferable. The amount of compound B added is preferably 2 to 1000 parts by weight, more preferably 100 to 700 parts by weight, based on 100 parts by weight of the solid content of the cellulose raw material. The reaction temperature is preferably 0 to 95 ° C, more preferably 30 to 90 ° C. The reaction time is not particularly limited, but is about 1 to 600 minutes, more preferably 30 to 480 minutes. When the conditions of the esterification reaction are within these ranges, it is possible to prevent the cellulose from being excessively esterified and easily dissolved, and the yield of the phosphate esterified cellulose becomes good. After dehydrating the obtained phosphoric acid esterified cellulose suspension, it is preferable to heat-treat it at 100 to 170 ° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, it is preferable to heat at 130 ° C. or lower, preferably 110 ° C. or lower while water is contained in the heat treatment, remove water, and then heat-treat at 100 to 170 ° C.

リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001〜0.40であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、微細繊維状セルロースとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。 The degree of phosphate group substitution per glucose unit of the phosphoric acid esterified cellulose is preferably 0.001 to 0.40. By introducing a phosphate group substituent into cellulose, the celluloses are electrically repelled from each other. Therefore, the cellulose into which a phosphate group has been introduced can be easily nano-defibrated. If the degree of phosphate substitution per glucose unit is less than 0.001, nano-defibration cannot be sufficiently performed. On the other hand, if the degree of phosphoric acid group substitution per glucose unit is larger than 0.40, it swells or dissolves, so that it may not be obtained as fine fibrous cellulose. In order to efficiently perform defibration, it is preferable that the phosphoric acid esterified cellulose raw material obtained above is washed by boiling and then washing with cold water.

(解繊)
本発明において、化学変性セルロースを解繊する装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いて上記の化学変性セルロースの水分散体に強力なせん断力を印加することが好ましい。特に、効率よく解繊するには、前記水分散体に50MPa以上の圧力を印加し、かつ強力なせん断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。解繊装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。
(Defibration)
In the present invention, the apparatus for defibrating the chemically modified cellulose is not particularly limited, but the above-mentioned aqueous dispersion of the chemically modified cellulose is used by using an apparatus such as a high-speed rotary type, a colloid mill type, a high pressure type, a roll mill type, and an ultrasonic type. It is preferable to apply a strong shearing force to the. In particular, in order to efficiently defibrate, it is preferable to use a wet high-pressure or ultra-high pressure homogenizer capable of applying a pressure of 50 MPa or more to the aqueous dispersion and applying a strong shearing force. The pressure is more preferably 100 MPa or more, still more preferably 140 MPa or more. The number of treatments (passes) in the defibrator may be once, twice or more, and preferably twice or more.

分散処理においては通常、溶媒に化学変性セルロースを分散する。溶媒は、化学変性セルロースを分散できるものであれば特に限定されないが、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。セルロース原料が親水性であることから、溶媒は水であることが好ましい。 In the dispersion treatment, chemically modified cellulose is usually dispersed in a solvent. The solvent is not particularly limited as long as it can disperse the chemically modified cellulose, and examples thereof include water, an organic solvent (for example, a hydrophilic organic solvent such as methanol), and a mixed solvent thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water.

分散体中の化学変性セルロースの固形分濃度は、通常は0.1重量%以上、好ましくは0.2重量%以上、より好ましくは0.3重量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は、通常10重量%以下、好ましくは6重量%以下である。これにより流動性を保持することができる。 The solid content concentration of the chemically modified cellulose in the dispersion is usually 0.1% by weight or more, preferably 0.2% by weight or more, and more preferably 0.3% by weight or more. As a result, the amount of liquid becomes appropriate with respect to the amount of the cellulose fiber raw material, which is efficient. The upper limit is usually 10% by weight or less, preferably 6% by weight or less. This makes it possible to maintain liquidity.

解繊処理又は分散処理に先立ち、必要に応じて上記の化学変性セルロースに予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、撹拌、乳化、分散装置を用いて行えばよい。 Prior to the defibration treatment or the dispersion treatment, the above-mentioned chemically modified cellulose may be pretreated, if necessary. The pretreatment may be performed using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.

解繊工程を経て得られた化学変性微細繊維状セルロースが塩型の場合は、そのまま用いても良いし、鉱酸を用いた酸処理や、陽イオン交換樹脂を用いた方法等により酸型として用いても良い。また、カチオン性添加剤を用いた方法により疎水性を付与して用いても良い。 When the chemically modified fine fibrous cellulose obtained through the defibration step is a salt type, it may be used as it is, or it may be used as an acid type by an acid treatment using a mineral acid or a method using a cation exchange resin. You may use it. Further, the hydrophobicity may be imparted by a method using a cationic additive.

(微細繊維状セルロース分散体)
本発明において、予備分散する工程に供する、高固形分濃度の微細繊維状セルロース分散体は、上記のようにして製造された微細繊維状セルロースの分散体を脱水・乾燥し、溶媒量を減少させることにより得てもよい。高固形分濃度の微細繊維状セルロースの分散体としては、市販品を用いてもよい。
(Fine fibrous cellulose dispersion)
In the present invention, the fine fibrous cellulose dispersion having a high solid content concentration to be subjected to the step of pre-dispersion dehydrates and dries the fine fibrous cellulose dispersion produced as described above, and reduces the amount of solvent. It may be obtained by. As the dispersion of fine fibrous cellulose having a high solid content concentration, a commercially available product may be used.

