JPWO2020080084A1 - Breathable waterproof fabric and textile products using it - Google Patents

Breathable waterproof fabric and textile products using it Download PDF

Info

Publication number
JPWO2020080084A1
JPWO2020080084A1 JP2020553023A JP2020553023A JPWO2020080084A1 JP WO2020080084 A1 JPWO2020080084 A1 JP WO2020080084A1 JP 2020553023 A JP2020553023 A JP 2020553023A JP 2020553023 A JP2020553023 A JP 2020553023A JP WO2020080084 A1 JPWO2020080084 A1 JP WO2020080084A1
Authority
JP
Japan
Prior art keywords
moisture
waterproof
permeable
urethane resin
waterproof fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020553023A
Other languages
Japanese (ja)
Other versions
JP7372257B2 (en
Inventor
正勝 西原
正勝 西原
香奈 高橋
香奈 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Matere Co Ltd
Original Assignee
Komatsu Matere Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Matere Co Ltd filed Critical Komatsu Matere Co Ltd
Publication of JPWO2020080084A1 publication Critical patent/JPWO2020080084A1/en
Application granted granted Critical
Publication of JP7372257B2 publication Critical patent/JP7372257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic System; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/572Reaction products of isocyanates with polyesters or polyesteramides

Abstract

繊維布帛の少なくとも片面に、ウレタン樹脂を含む多孔質の防水層、および前記防水層の表面全面または一部に形成された摩耗保護層を含み、前記ウレタン樹脂がエステル系および/またはポリカーボネート系ウレタン樹脂であることを特徴とする透湿防水性布帛およびこれを用いた繊維製品が提供される。At least one surface of the fiber cloth contains a porous waterproof layer containing a urethane resin and an abrasion protection layer formed on the entire surface or a part of the surface of the waterproof layer, and the urethane resin is an ester-based and / or polycarbonate-based urethane resin. A moisture-permeable and waterproof fabric characterized by the above, and a textile product using the same are provided.

Description

本発明は、透湿防水性布帛、特に樹脂膜を有する透湿防水性布帛であって、当該樹脂膜を衣服や鞄の表側に使用することができる透湿防水性布帛およびこれを用いた繊維製品に関するものである。 The present invention is a moisture-permeable and waterproof fabric, particularly a moisture-permeable and waterproof fabric having a resin film, and the moisture-permeable and waterproof fabric in which the resin film can be used on the front side of clothes and bags and fibers using the same. It is about the product.

合羽やスキーウエアー、ウインドブレーカーなどの衣服をはじめ、テント、靴材など、雨などの水の浸入を防止するための素材として防水性布帛は様々なものに使用されている。
防水性布帛は、繊維布帛の片面あるいは両面あるいは2枚の繊維布帛間に防水性を有する多孔質や無孔質の樹脂膜が積層されている。また、防水性に加え、衣服内の湿気を通過させ、衣服内のムレや汗の結露を抑制する透湿性をも有する樹脂膜が繊維布帛に積層された構成のものも知られている。(特許文献1、特許文献2、特許文献3)
繊維布帛の片面に樹脂膜を有する透湿防水性布帛は、一般的には衣服等に用いられる場合、樹脂膜が身体側(すなわち衣服等の裏側)に用いられている。
Waterproof fabrics are used in various materials such as clothes such as a pair of feathers, ski wear, and windbreakers, as well as tents and shoe materials to prevent the ingress of water such as rain.
In the waterproof fabric, a porous or non-porous resin film having waterproof properties is laminated on one side or both sides of the fiber fabric or between two fiber fabrics. Further, in addition to waterproofness, there is also known a structure in which a resin film having moisture permeability that allows moisture in clothes to pass through and suppresses stuffiness and sweat dew condensation in clothes is laminated on a fiber cloth. (Patent Document 1, Patent Document 2, Patent Document 3)
When a moisture-permeable and waterproof fabric having a resin film on one side of the fiber cloth is generally used for clothes and the like, the resin film is used on the body side (that is, the back side of the clothes and the like).

