WO2023234129A1 - Method for producing fine fibrous cellulose and method for fibrillating cellulose - Google Patents

Method for producing fine fibrous cellulose and method for fibrillating cellulose Download PDF

Info

Publication number
WO2023234129A1
WO2023234129A1 PCT/JP2023/019240 JP2023019240W WO2023234129A1 WO 2023234129 A1 WO2023234129 A1 WO 2023234129A1 JP 2023019240 W JP2023019240 W JP 2023019240W WO 2023234129 A1 WO2023234129 A1 WO 2023234129A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
pressure
fine fibrous
dispersion
pressure washer
Prior art date
Application number
PCT/JP2023/019240
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 杉村
丈史 中谷
啓吾 渡部
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2023550547A priority Critical patent/JP7377397B1/en
Publication of WO2023234129A1 publication Critical patent/WO2023234129A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes

Definitions

  • the present invention relates to a method for producing fine fibrous cellulose and a method for defibrating cellulose.
  • Cellulose nanofibers and microfibrillated cellulose obtained by refining cellulose are fine fibers with fiber diameters on the nano to micro order, and have high strength and high elasticity. It is expected to be used in a variety of fields as a new material that has functions not found in ordinary pulp, such as thixotropic properties.
  • fine fibrous cellulose has been produced in a state in which it is stably dispersed in water by defibrating chemically modified pulp using a high-pressure homogenizer (see, for example, Patent Document 1), and is usually produced at a predetermined concentration. It is transported as a fine fibrous cellulose dispersion to user factories, where it is used for various purposes as an industrial material or as an additive material for foods and cosmetics.
  • Patent Document 1 Conventional methods such as those disclosed in Patent Document 1 require a high-pressure homogenizer to defibrate the pulp, and since high-pressure homogenizers are expensive and large equipment, it is sometimes difficult for users to install them. .
  • An object of the present invention is a method for producing fine fibrous cellulose that is inexpensively available, easy to introduce, and capable of efficiently defibrating cellulose using equipment normally used by users. and a method for defibrating cellulose.
  • the present inventor found that the above-mentioned object can be achieved by defibrating using a specific high-pressure washer, and completed the present invention.
  • the present invention provides the following.
  • a method for producing fine fibrous cellulose in which a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section is passed through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve.
  • the dispersion liquid taken in from the suction port of a plunger pump that constitutes a part of the high pressure washer and discharged from the discharge port of the plunger pump is discharged from the spill port of the high pressure washer to the storage section.
  • a method for producing fine fibrous cellulose including a residual water circulation step.
  • the dispersion liquid taken in from the suction port of a plunger pump that constitutes a part of the high pressure washer and discharged from the discharge port of the plunger pump is discharged from the spill port of the high pressure washer to the storage section;
  • a cellulose defibration method that includes a water circulation process.
  • a method for producing fine fibrous cellulose allows cellulose to be efficiently defibrated using equipment that is inexpensively available, easy to introduce, and commonly used by users. and a method for defibrating cellulose.
  • FIG. 1 is a schematic diagram showing the configuration of a high-pressure washer that can be used in the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the pressure regulating valve shown in FIG. 1.
  • FIG. 1 is a graph showing viscosity characteristics of fine fibrous cellulose dispersions obtained in Example 1, Comparative Example 1, and Reference Example 1.
  • includes extreme values. That is, "X ⁇ Y” includes the values X and Y at both ends.
  • the method for producing fine fibrous cellulose of the present invention involves dispersing a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve. , the dispersion liquid taken in from the suction port of a plunger pump that constitutes a part of the high pressure washer and discharged from the discharge port of the plunger pump is discharged from the spill port of the high pressure washer to the storage section; It has a water circulation process.
  • a plunger pump is a pump that reciprocates a plunger (rod-shaped piston) to change the volume of liquid inside the pump and expel it to a discharge port.
  • the plunger pump constitutes a part of a high-pressure washer having a surplus water discharge mechanism.
  • FIG. 1 is a schematic diagram showing the configuration of a high-pressure washer that can be used in the present invention. Note that the high-pressure washer that can be used in the present invention is not limited to the one shown in FIG.
  • the high-pressure washer 2 that can be used in the present invention includes a water intake port 8 that takes the dispersion liquid 6 stored in the storage part 4 into the high-pressure washer 2, and a plunger that applies pressure to the taken-in dispersion liquid 6.
  • a pump 10 a discharge port 12 that discharges the high-pressure dispersion liquid 6, a nozzle 16 connected to the discharge port 12 via a discharge hose 14, a pressure regulating valve 18 that adjusts the discharge pressure, and a discharge port 12 that discharges the high-pressure dispersion liquid 6.
  • the water outlet 20 is provided for discharging the dispersion liquid 6 to the storage section 4 when the pressure exceeds a set value.
  • a water suction hose 22 is attached to the water suction port 8 so as to be able to absorb the dispersion liquid 6 from the bottom of the storage section 4 .
  • a spill water hose 24 is attached to the spill water outlet 20 so that the excess water in the high-pressure washer 2 can be discharged to the storage section 4. Note that in FIG. 1, arrows indicate the direction in which the dispersion liquid passes when the nozzle is in a closed state.
  • the dispersion liquid 6 stored in the storage section 4 is taken into the high-pressure washer 2 via the water absorption hose 22.
  • This dispersion liquid 6 is taken in from the suction port 9 of the plunger pump 10 and pressurized within the pump, and the pressurized dispersion liquid 6 is passed from the discharge port 11 of the plunger pump 10 via the pressure regulating valve 18. , is discharged from the discharge port 12 or spill port 20 of the high-pressure washer 2.
  • the nozzle 16 is opened, the high-pressure dispersion liquid 6 is injected from the nozzle 16, and when the nozzle 16 is closed, the high-pressure water is cut off.
  • the pressure regulating valve 18 includes a pressure regulating screw 26 for regulating the discharge pressure, a pressure regulating spring 28, a piston 30, and a relief valve 32.
  • the discharge pressure is adjusted by rotating the pressure adjustment screw 26.
  • the nozzle 16 When the nozzle 16 is open, the dispersion liquid 6 discharged from the discharge port 11 of the plunger pump 10 enters from the pressure regulating valve inlet 36 and is discharged from the pressure regulating valve outlet 38 (discharge port 12 side). At this time, if the pressure of the dispersion liquid 6 exceeds the set pressure, the relief valve 32 opens according to the pressure, and some percentage of the dispersion liquid 6 flows to the surplus water outlet 40.
  • the dispersion liquid 6 entering from the pressure regulating valve inlet 36 of the pressure regulating valve 18 is discharged from the pressure regulating valve outlet 38. At the same time, pressure is transmitted to the space below the piston 30.
  • the piston 30 is pushed up and the relief valve 32 is also raised, so the dispersion liquid 6 that entered from the pressure regulating valve inlet 36 also flows to the surplus water outlet 40 and flows to the pressure regulating valve outlet 38.
  • pressure discharge pressure
  • the pressure adjustment screw 26 above the piston 30 is tightened, the piston 30 is strongly pushed down via the pressure adjustment spring 28, thereby making it possible to adjust the discharge pressure.
  • Some pressure regulating valves have an additional mechanism that keeps the high-pressure dispersion liquid 6 pushing up the piston 30 when the nozzle 16 is closed. When this mechanism works, the relief valve 32 is fully opened and the entire amount of the dispersion liquid 6 flows to the surplus water outlet 40.
  • the defibrating effect of the present invention is obtained when the high-pressure dispersion liquid 6 passes through the relief valve 32 that is not fully open, so when using a pressure regulating valve having the holding mechanism, the holding mechanism is disabled. Things are good.
  • a dispersion liquid 6 of chemically modified cellulose or unmodified cellulose stored in the storage section 4 is provided with a surplus water discharge mechanism as shown in FIG.
  • the dispersion liquid 6 taken in from the suction port 9 of the plunger pump via the water suction port 8 of the high-pressure washer 2 and discharged from the discharge port 11 of the plunger pump is discharged from the overflow port 20 of the high-pressure washer 2 to the storage section 4.
  • Perform the surplus water circulation process By operating the plunger pump 10 with the nozzle 16 closed using the high-pressure washer 2 having a surplus water discharge mechanism, the cellulose dispersion 6 stored in the storage section 4 is discharged through the water absorption hose 22.
  • the dispersion liquid 6 is taken in from the water intake port 8 and pressurized by the plunger pump 10, flows out from the spill water outlet 40 of the pressure regulating valve 18, and is discharged from the spill water port 20 via the spill water hose 24 to the storage section 4. be done.
  • the residual water circulation step may be performed only once, or may be performed multiple times.
  • the number of times the residual water circulation step is performed is preferably 1 to 100 times, more preferably 1 to 50 times, from the viewpoint of efficiently defibrating.
  • the number of times of the residual water circulation process may be set to an optimal value according to the setting value of the discharge pressure of the high-pressure washer 2. For example, if the discharge pressure is 20 MPa or more, the number of times of the residual water circulation process may be set to 1 to 10.
  • the number of times of the residual water circulation process is preferably 1 to 10 times, more preferably 3 to 8 times, and even more preferably 5 to 8 times. preferable.
  • the number of times of the residual water circulation process is preferably 3 to 100 times, more preferably 10 to 50 times, and even more preferably 20 to 50 times. preferable.
  • the set value of the discharge pressure (outlet pressure of the pressure regulating valve) of the high-pressure washer 2 is not particularly limited, but from the viewpoint of efficient defibration, it is preferably 0.5 to 25 MPa, and 5 to 25 MPa. is more preferable, and even more preferably 10 to 20 MPa.
  • the setting of the discharge pressure can be controlled by a surplus water discharge mechanism, and specifically can be performed using the pressure regulating screw 26 of the pressure regulating valve 18.
  • the amount of dispersion liquid 6 processed using the high-pressure washer 2 depends on the capacity of the machine. When used, from the viewpoint of production volume, it is preferably 10 to 20 L/min, more preferably 12 to 20 L/min.
  • the high-pressure washer that can be used in the present invention can be used without any particular restriction as long as it is equipped with a pressure regulating valve 18 and has a surplus water discharge mechanism.
  • Examples include a washing machine (product name: TRY high-pressure washer, model number: TRY-10200), a high-pressure washing vehicle manufactured by Isuzu Motors (product name: Isuzu Achumat, 4t vehicle), and the like.
  • the fine fibrous cellulose used in the present invention is a fine fiber made from cellulose.
  • the average fiber diameter of the fine fibrous cellulose is not particularly limited, but is approximately 1 nm to 10 ⁇ m.
  • the average fiber diameter and average fiber length of fine fibrous cellulose are obtained from the results of observing each fiber using a scanning electron microscope (SEM), atomic force microscope (AFM), or transmission electron microscope (TEM). It can be obtained by averaging the fiber diameter and fiber length.
  • Fine fibrous cellulose can be produced by defibrating cellulose.
  • the average aspect ratio of the fine fibrous cellulose used in the present invention is usually 50 or more.
  • the upper limit is not particularly limited, but is usually 1000 or less.
  • the cellulose raw material is not particularly limited as long as it contains cellulose, but includes, for example, plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural residue, cloth, pulp (softwood unbleached kraft pulp (NUKP), Softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), bleached kraft pulp (BKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP)
  • NUKP softwood unbleached kraft pulp
  • NKP hardwood unbleached kraft pulp
  • LKP hardwood bleached kraft pulp
  • BKP bleached kraft pulp
  • NUSP softwood unbleached sulfite pulp
  • NBSP softwood bleached sulfite pulp
  • TMP thermomechanical pulp
  • recycled pulp waste paper, etc.
  • animals e.g. ascidians
  • cellulose raw materials any of these The cellulose raw materials derived from plants or microorganisms (e.g., cellulose fibers) are preferably used, and the cellulose raw materials derived from plants (e.g., cellulose fibers) are preferably used. ).
  • the number average fiber diameter of the cellulose raw material is not particularly limited, but in the case of softwood kraft pulp, which is a common pulp, it is about 30 to 60 ⁇ m, and in the case of hardwood kraft pulp, it is about 10 to 30 ⁇ m. In the case of other pulps, those that have undergone general refining have a diameter of about 50 ⁇ m. For example, in the case of refined chips or the like that are several centimeters in size, it is preferable to mechanically process them using a disintegrator such as a refiner or a beater to adjust the size to about 50 ⁇ m.
  • a disintegrator such as a refiner or a beater
  • Cellulose has three hydroxyl groups per glucose unit, and can be chemically modified to produce chemically modified cellulose.
  • chemically modified cellulose or unmodified cellulose is used as a raw material for fine fibrous cellulose, and from the viewpoint of promoting the progress of fibrillation, a cellulose raw material obtained by chemical modification (chemically modified cellulose) is used as a raw material for fine fibrous cellulose. ) is preferably used.
  • Examples of chemically modified cellulose include cellulose that has undergone chemical modification such as carboxymethylation, carboxylation (oxidation), cationization, and esterification. Among these, carboxymethylated cellulose and carboxylated (oxidized) cellulose are more preferred.
  • the carboxymethylated cellulose when carboxymethylated fine fibrous cellulose obtained by fibrillating carboxymethylated cellulose is used, the carboxymethylated cellulose can be obtained by carboxymethylating the above-mentioned cellulose raw material by a known method. Alternatively, a commercially available product may be used. In either case, the cellulose preferably has a degree of substitution of carboxymethyl groups per anhydroglucose unit of 0.01 to 0.50.
  • An example of a method for producing such carboxymethylated cellulose is the following method.
  • Cellulose is used as the base material, and as a solvent 3 to 20 times the weight of water and/or lower alcohol, specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary alcohol.
  • lower alcohol specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary alcohol.
  • a single medium such as butanol or a mixture of two or more types is used. Note that when lower alcohols are mixed, the mixing ratio of lower alcohols is 60 to 95% by weight.
  • alkali metal hydroxide specifically sodium hydroxide and potassium hydroxide, is used in an amount of 0.5 to 20 times the mole per anhydroglucose residue of the bottom starting material.
  • the bottom starting material, a solvent, and a mercerization agent are mixed, and mercerization treatment is performed at a reaction temperature of 0 to 70°C, preferably 10 to 60°C, and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours.
  • a carboxymethylating agent is added in a mol amount of 0.05 to 10.0 times per glucose residue, and the reaction temperature is 30 to 90°C, preferably 40 to 80°C, and the reaction time is 30 minutes to 10 hours, preferably 1 hour.
  • the etherification reaction is carried out for ⁇ 4 hours.
  • carboxymethyl cellulose which is a type of chemically modified cellulose used for preparing fine fibrous cellulose, maintains at least part of its fibrous shape even when dispersed in water. say something Therefore, it is distinguished from carboxymethyl cellulose, which is a type of water-soluble polymer.