本発明において、予備分散する工程に供する高固形分濃度の微細繊維状セルロース分散体は、CNF固形分濃度が1wt%以上であり、2wt%〜20wt%が好ましく、3〜15wt%がさらに好ましい。 In the present invention, the fine fibrous cellulose dispersion having a high solid content concentration to be used in the pre-dispersion step has a CNF solid content concentration of 1 wt% or more, preferably 2 wt% to 20 wt%, and even more preferably 3 to 15 wt%.

高固形分濃度の微細繊維状セルロース分散体を製造するための脱水・乾燥の方法は、特に制限されず、目的に応じて適宜選択することができ、例えば、噴霧乾燥、圧搾、風乾、熱風乾燥、凍結乾燥、噴霧乾燥、真空乾燥などが挙げられる。乾燥装置も特に制限されず、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、ベルト乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置、回分式の箱型乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等を単独で又は2つ以上組み合わせて用いることができる。 The dehydration / drying method for producing a fine fibrous cellulose dispersion having a high solid content concentration is not particularly limited and may be appropriately selected depending on the intended purpose. For example, spray drying, squeezing, air drying, hot air drying. , Freeze-drying, spray-drying, vacuum-drying and the like. The drying device is also not particularly limited, and is a continuous tunnel drying device, a band drying device, a vertical drying device, a vertical turbo drying device, a multi-stage disk drying device, an aeration drying device, a rotary drying device, an air flow drying device, and a spray drying device. Equipment, cylindrical drying equipment, drum drying equipment, belt drying equipment, screw conveyor drying equipment, rotary drying equipment with heating tube, vibration transport drying equipment, batch type box type drying equipment, vacuum box type drying equipment, stirring drying equipment, etc. Can be used alone or in combination of two or more.

(希釈溶媒)
本発明において、希釈溶媒としては、水、水溶性有機溶媒、あるいはこれらの混合溶媒が挙げられ、セルロース原料が親水性であるため、分散時に良好な分散状態を取りやすいという観点から水を用いることが好ましい。また、希釈溶媒としては、希釈前の微細繊維状セルロース分散体の溶媒と同じものを用いてもよいし、異なるものを用いても良い。
(Diluting solvent)
In the present invention, examples of the diluting solvent include water, a water-soluble organic solvent, and a mixed solvent thereof. Since the cellulose raw material is hydrophilic, water is used from the viewpoint that a good dispersion state can be easily obtained at the time of dispersion. Is preferable. Further, as the diluting solvent, the same solvent as that of the fine fibrous cellulose dispersion before dilution may be used, or a different solvent may be used.

水溶性有機溶媒とは、水に溶解する有機溶媒である。その例として、メタノール、エタノール、2−プロパノール、ブタノール、グリセリン、アセトン、メチルエチルケトン、1,4−ジオキサン、N−メチル−2−ピロリドン、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、アセトニトリル、およびこれらの組合せが挙げられる。中でもメタノール、エタノール、2−プロパノール等の炭素数が1〜4の低級アルコールが好ましく、安全性および入手容易性の観点から、メタノール、エタノールがより好ましく、エタノールがさらに好ましい。 The water-soluble organic solvent is an organic solvent that dissolves in water. Examples include methanol, ethanol, 2-propanol, butanol, glycerin, acetone, methyl ethyl ketone, 1,4-dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, Included are dimethyl sulfoxide, acetonitrile, and combinations thereof. Among them, lower alcohols having 1 to 4 carbon atoms such as methanol, ethanol and 2-propanol are preferable, methanol and ethanol are more preferable, and ethanol is further preferable from the viewpoint of safety and availability.

混合溶媒とする場合には、混合溶媒中の水溶性有機溶媒の量は、10重量%以上が好ましく、50重量%以上がより好ましく、70重量%以上がさらに好ましい。当該量の上限は限定されないが95重量%以下が好ましく、90重量%以下がより好ましい。また、発明の効果を損なわない程度で、当該水系溶媒は非水溶性有機溶媒を含んでいてもよい。 In the case of using a mixed solvent, the amount of the water-soluble organic solvent in the mixed solvent is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 70% by weight or more. The upper limit of the amount is not limited, but is preferably 95% by weight or less, and more preferably 90% by weight or less. Further, the aqueous solvent may contain a water-insoluble organic solvent to the extent that the effect of the invention is not impaired.

なお、希釈前の微細繊維状セルロース分散体に対する希釈溶媒の添加量は、希釈された微細繊維状セルロース分散体の固形分濃度が0.01〜5wt%となる量であることが好ましく、0.1〜3wt%となる量であることがより好ましい。 The amount of the diluting solvent added to the fine fibrous cellulose dispersion before dilution is preferably an amount such that the solid content concentration of the diluted fine fibrous cellulose dispersion is 0.01 to 5 wt%. More preferably, the amount is 1 to 3 wt%.