また一方で、合成皮革と言われるものは、繊維布帛の片面あるいは両面に透明なものをはじめ、黒、白、赤色、青色などに着色された多孔質や無孔質の樹脂膜が積層されており、樹脂膜がコートなどの衣服や鞄、靴等の表側になるように革製品の代替としてファッション衣料等に使用されている。そして、該樹脂膜が水を透過させないため、革の代替としてのファッション素材としてだけではなく防水、防風性素材として、野球のグランドジャンパーや手袋、靴、鞄などにも使用されており、樹脂膜の摩耗強度にも優れているものが知られており、種々の繊維製品に使用されている。 On the other hand, synthetic leather is made by laminating porous or non-porous resin films colored in black, white, red, blue, etc., including transparent leather on one or both sides of the fiber fabric. It is used in fashion clothing as a substitute for leather products so that the resin film is on the front side of clothes such as coats, bags, shoes, etc. Since the resin film does not allow water to permeate, it is used not only as a fashion material as a substitute for leather but also as a waterproof and windproof material for baseball ground jumpers, gloves, shoes, bags, etc. It is known that it has excellent wear strength, and it is used in various textile products.

特開昭55−80583号公報JP-A-55-80583 特開平7−9631号公報Japanese Unexamined Patent Publication No. 7-9631 特開2008−307813号公報Japanese Unexamined Patent Publication No. 2008-307813

近年のファッショントレンドにて、樹脂膜が衣服等の表側にあり、透湿性及び防水性を有する素材が求められるようになってきている。
樹脂膜が衣服等の表側にある場合には、樹脂膜を染料や顔料で着色したり、樹脂膜表面に意匠を印刷したりして衣服等の意匠性を高めることができる。
In recent fashion trends, there is a demand for a material having a resin film on the front side of clothes and the like and having moisture permeability and waterproofness.
When the resin film is on the front side of clothes or the like, the design of clothes or the like can be enhanced by coloring the resin film with a dye or pigment or printing a design on the surface of the resin film.

しかしながら、このような透湿性と防水性を有する樹脂膜は、樹脂膜が摩耗に弱いといった問題や、水と接触すると樹脂膜が膨潤し外観品位が低下するといった問題を有しており、衣服等の表側にこのような樹脂膜を使用するには改善が求められていた。
また、合成皮革を防水素材として用いた場合では、防水性を有し、水にぬれた際にも膨潤などは発生しないが、透湿性がほとんどなく、透湿性の向上が求められている。
したがって、本発明では、樹脂膜を有する透湿防水性布帛であって、当該樹脂膜を衣服や靴や鞄等の繊維製品の表側として使用することができ、かつ透湿性と防水性にも優れた透湿防水性布帛およびこれを用いた繊維製品を提供することを目的としている。
However, such a resin film having moisture permeability and waterproof property has a problem that the resin film is vulnerable to abrasion and a problem that the resin film swells when it comes into contact with water and the appearance quality deteriorates. Improvement was required to use such a resin film on the front side of the.
Further, when synthetic leather is used as a waterproof material, it has waterproof property and does not swell even when it gets wet with water, but it has almost no moisture permeability, and improvement of moisture permeability is required.
Therefore, in the present invention, it is a moisture-permeable and waterproof fabric having a resin film, and the resin film can be used as the front side of textile products such as clothes, shoes and bags, and is also excellent in moisture permeability and waterproofness. It is an object of the present invention to provide a moisture-permeable and waterproof fabric and a textile product using the same.

本発明者らは、上記課題を解決するために鋭意検討の結果、疎水性のウレタン樹脂を含む多孔質の防水層を布帛に積層し、さらに前記防水層の表面全面または一部に摩耗保護層を設けることによって、優れた透湿性、防水性を有し、かつ樹脂膜面を衣服等の表側に使用するのに十分な耐摩耗性や、水膨潤を起こさない機能を有する素材となることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have laminated a porous waterproof layer containing a hydrophobic urethane resin on a cloth, and further, a wear protection layer on the entire surface or a part of the surface of the waterproof layer. By providing the material, the material has excellent moisture permeability and waterproofness, has sufficient wear resistance to use the resin film surface on the front side of clothes, etc., and has a function of not causing water swelling. We have found and completed the present invention.

すなわち、本発明に係る透湿防水性布帛は、繊維布帛の少なくとも片面に、ウレタン樹脂を含む多孔質の防水層、および前記防水層の表面全面または一部に形成された摩耗保護層を含み、前記ウレタン樹脂がエステル系および/またはポリカーボネート系ウレタン樹脂であることを特徴とする。 That is, the moisture-permeable and waterproof fabric according to the present invention includes a porous waterproof layer containing a urethane resin and an abrasion protection layer formed on the entire surface or a part of the surface of the waterproof layer on at least one surface of the fiber fabric. The urethane resin is an ester-based and / or polycarbonate-based urethane resin.