  • carboxymethyl cellulose which is a type of water-soluble polymer.
  • carboxylated cellulose (also referred to as oxidized cellulose) is obtained by carboxylating the above-mentioned cellulose raw material by a known method. (oxidation).
  • the amount of carboxy groups is adjusted to 0.6 to 2.0 mmol/g based on the absolute dry weight of the chemically modified fine fibrous cellulose. It is preferable, and more preferably adjusted to 1.0 mmol/g to 2.0 mmol/g.
  • a cellulosic raw material is carboxylated in water with an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides or mixtures thereof.
  • an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides or mixtures thereof.
  • the C6 position of the glucopyranose ring on the cellulose surface is selectively carboxylated, producing cellulose fibers having an aldehyde group and a carboxy group (-COOH) or a carboxylate group (-COO - ) on the surface.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by weight or less.
  • the N-oxyl compound refers to a compound that can generate nitroxy radicals.
  • any compound can be used as long as it promotes the desired carboxylation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO) and its derivatives (eg, 4-hydroxyTEMPO).
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyradical
  • 4-hydroxyTEMPO 4-hydroxyTEMPO
  • the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount that can carboxylate cellulose as a raw material.
  • it is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and even more preferably 0.05 to 0.5 mmol, per 1 g of bone dry cellulose. Further, it is preferably about 0.1 to 4 mmol/L to the reaction system.
  • a bromide is a compound containing bromine, and examples thereof include alkali metal bromides that can be dissociated and ionized in water.
  • iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide to be used can be selected within a range that can promote the carboxylation reaction.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and even more preferably 0.5 to 5 mmol, per 1 g of bone dry cellulose.
  • the oxidizing agent known ones can be used, such as halogen, hypohalous acid, halous acid, perhalogenic acid, or salts thereof, halogen oxides, peroxides, etc.
  • sodium hypochlorite is preferred because it is inexpensive and has a low environmental impact.
  • the amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, even more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol, per 1 g of bone dry cellulose. Further, for example, it is preferably 1 to 40 mol per 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40°C, and may be room temperature of about 15 to 30°C.
  • carboxy groups are generated in the cellulose, so a decrease in the pH of the reaction solution is observed.
  • an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. Water is preferable as the reaction medium because of ease of handling and the fact that side reactions are less likely to occur.
  • the reaction time in the carboxylation reaction can be appropriately set according to the degree of progress of carboxylation, and is usually about 0.5 to 6 hours, for example about 0.5 to 4 hours.
  • the carboxylation reaction may be carried out in two stages. For example, by carboxylated cellulose obtained by filtration after the first stage reaction is carboxylated again under the same or different reaction conditions, the reaction is not inhibited by the salt produced as a by-product in the first stage reaction. , carboxylation can be carried out efficiently.
  • Another example of the carboxylation (oxidation) method is a method of carboxylating a cellulose raw material by bringing it into contact with a gas containing ozone. Through this carboxylation reaction, the hydroxyl groups at at least the 2- and 6-positions of the glucopyranose ring are carboxylated, and the cellulose chain is decomposed.
  • the ozone concentration in the ozone-containing gas is preferably 50 to 250 g/m 3 , more preferably 50 to 220 g/m 3 .
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by weight, more preferably 5 to 30 parts by weight, when the solid content of the cellulose raw material is 100 parts by weight.
  • the ozone treatment temperature is preferably 0 to 50°C, more preferably 20 to 50°C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the ozone treatment conditions are within these ranges, excessive carboxylation and decomposition of cellulose can be prevented, resulting in a good yield of carboxylated cellulose.
  • additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used in the additional oxidation treatment is not particularly limited, but examples thereof include chlorine-based compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
  • the additional oxidation treatment can be performed by dissolving these oxidizing agents in water or a polar organic solvent such as alcohol to prepare an oxidizing agent solution, and immersing the cellulose raw material in the solution.
  • the amount of carboxy groups in carboxylated cellulose can be adjusted by controlling reaction conditions such as the amount of the oxidizing agent added and reaction time.
  • cationized fine fibrous cellulose obtained by defibrating cellulose obtained by further cationizing the carboxylated cellulose can be used.
  • the cation-modified cellulose is produced by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrite or its halohydrin type to the carboxylated cellulose raw material, and alkali hydroxide as a catalyst. It can be obtained by reacting a metal (sodium hydroxide, potassium hydroxide, etc.) in the presence of water or an alcohol having 1 to 4 carbon atoms.
  • the degree of cation substitution per glucose unit is preferably 0.02 to 0.50.
  • the degree of cation substitution per glucose unit is less than 0.02, sufficient nanofibrillation cannot be achieved.
  • the degree of cation substitution per glucose unit is greater than 0.50, the nanofibers may not be obtained due to swelling or dissolution.
  • the cationically modified cellulose raw material obtained above is preferably washed.
  • the degree of cation substitution can be adjusted by adjusting the amount of the cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms.
  • esterified fine fibrous cellulose obtained by defibrating esterified cellulose can be used.
  • the esterified cellulose can be obtained by mixing a powder or aqueous solution of phosphoric acid compound A with the cellulose raw material described above, or by adding an aqueous solution of phosphoric acid compound A to a slurry of the cellulose raw material.
  • Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, or esters thereof. These may be in the form of salts. Among these, compounds having phosphoric acid groups are preferred because they are low cost, easy to handle, and can introduce phosphoric acid groups into the cellulose of pulp fibers to improve the defibration efficiency.
  • Compounds with phosphoric acid groups include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, and potassium hypophosphite.
  • the ammonium salt of is more preferred.
  • Particularly preferred are sodium dihydrogen phosphate and disodium hydrogen phosphate.
  • the phosphoric acid compound A in the form of an aqueous solution, since the uniformity of the reaction and the efficiency of introducing phosphoric acid groups are increased.
  • the pH of the aqueous solution of the phosphoric acid compound A is preferably 7 or less since this increases the efficiency of introducing phosphoric acid groups, but the pH is preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
  • a phosphoric acid compound A is added to a dispersion of a cellulose raw material having a solid content concentration of 0.1 to 10% by weight while stirring to introduce phosphoric acid groups into the cellulose.
  • the amount of phosphoric acid compound A added is preferably 0.2 to 500 parts by weight, more preferably 1 to 400 parts by weight as the amount of phosphorus element. If the proportion of phosphoric acid compound A is equal to or higher than the lower limit, the yield of fine fibrous cellulose can be further improved. However, if the above upper limit is exceeded, the effect of improving the yield reaches a ceiling, which is not preferable from a cost standpoint.
  • compound B is not particularly limited, but is preferably a nitrogen-containing compound that exhibits basicity.
  • “Basic” herein is defined as the aqueous solution exhibiting a pink to red color in the presence of the phenolphthalein indicator, or the pH of the aqueous solution being greater than 7.
  • the basic nitrogen-containing compound used in the present invention is not particularly limited as long as it exhibits the effects of the present invention, but compounds having an amino group are preferred.
  • Examples include, but are not limited to, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, and hexamethylenediamine.
  • urea is preferred because it is low cost and easy to handle.
  • the amount of compound B added is preferably 2 to 1000 parts by weight, more preferably 100 to 700 parts by weight, based on 100 parts by weight of the solid content of the cellulose raw material.
  • the reaction temperature is preferably 0 to 95°C, more preferably 30 to 90°C.
  • the reaction time is not particularly limited, but is approximately 1 to 600 minutes, more preferably 30 to 480 minutes.
  • cellulose can be prevented from being excessively esterified and easily dissolved, and the yield of phosphoric acid esterified cellulose can be improved.
  • After dehydrating the obtained phosphoric acid esterified cellulose suspension it is preferably heat-treated at 100 to 170° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, during heat treatment, it is preferable to heat at 130° C. or lower, preferably 110° C. or lower while water is contained, and after removing water, heat treatment at 100 to 170° C.
  • the degree of phosphoric acid group substitution per glucose unit of the phosphoric acid esterified cellulose is preferably 0.001 to 0.40.
  • the degree of phosphoric acid group substitution per glucose unit of the phosphoric acid esterified cellulose is preferably 0.001 to 0.40.
  • the cellulose cells become electrically repulsive to each other. Therefore, cellulose into which phosphate groups have been introduced can be easily nano-fibrillated. Note that if the degree of phosphate group substitution per glucose unit is less than 0.001, sufficient nanofibrillation cannot be achieved. On the other hand, if the degree of phosphoric acid group substitution per glucose unit is greater than 0.40, the cellulose may swell or dissolve, making it impossible to obtain fine fibrous cellulose.
  • the phosphoric acid esterified cellulose raw material obtained above is preferably boiled and then washed with cold water.
  • chemically modified cellulose or unmodified cellulose is used in the form of a dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium include water and organic solvents, and a mixture of these may also be used.
  • the solid content concentration of the cellulose dispersion used in the present invention is 0.1 to 10, because if the concentration is too low, the fibrillation efficiency will be poor, and if the concentration is too high, the viscosity of the dispersion will increase and fibrillation will be difficult.
  • 0% by weight is preferred, 0.1 to 5.0% by weight is more preferred, even more preferably 0.25 to 3.0% by weight, particularly preferably 0.5 to 1.0% by weight.
  • a dispersion of chemically modified cellulose or unmodified cellulose can be prepared, for example, by diluting the chemically modified cellulose or unmodified cellulose with water.
  • a high-pressure washer having a residual water discharge mechanism consisting of a pressure regulating valve is used to wash the dispersion of chemically modified cellulose or unmodified cellulose obtained as described above.
  • a spillwater circulation process in which the dispersion liquid is taken in from the suction port of a plunger pump that constitutes a part of the high-pressure washer through the water suction port and discharged from the discharge port of the plunger pump, and is discharged from the spillwater port of the high-pressure washer to the storage section.
  • cellulose is defibrated and fine fibrous cellulose is obtained. Specifically, the cellulose is defibrated when the dispersion liquid passes through a narrow gap formed by the relief valve 32 of the pressure regulating valve disposed downstream of the plunger pump and is discharged from the surplus water outlet.
  • a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve is provided as equipment that is inexpensively available, easy to introduce, and normally used by users, and includes a plunger pump.
  • a material containing as part of the structure it is possible to efficiently defibrate cellulose and obtain fine fibrous cellulose.
  • the viscosity characteristics of the obtained fine fibrous cellulose are comparable to those of the fine fibrous cellulose obtained using a high-pressure homogenizer, which is expensive and large equipment.
  • the fine fibrous cellulose obtained by the production method of the present invention can be used for various purposes, and is used as a thickener, a gelling agent, a sizing agent, a food additive, Excipients, additives for paints, additives for adhesives, abrasives, compounded materials for rubber and plastics, water retention materials, shape retention agents, muddy water conditioners, filter aids, anti-flooding agents, admixtures, cement-based It can be used as a coating agent for cured products.
  • the fields include food, beverages, cosmetics, pharmaceuticals, paper manufacturing, various chemical supplies, paints, sprays, agricultural chemicals, civil engineering, architecture, electronic materials, flame retardants, household goods, adhesives, cleaning agents, fragrances, and lubricating compositions. Examples include things.
  • the obtained fine fibrous cellulose can be sprayed and coated directly on a large surface using the high-pressure washer used for defibration, and applications that require spraying and coating on a large surface area. It is particularly suitable for use as a coating agent for cement-based cured products.
  • Example 1 Carboxymethylated pulp (manufactured by Nippon Paper Industries Co., Ltd., trade name: SLD-F5) was adjusted to a solid content concentration of 1% by weight with water. Pour the obtained dispersion liquid into a tank, turn on the power of the high pressure washer (manufactured by Arimitsu Kogyo Co., Ltd., product name: TRY high pressure washer, model number: TRY-10200), and drain the dispersion liquid in the tank from the water intake port. The dispersion liquid was taken into a high-pressure washer, and the nozzle was kept closed, and the dispersion liquid was discharged from the spill port into a tank. A total of 3 passes were performed at a throughput of 18 L/min to obtain a fine fibrous cellulose dispersion. Note that the processing pressure of the high-pressure washer was 20 MPa.
  • Example 1 Put a dispersion of carboxymethylated pulp prepared in the same manner as in Example 1 into a tank, turn on the same high-pressure washer as in Example 1, take the dispersion in the tank into the high-pressure washer from the water intake port, The nozzle was opened and the dispersion liquid was discharged from the nozzle. One-pass treatment was performed at a throughput of 18 L/min to obtain a fine fibrous cellulose dispersion. Note that the processing pressure of the high-pressure washer was 20 MPa.
  • Example 1 In the case of Comparative Example 1 in which the dispersion is discharged from a nozzle, it is discharged into the air, and it is considered that the defibrating property is inferior to that in Example 1, which includes a mechanism for discharging into the dispersion liquid from a pressure regulating valve.
  • Example 2 Manufacture of TEMPO oxidized pulp
  • 50g absolute dry of bleached unbeaten kraft pulp (whiteness 85%) derived from coniferous trees
  • 390mg of TEMPO Sigma Aldrich
  • An aqueous sodium hypochlorite solution was added to the reaction system so that the sodium hypochlorite concentration was 6.0 mmol/g, and the oxidation reaction was started.
  • the TEMPO oxidized pulp obtained as described above was adjusted to a solid content concentration of 0.5% by weight with water.
  • the dispersion liquid was discharged into the tank from the spillway with the nozzle kept closed. A total of 5 passes were performed at a throughput of 18 L/min to obtain a fine fibrous cellulose dispersion. Note that the processing pressure of the high-pressure washer was 20 MPa.
  • Example 3 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2, except that the processing pressure of the high-pressure washer was 15 MPa instead of 20 MPa, and a total of 8 passes were performed instead of 5 passes in total.
  • Example 4 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2, except that the processing pressure of the high-pressure washer was 10 MPa instead of 20 MPa, and a total of 8 passes were performed instead of 5 passes in total.
  • Example 5 A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2, except that the processing pressure of the high-pressure washer was 5 MPa instead of 20 MPa, and a total of 50 passes were performed instead of 5 passes in total.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