(撹拌機)
本発明の予備分散する工程で用いる撹拌機としては、高いせん断力で微細繊維状セルロースの繊維長を短くすることなく、かつ硬いゲル塊を配管詰りを起こさない大きさまで解砕できる撹拌機を適宜使用することができる。例えば、アジテータ等を用いることができる。また、撹拌機を用いた予備分散の条件は特に制限されないが、例えば、100〜1500rpmで、15秒〜30分程度である。
(mixer)
As the stirrer used in the pre-dispersion step of the present invention, a stirrer capable of crushing a hard gel mass to a size that does not cause pipe clogging without shortening the fiber length of the fine fibrous cellulose with a high shearing force is appropriately used. Can be used. For example, an agitator or the like can be used. The conditions for pre-dispersion using a stirrer are not particularly limited, but are, for example, about 15 seconds to 30 minutes at 100 to 1500 rpm.

(本分散する工程)
本発明の本分散する工程においては、前述の予備分散する工程で得られた微細繊維状セルロース分散体と希釈溶媒との混合物を、インライン静止型流体混合装置を通過させることにより行う。
(Main dispersion process)
In the present dispersion step of the present invention, a mixture of the fine fibrous cellulose dispersion obtained in the above-mentioned pre-dispersion step and a diluting solvent is passed through an in-line stationary fluid mixing device.

(インライン静止型流体混合装置)
本発明で用いるインライン静止型流体混合装置としては、上記の混合物をゲル粒が残らないように均一に希釈できるものであれば特に制限なく用いることができ、例えば、スタティックミキサー、OHRミキサー、MSEスタティックミキサー等が挙げられ、分散性の観点からOHRミキサーを用いることが好ましい。
(In-line stationary fluid mixer)
The in-line stationary fluid mixing device used in the present invention can be used without particular limitation as long as the above mixture can be uniformly diluted so as not to leave gel particles. For example, a static mixer, an OHR mixer, and MSE static can be used. Examples thereof include a mixer, and it is preferable to use an OHR mixer from the viewpoint of dispersibility.

スタティックミキサーとは、管中に、右捻りの螺旋状エレメントと左捻りの螺旋状エレメントとを交互に、かつ一方の端が他方の端に対して直角になるように配列された形の流体混合装置である。 A static mixer is a fluid mixture in which right-twisted spiral elements and left-twisted spiral elements are arranged alternately so that one end is perpendicular to the other end. It is a device.

OHRミキサーとは、管体内周壁面に複数の突起物を設け、流体中のキャビテーションを増大させることにより、混合・撹拌を促進させる流体混合装置である。 The OHR mixer is a fluid mixing device that promotes mixing and stirring by providing a plurality of protrusions on the peripheral wall surface inside the tube and increasing cavitation in the fluid.

MSEスタティックミキサーとは、多数の小貫通孔及び中央に大貫通孔を有する混合エレメントの積層体が管内に配置されている流体混合装置、または、このような混合エレメントを配管内に設置して用いる流体混合装置である。 The MSE static mixer is a fluid mixing device in which a laminate of mixing elements having a large number of small through holes and a large through hole in the center is arranged in a pipe, or such a mixing element is installed and used in a pipe. It is a fluid mixer.

本分散する工程において、インライン静止型流体混合装置に対して混合物を通過させる流速としては、分散性の観点から、2.0〜10.0m/秒が好ましく、3.0〜10.0m/秒がより好ましい。 In the main dispersion step, the flow velocity for passing the mixture through the in-line stationary fluid mixer is preferably 2.0 to 10.0 m / sec, and 3.0 to 10.0 m / sec from the viewpoint of dispersibility. Is more preferable.

混合物を所望の流速でインライン静止型流体混合装置に導入するために、十分な送液能力を持つポンプを用いることが好ましい。ポンプとしては、特に制限されないが、渦流ポンプ、モーノポンプ等が挙げられる。 It is preferable to use a pump with sufficient liquid delivery capacity to introduce the mixture into the in-line stationary fluid mixer at the desired flow rate. The pump is not particularly limited, and examples thereof include a vortex pump, a mono pump, and the like.

混合物をインライン静止型流体混合装置に通す回数は、特に制限されないが、1回でもよく、2回以上でもよい。 The number of times the mixture is passed through the in-line stationary fluid mixer is not particularly limited, but may be once or more than once.

インライン静止型流体混合装置として、OHRミキサーを用いた場合の例について、図1を用いて説明する。図1は、OHRミキサーの断面を示す概略図である。なお、本発明に用いることができるインライン静止型流体混合装置は、図1に示すものに限られるものではない。 An example in which an OHR mixer is used as the in-line stationary fluid mixer will be described with reference to FIG. FIG. 1 is a schematic view showing a cross section of an OHR mixer. The in-line stationary fluid mixing device that can be used in the present invention is not limited to the one shown in FIG.