また、本発明に係る透湿防水性布帛は、耐水圧が2000mmH2O以上であり、かつJIS L1099:2012 A−1法に基づく透湿度およびB−1法に基づく透湿度がいずれも3500g/m2/24hr以上であることが好ましい。Further, the moisture-permeable and waterproof fabric according to the present invention has a water pressure resistance of 2000 mmH 2 O or more, and has a moisture permeability based on JIS L1099: 2012 A-1 method and a moisture permeability based on the B-1 method, both of which are 3500 g / g. m is preferably 2/24 hr or more.

また、前記透湿防水性布帛に対する、摩耗輪:No.CS−17、荷重:4.9Nを用いたJIS L1096:2010 摩耗強さC法(テーバ形法)に準じた試験で、500回の試験後に前記防水層に穴あきが確認されないことが好ましい。 Further, the wear ring: No. It is preferable that no holes are confirmed in the waterproof layer after 500 tests in a test according to the JIS L1096: 2010 abrasion strength C method (Teva type method) using CS-17 and a load of 4.9 N.

また、前記摩耗保護層の厚みが6μm以下であることが好ましい。 Further, the thickness of the wear protection layer is preferably 6 μm or less.

また、前記摩耗保護層が、シリコーン樹脂、またはシリコーン変性樹脂を含むことが好ましい。 Further, it is preferable that the wear protection layer contains a silicone resin or a silicone-modified resin.

また、前記摩耗保護層がポリカーボネート系ウレタン樹脂を含むことが好ましい。 Further, it is preferable that the wear protection layer contains a polycarbonate urethane resin.

また、前記防水層中に無機粒子が含まれていることが好ましい。さらに前記無機粒子が酸化アルミニウム、二酸化ケイ素、二酸化チタンおよびそれらの組み合わせからなる群より選択されることがより好ましい。 Further, it is preferable that the waterproof layer contains inorganic particles. Further, it is more preferable that the inorganic particles are selected from the group consisting of aluminum oxide, silicon dioxide, titanium dioxide and combinations thereof.

また、本発明による繊維製品は、上記のいずれかの透湿防水性布帛を少なくとも一部に用いた繊維製品である。 Further, the textile product according to the present invention is a textile product using at least a part of any of the above-mentioned moisture-permeable and waterproof fabrics.

本発明の透湿防水性布帛は、疎水性のウレタン樹脂を含む多孔質の防水層を布帛に積層し、さらに前記防水層の表面全面または一部に摩耗保護層を設けられたものであるため、防水性を有していながら、透湿性を有し、耐摩耗性に優れ、かつ樹脂膜が水に接触した場合においても水膨潤による外観品位の低下を抑制することができる。
したがって、本発明の透湿防水性布帛を用いれば、衣服等に雨などが浸入することを抑制し、かつムレを抑え、さらに摩耗に強い、樹脂膜面が表側に用いられている衣服、靴、鞄などの繊維製品を提供することができる。
The moisture-permeable and waterproof fabric of the present invention is obtained by laminating a porous waterproof layer containing a hydrophobic urethane resin on the fabric and further providing a wear protection layer on the entire surface or a part of the waterproof layer. Although it is waterproof, it has moisture permeability, is excellent in abrasion resistance, and can suppress deterioration of appearance quality due to water swelling even when the resin film comes into contact with water.
Therefore, if the moisture-permeable and waterproof fabric of the present invention is used, clothes and shoes having a resin film surface on the front side, which suppresses rain and the like from entering clothes and the like, suppresses stuffiness, and is resistant to wear. , Bags and other textile products can be provided.

<透湿防水性布帛>
本発明に係る透湿防水性布帛は、繊維布帛の少なくとも片面に、ウレタン樹脂を含む多孔質の防水層、および前記防水層の表面全面または一部に形成された摩耗保護層を含み、前記ウレタン樹脂がエステル系および/またはポリカーボネート系ウレタン樹脂であるものである。
<Moisture permeable and waterproof fabric>
The moisture-permeable and waterproof fabric according to the present invention includes a porous waterproof layer containing a urethane resin and an abrasion protection layer formed on the entire surface or a part of the surface of the waterproof layer on at least one surface of the fiber fabric, and the urethane. The resin is an ester-based and / or polycarbonate-based urethane resin.