The method has a surplus water circulation step that takes up a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage unit from a suction port of a plunger pump that constitutes part of the high-pressure washer via the water inlet of a high-pressure washer having a surplus water discharge mechanism comprising a pressure-regulating valve, and the dispersion ejected from the ejection port of the plunger pump is discharged from the surplus water port of the high-pressure washer into the storage unit.

Description

微細繊維状セルロースの製造方法およびセルロースの解繊方法Method for producing fine fibrous cellulose and method for fibrillating cellulose
 本発明は、微細繊維状セルロースの製造方法およびセルロースの解繊方法に関する。 The present invention relates to a method for producing fine fibrous cellulose and a method for defibrating cellulose.
 セルロースを微細化して得られるセルロースナノファイバーやミクロフィブリレイテッドセルロース(以下、併せて「微細繊維状セルロース」という。)は、繊維径がナノ~マイクロオーダーの微細な繊維であり、高強度、高弾性、チキソ性等、通常のパルプにはない機能を有する新規材料として様々な分野での利用が期待されている。 Cellulose nanofibers and microfibrillated cellulose (hereinafter collectively referred to as "fine fibrous cellulose") obtained by refining cellulose are fine fibers with fiber diameters on the nano to micro order, and have high strength and high elasticity. It is expected to be used in a variety of fields as a new material that has functions not found in ordinary pulp, such as thixotropic properties.
 従来微細繊維状セルロースは、化学変性パルプを高圧のホモジナイザーにより解繊することにより、水に安定的に分散させた状態で製造され(例えば、特許文献1参照)、通常は製造された所定濃度の微細繊維状セルロース分散液のままユーザーの工場などに搬送され、工業材料あるいは食品や化粧品の添加物材料として各種用途に使用されている。 Conventionally, fine fibrous cellulose has been produced in a state in which it is stably dispersed in water by defibrating chemically modified pulp using a high-pressure homogenizer (see, for example, Patent Document 1), and is usually produced at a predetermined concentration. It is transported as a fine fibrous cellulose dispersion to user factories, where it is used for various purposes as an industrial material or as an additive material for foods and cosmetics.
 製造された所定濃度の微細繊維状セルロースの分散液をそのままユーザーの工場などに搬送する場合は、保管、輸送等のコストアップにつながっていた。一方、微細繊維状セルロース分散液を乾燥させた状態で運搬する場合には、微細繊維状セルロース分散液の乾燥に多大な電力を必要とすることからコストアップにつながっていた。またユーザーの工場に微細繊維状セルロースの乾燥品を希釈、再分散し、使用に適した濃度に調整する設備の新規設置が必要であった。 If the manufactured dispersion of fine fibrous cellulose at a predetermined concentration is transported as it is to a user's factory, etc., this leads to increased costs for storage, transportation, etc. On the other hand, when transporting a fine fibrous cellulose dispersion in a dried state, a large amount of electric power is required to dry the fine fibrous cellulose dispersion, leading to an increase in costs. Additionally, it was necessary to install new equipment at the user's factory to dilute and redisperse dried fine fibrous cellulose and adjust it to a concentration suitable for use.
特開2018-44274号公報Japanese Patent Application Publication No. 2018-44274
 特許文献1等の従来の方法は、パルプを解繊するために高圧のホモジナイザーを必要とするものであり、高圧ホモジナイザーは高価で大型の設備であるため、ユーザー側において導入が難しい場合があった。 Conventional methods such as those disclosed in Patent Document 1 require a high-pressure homogenizer to defibrate the pulp, and since high-pressure homogenizers are expensive and large equipment, it is sometimes difficult for users to install them. .
 本発明の目的は、安価に入手可能であり、導入が容易な、ユーザー側において通常使用する機器を使用して、効率的にセルロースを解繊することが可能な、微細繊維状セルロースの製造方法およびセルロースの解繊方法を提供することである。 An object of the present invention is a method for producing fine fibrous cellulose that is inexpensively available, easy to introduce, and capable of efficiently defibrating cellulose using equipment normally used by users. and a method for defibrating cellulose.
 本発明者は、上記課題を解決すべく鋭意検討した結果、特定の高圧洗浄機を用いて解繊を行うことにより、上記目的を達成できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventor found that the above-mentioned object can be achieved by defibrating using a specific high-pressure washer, and completed the present invention.
 本発明は、以下を提供する。
(1) 微細繊維状セルロースの製造方法であって、貯留部に貯留されている化学変性セルロース又は未変性セルロースの分散液を、調圧弁から成る余水排出機構を有する高圧洗浄機の吸水口を介して、前記高圧洗浄機の一部を構成するプランジャーポンプの吸込口から取り込み、前記プランジャーポンプの吐出口から吐出した前記分散液を、前記高圧洗浄機の余水口から前記貯留部に排出する余水循環工程を有する微細繊維状セルロースの製造方法。
(2) 前記高圧洗浄機の前記調圧弁によって制御された調圧弁の出口圧力が、0.5~25MPaであることを特徴とする(1)に記載の微細繊維状セルロースの製造方法。
(3) 前記分散液の固形分濃度が、0.1~10.0重量%であることを特徴とする(1)又は(2)に記載の微細繊維状セルロースの製造方法。
(4) 前記化学変性セルロースが、カルボキシ化セルロース又はカルボキシメチル化セルロースであることを特徴とする(1)又は(2)に記載の微細繊維状セルロースの製造方法。
(5) 前記余水循環工程の実施回数が、1~100回であることを特徴とする(1)又は(2)に記載の微細繊維状セルロースの製造方法。
(6) セルロースの解繊方法であって、貯留部に貯留されている化学変性セルロース又は未変性セルロースの分散液を、調圧弁から成る余水排出機構を有する高圧洗浄機の吸水口を介して、前記高圧洗浄機の一部を構成するプランジャーポンプの吸込口から取り込み、前記プランジャーポンプの吐出口から吐出した前記分散液を、前記高圧洗浄機の余水口から前記貯留部に排出する余水循環工程を有するセルロースの解繊方法。
The present invention provides the following.
(1) A method for producing fine fibrous cellulose, in which a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section is passed through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve. The dispersion liquid taken in from the suction port of a plunger pump that constitutes a part of the high pressure washer and discharged from the discharge port of the plunger pump is discharged from the spill port of the high pressure washer to the storage section. A method for producing fine fibrous cellulose including a residual water circulation step.
(2) The method for producing fine fibrous cellulose according to (1), wherein the outlet pressure of the pressure regulating valve of the high-pressure washer is 0.5 to 25 MPa.
(3) The method for producing fine fibrous cellulose according to (1) or (2), wherein the solid content concentration of the dispersion is 0.1 to 10.0% by weight.
(4) The method for producing fine fibrous cellulose according to (1) or (2), wherein the chemically modified cellulose is carboxylated cellulose or carboxymethylated cellulose.
(5) The method for producing fine fibrous cellulose according to (1) or (2), wherein the surplus water circulation step is performed 1 to 100 times.
(6) A method for defibrating cellulose, which involves dispersing a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve. , the dispersion liquid taken in from the suction port of a plunger pump that constitutes a part of the high pressure washer and discharged from the discharge port of the plunger pump is discharged from the spill port of the high pressure washer to the storage section; A cellulose defibration method that includes a water circulation process.
 本発明によれば、安価で入手可能であり、導入が容易な、ユーザー側で通常使用する機器を使用して、効率的にセルロースを解繊することが可能な、微細繊維状セルロースの製造方法およびセルロースの解繊方法を提供することができる。 According to the present invention, a method for producing fine fibrous cellulose allows cellulose to be efficiently defibrated using equipment that is inexpensively available, easy to introduce, and commonly used by users. and a method for defibrating cellulose.
本発明に用いることができる高圧洗浄機の構成を示す概略図である。1 is a schematic diagram showing the configuration of a high-pressure washer that can be used in the present invention. 図1に示す調圧弁の構成を示す概略図である。FIG. 2 is a schematic diagram showing the configuration of the pressure regulating valve shown in FIG. 1. FIG. 実施例1、比較例1、参考例1で得られた微細繊維状セルロース分散液の粘度特性を示すグラフである。1 is a graph showing viscosity characteristics of fine fibrous cellulose dispersions obtained in Example 1, Comparative Example 1, and Reference Example 1.
 以下、図面を参照して本発明を詳細に説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。 Hereinafter, the present invention will be described in detail with reference to the drawings. In the present invention, "~" includes extreme values. That is, "X~Y" includes the values X and Y at both ends.
 本発明の微細繊維状セルロースの製造方法は、貯留部に貯留されている化学変性セルロース又は未変性セルロースの分散液を、調圧弁から成る余水排出機構を有する高圧洗浄機の吸水口を介して、前記高圧洗浄機の一部を構成するプランジャーポンプの吸込口から取り込み、前記プランジャーポンプの吐出口から吐出した前記分散液を、前記高圧洗浄機の余水口から前記貯留部に排出する余水循環工程を有する。 The method for producing fine fibrous cellulose of the present invention involves dispersing a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve. , the dispersion liquid taken in from the suction port of a plunger pump that constitutes a part of the high pressure washer and discharged from the discharge port of the plunger pump is discharged from the spill port of the high pressure washer to the storage section; It has a water circulation process.
 プランジャーポンプは、プランジャー(ロッド状のピストン)を往復運動させてポンプ内の液体容積を変化させ、吐出口に押し出す仕組みのポンプである。本発明の製造方法においては、プランジャーポンプは、余水排出機構を有する高圧洗浄機の一部を構成するものである。 A plunger pump is a pump that reciprocates a plunger (rod-shaped piston) to change the volume of liquid inside the pump and expel it to a discharge port. In the manufacturing method of the present invention, the plunger pump constitutes a part of a high-pressure washer having a surplus water discharge mechanism.
 図1は本発明に用いることができる高圧洗浄機の構成を示す概略図である。なお、本発明に用いることができる高圧洗浄機は、図1に示すものに限られるものではない。 FIG. 1 is a schematic diagram showing the configuration of a high-pressure washer that can be used in the present invention. Note that the high-pressure washer that can be used in the present invention is not limited to the one shown in FIG.
 本発明に用いることができる高圧洗浄機2は、貯留部4に貯留されている分散液6を高圧洗浄機2内に取り込む吸水口8と、取り込まれた分散液6に圧力を付与するプランジャーポンプ10と、高圧の分散液6を吐出する吐出口12と、吐出口12に吐出ホース14を介して接続されたノズル16と、吐出圧の調整を行う調圧弁18と、ノズル16が閉じている場合などに、設定した圧力以上となった場合に、分散液6を貯留部4に排出する余水口20を備えている。ここで、吸水口8には、貯留部4の底部から分散液6を吸水可能なように吸水ホース22が取り付けられている。また、余水口20には、高圧洗浄機2内の余水を貯留部4に排出可能なように余水ホース24が取り付けられている。なお、図1において、ノズルを閉じた状態とした場合の分散液の通過方向を矢印で示した。 The high-pressure washer 2 that can be used in the present invention includes a water intake port 8 that takes the dispersion liquid 6 stored in the storage part 4 into the high-pressure washer 2, and a plunger that applies pressure to the taken-in dispersion liquid 6. A pump 10, a discharge port 12 that discharges the high-pressure dispersion liquid 6, a nozzle 16 connected to the discharge port 12 via a discharge hose 14, a pressure regulating valve 18 that adjusts the discharge pressure, and a discharge port 12 that discharges the high-pressure dispersion liquid 6. The water outlet 20 is provided for discharging the dispersion liquid 6 to the storage section 4 when the pressure exceeds a set value. Here, a water suction hose 22 is attached to the water suction port 8 so as to be able to absorb the dispersion liquid 6 from the bottom of the storage section 4 . Further, a spill water hose 24 is attached to the spill water outlet 20 so that the excess water in the high-pressure washer 2 can be discharged to the storage section 4. Note that in FIG. 1, arrows indicate the direction in which the dispersion liquid passes when the nozzle is in a closed state.
 プランジャーポンプ10を駆動させると、貯留部4に貯留されている分散液6が吸水ホース22を介して高圧洗浄機2内に取り込まれる。この分散液6は、プランジャーポンプ10の吸込口9から取り込まれ、ポンプ内で加圧され、加圧された分散液6は、プランジャーポンプ10の吐出口11から、調圧弁18を介して、高圧洗浄機2の吐出口12または余水口20から排出される。ノズル16を開放すると、高圧の分散液6がノズル16から噴射され、ノズル16を閉じると高圧水が遮断される。ノズル閉にしたとき、プランジャーポンプ10と調圧弁18の間の分散液6の圧力が上がるので、調圧弁18が働き、調圧弁18とノズル16の間の圧力が設定圧に保たれるように、プランジャーポンプ10内の分散液6全量が余水口20から余水ホース24を介して貯留部4に排出される。 When the plunger pump 10 is driven, the dispersion liquid 6 stored in the storage section 4 is taken into the high-pressure washer 2 via the water absorption hose 22. This dispersion liquid 6 is taken in from the suction port 9 of the plunger pump 10 and pressurized within the pump, and the pressurized dispersion liquid 6 is passed from the discharge port 11 of the plunger pump 10 via the pressure regulating valve 18. , is discharged from the discharge port 12 or spill port 20 of the high-pressure washer 2. When the nozzle 16 is opened, the high-pressure dispersion liquid 6 is injected from the nozzle 16, and when the nozzle 16 is closed, the high-pressure water is cut off. When the nozzle is closed, the pressure of the dispersion liquid 6 between the plunger pump 10 and the pressure regulating valve 18 increases, so the pressure regulating valve 18 works to maintain the pressure between the pressure regulating valve 18 and the nozzle 16 at the set pressure. Then, the entire amount of the dispersion liquid 6 in the plunger pump 10 is discharged from the spillway port 20 to the storage section 4 via the spillwater hose 24.