図1に示すOHRミキサー2には、混合物を通過させる管体4と、管体4の上流側に、乱流撹拌を起こすための交差する2枚の板6とが設けられており、板6は、管体4の内壁に固定されている。また、板6の下流側の管体4の内周壁には、複数の突起状物8が設けられている。なお、図1において、混合物の通過方向を矢印で示した。 The OHR mixer 2 shown in FIG. 1 is provided with a pipe body 4 through which a mixture is passed and two intersecting plates 6 for causing turbulent agitation on the upstream side of the pipe body 4. Is fixed to the inner wall of the tubular body 4. Further, a plurality of protrusions 8 are provided on the inner peripheral wall of the tubular body 4 on the downstream side of the plate 6. In FIG. 1, the passage direction of the mixture is indicated by an arrow.

OHRミキサー2に混合物を一定以上の流速で導入すると、2枚の板6の作用で混合物は強いひねりをもった螺旋流となる。このとき、混合物は、2枚の板6による急激な分断と変流により、機械的せん断力を発生させる。そして、乱流撹拌が起こり撹拌される。混合物は、管体をさらに下流方向へ送られ、撹拌されながら突起状物8と衝突することにより、より激しく混合され、分散が促進されて、希釈された微細繊維状セルロースの分散体が得られる。 When the mixture is introduced into the OHR mixer 2 at a flow rate of a certain level or higher, the mixture becomes a spiral flow with a strong twist due to the action of the two plates 6. At this time, the mixture generates a mechanical shearing force due to abrupt division and current transformation by the two plates 6. Then, turbulent stirring occurs and is stirred. The mixture is fed further downstream through the tube and collides with the protrusions 8 while being stirred, so that the mixture is mixed more vigorously and the dispersion is promoted to obtain a diluted fine fibrous cellulose dispersion. ..

管体4の上流側に設けられた板6は、乱流撹拌を起こすことができればその枚数及び形状に制限はないが、その枚数はせん断回数を増加させるという観点から、2〜8枚が好ましく、2枚がより好ましい。また、形状は、撹拌効率の観点から、半楕円形とすることが好ましい。 The number and shape of the plates 6 provided on the upstream side of the tubular body 4 are not limited as long as they can cause turbulent agitation, but the number is preferably 2 to 8 from the viewpoint of increasing the number of shears. Two or two are more preferable. Further, the shape is preferably a semi-elliptical shape from the viewpoint of stirring efficiency.

管体4の内周壁の突起状物8の形状は、特に制限されないが、混合効率を高める観点からキノコ状であることが好ましい。 The shape of the protrusion 8 on the inner peripheral wall of the tubular body 4 is not particularly limited, but is preferably mushroom-shaped from the viewpoint of increasing the mixing efficiency.

本発明の製造方法によれば、高固形分濃度の微細繊維状セルロース分散体に対して、繊維長の短縮を引き起こさないように希釈を行い、均一に希釈された微細繊維状セルロース分散体を製造することができる。 According to the production method of the present invention, a fine fibrous cellulose dispersion having a high solid content concentration is diluted so as not to cause a shortening of the fiber length to produce a uniformly diluted fine fibrous cellulose dispersion. can do.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、各実施例における各数値の測定/算出方法が特に記載されていない場合には、明細書中に記載されている方法により測定/算出されたものである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. When the measurement / calculation method of each numerical value in each embodiment is not particularly described, it is measured / calculated by the method described in the specification.

(平均繊維長の測定方法)
マイカ切片上に固定したセルロースナノファイバーの原子間力顕微鏡像(3000nm×3000nm)から、繊維長を測定し、数平均繊維長を算出した。繊維長測定は、画像解析ソフトWinROOF(三谷商事)を用い、長さ100nm〜2000nmの範囲で行った。
(Measuring method of average fiber length)
The fiber length was measured from the atomic force microscope image (3000 nm × 3000 nm) of the cellulose nanofibers fixed on the mica section, and the number average fiber length was calculated. The fiber length was measured using image analysis software WinROOF (Mitani Corporation) in a length range of 100 nm to 2000 nm.

(分散度の測定方法)
実施例および比較例において得られた固形分濃度が0.5wt%の酸化CNF水分散体について、下記の通りCNF分散指数を算出し、下記基準に従って分散度の評価を行った。
実施例および比較例において得られた酸化CNF水分散体1gに、墨滴(株式会社呉竹製、固形分10%)を2適垂らし、ボルテックスミキサー(IUCHI社製、機器名:Automatic Lab−mixer HM-10H)の回転数の目盛りを最大に設定して10秒間撹拌した。次に、墨滴を含有する上記混合物の膜厚が0.15mmになるように二枚のガラス板に挟み、光学顕微鏡(デジタルマイクロスコープKH−8700(株式会社ハイロックス製))を用いて倍率100倍で観察した。
(Measurement method of dispersion)
For the oxidized CNF aqueous dispersion having a solid content concentration of 0.5 wt% obtained in Examples and Comparative Examples, the CNF dispersion index was calculated as follows, and the degree of dispersion was evaluated according to the following criteria.
Two ink droplets (manufactured by Kuretake Co., Ltd., solid content 10%) were appropriately added to 1 g of the oxidized CNF aqueous dispersion obtained in Examples and Comparative Examples, and a vortex mixer (manufactured by IUCHI, device name: Acoustic Lab-mixer HM) was added. The scale of the rotation speed of -10H) was set to the maximum, and the mixture was stirred for 10 seconds. Next, the mixture containing ink droplets was sandwiched between two glass plates so that the film thickness was 0.15 mm, and the magnification was magnified using an optical microscope (digital microscope KH-8700 (manufactured by Hirox Co., Ltd.)). It was observed at 100 times.