本実施の形態における繊維布帛を構成する有用な繊維の素材としては、ポリエステル、ナイロン、アクリル、ポリウレタン、または、アセテートやキュプラ、ビスコースなどのレーヨンなどがあり、さらに、これらの他に、ポリ乳酸、芳香族ポリアミド、ポリイミドまたはポリフェニレンサルファイドなどの化学繊維、綿、麻、絹または羊毛などの天然繊維、あるいは、これらの素材の混繊、混紡、交織または交編品を用いることができ、特に限定されるものではない。樹脂膜面への移行昇華堅牢度の観点からは綿、羊毛、キュプラ、レーヨン、ナイロンが好ましい。特に好ましくはナイロンがよい。 Useful fiber materials constituting the fiber fabric in the present embodiment include polyester, nylon, acrylic, polyurethane, rayon such as acetate, cupra, and viscose, and in addition to these, polylactic acid. , Aromatic polyamide, chemical fibers such as polyimide or polyphenylene sulfide, natural fibers such as cotton, linen, silk or wool, or blends, blends, weaves or knits of these materials can be used, especially limited. It is not something that is done. Transfer to the resin film surface From the viewpoint of sublimation fastness, cotton, wool, cupra, rayon, and nylon are preferable. Nylon is particularly preferable.

また、繊維布帛を構成する繊維は、長繊維および短繊維のいずれであってもよい。また、この繊維を用いた糸は、生糸、撚糸、および加工糸のいずれであってもよい。加工糸についても、特に限定されるものではなく、仮撚加工糸(ウーリー加工糸、DTY、改良仮撚加工糸など)、押込加工糸、賦型加工糸、擦過加工糸、タスラン加工糸、糸長差引きそろえ加工糸、複合加工糸、毛羽加工糸、交絡集束糸、交絡混繊糸などを用いることができる。 Further, the fibers constituting the fiber fabric may be either long fibers or short fibers. Further, the yarn using this fiber may be any of raw silk, twisted yarn, and processed yarn. The processed yarn is also not particularly limited, and is not particularly limited, and is false twisted yarn (Woolly processed yarn, DTY, improved false twisted yarn, etc.), pressed yarn, shaped yarn, scraped yarn, Taslan yarn, yarn. Long-difference aligned processed yarns, composite processed yarns, fluff processed yarns, entangled focusing yarns, entangled mixed yarns, and the like can be used.

また、繊維の断面形状についても、特に限定されるものではなく、丸型、三角、星形、扁平、C型、中空、井形、ドックボーンなどが挙げられる。 The cross-sectional shape of the fiber is also not particularly limited, and examples thereof include a round shape, a triangular shape, a star shape, a flat shape, a C shape, a hollow shape, a well shape, and a dock bone.

本実施の形態で用いられる繊維布帛は、織物、編物または不織布など、いかなる形態であってもよく、引裂強力および縫目強力が低下しやすい織物であっても用いることが可能である。 The fiber fabric used in the present embodiment may be in any form such as a woven fabric, a knitted fabric, or a non-woven fabric, and even a woven fabric in which tear strength and seam strength are likely to decrease can be used.

また、これらの繊維布帛は、あらかじめ着色されていてもよいし、着色されていなくてもよい。繊維布帛をあらかじめ着色する場合には、分散染料、カチオン染料、酸性染料、直接染料、反応染料、建染染料、または、硫化染料などの染料、あるいは、蛍光増白剤、または、顔料などを用いて着色することができる。また、酸性染料を用いてナイロンを染色した場合に実施されている合成タンニン等を用いてのフィックス処理など、通常着色時に行われている各種処理を行ってもよい。なお、繊維布帛を着色するために用いられる材料は、これらのものに特に限定されるものではなく、各繊維布帛の素材に合わせて適切なものを選択すればよい。 Further, these fiber fabrics may or may not be colored in advance. When pre-coloring the textile fabric, a disperse dye, a cationic dye, an acidic dye, a direct dye, a reactive dye, a vat dye, a dye such as a sulfide dye, a fluorescent whitening agent, or a pigment is used. Can be colored. Further, various treatments usually performed at the time of coloring may be performed, such as a fixing treatment using synthetic tannin or the like, which is carried out when nylon is dyed with an acid dye. The material used for coloring the fiber cloth is not particularly limited to these materials, and an appropriate material may be selected according to the material of each fiber cloth.