 次に、図2を用いて、調圧弁18の動作を説明する。調圧弁18は、吐出圧を調整する調圧ネジ26と、圧力調整バネ28と、ピストン30と、リリーフ弁32とを備えている。調圧ネジ26を回動させることにより、吐出圧を調整する。ノズル16が開放されている場合は、プランジャーポンプ10の吐出口11から吐出された分散液6は調圧弁入口36から入り、調圧弁出口38(吐出口12側)から吐出される。このとき、分散液6の圧力が設定圧力を超えている場合は、リリーフ弁32が圧力に応じて開き、分散液6の何割かが余水出口40に流れる。 Next, the operation of the pressure regulating valve 18 will be explained using FIG. 2. The pressure regulating valve 18 includes a pressure regulating screw 26 for regulating the discharge pressure, a pressure regulating spring 28, a piston 30, and a relief valve 32. The discharge pressure is adjusted by rotating the pressure adjustment screw 26. When the nozzle 16 is open, the dispersion liquid 6 discharged from the discharge port 11 of the plunger pump 10 enters from the pressure regulating valve inlet 36 and is discharged from the pressure regulating valve outlet 38 (discharge port 12 side). At this time, if the pressure of the dispersion liquid 6 exceeds the set pressure, the relief valve 32 opens according to the pressure, and some percentage of the dispersion liquid 6 flows to the surplus water outlet 40.
 次に、圧力の調整の仕組みを説明する。調圧弁18の調圧弁入口36から入った分散液6は、調圧弁出口38から吐出される。同時に、ピストン30下のスペースに圧力を伝える。分散液6の圧力が設定圧力を超えている場合は、ピストン30が押し上げられ、リリーフ弁32も上がるため、調圧弁入口36から入った分散液6が余水出口40にも流れ調圧弁出口38の圧力(吐出圧)が設定圧に保たれる。ピストン30の上方にある調圧ネジ26を締めると、圧力調整バネ28を介してピストン30を強く押し下げることになり、これにより吐出圧の調整を行うことができる。 Next, the mechanism of pressure adjustment will be explained. The dispersion liquid 6 entering from the pressure regulating valve inlet 36 of the pressure regulating valve 18 is discharged from the pressure regulating valve outlet 38. At the same time, pressure is transmitted to the space below the piston 30. When the pressure of the dispersion liquid 6 exceeds the set pressure, the piston 30 is pushed up and the relief valve 32 is also raised, so the dispersion liquid 6 that entered from the pressure regulating valve inlet 36 also flows to the surplus water outlet 40 and flows to the pressure regulating valve outlet 38. pressure (discharge pressure) is maintained at the set pressure. When the pressure adjustment screw 26 above the piston 30 is tightened, the piston 30 is strongly pushed down via the pressure adjustment spring 28, thereby making it possible to adjust the discharge pressure.
 調圧弁によっては、ノズル16を閉じた場合に、高圧の分散液6がピストン30を押し上げたまま保持する機構が追加されたものがある。この機構が働いた場合は、リリーフ弁32が全開となり分散液6の全量が余水出口40へ流れることになる。
 本発明の解繊作用は、高圧の分散液6が全開状態ではないリリーフ弁32を通過することによって得られるため、前記保持機構を有する調圧弁を用いる場合には、保持機構を無効化して用いる事が好ましい。
Some pressure regulating valves have an additional mechanism that keeps the high-pressure dispersion liquid 6 pushing up the piston 30 when the nozzle 16 is closed. When this mechanism works, the relief valve 32 is fully opened and the entire amount of the dispersion liquid 6 flows to the surplus water outlet 40.
The defibrating effect of the present invention is obtained when the high-pressure dispersion liquid 6 passes through the relief valve 32 that is not fully open, so when using a pressure regulating valve having the holding mechanism, the holding mechanism is disabled. Things are good.
(余水循環工程)
 本発明の微細繊維状セルロースの製造方法を実施する場合は、貯留部4に貯留されている化学変性セルロース又は未変性セルロースの分散液6を、図1に示したような余水排出機構を有する高圧洗浄機2の吸水口8を介してプランジャーポンプの吸込口9から取り込み、プラジャーポンプの吐出口11から吐出した分散液6を、高圧洗浄機2の余水口20から貯留部4に排出する余水循環工程を行う。余水排出機構を有する高圧洗浄機2を用いて、ノズル16を閉じた状態でプランジャーポンプ10を動作させることにより、貯留部4に貯留されているセルロースの分散液6が吸水ホース22を介して吸水口8から取り込まれ、プランジャーポンプ10で高圧化された分散液6が、調圧弁18の余水出口40から流れ出て、余水口20から余水ホース24を介して貯留部4に排出される。余水循環工程は、1回だけ行ってもよいし、複数回行ってもよい。余水循環工程を行う回数は、効率よく解繊を進める観点から1~100回が好ましく、1~50回がより好ましい。なお、余水循環工程の回数は、高圧洗浄機2の吐出圧の設定値に応じて最適な値とすればよく、例えば、吐出圧が20MPa以上の場合は、余水循環工程の回数を1~10回とすることが好ましく、1~5回とすることがより好ましく、3~5回とすることがさらに好ましい。また、吐出圧が10MPa以上、20MPa未満の場合は、余水循環工程の回数を1~10回とすることが好ましく、3~8回とすることがより好ましく、5~8回とすることがさらに好ましい。また、吐出圧が5MPa以上、10MPa未満の場合は、余水循環工程の回数を3~100回とすることが好ましく、10~50回とすることがより好ましく、20~50回とすることがさらに好ましい。
(Leftwater circulation process)
When carrying out the method for producing fine fibrous cellulose of the present invention, a dispersion liquid 6 of chemically modified cellulose or unmodified cellulose stored in the storage section 4 is provided with a surplus water discharge mechanism as shown in FIG. The dispersion liquid 6 taken in from the suction port 9 of the plunger pump via the water suction port 8 of the high-pressure washer 2 and discharged from the discharge port 11 of the plunger pump is discharged from the overflow port 20 of the high-pressure washer 2 to the storage section 4. Perform the surplus water circulation process. By operating the plunger pump 10 with the nozzle 16 closed using the high-pressure washer 2 having a surplus water discharge mechanism, the cellulose dispersion 6 stored in the storage section 4 is discharged through the water absorption hose 22. The dispersion liquid 6 is taken in from the water intake port 8 and pressurized by the plunger pump 10, flows out from the spill water outlet 40 of the pressure regulating valve 18, and is discharged from the spill water port 20 via the spill water hose 24 to the storage section 4. be done. The residual water circulation step may be performed only once, or may be performed multiple times. The number of times the residual water circulation step is performed is preferably 1 to 100 times, more preferably 1 to 50 times, from the viewpoint of efficiently defibrating. In addition, the number of times of the residual water circulation process may be set to an optimal value according to the setting value of the discharge pressure of the high-pressure washer 2. For example, if the discharge pressure is 20 MPa or more, the number of times of the residual water circulation process may be set to 1 to 10. It is preferable to carry out the process twice, more preferably from 1 to 5 times, and even more preferably from 3 to 5 times. Further, when the discharge pressure is 10 MPa or more and less than 20 MPa, the number of times of the residual water circulation process is preferably 1 to 10 times, more preferably 3 to 8 times, and even more preferably 5 to 8 times. preferable. Further, when the discharge pressure is 5 MPa or more and less than 10 MPa, the number of times of the residual water circulation process is preferably 3 to 100 times, more preferably 10 to 50 times, and even more preferably 20 to 50 times. preferable.
 高圧洗浄機2の吐出圧(調圧弁の出口圧力)の設定値は、特に限定されないが、効率よく解繊を進める観点から、0.5~25MPaであることが好ましく、5~25MPaであることがより好ましく、10~20MPaであることがさらに好ましい。吐出圧の設定は、余水排出機構により制御することができ、具体的には調圧弁18の調圧ネジ26を用いて行うことができる。 The set value of the discharge pressure (outlet pressure of the pressure regulating valve) of the high-pressure washer 2 is not particularly limited, but from the viewpoint of efficient defibration, it is preferably 0.5 to 25 MPa, and 5 to 25 MPa. is more preferable, and even more preferably 10 to 20 MPa. The setting of the discharge pressure can be controlled by a surplus water discharge mechanism, and specifically can be performed using the pressure regulating screw 26 of the pressure regulating valve 18.
 高圧洗浄機2を用いた分散液6の処理量としては機械の容量によるところが多いが、例えば、有光工業社製の高圧洗浄機 (商品名:TRY高圧洗浄機、型番:TRY-10200)を使用した場合、生産量の観点から、10~20L/分が好ましく、12~20L/分がより好ましい。 The amount of dispersion liquid 6 processed using the high-pressure washer 2 depends on the capacity of the machine. When used, from the viewpoint of production volume, it is preferably 10 to 20 L/min, more preferably 12 to 20 L/min.
 本発明において使用可能な高圧洗浄機としては、調圧弁18を備える構成であり、さらに余水排出機構を有するものであれば、特に制限なく用いることができ、例えば、有光工業社製の高圧洗浄機(商品名:TRY高圧洗浄機、型番:TRY-10200)、いすゞ自動車社製の高圧洗浄車(商品名:いすゞアチューマット、4t車)等を挙げることができる。 The high-pressure washer that can be used in the present invention can be used without any particular restriction as long as it is equipped with a pressure regulating valve 18 and has a surplus water discharge mechanism. Examples include a washing machine (product name: TRY high-pressure washer, model number: TRY-10200), a high-pressure washing vehicle manufactured by Isuzu Motors (product name: Isuzu Achumat, 4t vehicle), and the like.
(微細繊維状セルロース)
 本発明で用いる、微細繊維状セルロースは、セルロースを原料とする微細繊維である。微細繊維状セルロースの平均繊維径は、特に限定されないが、1nm~10μm程度である。微細繊維状セルロースの平均繊維径および平均繊維長は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)または透過型電子顕微鏡(TEM)を用いて、各繊維を観察した結果から得られる繊維径および繊維長を平均することによって得ることができる。微細繊維状セルロースは、セルロースを解繊することによって製造することができる。
(Fine fibrous cellulose)
The fine fibrous cellulose used in the present invention is a fine fiber made from cellulose. The average fiber diameter of the fine fibrous cellulose is not particularly limited, but is approximately 1 nm to 10 μm. The average fiber diameter and average fiber length of fine fibrous cellulose are obtained from the results of observing each fiber using a scanning electron microscope (SEM), atomic force microscope (AFM), or transmission electron microscope (TEM). It can be obtained by averaging the fiber diameter and fiber length. Fine fibrous cellulose can be produced by defibrating cellulose.
 本発明に用いる微細繊維状セルロースの平均アスペクト比は、通常50以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は、下記の式により算出することができる:
 アスペクト比=平均繊維長/平均繊維径
The average aspect ratio of the fine fibrous cellulose used in the present invention is usually 50 or more. The upper limit is not particularly limited, but is usually 1000 or less. The average aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length / average fiber diameter
 セルロース原料は、セルロースを含んでいればよく、特に限定されないが、例えば、植物(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、晒クラフトパルプ(BKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物(例えばホヤ類)、藻類、微生物(例えば酢酸菌(アセトバクター))、微生物産生物等が挙げられる。セルロース原料としては、これらのいずれかであってもよいし2種類以上の組み合わせであってもよいが、好ましくは植物又は微生物由来のセルロース原料(例えば、セルロース繊維)であり、より好ましくは植物由来のセルロース原料(例えば、セルロース繊維)である。 The cellulose raw material is not particularly limited as long as it contains cellulose, but includes, for example, plants (for example, wood, bamboo, hemp, jute, kenaf, agricultural residue, cloth, pulp (softwood unbleached kraft pulp (NUKP), Softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), bleached kraft pulp (BKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP) Examples include thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animals (e.g. ascidians), algae, microorganisms (e.g. acetic acid bacteria), microbial products, etc. As cellulose raw materials, any of these The cellulose raw materials derived from plants or microorganisms (e.g., cellulose fibers) are preferably used, and the cellulose raw materials derived from plants (e.g., cellulose fibers) are preferably used. ).
 セルロース原料の数平均繊維径は特に制限されないが、一般的なパルプである針葉樹クラフトパルプの場合は30~60μm程度、広葉樹クラフトパルプの場合は10~30μm程度である。その他のパルプの場合、一般的な精製を経たものは50μm程度である。例えばチップ等の数cm大のものを精製したものである場合、リファイナー、ビーター等の離解機で機械的処理を行い、50μm程度に調整することが好ましい。 The number average fiber diameter of the cellulose raw material is not particularly limited, but in the case of softwood kraft pulp, which is a common pulp, it is about 30 to 60 μm, and in the case of hardwood kraft pulp, it is about 10 to 30 μm. In the case of other pulps, those that have undergone general refining have a diameter of about 50 μm. For example, in the case of refined chips or the like that are several centimeters in size, it is preferable to mechanically process them using a disintegrator such as a refiner or a beater to adjust the size to about 50 μm.
 セルロースは、グルコース単位あたり3つのヒドロキシル基を有しており、各種の化学変性を行い、化学変性セルロースとすることが可能である。本発明においては、微細繊維状セルロースの原料として、化学変性セルロース又は未変性セルロースを用いるものであり、解繊の進行を促進するという観点から、化学変性して得られたセルロース原料(化学変性セルロース)を用いることが好ましい。 Cellulose has three hydroxyl groups per glucose unit, and can be chemically modified to produce chemically modified cellulose. In the present invention, chemically modified cellulose or unmodified cellulose is used as a raw material for fine fibrous cellulose, and from the viewpoint of promoting the progress of fibrillation, a cellulose raw material obtained by chemical modification (chemically modified cellulose) is used as a raw material for fine fibrous cellulose. ) is preferably used.
 化学変性セルロースとしては、例えば、カルボキシメチル化、カルボキシ化(酸化)、カチオン化、エステル化等の化学変性をおこなったセルロースが挙げられる。中でも、カルボキシメチル化セルロース、カルボキシ化(酸化)セルロースがより好ましい。 Examples of chemically modified cellulose include cellulose that has undergone chemical modification such as carboxymethylation, carboxylation (oxidation), cationization, and esterification. Among these, carboxymethylated cellulose and carboxylated (oxidized) cellulose are more preferred.
(化学変性)
(カルボキシメチル化)