上記観察において、3mm×2.3mmの範囲に存在する凝集物の長径を測定し、観察された凝集物を、特大:150μm以上、大:100μm以上150μm未満、中:50μm以上100μm未満、小:20μm以上50μm未満に分類し、分類した凝集物の個数を数え、下式によりCNF分散指数を算出した。 In the above observation, the major axis of the agglomerates existing in the range of 3 mm × 2.3 mm was measured, and the observed agglomerates were measured as extra large: 150 μm or more, large: 100 μm or more and less than 150 μm, medium: 50 μm or more and less than 100 μm, small: It was classified into 20 μm or more and less than 50 μm, the number of classified aggregates was counted, and the CNF dispersion index was calculated by the following formula.

CNF分散指数=(特大の個数×512+大の個数×64+中の個数×8+小の個数×1)÷2×CNF濃度係数
なお、CNF濃度係数を、表1に示した。
CNF dispersion index = (extra-large number x 512 + large number x 64 + medium number x 8 + small number x 1) / 2 x CNF concentration coefficient The CNF concentration coefficient is shown in Table 1.

Figure 2020095577
Figure 2020095577

(分散度の評価基準)
◎:CNF分散指数が1600未満
○:CNF分散指数が1600以上、3200未満
△:CNF分散指数が3200以上、6400未満
×:CNF分散指数が6400以上
(Evaluation criteria for dispersion)
⊚: CNF variance index is less than 1600 ○: CNF variance index is 1600 or more and less than 3200 Δ: CNF variance index is 3200 or more and less than 6400 ×: CNF variance index is 6400 or more

(製造例1)
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)39mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(カルボキシル化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシル基量は1.6mmol/gであった。これを水でCNF固形分濃度3.0wt%に調整し、超高圧ホモジナイザー(20℃、150MPa)で3回処理して、酸化セルロースナノファイバー水分散体を得た。得られた酸化セルロースナノファイバーは、平均繊維径が3nm、平均繊維長が650nmであった。
(Manufacturing Example 1)
5.00 g (absolutely dry) of bleached unbeaten kraft pulp (whiteness 85%) derived from coniferous trees, 39 mg (0.05 mmol per 1 g of absolute dry cellulose) of TEMPO (Sigma Aldrich) and 514 mg of sodium bromide (absolutely dry). It was added to 500 mL of an aqueous solution in which 1.0 mmol) was dissolved in 1 g of cellulose, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous sodium hypochlorite solution was added to the reaction system so that the sodium hypochlorite content was 6.0 mmol / g, and the oxidation reaction was started. Although the pH in the system decreased during the reaction, a 3M aqueous sodium hydroxide solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system did not change. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain oxidized pulp (carboxylated cellulose). The pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxyl groups was 1.6 mmol / g. This was adjusted to a CNF solid content concentration of 3.0 wt% with water, and treated three times with an ultra-high pressure homogenizer (20 ° C., 150 MPa) to obtain an aqueous dispersion of cellulose oxide nanofibers. The obtained cellulose oxide nanofibers had an average fiber diameter of 3 nm and an average fiber length of 650 nm.

(カルボキシル基量の測定方法)
カルボキシル化セルロースの0.5重量%スラリー(水分散体)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔mL〕×0.05/カルボキシル化セルロース重量〔g〕
(Measuring method of carboxyl group amount)
60 mL of a 0.5 wt% slurry (aqueous dispersion) of carboxylated cellulose was prepared, and a 0.1 M hydrochloric acid aqueous solution was added to adjust the pH to 2.5, and then a 0.05 N sodium hydroxide aqueous solution was added dropwise to adjust the pH to 11. The electric conductivity was measured until
Amount of carboxyl groups [mmol / g carboxylated cellulose] = a [mL] x 0.05 / weight of carboxylated cellulose [g]

(実施例1)
上記製造例1で得られた固形分濃度が3wt%の酸化CNF水分散体を、水とともにアジテータに投入し、予備分散(500rpm、30分間)を行い、固形分濃度が0.5wt%のスラリーを作製した。このスラリーを、ポンプを使用して流速3.0m/秒で送液し、ポンプに接続したインライン静止型流体混合装置であるOHRミキサー(株式会社OHR流体工学研究所製、MX−F8、出口断面積:50.2mm)を1回通過させることにより本分散を行い、固形分濃度が0.5wt%の酸化CNF水分散体を得た。得られた酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Example 1)
The aqueous CNF oxide dispersion obtained in Production Example 1 having a solid content concentration of 3 wt% was put into an agitator together with water and pre-dispersed (500 rpm, 30 minutes) to carry out a pre-dispersion (500 rpm, 30 minutes), and a slurry having a solid content concentration of 0.5 wt%. Was produced. This slurry is sent using a pump at a flow rate of 3.0 m / sec, and is an OHR mixer (MX-F8 manufactured by OHR Fluid Engineering Laboratory Co., Ltd., MX-F8, outlet disconnection), which is an in-line static fluid mixer connected to the pump. This dispersion was carried out by passing the area: 50.2 mm 2 ) once to obtain an aqueous CNF oxide dispersion having a solid content concentration of 0.5 wt%. The obtained aqueous CNF oxide dispersion was evaluated for the degree of dispersion and the average fiber length was measured. The results are shown in Table 2.