また、着色方法は、原着、浸染、または、捺染などの方法があり、特に限定されるものではない。 Further, the coloring method includes methods such as dyeing, dyeing, and printing, and is not particularly limited.

また、繊維布帛には、所期の目的を逸脱しない限りにおいて、撥水加工、カレンダー加工、難燃加工、制電加工、抗菌防臭加工、制菌加工、紫外線遮蔽加工、耐光向上加工、または、吸水加工、吸湿加工などが施されていてもよい。
特に、本実施の形態の透湿防水性布帛を用いて、表面を裏面に裏返して使用するリバーシブル衣服とする場合には、繊維布帛には撥水性を有するものが好ましい。
また、大量に汗や結露が発生する用途に用いる場合には、繊維布帛は、吸水性や吸湿性を有するものを用いるとよく。特に、衣服等として用いる場合に、裏地や中綿を用いない場合であって、肌へのベタツキを抑制したい場合には、繊維布帛の身体側の面を撥水性とし、樹脂膜側の面を親水性とした繊維布帛を用いてもよい。
In addition, as long as the fiber fabric does not deviate from the intended purpose, water repellent treatment, calendar processing, flame retardant processing, antistatic processing, antibacterial deodorant processing, antibacterial processing, ultraviolet shielding processing, light resistance improving processing, or It may be subjected to water absorption processing, moisture absorption processing, or the like.
In particular, when the moisture-permeable and waterproof fabric of the present embodiment is used to make a reversible garment in which the front surface is turned inside out and used, the fiber fabric preferably has water repellency.
Further, when used for an application in which a large amount of sweat or dew condensation is generated, it is preferable to use a fiber cloth having water absorption or hygroscopicity. In particular, when using it as clothing, etc., when lining or batting is not used and it is desired to suppress stickiness on the skin, the surface of the fiber fabric on the body side is made water repellent and the surface on the resin film side is hydrophilic. You may use the made fiber cloth.

本実施の形態におけるウレタン樹脂を含む多孔質の防水層は、疎水性であるエステル系および/またはポリカーボネート系ウレタン樹脂を含むものであり、例えば、当該エステル系および/またはポリカーボネート系ウレタン樹脂のみから構成されてもよい。特に限定されないが、防水層中のエステル系および/またはポリカーボネート系ウレタン樹脂の含有量は、例えば、質量比率で60%以上、70%以上、80%以上、90%以上、または100%であってもよい。ウレタン樹脂の中でも、例えば、水膨潤性のエーテル系およびエーテル・エステル系ウレタン樹脂等を使用することで、多孔質でなく無孔質の防水層であっても、得られる防水性布帛の透湿性を改善することは可能である。しかしながら、このような水膨潤性のウレタン樹脂を使用すると、得られる樹脂膜が水と接触した場合に水膨潤による外観品位の低下を招く虞がある。これとは対照的に、本実施の形態に係る透湿防水性布帛によれば、防水層において疎水性のエステル系および/またはポリカーボネート系ウレタン樹脂を使用しさらにそれを多孔質にすることで、透湿性を向上させつつ、得られる樹脂膜が水と接触した場合でも水膨潤による外観品位の低下を確実に抑制することが可能となる。また、後述するウレタン樹脂を水を主成分とした凝固液中で凝固させる工程を実施する際に、疎水性のウレタン樹脂を用いれば凝固性に優れるという利点も有する。 The porous waterproof layer containing the urethane resin in the present embodiment contains a hydrophobic ester-based and / or polycarbonate-based urethane resin, and is composed of, for example, only the ester-based and / or polycarbonate-based urethane resin. May be done. Although not particularly limited, the content of the ester-based and / or polycarbonate-based urethane resin in the waterproof layer is, for example, 60% or more, 70% or more, 80% or more, 90% or more, or 100% by mass ratio. May be good. Among the urethane resins, for example, by using a water-swellable ether-based urethane resin, an ether-ester-based urethane resin, or the like, even if the waterproof layer is not porous but has no pores, the moisture permeability of the waterproof fabric obtained can be obtained. It is possible to improve. However, when such a water-swellable urethane resin is used, there is a risk that the appearance quality may be deteriorated due to water swelling when the obtained resin film comes into contact with water. In contrast, according to the breathable waterproof fabric according to the present embodiment, a hydrophobic ester-based and / or polycarbonate-based urethane resin is used in the waterproof layer to make it porous. While improving the moisture permeability, it is possible to reliably suppress the deterioration of the appearance quality due to water swelling even when the obtained resin film comes into contact with water. Further, when carrying out the step of coagulating the urethane resin described later in a coagulation liquid containing water as a main component, there is an advantage that the coagulation property is excellent if a hydrophobic urethane resin is used.