 本発明において、カルボキシメチル化したセルロースを解繊して得られたカルボキシメチル化微細繊維状セルロース用いる場合、カルボキシメチル化したセルロースは、上記のセルロース原料を公知の方法でカルボキシメチル化することにより得てもよいし、市販品を用いてもよい。いずれの場合も、セルロースの無水グルコース単位当たりのカルボキシメチル基置換度が0.01~0.50となるものが好ましい。そのようなカルボキシメチル化したセルロースを製造する方法の一例として次のような方法を挙げることができる。セルロースを発底原料にし、溶媒として3~20重量倍の水及び/又は低級アルコール、具体的には水、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等の単独、又は2種以上の混合媒体を使用する。なお、低級アルコールを混合する場合の低級アルコールの混合割合は、60~95重量%である。マーセル化剤としては、発底原料の無水グルコース残基当たり0.5~20倍molの水酸化アルカリ金属、具体的には水酸化ナトリウム、水酸化カリウムを使用する。発底原料と溶媒、マーセル化剤を混合し、反応温度0~70℃、好ましくは10~60℃、かつ反応時間15分~8時間、好ましくは30分~7時間、マーセル化処理を行う。その後、カルボキシメチル化剤をグルコース残基当たり0.05~10.0倍mol添加し、反応温度30~90℃、好ましくは40~80℃、かつ反応時間30分~10時間、好ましくは1時間~4時間、エーテル化反応を行う。
(chemical denaturation)
(carboxymethylation)
In the present invention, when carboxymethylated fine fibrous cellulose obtained by fibrillating carboxymethylated cellulose is used, the carboxymethylated cellulose can be obtained by carboxymethylating the above-mentioned cellulose raw material by a known method. Alternatively, a commercially available product may be used. In either case, the cellulose preferably has a degree of substitution of carboxymethyl groups per anhydroglucose unit of 0.01 to 0.50. An example of a method for producing such carboxymethylated cellulose is the following method. Cellulose is used as the base material, and as a solvent 3 to 20 times the weight of water and/or lower alcohol, specifically water, methanol, ethanol, N-propyl alcohol, isopropyl alcohol, N-butanol, isobutanol, tertiary alcohol. A single medium such as butanol or a mixture of two or more types is used. Note that when lower alcohols are mixed, the mixing ratio of lower alcohols is 60 to 95% by weight. As the mercerizing agent, alkali metal hydroxide, specifically sodium hydroxide and potassium hydroxide, is used in an amount of 0.5 to 20 times the mole per anhydroglucose residue of the bottom starting material. The bottom starting material, a solvent, and a mercerization agent are mixed, and mercerization treatment is performed at a reaction temperature of 0 to 70°C, preferably 10 to 60°C, and a reaction time of 15 minutes to 8 hours, preferably 30 minutes to 7 hours. Thereafter, a carboxymethylating agent is added in a mol amount of 0.05 to 10.0 times per glucose residue, and the reaction temperature is 30 to 90°C, preferably 40 to 80°C, and the reaction time is 30 minutes to 10 hours, preferably 1 hour. The etherification reaction is carried out for ~4 hours.
 なお、本明細書において、微細繊維状セルロースの調製に用いる化学変性セルロースの一種である「カルボキシメチル化したセルロース」は、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものをいう。したがって、水溶性高分子の一種であるカルボキシメチルセルロースとは区別される。「カルボキシメチル化したセルロース」の水分散液を電子顕微鏡で観察すると、繊維状の物質を観察することができる。一方、水溶性高分子の一種であるカルボキシメチルセルロースの水分散液を観察しても、繊維状の物質は観察されない。また、「カルボキシメチル化したセルロース」はX線回折で測定した際にセルロースI型結晶のピークを観測することができるが、水溶性高分子のカルボキシメチルセルロースではセルロースI型結晶はみられない。 In addition, in this specification, "carboxymethylated cellulose", which is a type of chemically modified cellulose used for preparing fine fibrous cellulose, maintains at least part of its fibrous shape even when dispersed in water. say something Therefore, it is distinguished from carboxymethyl cellulose, which is a type of water-soluble polymer. When an aqueous dispersion of "carboxymethylated cellulose" is observed with an electron microscope, fibrous substances can be observed. On the other hand, when observing an aqueous dispersion of carboxymethylcellulose, which is a type of water-soluble polymer, no fibrous material is observed. Furthermore, when "carboxymethylated cellulose" is measured by X-ray diffraction, a peak of cellulose type I crystals can be observed, but cellulose type I crystals are not observed in the water-soluble polymer carboxymethylcellulose.
(カルボキシ化)
 本発明において、カルボキシ化(酸化)したセルロースを解繊して得られた酸化微細繊維状セルロースを用いる場合、カルボキシ化セルロース(酸化セルロースとも呼ぶ)は、上記のセルロース原料を公知の方法でカルボキシ化(酸化)することにより得ることができる。特に限定されるものではないが、カルボキシ化の際には、化学変性微細繊維状セルロースの絶乾重量に対して、カルボキシ基の量が0.6~2.0mmol/gとなるように調整することが好ましく、1.0mmol/g~2.0mmol/gになるように調整することがさらに好ましい。
(carboxylation)
In the present invention, when using oxidized fine fibrous cellulose obtained by fibrillating carboxylated (oxidized) cellulose, carboxylated cellulose (also referred to as oxidized cellulose) is obtained by carboxylating the above-mentioned cellulose raw material by a known method. (oxidation). Although not particularly limited, during carboxylation, the amount of carboxy groups is adjusted to 0.6 to 2.0 mmol/g based on the absolute dry weight of the chemically modified fine fibrous cellulose. It is preferable, and more preferably adjusted to 1.0 mmol/g to 2.0 mmol/g.
 カルボキシ化(酸化)方法の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物もしくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中でカルボキシ化する方法を挙げることができる。このカルボキシ化反応により、セルロース表面のグルコピラノース環のC6位が選択的にカルボキシ化され、表面にアルデヒド基と、カルボキシ基(-COOH)またはカルボキシレート基(-COO)とを有するセルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5重量%以下が好ましい。 As an example of a carboxylation (oxidation) method, a cellulosic raw material is carboxylated in water with an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromides, iodides or mixtures thereof. Here are some ways to do it. Through this carboxylation reaction, the C6 position of the glucopyranose ring on the cellulose surface is selectively carboxylated, producing cellulose fibers having an aldehyde group and a carboxy group (-COOH) or a carboxylate group (-COO - ) on the surface. Obtainable. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by weight or less.
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的のカルボキシ化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)およびその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。 The N-oxyl compound refers to a compound that can generate nitroxy radicals. As the N-oxyl compound, any compound can be used as long as it promotes the desired carboxylation reaction. Examples include 2,2,6,6-tetramethylpiperidine-1-oxyradical (TEMPO) and its derivatives (eg, 4-hydroxyTEMPO).
 N-オキシル化合物の使用量は、原料となるセルロースをカルボキシ化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度が好ましい。 The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount that can carboxylate cellulose as a raw material. For example, it is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and even more preferably 0.05 to 0.5 mmol, per 1 g of bone dry cellulose. Further, it is preferably about 0.1 to 4 mmol/L to the reaction system.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、カルボキシ化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。 A bromide is a compound containing bromine, and examples thereof include alkali metal bromides that can be dissociated and ionized in water. Moreover, iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide to be used can be selected within a range that can promote the carboxylation reaction. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and even more preferably 0.5 to 5 mmol, per 1 g of bone dry cellulose.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。酸化剤の使用量としては、例えば、絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが最も好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。 As the oxidizing agent, known ones can be used, such as halogen, hypohalous acid, halous acid, perhalogenic acid, or salts thereof, halogen oxides, peroxides, etc. Among these, sodium hypochlorite is preferred because it is inexpensive and has a low environmental impact. The amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, even more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol, per 1 g of bone dry cellulose. Further, for example, it is preferably 1 to 40 mol per 1 mol of the N-oxyl compound.
 セルロースのカルボキシ化は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシ基が生成するため、反応液のpHの低下が認められる。カルボキシ化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱容易性や、副反応が生じにくいこと等から、水が好ましい。 Carboxylation of cellulose can proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40°C, and may be room temperature of about 15 to 30°C. As the reaction progresses, carboxy groups are generated in the cellulose, so a decrease in the pH of the reaction solution is observed. In order to efficiently advance the carboxylation reaction, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. Water is preferable as the reaction medium because of ease of handling and the fact that side reactions are less likely to occur.
 カルボキシ化反応における反応時間は、カルボキシ化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。 The reaction time in the carboxylation reaction can be appropriately set according to the degree of progress of carboxylation, and is usually about 0.5 to 6 hours, for example about 0.5 to 4 hours.
 また、カルボキシ化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られたカルボキシ化セルロースを、再度、同一または異なる反応条件でカルボキシ化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よくカルボキシ化させることができる。 Additionally, the carboxylation reaction may be carried out in two stages. For example, by carboxylated cellulose obtained by filtration after the first stage reaction is carboxylated again under the same or different reaction conditions, the reaction is not inhibited by the salt produced as a by-product in the first stage reaction. , carboxylation can be carried out efficiently.
 カルボキシ化(酸化)方法の別の例として、オゾンを含む気体とセルロース原料とを接触させることによりカルボキシ化する方法を挙げることができる。このカルボキシ化反応により、グルコピラノース環の少なくとも2位および6位の水酸基がカルボキシ化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/mであることが好ましく、50~220g/mであることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100重量部とした際に、0.1~30重量部であることが好ましく、5~30重量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度にカルボキシ化および分解されることを防ぐことができ、カルボキシ化セルロースの収率が良好となる。オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。 Another example of the carboxylation (oxidation) method is a method of carboxylating a cellulose raw material by bringing it into contact with a gas containing ozone. Through this carboxylation reaction, the hydroxyl groups at at least the 2- and 6-positions of the glucopyranose ring are carboxylated, and the cellulose chain is decomposed. The ozone concentration in the ozone-containing gas is preferably 50 to 250 g/m 3 , more preferably 50 to 220 g/m 3 . The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by weight, more preferably 5 to 30 parts by weight, when the solid content of the cellulose raw material is 100 parts by weight. The ozone treatment temperature is preferably 0 to 50°C, more preferably 20 to 50°C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, preferably about 30 to 360 minutes. When the ozone treatment conditions are within these ranges, excessive carboxylation and decomposition of cellulose can be prevented, resulting in a good yield of carboxylated cellulose. After the ozone treatment, additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used in the additional oxidation treatment is not particularly limited, but examples thereof include chlorine-based compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, the additional oxidation treatment can be performed by dissolving these oxidizing agents in water or a polar organic solvent such as alcohol to prepare an oxidizing agent solution, and immersing the cellulose raw material in the solution.
 カルボキシ化セルロースのカルボキシ基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。 The amount of carboxy groups in carboxylated cellulose can be adjusted by controlling reaction conditions such as the amount of the oxidizing agent added and reaction time.
(カチオン化)
 本発明において、前記カルボキシ化セルロースをさらにカチオン化したセルロースを解繊して得られたカチオン化微細繊維状セルロースを使用することができる。当該カチオン変性されたセルロースは、前記カルボキシ化セルロース原料に、グリシジルトリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリアルキルアンモニウムハイドライトまたはそのハロヒドリン型などのカチオン化剤と、触媒である水酸化アルカリ金属(水酸化ナトリウム、水酸化カリウムなど)を、水または炭素数1~4のアルコールの存在下で反応させることによって得ることができる。
(cationization)
In the present invention, cationized fine fibrous cellulose obtained by defibrating cellulose obtained by further cationizing the carboxylated cellulose can be used. The cation-modified cellulose is produced by adding a cationizing agent such as glycidyltrimethylammonium chloride, 3-chloro-2-hydroxypropyltrialkylammonium hydrite or its halohydrin type to the carboxylated cellulose raw material, and alkali hydroxide as a catalyst. It can be obtained by reacting a metal (sodium hydroxide, potassium hydroxide, etc.) in the presence of water or an alcohol having 1 to 4 carbon atoms.