(実施例2)
OHRミキサーを2回通過させることにより、本分散を行ったこと以外は実施例1と同様にして、固形分濃度が0.5wt%の酸化CNF水分散体を得た。また、この酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Example 2)
By passing through the OHR mixer twice, an aqueous CNF oxide dispersion having a solid content concentration of 0.5 wt% was obtained in the same manner as in Example 1 except that this dispersion was carried out. Moreover, about this oxide CNF aqueous dispersion, the degree of dispersion was evaluated and the average fiber length was measured. The results are shown in Table 2.

(実施例3)
OHRミキサーを3回通過させることにより、本分散を行ったこと以外は実施例1と同様にして、固形分濃度が0.5wt%の酸化CNF水分散体を得た。また、この酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Example 3)
By passing through the OHR mixer three times, an aqueous CNF oxide dispersion having a solid content concentration of 0.5 wt% was obtained in the same manner as in Example 1 except that this dispersion was carried out. Moreover, about this oxide CNF aqueous dispersion, the degree of dispersion was evaluated and the average fiber length was measured. The results are shown in Table 2.

(実施例4)
スラリーの送液速度を、流速5.5m/秒に変更したこと以外は実施例1と同様にして、固形分濃度が0.5wt%の酸化CNF水分散体を得た。得られた酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Example 4)
An aqueous dispersion of CNF oxide having a solid content concentration of 0.5 wt% was obtained in the same manner as in Example 1 except that the liquid feeding rate of the slurry was changed to a flow rate of 5.5 m / sec. The obtained aqueous CNF oxide dispersion was evaluated for the degree of dispersion and the average fiber length was measured. The results are shown in Table 2.

(実施例5)
OHRミキサーに代えて、スタティックミキサー(ノリタケカンパニーリミテド社製3/8−N30−232−F型を2基連結)を用いたこと、および、スタティックミキサーを2回通過させることにより本分散を行ったこと以外は実施例1と同様にして、固形分濃度が0.5wt%の酸化CNF水分散体を得た。得られた酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Example 5)
This dispersion was performed by using a static mixer (two units of Noritake Company Limited 3 / 8-N30-232-F type connected) instead of the OHR mixer, and by passing the static mixer twice. An aqueous dispersion of CNF oxide having a solid content concentration of 0.5 wt% was obtained in the same manner as in Example 1 except for the above. The obtained aqueous CNF oxide dispersion was evaluated for the degree of dispersion and the average fiber length was measured. The results are shown in Table 2.

(実施例6)
上記製造例1で得られた固形分濃度が3wt%の酸化CNF水分散体を、送風乾燥機で濃縮し、固形分濃度が20wt%の酸化CNF水分散体を得た。これを、水とともにアジテータに投入し、予備分散(500rpm、30分間)を行い、固形分濃度が0.5wt%のスラリーを作製した。このスラリーを、ポンプを使用して流速10.0m/秒で送液し、ポンプに接続したインライン静止型流体混合装置であるOHRミキサー(株式会社OHR流体工学研究所製、MX−F8、出口断面積:50.2mm)を5回通過させることにより本分散を行い、固形分濃度が0.5wt%の酸化CNF水分散体を得た。得られた酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。なお、表2に記載した希釈前酸化CNF分散体物性の平均繊維長は、濃縮前の固形分濃度が3wt%の酸化CNF水分散体を用いて測定された値である。
(Example 6)
The aqueous CNF oxide dispersion obtained in Production Example 1 having a solid content concentration of 3 wt% was concentrated with a blower dryer to obtain an aqueous CNF oxide dispersion having a solid content concentration of 20 wt%. This was put into an agitator together with water and pre-dispersed (500 rpm, 30 minutes) to prepare a slurry having a solid content concentration of 0.5 wt%. This slurry is sent at a flow rate of 10.0 m / sec using a pump, and is an OHR mixer (MX-F8 manufactured by OHR Fluid Engineering Laboratory Co., Ltd., MX-F8, outlet disconnection), which is an in-line static fluid mixer connected to the pump. This dispersion was carried out by passing the area: 50.2 mm 2 ) 5 times to obtain an aqueous CNF oxide dispersion having a solid content concentration of 0.5 wt%. The obtained aqueous CNF oxide dispersion was evaluated for the degree of dispersion and the average fiber length was measured. The results are shown in Table 2. The average fiber length of the physical properties of the oxidized CNF dispersion before dilution shown in Table 2 is a value measured using an aqueous CNF oxide dispersion having a solid content concentration of 3 wt% before concentration.