また、地球環境への負荷軽減の観点から、植物油脂や廃材などを原料としたコハク酸やセバシン酸などのジカルボン酸、トウモロコシなどを原料とした糖の発酵により得られる1,3−プロパンジオールや1,4−ブタンジオールなどのジオール、およびその誘導体など、植物由来成分を一部に使用して合成されたバイオウレタン樹脂を使用してもよい。 In addition, from the viewpoint of reducing the burden on the global environment, dicarboxylic acids such as succinic acid and sebacic acid made from vegetable fats and oils and waste materials, and 1,3-propanediol obtained by fermentation of sugars made from corn etc. A biourethane resin synthesized by partially using a plant-derived component such as a diol such as 1,4-butanediol and a derivative thereof may be used.

加えて、エステル系および/またはポリカーボネート系ウレタン樹脂は、ポリテトラフルオロエチレン(PTFE)などの材料に比べて耐摩耗性に優れており、よって後で説明する摩耗保護層の厚みをより薄くできるという利点がある。例えば、PTFE等の材料は耐摩耗性に劣るため、その上に摩耗保護層を設けたとしても、当該摩耗保護層の上からの摩耗作用によって剥離したり、破れたりといった不具合が生じることがある。このような不具合が生じないようにするためには、例えば、摩耗保護層をより厚くする必要がある。しかしながら、この場合には、透湿防水性布帛全体の透湿度の低下を招く虞がある。これとは対照的に、エステル系および/またはポリカーボネート系ウレタン樹脂は、多孔質にすることで透湿性を改善することができる一方で、多孔質とした場合でも一定の耐摩耗性を有する。このため、防水層にエステル系および/またはポリカーボネート系ウレタン樹脂を使用することで、その上に形成される摩耗保護層を比較的薄くすることができる。したがって、エステル系および/またはポリカーボネート系ウレタン樹脂は、水膨潤による外観品位の低下を抑制するという観点だけでなく、透湿防水性布帛全体の透湿度を向上させるという観点からも非常に有利である。 In addition, ester-based and / or polycarbonate-based urethane resins have better wear resistance than materials such as polytetrafluoroethylene (PTFE), and thus the thickness of the wear protection layer, which will be described later, can be made thinner. There are advantages. For example, since a material such as PTFE is inferior in wear resistance, even if a wear protection layer is provided on the material, problems such as peeling or tearing may occur due to the wear action from above the wear protection layer. .. In order to prevent such a defect from occurring, for example, it is necessary to make the wear protection layer thicker. However, in this case, there is a risk that the moisture permeability of the entire moisture-permeable and waterproof fabric will decrease. In contrast, ester-based and / or polycarbonate-based urethane resins can improve moisture permeability by making them porous, but have a certain degree of wear resistance even when made porous. Therefore, by using an ester-based and / or polycarbonate-based urethane resin for the waterproof layer, the wear protection layer formed on the ester-based urethane resin can be made relatively thin. Therefore, the ester-based and / or polycarbonate-based urethane resin is very advantageous not only from the viewpoint of suppressing deterioration of the appearance quality due to water swelling but also from the viewpoint of improving the moisture permeability of the entire moisture-permeable and waterproof fabric. ..

上記のウレタン樹脂を含む多孔質の防水層は、透湿性を有しつつ、疎水性であるために防水性も繊維布帛に付与できる膜であり、その空孔の大きさ、形状、分布状態については特に限定されない。一般的には、透湿性および防水性の観点からは、防水層は、多孔質膜の表面に孔径約1μm以下の細孔を有し、多孔質膜の内部には孔径10〜50μm程度の空孔を有し、空孔の壁面には孔径約1μm以下の細孔を有し、これらの細孔によって空孔同士が互いに連通した構造を有した多孔質膜であることが好ましい。 The porous waterproof layer containing the urethane resin described above is a film that can impart waterproofness to the fiber fabric because it is hydrophobic while having moisture permeability, and the size, shape, and distribution state of the pores thereof. Is not particularly limited. Generally, from the viewpoint of moisture permeability and waterproofness, the waterproof layer has pores having a pore diameter of about 1 μm or less on the surface of the porous membrane, and an empty space having a pore diameter of about 10 to 50 μm inside the porous membrane. It is preferable that the porous membrane has pores, has pores having a pore diameter of about 1 μm or less on the wall surface of the pores, and has a structure in which the pores communicate with each other by these pores.