 グルコース単位当たりのカチオン置換度は0.02~0.50であることが好ましい。セルロースにカチオン置換基を導入することで、セルロース同士が電気的に反発する。このため、カチオン置換基を導入したセルロースは容易にナノ解繊することができる。グルコース単位当たりのカチオン置換度が0.02より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのカチオン置換度が0.50より大きいと、膨潤あるいは溶解するため、ナノファイバーとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たカチオン変性されたセルロース原料は洗浄されることが好ましい。当該カチオン置換度は、反応させるカチオン化剤の添加量、水または炭素数1~4のアルコールの組成比率によって調整できる。 The degree of cation substitution per glucose unit is preferably 0.02 to 0.50. By introducing cationic substituents into cellulose, the cells electrically repel each other. Therefore, cellulose into which cationic substituents have been introduced can be easily nano-fibrillated. If the degree of cation substitution per glucose unit is less than 0.02, sufficient nanofibrillation cannot be achieved. On the other hand, if the degree of cation substitution per glucose unit is greater than 0.50, the nanofibers may not be obtained due to swelling or dissolution. In order to efficiently perform fibrillation, the cationically modified cellulose raw material obtained above is preferably washed. The degree of cation substitution can be adjusted by adjusting the amount of the cationizing agent to be reacted and the composition ratio of water or alcohol having 1 to 4 carbon atoms.
(エステル化)
 本発明において、エステル化したセルロースを解繊して得られたエステル化微細繊維状セルロースを使用することができる。当該エステル化セルロースは、前述のセルロース原料にリン酸系化合物Aの粉末や水溶液を混合する方法、セルロース原料のスラリーにリン酸系化合物Aの水溶液を添加する方法により得られる。
(esterification)
In the present invention, esterified fine fibrous cellulose obtained by defibrating esterified cellulose can be used. The esterified cellulose can be obtained by mixing a powder or aqueous solution of phosphoric acid compound A with the cellulose raw material described above, or by adding an aqueous solution of phosphoric acid compound A to a slurry of the cellulose raw material.
 リン酸系化合物Aとしては、リン酸、ポリリン酸、亜リン酸、次亜リン酸、ホスホン酸、ポリホスホン酸あるいはこれらのエステルが挙げられる。これらは塩の形態であってもよい。これらの中でも、低コストであり、扱いやすく、またパルプ繊維のセルロースにリン酸基を導入して、解繊効率の向上が図れるなどの理由からリン酸基を有する化合物が好ましい。リン酸基を有する化合物としては、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、亜リン酸ナトリウム、亜リン酸カリウム、次亜リン酸ナトリウム、次亜リン酸カリウム、ピロリン酸ナトリウム、メタリン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、ピロリン酸カリウム、メタリン酸カリウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ピロリン酸アンモニウム、メタリン酸アンモニウム等が挙げられる。これらは1種、あるいは2種以上を併用できる。これらのうち、リン酸基導入の効率が高く、下記解繊工程で解繊しやすく、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩がより好ましい。特にリン酸二水素ナトリウム、リン酸水素二ナトリウムが好ましい。また、反応の均一性が高まり、かつリン酸基導入の効率が高くなることから前記リン酸系化合物Aは水溶液として用いることが好ましい。リン酸系化合物Aの水溶液のpHは、リン酸基導入の効率が高くなることから7以下であることが好ましいが、パルプ繊維の加水分解を抑える観点からpH3~7が好ましい。 Examples of the phosphoric acid compound A include phosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, polyphosphonic acid, or esters thereof. These may be in the form of salts. Among these, compounds having phosphoric acid groups are preferred because they are low cost, easy to handle, and can introduce phosphoric acid groups into the cellulose of pulp fibers to improve the defibration efficiency. Compounds with phosphoric acid groups include phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, sodium phosphite, potassium phosphite, sodium hypophosphite, and potassium hypophosphite. , sodium pyrophosphate, sodium metaphosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, potassium pyrophosphate, potassium metaphosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate , ammonium pyrophosphate, ammonium metaphosphate, and the like. These can be used alone or in combination of two or more. Among these, phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, phosphoric acid The ammonium salt of is more preferred. Particularly preferred are sodium dihydrogen phosphate and disodium hydrogen phosphate. Further, it is preferable to use the phosphoric acid compound A in the form of an aqueous solution, since the uniformity of the reaction and the efficiency of introducing phosphoric acid groups are increased. The pH of the aqueous solution of the phosphoric acid compound A is preferably 7 or less since this increases the efficiency of introducing phosphoric acid groups, but the pH is preferably 3 to 7 from the viewpoint of suppressing hydrolysis of pulp fibers.
 リン酸エステル化セルロースの製造方法の一例として以下の方法を挙げることができる。固形分濃度0.1~10重量%のセルロース原料の分散液に、リン酸系化合物Aを撹拌しながら添加してセルロースにリン酸基を導入する。セルロース原料を100重量部とした際に、リン酸系化合物Aの添加量はリン元素量として、0.2~500重量部であることが好ましく、1~400重量部であることがより好ましい。リン酸系化合物Aの割合が前記下限値以上であれば、微細繊維状セルロースの収率をより向上させることができる。しかし、前記上限値を超えると収率向上の効果は頭打ちとなるのでコスト面から好ましくない。 The following method can be mentioned as an example of the method for producing phosphoric acid esterified cellulose. A phosphoric acid compound A is added to a dispersion of a cellulose raw material having a solid content concentration of 0.1 to 10% by weight while stirring to introduce phosphoric acid groups into the cellulose. When the cellulose raw material is 100 parts by weight, the amount of phosphoric acid compound A added is preferably 0.2 to 500 parts by weight, more preferably 1 to 400 parts by weight as the amount of phosphorus element. If the proportion of phosphoric acid compound A is equal to or higher than the lower limit, the yield of fine fibrous cellulose can be further improved. However, if the above upper limit is exceeded, the effect of improving the yield reaches a ceiling, which is not preferable from a cost standpoint.
 この際、セルロース原料、リン酸系化合物Aの他に、これ以外の化合物Bの粉末や水溶液を混合してもよい。化合物Bは特に限定されないが、塩基性を示す窒素含有化合物が好ましい。ここでの「塩基性」は、フェノールフタレイン指示薬の存在下で水溶液が桃~赤色を呈すること、または水溶液のpHが7より大きいことと定義される。本発明で用いる塩基性を示す窒素含有化合物は、本発明の効果を奏する限り特に限定されないが、アミノ基を有する化合物が好ましい。例えば、尿素、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられるが、特に限定されない。この中でも低コストで扱いやすい尿素が好ましい。化合物Bの添加量はセルロース原料の固形分100重量部に対して、2~1000重量部が好ましく、100~700重量部がより好ましい。反応温度は0~95℃が好ましく、30~90℃がより好ましい。反応時間は特に限定されないが、1~600分程度であり、30~480分がより好ましい。エステル化反応の条件がこれらの範囲内であると、セルロースが過度にエステル化されて溶解しやすくなることを防ぐことができ、リン酸エステル化セルロースの収率が良好となる。得られたリン酸エステル化セルロース懸濁液を脱水した後、セルロースの加水分解を抑える観点から、100~170℃で加熱処理することが好ましい。さらに、加熱処理の際に水が含まれている間は130℃以下、好ましくは110℃以下で加熱し、水を除いた後、100~170℃で加熱処理することが好ましい。 At this time, in addition to the cellulose raw material and phosphoric acid compound A, powder or aqueous solution of compound B may be mixed. Compound B is not particularly limited, but is preferably a nitrogen-containing compound that exhibits basicity. "Basic" herein is defined as the aqueous solution exhibiting a pink to red color in the presence of the phenolphthalein indicator, or the pH of the aqueous solution being greater than 7. The basic nitrogen-containing compound used in the present invention is not particularly limited as long as it exhibits the effects of the present invention, but compounds having an amino group are preferred. Examples include, but are not limited to, urea, methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, and hexamethylenediamine. Among these, urea is preferred because it is low cost and easy to handle. The amount of compound B added is preferably 2 to 1000 parts by weight, more preferably 100 to 700 parts by weight, based on 100 parts by weight of the solid content of the cellulose raw material. The reaction temperature is preferably 0 to 95°C, more preferably 30 to 90°C. The reaction time is not particularly limited, but is approximately 1 to 600 minutes, more preferably 30 to 480 minutes. When the conditions for the esterification reaction are within these ranges, cellulose can be prevented from being excessively esterified and easily dissolved, and the yield of phosphoric acid esterified cellulose can be improved. After dehydrating the obtained phosphoric acid esterified cellulose suspension, it is preferably heat-treated at 100 to 170° C. from the viewpoint of suppressing hydrolysis of cellulose. Further, during heat treatment, it is preferable to heat at 130° C. or lower, preferably 110° C. or lower while water is contained, and after removing water, heat treatment at 100 to 170° C.
 リン酸エステル化されたセルロースのグルコース単位当たりのリン酸基置換度は0.001~0.40であることが好ましい。セルロースにリン酸基置換基を導入することで、セルロース同士が電気的に反発する。このため、リン酸基を導入したセルロースは容易にナノ解繊することができる。なお、グルコース単位当たりのリン酸基置換度が0.001より小さいと、十分にナノ解繊することができない。一方、グルコース単位当たりのリン酸基置換度が0.40より大きいと、膨潤あるいは溶解するため、微細繊維状セルロースとして得られなくなる場合がある。解繊を効率よく行なうために、上記で得たリン酸エステル化されたセルロース原料は煮沸した後、冷水で洗浄することで洗浄されることが好ましい。 The degree of phosphoric acid group substitution per glucose unit of the phosphoric acid esterified cellulose is preferably 0.001 to 0.40. By introducing phosphate substituents into cellulose, the cellulose cells become electrically repulsive to each other. Therefore, cellulose into which phosphate groups have been introduced can be easily nano-fibrillated. Note that if the degree of phosphate group substitution per glucose unit is less than 0.001, sufficient nanofibrillation cannot be achieved. On the other hand, if the degree of phosphoric acid group substitution per glucose unit is greater than 0.40, the cellulose may swell or dissolve, making it impossible to obtain fine fibrous cellulose. In order to efficiently perform fibrillation, the phosphoric acid esterified cellulose raw material obtained above is preferably boiled and then washed with cold water.
 本発明では、化学変性セルロース又は未変性セルロースは、分散媒に分散された分散液の状態で用いる。分散媒としては、水、有機溶媒が挙げられ、これらを混合したものであっても良い。本発明に用いるセルロース分散液の固形分濃度は、濃度が低すぎると解繊効率が悪く、濃度が高すぎると分散液の粘度が上昇して解繊が困難となるため、0.1~10.0重量%が好ましく、0.1~5.0重量%がより好ましく、0.25~3.0重量%がさらに好ましく、0.5~1.0重量%が特に好ましい。 In the present invention, chemically modified cellulose or unmodified cellulose is used in the form of a dispersion liquid dispersed in a dispersion medium. Examples of the dispersion medium include water and organic solvents, and a mixture of these may also be used. The solid content concentration of the cellulose dispersion used in the present invention is 0.1 to 10, because if the concentration is too low, the fibrillation efficiency will be poor, and if the concentration is too high, the viscosity of the dispersion will increase and fibrillation will be difficult. 0% by weight is preferred, 0.1 to 5.0% by weight is more preferred, even more preferably 0.25 to 3.0% by weight, particularly preferably 0.5 to 1.0% by weight.
 化学変性セルロース又は未変性セルロースの分散液は、例えば、水を用いて化学変性セルロース又は未変性セルロースを希釈することにより調製することができる。 A dispersion of chemically modified cellulose or unmodified cellulose can be prepared, for example, by diluting the chemically modified cellulose or unmodified cellulose with water.
(解繊)
 本発明の製造方法では、調圧弁から成る余水排出機構を有する高圧洗浄機を用いて、上記のようにして得られた化学変性セルロース又は未変性セルロースの分散液に対して、高圧洗浄機の吸水口を介して高圧洗浄機の一部を構成するプランジャーポンプの吸込口から取り込み、プランジャーポンプの吐出口から吐出した分散液を高圧洗浄機の余水口から貯留部に排出する余水循環工程を行うことにより、セルロースを解繊して、微細繊維状セルロースを得る。
 具体的には、分散液がプランジャーポンプの下流に配置された調圧弁のリリーフ弁32が成す狭い隙間を通って余水出口から排出される際にセルロースが解繊される。
(defibration)
In the production method of the present invention, a high-pressure washer having a residual water discharge mechanism consisting of a pressure regulating valve is used to wash the dispersion of chemically modified cellulose or unmodified cellulose obtained as described above. A spillwater circulation process in which the dispersion liquid is taken in from the suction port of a plunger pump that constitutes a part of the high-pressure washer through the water suction port and discharged from the discharge port of the plunger pump, and is discharged from the spillwater port of the high-pressure washer to the storage section. By performing this step, cellulose is defibrated and fine fibrous cellulose is obtained.
Specifically, the cellulose is defibrated when the dispersion liquid passes through a narrow gap formed by the relief valve 32 of the pressure regulating valve disposed downstream of the plunger pump and is discharged from the surplus water outlet.
 本発明の製造方法によれば、安価に入手可能であり、導入が容易な、ユーザー側において通常使用する機器として、調圧弁から成る余水排出機構を有する高圧洗浄機であって、プランジャーポンプを構成の一部として含むものを使用することで、効率的にセルロースを解繊して微細繊維状セルロースを得ることが可能である。また、得られた微細繊維状セルロースの粘度特性は、高価・大型の設備である高圧ホモジナイザーを用いて得られた微細繊維状セルロースの粘度特性と比較しても、遜色ない。 According to the manufacturing method of the present invention, a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve is provided as equipment that is inexpensively available, easy to introduce, and normally used by users, and includes a plunger pump. By using a material containing as part of the structure, it is possible to efficiently defibrate cellulose and obtain fine fibrous cellulose. Furthermore, the viscosity characteristics of the obtained fine fibrous cellulose are comparable to those of the fine fibrous cellulose obtained using a high-pressure homogenizer, which is expensive and large equipment.