(比較例1)
スラリーの送液速度を、流速1.0m/秒に変更したこと以外は実施例1と同様にして、固形分濃度が0.5wt%の酸化CNF水分散体を得た。得られた酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Comparative Example 1)
An aqueous dispersion of CNF oxide having a solid content concentration of 0.5 wt% was obtained in the same manner as in Example 1 except that the liquid feeding rate of the slurry was changed to a flow rate of 1.0 m / sec. The obtained aqueous CNF oxide dispersion was evaluated for the degree of dispersion and the average fiber length was measured. The results are shown in Table 2.

(比較例2)
上記製造例1で得られた固形分濃度が3wt%の酸化CNF水分散体を、固形分濃度を0.5wt%とする量の水とともに、予備分散を行うことなく、ポンプを使用して流速3.0m/秒で送液し、ポンプに接続した実施例1と同じOHRミキサーを1回通過させることにより本分散を行ったが、OHRミキサーが詰まったため、固形分濃度が0.5wt%の酸化CNF水分散体を得ることはできなかった。
(Comparative Example 2)
The flow velocity of the oxidized CNF aqueous dispersion having a solid content concentration of 3 wt% obtained in Production Example 1 together with water having a solid content concentration of 0.5 wt% using a pump without predispersing. This dispersion was performed by feeding the liquid at 3.0 m / sec and passing it once through the same OHR mixer as in Example 1 connected to the pump, but the solid content concentration was 0.5 wt% because the OHR mixer was clogged. An aqueous dispersion of CNF oxide could not be obtained.

(比較例3)
実施例1と同様にして予備分散を行い、固形分濃度が0.5wt%のスラリーを作製した。このスラリーに対して、本分散を行わずに、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Comparative Example 3)
Pre-dispersion was carried out in the same manner as in Example 1 to prepare a slurry having a solid content concentration of 0.5 wt%. For this slurry, the degree of dispersion was evaluated and the average fiber length was measured without performing the main dispersion. The results are shown in Table 2.

(比較例4)
上記製造例1で得られた固形分濃度が3wt%の酸化CNF水分散体と水とをホモジナイザーに投入し、8000rpm、30分間の条件で撹拌することにより、固形分濃度が0.5wt%の酸化CNF水分散体を得た。得られた酸化CNF水分散体について、分散度の評価および平均繊維長の測定を行った。結果を表2に示した。
(Comparative Example 4)
The CNF oxide aqueous dispersion having a solid content concentration of 3 wt% and water obtained in Production Example 1 were charged into a homogenizer and stirred under the conditions of 8000 rpm for 30 minutes to obtain a solid content concentration of 0.5 wt%. An aqueous dispersion of CNF oxide was obtained. The obtained aqueous CNF oxide dispersion was evaluated for the degree of dispersion and the average fiber length was measured. The results are shown in Table 2.

Figure 2020095577
Figure 2020095577

表2からわかる通り、固形分濃度1wt%以上の微細繊維状セルロース分散体を、希釈溶媒とともに撹拌機で予備分散する工程と、前記予備分散する工程で得られた混合物を、インライン静止型流体混合装置を通過させることにより本分散する工程とを含む、希釈された微細繊維状セルロース分散体の製造方法によれば、得られた分散体は、微細繊維状セルロースの分散度が高く、繊維長の短縮が抑制されたものであった。 As can be seen from Table 2, the step of pre-dispersing the fine fibrous cellulose dispersion having a solid content concentration of 1 wt% or more with a stirrer together with the diluting solvent and the mixture obtained in the step of pre-dispersing are mixed in-line static fluid. According to a method for producing a diluted fine fibrous cellulose dispersion, which comprises a step of main dispersion by passing through an apparatus, the obtained dispersion has a high degree of dispersion of fine fibrous cellulose and a fiber length. The shortening was suppressed.

Claims (4)

固形分濃度1wt%以上の微細繊維状セルロース分散体を、希釈溶媒とともに撹拌機で予備分散する工程と、
前記予備分散する工程で得られた混合物を、インライン静止型流体混合装置を通過させることにより本分散する工程と
を含む、希釈された微細繊維状セルロース分散体の製造方法。
A step of pre-dispersing a fine fibrous cellulose dispersion having a solid content concentration of 1 wt% or more with a diluting solvent with a stirrer.
A method for producing a diluted fine fibrous cellulose dispersion, which comprises a step of main-dispersing the mixture obtained in the pre-dispersion step by passing it through an in-line stationary fluid mixing device.
前記インライン静止型流体混合装置は、管体を有し、前記管体内の上流側に乱流撹拌を起こすための交差する少なくとも2枚の板を設けることを特徴とする請求項1に記載の微細繊維状セルロース分散体の製造方法。 The fineness according to claim 1, wherein the in-line stationary fluid mixing device has a tubular body, and at least two intersecting plates for causing turbulent agitation are provided on the upstream side of the tubular body. A method for producing a fibrous cellulose dispersion. 前記少なくとも2枚の板の下流側の前記管体内周壁に突起状物を複数設けることを特徴とする請求項1または2に記載の微細繊維状セルロース分散体の製造方法。 The method for producing a fine fibrous cellulose dispersion according to claim 1 or 2, wherein a plurality of protrusions are provided on the peripheral wall of the tube body on the downstream side of at least two plates. 前記インライン静止型流体混合装置に対して、前記混合物を、流速2m/秒以上で通過させる請求項1〜3の何れか一項に記載の微細繊維状セルロース分散体の製造方法。 The method for producing a fine fibrous cellulose dispersion according to any one of claims 1 to 3, wherein the mixture is passed through the in-line stationary fluid mixing device at a flow rate of 2 m / sec or more.
JP2020556684A 2018-11-07 2019-10-01 Method for producing fine fibrous cellulose dispersion Active JP7252975B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018209333 2018-11-07
JP2018209333 2018-11-07
PCT/JP2019/038677 WO2020095577A1 (en) 2018-11-07 2019-10-01 Method for manufacturing fine fiber cellulose dispersion