ウレタン樹脂を含む多孔質の防水層を形成する方法としては、延伸、ニードルパンチ、レーザー穿孔、機械発泡、化学発泡、湿式凝固法などが挙げられるが、加工の容易性やコストの観点から、ウレタン樹脂を繊維布帛に塗工した後、水を主成分とする凝固液に浸漬し、ウレタン樹脂を凝固させる湿式凝固法が好ましい。 Examples of the method for forming the porous waterproof layer containing the urethane resin include stretching, needle punching, laser perforation, mechanical foaming, chemical foaming, and wet coagulation method. From the viewpoint of ease of processing and cost, urethane is used. A wet coagulation method in which the resin is applied to the fiber cloth and then immersed in a coagulation liquid containing water as a main component to coagulate the urethane resin is preferable.

湿式凝固法で繊維布帛にウレタン樹脂を含む多孔質の防水層を積層する際、繊維布帛に塗布するウレタン樹脂溶液中には、ウレタン樹脂と、N、N−ジメチルホルムアミド(DMF)、N、N−ジメチルアセトアミド、N−メチルピロリドン等を主体とした水溶性の極性有機溶媒が好ましく用いられる。
さらに、ウレタン樹脂溶液中には、顔料等の着色剤、ポリイソシアネート系架橋剤、触媒、酸化防止剤、紫外線吸収剤等を添加してもよい。
When a porous waterproof layer containing a urethane resin is laminated on a fiber cloth by a wet coagulation method, the urethane resin and N, N-dimethylformamide (DMF), N, N are contained in the urethane resin solution applied to the fiber cloth. A water-soluble polar organic solvent mainly composed of -dimethylacetamide, N-methylpyrrolidone, etc. is preferably used.
Further, a colorant such as a pigment, a polyisocyanate-based cross-linking agent, a catalyst, an antioxidant, an ultraviolet absorber, or the like may be added to the urethane resin solution.

次いで、このウレタン樹脂溶液を、ナイフコーター、バーコーター、コンマコーター等を用いて繊維布帛に塗布することにより、ウレタン樹脂溶液が塗布された繊維布帛が得られる。
次いで、ウレタン樹脂溶液が塗布された繊維布帛を、水、あるいはDMF等の水溶性極性有機溶媒を5〜20%程度含んだ水を主成分とする凝固液に浸漬して、ウレタン樹脂を凝固させる。凝固温度は、樹脂膜中に形成される細孔の孔径を適度に調整する観点から、10〜50℃の範囲が好ましい。
Then, by applying this urethane resin solution to the fiber cloth using a knife coater, a bar coater, a comma coater or the like, a fiber cloth coated with the urethane resin solution can be obtained.
Next, the fiber cloth coated with the urethane resin solution is immersed in water or a coagulating liquid containing about 5 to 20% of a water-soluble polar organic solvent such as DMF as a main component to coagulate the urethane resin. .. The solidification temperature is preferably in the range of 10 to 50 ° C. from the viewpoint of appropriately adjusting the pore diameter of the pores formed in the resin film.

次いで、ウレタン樹脂の脱溶媒を行う。脱溶媒用の洗浄液としては水が好ましく、脱溶媒の温度は10〜80℃が好ましい。
脱溶媒した後に90〜150℃で乾燥処理することにより、繊維布帛上にウレタン樹脂を含むかまたはウレタン樹脂のみからなる多孔質の防水層が形成された透湿防水性布帛を得ることができる。その後、必要に応じて、撥水加工や制電加工、抗菌防臭加工、制菌加工、紫外線遮蔽加工等を行ってもよい。
Next, the urethane resin is desolvated. Water is preferable as the cleaning liquid for desolvation, and the desolvation temperature is preferably 10 to 80 ° C.
By removing the solvent and then drying the fabric at 90 to 150 ° C., a moisture-permeable waterproof fabric in which a porous waterproof layer containing urethane resin or only urethane resin is formed can be obtained. After that, if necessary, water repellent treatment, antistatic treatment, antibacterial deodorant treatment, antibacterial treatment, ultraviolet shielding treatment, and the like may be performed.