(用途)
 本発明の製造方法によって得られた微細繊維状セルロースは、種々の用途に使用でき、一般的に添加剤が用いられる様々な分野において、増粘剤、ゲル化剤、糊剤、食品添加剤、賦形剤、塗料用添加剤、接着剤用添加剤、研磨剤、ゴム・プラスチック用配合材料、保水材、保形剤、泥水調整剤、ろ過助剤、溢泥防止剤、混和剤、セメント系硬化体用塗布剤等として使用することができる。当該分野としては、食品、飲料、化粧品、医薬、製紙、各種化学用品、塗料、スプレー、農薬、土木、建築、電子材料、難燃剤、家庭雑貨、接着剤、洗浄剤、芳香剤、潤滑用組成物等が挙げられる。
(Application)
The fine fibrous cellulose obtained by the production method of the present invention can be used for various purposes, and is used as a thickener, a gelling agent, a sizing agent, a food additive, Excipients, additives for paints, additives for adhesives, abrasives, compounded materials for rubber and plastics, water retention materials, shape retention agents, muddy water conditioners, filter aids, anti-flooding agents, admixtures, cement-based It can be used as a coating agent for cured products. The fields include food, beverages, cosmetics, pharmaceuticals, paper manufacturing, various chemical supplies, paints, sprays, agricultural chemicals, civil engineering, architecture, electronic materials, flame retardants, household goods, adhesives, cleaning agents, fragrances, and lubricating compositions. Examples include things.
 上記用途の中でも、得られた微細繊維状セルロースを、解繊に使用した高圧洗浄機を用いてそのまま散布・塗布できる観点から、広い面積を有する面に散布・塗布することが必要とされる用途に適しており、特にセメント系硬化体用塗布剤としての用途に適している。 Among the above-mentioned applications, the obtained fine fibrous cellulose can be sprayed and coated directly on a large surface using the high-pressure washer used for defibration, and applications that require spraying and coating on a large surface area. It is particularly suitable for use as a coating agent for cement-based cured products.
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、各実施例における各数値の測定/算出方法が特に記載されていない場合には、明細書中に記載されている方法により測定/算出されたものである。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In addition, unless the method of measuring/calculating each numerical value in each example is particularly described, it was measured/calculated by the method described in the specification.
(実施例1)
 カルボキシメチル化パルプ(日本製紙株式会社製、商品名:SLD-F5)を水で固形分濃度1重量%に調整した。得られた分散液をタンクに入れ、高圧洗浄機(有光工業社製、商品名:TRY高圧洗浄機、型番:TRY-10200)の電源をオンにして、吸水口からタンク内の分散液を高圧洗浄機内に取り込み、ノズルを閉じたままの状態として、余水口から分散液をタンクへ排出した。処理量18L/分として、合計3パス処理を行い、微細繊維状セルロース分散液を得た。なお、高圧洗浄機の処理圧は、20MPaとした。
(Example 1)
Carboxymethylated pulp (manufactured by Nippon Paper Industries Co., Ltd., trade name: SLD-F5) was adjusted to a solid content concentration of 1% by weight with water. Pour the obtained dispersion liquid into a tank, turn on the power of the high pressure washer (manufactured by Arimitsu Kogyo Co., Ltd., product name: TRY high pressure washer, model number: TRY-10200), and drain the dispersion liquid in the tank from the water intake port. The dispersion liquid was taken into a high-pressure washer, and the nozzle was kept closed, and the dispersion liquid was discharged from the spill port into a tank. A total of 3 passes were performed at a throughput of 18 L/min to obtain a fine fibrous cellulose dispersion. Note that the processing pressure of the high-pressure washer was 20 MPa.
(比較例1)
 実施例1と同様に調製したカルボキシメチル化パルプの分散液をタンクに入れ、実施例1と同じ高圧洗浄機の電源をオンにして、吸水口からタンク内の分散液を高圧洗浄機内に取り込み、ノズルを開放して、分散液をノズルから吐出させた。処理量18L/分として、1パス処理を行い、微細繊維状セルロース分散液を得た。なお、高圧洗浄機の処理圧は、20MPaとした。
(Comparative example 1)
Put a dispersion of carboxymethylated pulp prepared in the same manner as in Example 1 into a tank, turn on the same high-pressure washer as in Example 1, take the dispersion in the tank into the high-pressure washer from the water intake port, The nozzle was opened and the dispersion liquid was discharged from the nozzle. One-pass treatment was performed at a throughput of 18 L/min to obtain a fine fibrous cellulose dispersion. Note that the processing pressure of the high-pressure washer was 20 MPa.
(参考例1)
 実施例1と同様に調製したカルボキシメチル化パルプの分散液を、高圧ホモジナイザーを用い150MPaの圧力で1~3パス処理を行い、微細繊維状セルロース分散液を得た。
(Reference example 1)
A dispersion of carboxymethylated pulp prepared in the same manner as in Example 1 was subjected to 1 to 3 passes of treatment at a pressure of 150 MPa using a high-pressure homogenizer to obtain a fine fibrous cellulose dispersion.
(評価)
(粘度特性)
 実施例1、比較例1、参考例1で得られた微細繊維状セルロース分散液の粘度特性をレオメータ(アントンパール社製、レオメータMCR301)を用いて、せん断速度10-3~10(1/s)、温度25℃の条件で測定した。得られた粘度特性のグラフを図3に示した。参考例1の高圧ホモジナイザーで処理した分散液の粘度特性グラフに近いほど、解繊が進んでいることを示す。
(evaluation)
(viscosity characteristics)
The viscosity characteristics of the fine fibrous cellulose dispersions obtained in Example 1, Comparative Example 1, and Reference Example 1 were measured using a rheometer (Rheometer MCR301, manufactured by Anton Paar) at a shear rate of 10 -3 to 10 3 (1/ s), measured at a temperature of 25°C. A graph of the obtained viscosity characteristics is shown in FIG. The closer the graph is to the viscosity characteristic graph of the dispersion treated with the high-pressure homogenizer of Reference Example 1, the more advanced the fibrillation is.
(結果)
 図3からわかる通り、余水口から排出された実施例1の分散液は、パス処理回数を増やすと粘度が上がり、参考例1の粘度特性グラフに近づいた。すなわち、解繊が進んだことがわかる。一方、ノズルから吐出された比較例1の分散液は、実施例1の1パス処理した分散液と比較して、粘度が上がっていないことがわかる。ノズルから吐出させる比較例1の場合は、気中への吐出であり、調圧弁から分散液中に吐出する機構を含む実施例1と比較して解繊性に劣ると考えられる。
(result)
As can be seen from FIG. 3, the viscosity of the dispersion liquid of Example 1 discharged from the spillway increased as the number of passes was increased, and the viscosity characteristic graph approached that of Reference Example 1. In other words, it can be seen that the defibration progressed. On the other hand, it can be seen that the viscosity of the dispersion liquid of Comparative Example 1 discharged from the nozzle did not increase as compared to the dispersion liquid of Example 1 which was subjected to one-pass treatment. In the case of Comparative Example 1 in which the dispersion is discharged from a nozzle, it is discharged into the air, and it is considered that the defibrating property is inferior to that in Example 1, which includes a mechanism for discharging into the dispersion liquid from a pressure regulating valve.
(実施例2)
(TEMPO酸化パルプの製造)
 針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)50g(絶乾)をTEMPO(Sigma Aldrich社)390mg(絶乾1gのセルロースに対し0.05mmol)と臭化ナトリウム5.1g(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液5Lに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することでTEMPO酸化されたパルプ(カルボキシ化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は90分、カルボキシ基量は1.6mmol/gであった。
(Example 2)
(Manufacture of TEMPO oxidized pulp)
50g (absolutely dry) of bleached unbeaten kraft pulp (whiteness 85%) derived from coniferous trees, 390mg of TEMPO (Sigma Aldrich) (0.05 mmol per 1g of absolutely dry cellulose) and 5.1g of sodium bromide (absolutely dry) 1.0 mmol per 1 g of cellulose) was added to 5 L of an aqueous solution and stirred until the pulp was uniformly dispersed. An aqueous sodium hypochlorite solution was added to the reaction system so that the sodium hypochlorite concentration was 6.0 mmol/g, and the oxidation reaction was started. During the reaction, the pH in the system decreased, but the pH was adjusted to 10 by successively adding a 3M aqueous sodium hydroxide solution. The reaction was terminated when the sodium hypochlorite was consumed and the pH within the system stopped changing. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was sufficiently washed with water to obtain a TEMPO-oxidized pulp (carboxylated cellulose). The pulp yield at this time was 90%, the time required for the oxidation reaction was 90 minutes, and the amount of carboxy groups was 1.6 mmol/g.
 上記のようにして得られたTEMPO酸化パルプを水で固形分濃度0.5重量%に調整した。得られた分散液をタンクに入れ、高圧洗浄機(有光工業社製、商品名:TRY高圧洗浄機、型番:TRY-10200)の電源をオンにして吸水口からタンク内の分散液を取り込み、ノズルを閉じたままの状態として、余水口から分散液をタンクへ排出した。処理量18L/分として、合計5パス処理を行い、微細繊維状セルロース分散液を得た。なお、高圧洗浄機の処理圧は、20MPaとした。 The TEMPO oxidized pulp obtained as described above was adjusted to a solid content concentration of 0.5% by weight with water. Pour the obtained dispersion liquid into a tank, turn on the power of a high-pressure washer (manufactured by Auriko Kogyo Co., Ltd., product name: TRY high-pressure washer, model number: TRY-10200), and take in the dispersion liquid in the tank from the water intake port. The dispersion liquid was discharged into the tank from the spillway with the nozzle kept closed. A total of 5 passes were performed at a throughput of 18 L/min to obtain a fine fibrous cellulose dispersion. Note that the processing pressure of the high-pressure washer was 20 MPa.
(実施例3)
 高圧洗浄機の処理圧として、20MPaに代えて15MPaとし、合計5パス処理に代えて、合計8パス処理を行ったこと以外は実施例2と同様にして微細繊維状セルロース分散液を得た。
(Example 3)
A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2, except that the processing pressure of the high-pressure washer was 15 MPa instead of 20 MPa, and a total of 8 passes were performed instead of 5 passes in total.
(実施例4)
 高圧洗浄機の処理圧として、20MPaに代えて10MPaとし、合計5パス処理に代えて、合計8パス処理を行ったこと以外は実施例2と同様にして微細繊維状セルロース分散液を得た。
(Example 4)
A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2, except that the processing pressure of the high-pressure washer was 10 MPa instead of 20 MPa, and a total of 8 passes were performed instead of 5 passes in total.
(実施例5)
 高圧洗浄機の処理圧として、20MPaに代えて5MPaとし、合計5パス処理に代えて、合計50パス処理を行ったこと以外は実施例2と同様にして微細繊維状セルロース分散液を得た。
(Example 5)
A fine fibrous cellulose dispersion was obtained in the same manner as in Example 2, except that the processing pressure of the high-pressure washer was 5 MPa instead of 20 MPa, and a total of 50 passes were performed instead of 5 passes in total.
(参考例2)
 実施例2と同様にして得られたTEMPO酸化パルプを水で固形分濃度0.5重量%に調整した。得られた分散液を、高圧ホモジナイザーを用い150MPaの圧力で1~3パス処理を行い、微細繊維状セルロース分散液を得た。
(Reference example 2)
The TEMPO oxidized pulp obtained in the same manner as in Example 2 was adjusted to a solid content concentration of 0.5% by weight with water. The obtained dispersion was subjected to 1 to 3 passes of treatment at a pressure of 150 MPa using a high-pressure homogenizer to obtain a fine fibrous cellulose dispersion.
(評価)
(粘度の測定)
 実施例2~5および参考例2で得られた固形分濃度0.5重量%の微細繊維状セルロース分散液について、B型粘度計(英弘精機社製)を用いて、25℃の条件にて、回転数60rpmで3分後の粘度、及び回転数6rpmで3分後の粘度を測定した。結果を表1に示した。
(evaluation)
(Measurement of viscosity)
The fine fibrous cellulose dispersions with a solid content concentration of 0.5% by weight obtained in Examples 2 to 5 and Reference Example 2 were measured at 25°C using a B-type viscometer (manufactured by Eiko Seiki Co., Ltd.). The viscosity was measured after 3 minutes at a rotation speed of 60 rpm, and after 3 minutes at a rotation speed of 6 rpm. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(結果)
 参考例2の1パス処理して得られた分散液は、解繊が進行し、チキソ性を有することが確認された。なお、2パス処理以降は粘度の低下が激しいことが確認された。過剰な解繊により繊維が傷んだことが原因であると考えられる。参考例2の1パス処理して得られた分散液の粘度特性と近い特性を示すほど好ましいといえる。実施例2においては、3~5パス処理したものが好ましい結果が得られた。実施例3においては、3~8パス処理したものが好ましい結果が得られた。実施例4においては、5~8パス処理したものが好ましい結果が得られた。実施例5においては、20~50パス処理したものが好ましい結果が得られた。
(result)
It was confirmed that the dispersion obtained by the one-pass treatment of Reference Example 2 progressed in defibration and had thixotropic properties. It was confirmed that the viscosity decreased significantly after the 2-pass treatment. This is thought to be caused by damage to the fibers due to excessive defibration. It can be said that the closer the viscosity characteristics are to the viscosity characteristics of the dispersion obtained by the one-pass treatment of Reference Example 2, the more preferable it is. In Example 2, preferable results were obtained using 3 to 5 pass treatments. In Example 3, preferable results were obtained with 3 to 8 pass treatments. In Example 4, preferable results were obtained using 5 to 8 pass treatments. In Example 5, preferable results were obtained after 20 to 50 passes of processing.
2…高圧洗浄機、4…貯留部、6…分散液、8…吸水口、9…プランジャーポンプの吸込口、10…プランジャーポンプ、11…プランジャーポンプの吐出口、12…吐出口、14…吐出ホース、16…ノズル、18…調圧弁、20…余水口、22…吸水ホース、24…余水ホース、26…調圧ネジ、28…圧力調整バネ、30…ピストン、32…リリーフ弁、36…調圧弁入口、38…調圧弁出口、40…余水出口
 