Publications (2)

Publication Number Publication Date
JPWO2020095577A1 true JPWO2020095577A1 (en) 2021-09-24
JP7252975B2 JP7252975B2 (en) 2023-04-05

Family

ID=70611960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556684A Active JP7252975B2 (en) 2018-11-07 2019-10-01 Method for producing fine fibrous cellulose dispersion

Country Status (2)

Country Link
JP (1) JP7252975B2 (en)
WO (1) WO2020095577A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354749A (en) * 1999-06-17 2000-12-26 Ohr:Kk Cavitation generating device, fluid mixing device using the same and mixing projection used in latter device
WO2014024876A1 (en) * 2012-08-10 2014-02-13 王子ホールディングス株式会社 Microfibrous cellulose aggregate, method for manufacturing microfibrous cellulose aggregate, and method for remanufacturing microfibrous cellulose dispersion liquid
JP2015134873A (en) * 2014-01-17 2015-07-27 日本製紙株式会社 Method for producing dry solid of anion-modified cellulose nanofibers
JP2016515170A (en) * 2013-03-15 2016-05-26 イメリーズ ミネラルズ リミテッド Process for treating microfibrillated cellulose
JP2018090738A (en) * 2016-12-06 2018-06-14 株式会社常光 Apparatus and method for producing cellulose nanofiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354749A (en) * 1999-06-17 2000-12-26 Ohr:Kk Cavitation generating device, fluid mixing device using the same and mixing projection used in latter device
WO2014024876A1 (en) * 2012-08-10 2014-02-13 王子ホールディングス株式会社 Microfibrous cellulose aggregate, method for manufacturing microfibrous cellulose aggregate, and method for remanufacturing microfibrous cellulose dispersion liquid
JP2016515170A (en) * 2013-03-15 2016-05-26 イメリーズ ミネラルズ リミテッド Process for treating microfibrillated cellulose
JP2015134873A (en) * 2014-01-17 2015-07-27 日本製紙株式会社 Method for producing dry solid of anion-modified cellulose nanofibers
JP2018090738A (en) * 2016-12-06 2018-06-14 株式会社常光 Apparatus and method for producing cellulose nanofiber

Also Published As

Publication number Publication date
WO2020095577A1 (en) 2020-05-14
JP7252975B2 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP6951978B2 (en) Anion-modified cellulose nanofiber dispersion liquid and its manufacturing method
JP6862173B2 (en) Method for producing esterified cellulose nanofiber dispersion
JP6876619B2 (en) Method for producing dry cellulose nanofiber
WO2018116660A1 (en) Acid-type carboxymethylated cellulose nanofibers and production method therefor
JP7061998B2 (en) Rubber composition and its manufacturing method
JP7095065B2 (en) Dehydration method of chemically modified pulp dispersion
JP7170380B2 (en) Process for producing chemically modified pulp dry solids
JP2017066283A (en) Additive for air bubble containing composition
WO2017057710A1 (en) Cellulose nanofiber dispersion liquid and method for producing same
WO2021112195A1 (en) Method for manufacturing modified cellulose microfibrils
JP7157656B2 (en) Method for producing fine fibrous cellulose dispersion
JP7077111B2 (en) Pulp mold
JPWO2020095577A1 (en) Method for Producing Fine Fibrous Cellulose Dispersion
TWI817248B (en) mixture
JP7162433B2 (en) Method for producing composition containing cellulose nanofibers and polyvinyl alcohol-based polymer
JPWO2020080119A1 (en) A method for redispersing a dry solid of fine fibrous cellulose and a method for producing a redispersion liquid for fine fibrous cellulose.
JP7199230B2 (en) Method for producing hydrophobized anion-modified cellulose nanofiber dispersion and dry solid of hydrophobized anion-modified cellulose
JP6915170B2 (en) Method for manufacturing rubber composition
JP7377397B1 (en) Method for producing fine fibrous cellulose and method for fibrillating cellulose
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber
JP7250455B2 (en) Composition containing anion-modified cellulose nanofibers
WO2023234129A1 (en) Method for producing fine fibrous cellulose and method for fibrillating cellulose
JP2023109342A (en) Re-dispersion method of dry solid object of fine fibrous cellulose
JP7098467B2 (en) Manufacturing method of cellulose nanofibers
JP2021038291A (en) Method for producing dry solid matter of anionically modified cellulose nanofiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230324

R150 Certificate of patent or registration of utility model

Ref document number: 7252975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150