2...High pressure washer, 4...Storage part, 6...Dispersion liquid, 8...Water inlet, 9...Suction port of plunger pump, 10...Plunger pump, 11...Discharge port of plunger pump, 12...Discharge port, 14...Discharge hose, 16...Nozzle, 18...Pressure regulating valve, 20...Left water port, 22...Water suction hose, 24...Left water hose, 26...Pressure regulating screw, 28...Pressure regulating spring, 30...Piston, 32...Relief valve , 36...pressure regulating valve inlet, 38...pressure regulating valve outlet, 40...surplus water outlet

Claims (6)

  1.  微細繊維状セルロースの製造方法であって、
     貯留部に貯留されている化学変性セルロース又は未変性セルロースの分散液を、調圧弁から成る余水排出機構を有する高圧洗浄機の吸水口を介して、前記高圧洗浄機の一部を構成するプランジャーポンプの吸込口から取り込み、前記プランジャーポンプの吐出口から吐出した前記分散液を、前記高圧洗浄機の余水口から前記貯留部に排出する余水循環工程を有する
     微細繊維状セルロースの製造方法。
    A method for producing fine fibrous cellulose, comprising:
    A plan that constitutes a part of the high-pressure washer, in which a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section is passed through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve. A method for producing fine fibrous cellulose, comprising a spill water circulation step of discharging the dispersion liquid taken in from a suction port of a plunger pump and discharged from a discharge port of the plunger pump to the storage portion from a spill port of the high-pressure washer.
  2.  前記高圧洗浄機の前記調圧弁によって制御された調圧弁の出口圧力が、0.5~25MPaであることを特徴とする請求項1に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to claim 1, wherein the outlet pressure of the pressure regulating valve controlled by the pressure regulating valve of the high-pressure washer is 0.5 to 25 MPa.
  3.  前記分散液の固形分濃度が、0.1~10.0重量%であることを特徴とする請求項1又は2に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to claim 1 or 2, wherein the solid content concentration of the dispersion is 0.1 to 10.0% by weight.
  4.  前記化学変性セルロースが、カルボキシ化セルロース又はカルボキシメチル化セルロースであることを特徴とする請求項1又は2に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to claim 1 or 2, wherein the chemically modified cellulose is carboxylated cellulose or carboxymethylated cellulose.
  5.  前記余水循環工程の実施回数が、1~100回であることを特徴とする請求項1又は2に記載の微細繊維状セルロースの製造方法。 The method for producing fine fibrous cellulose according to claim 1 or 2, wherein the surplus water circulation step is performed 1 to 100 times.
  6.  セルロースの解繊方法であって、
     貯留部に貯留されている化学変性セルロース又は未変性セルロースの分散液を、調圧弁から成る余水排出機構を有する高圧洗浄機の吸水口を介して、前記高圧洗浄機の一部を構成するプランジャーポンプの吸込口から取り込み、前記プランジャーポンプの吐出口から吐出した前記分散液を、前記高圧洗浄機の余水口から前記貯留部に排出する余水循環工程を有する
     セルロースの解繊方法。
    A method for defibrating cellulose,
    A plan that constitutes a part of the high-pressure washer, in which a dispersion of chemically modified cellulose or unmodified cellulose stored in a storage section is passed through a water intake port of a high-pressure washer having a surplus water discharge mechanism consisting of a pressure regulating valve. A method for defibrating cellulose, comprising a residual water circulation step of discharging the dispersion liquid taken in from a suction port of a plunger pump and discharged from a discharge port of the plunger pump to the storage section from a spill port of the high-pressure washer.
PCT/JP2023/019240 2022-05-31 2023-05-24 Method for producing fine fibrous cellulose and method for fibrillating cellulose WO2023234129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023550547A JP7377397B1 (en) 2022-05-31 2023-05-24 Method for producing fine fibrous cellulose and method for fibrillating cellulose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-088154 2022-05-31
JP2022088154 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023234129A1 true WO2023234129A1 (en) 2023-12-07

Family

ID=89024862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019240 WO2023234129A1 (en) 2022-05-31 2023-05-24 Method for producing fine fibrous cellulose and method for fibrillating cellulose

Country Status (1)

Country Link
WO (1) WO2023234129A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234675A (en) * 1987-10-28 1989-09-19 Aikou Eng Kk Ultrahigh pressure water feed control valve
JP2018199891A (en) * 2017-02-28 2018-12-20 大王製紙株式会社 Cellulose fine fiber and manufacturing method thereof
JP2021147533A (en) * 2020-03-19 2021-09-27 愛媛県 Aqueous coating material composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234675A (en) * 1987-10-28 1989-09-19 Aikou Eng Kk Ultrahigh pressure water feed control valve
JP2018199891A (en) * 2017-02-28 2018-12-20 大王製紙株式会社 Cellulose fine fiber and manufacturing method thereof
JP2021147533A (en) * 2020-03-19 2021-09-27 愛媛県 Aqueous coating material composition

Similar Documents

Publication Publication Date Title
JP6876619B2 (en) Method for producing dry cellulose nanofiber
JP6951978B2 (en) Anion-modified cellulose nanofiber dispersion liquid and its manufacturing method
JP2017002136A (en) Cellulose nano-fiber dispersion production method and cellulose nano-fiber dried solid redispersion method
JP7170380B2 (en) Process for producing chemically modified pulp dry solids
JP2017066283A (en) Additive for air bubble containing composition
JP6861972B2 (en) Manufacturing method of dried cellulose nanofibers
JP2023013443A (en) Method for producing chemically modified microfibril cellulose fiber
WO2021112195A1 (en) Method for manufacturing modified cellulose microfibrils
JP7377397B1 (en) Method for producing fine fibrous cellulose and method for fibrillating cellulose
WO2023234129A1 (en) Method for producing fine fibrous cellulose and method for fibrillating cellulose
JP2020100755A (en) Method for producing fine fibrous cellulose dispersion
US20200071426A1 (en) Method for storing chemically modified cellulose fibers and method for producing chemically modified cellulose nanofibers
TWI817248B (en) mixture
JP7162433B2 (en) Method for producing composition containing cellulose nanofibers and polyvinyl alcohol-based polymer
JP7250455B2 (en) Composition containing anion-modified cellulose nanofibers
JP6737978B1 (en) Method for producing anion-modified cellulose nanofiber
JP7432390B2 (en) Hydrophobized anion-modified cellulose nanofiber dispersion and method for producing the same, and dry solid of hydrophobized anion-modified cellulose and method for producing the same
JP7426810B2 (en) Adhesive composition, its manufacturing method and use
JP7412148B2 (en) industrial belt
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber
JP7098467B2 (en) Manufacturing method of cellulose nanofibers
WO2020080119A1 (en) Redispersion method of dry solid of microfibrous cellulose and method of producing redispersion liquid of microfibrous cellulose
JP2023163195A (en) Viscosity modifier for antifreezes and antifreeze
JP2023148586A (en) fine cellulose fiber
JP2022087414A (en) Method for producing dry solid of cellulose nanofiber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023550547

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815888

Country of ref document: EP

Kind code of ref document: A1