湿式凝固法にてウレタン樹脂を含む多孔質の防水層を作製する際には、樹脂膜の透湿性を向上させる目的で、塗工するウレタン樹脂中に無機粒子が含まれていることが好ましい。無機粒子は、繊維布帛に塗工したウレタン樹脂を水を主成分とする凝固液に浸漬して凝固させる際に、ウレタン樹脂中に含まれるDMF等の溶剤と、水との置換を促す作用がある。これにより、多孔質構造の形成が促進され透湿性が向上する。 When a porous waterproof layer containing a urethane resin is produced by a wet solidification method, it is preferable that the urethane resin to be coated contains inorganic particles for the purpose of improving the moisture permeability of the resin film. The inorganic particles have the effect of promoting the replacement of water with a solvent such as DMF contained in the urethane resin when the urethane resin coated on the fiber cloth is immersed in a coagulation liquid containing water as a main component to coagulate. be. As a result, the formation of a porous structure is promoted and the moisture permeability is improved.

無機粒子は凝集していることが多いため、ウレタン樹脂への均一な分散、混合を行うために、DMF等の溶剤、ビヒクルとしての樹脂、分散剤等を配合し、ディスパーサー等で分散しやすいよう前処理したものを用いるのが好ましい。 Inorganic particles are often agglomerated, so in order to uniformly disperse and mix them in urethane resin, a solvent such as DMF, a resin as a vehicle, a dispersant, etc. are blended and easily dispersed by a disperser or the like. It is preferable to use a pretreated product.

無機粒子の含有量は、多孔質膜のベースとなるウレタン樹脂100質量部に対し、0.5〜100質量部であることが好ましい。より好ましくは1〜50質量部である。含有量が前記範囲を下回ると、無機粒子を添加した効果が表れにくく、含有量が前記範囲を上回ると空孔率が高くなりすぎて耐水圧が低下する場合がある。 The content of the inorganic particles is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the urethane resin that is the base of the porous membrane. More preferably, it is 1 to 50 parts by mass. If the content is below the above range, the effect of adding the inorganic particles is unlikely to appear, and if the content exceeds the above range, the porosity may become too high and the water pressure resistance may decrease.

さらに無機粒子が酸化アルミニウム、二酸化ケイ素、二酸化チタンおよびそれらの組み合わせからなる群より選択されることがより好ましい。人の肌にpH4.0未満の酸性あるいはpH7.0を超えるアルカリ性の液体が付着すると、肌の酸性度のバランスが崩れ、肌ストレスや肌荒れの原因となる恐れがあるが、前記無機粒子を用いれば、膜面を内側にして着用する際に、防水層の膜面に付着した汗等の水分が、湿潤時に人の肌に優しいpH4.0〜7.0を示すためである。一方、無機粒子として炭酸カルシウム等を使用した場合には、防水層に付着した水分のpHが弱アルカリ性となる場合があるため、特に防水層を衣服等の内側に設ける用途では好ましくない。 Further, it is more preferable that the inorganic particles are selected from the group consisting of aluminum oxide, silicon dioxide, titanium dioxide and combinations thereof. If an acidic liquid with a pH of less than 4.0 or an alkaline liquid with a pH of more than 7.0 adheres to human skin, the balance of acidity of the skin may be lost, which may cause skin stress or rough skin. For example, when the film surface is turned inside, the moisture such as sweat adhering to the film surface of the waterproof layer exhibits a pH of 4.0 to 7.0, which is gentle on human skin when wet. On the other hand, when calcium carbonate or the like is used as the inorganic particles, the pH of the water adhering to the waterproof layer may become weakly alkaline, which is not particularly preferable in the application of providing the waterproof layer inside clothes or the like.

ウレタン樹脂を含む多孔質の防水層の厚みは、10〜100μm程度が好ましい。防水層の厚みが10μm未満では、防水性が低下する場合がある。防水層の厚みが100μmを超えると、得られる透湿防水性布帛の風合が硬くなる。特に限定されないが、防水層の厚みは、例えば、15μm以上、20μm以上または30μm以上であってもよく、80μm以下、70μm以下または60μm以下であってもよい。 The thickness of the porous waterproof layer containing the urethane resin is preferably about 10 to 100 μm. If the thickness of the waterproof layer is less than 10 μm, the waterproof property may decrease. When the thickness of the waterproof layer exceeds 100 μm, the texture of the obtained breathable waterproof fabric becomes hard. Although not particularly limited, the thickness of the waterproof layer may be, for example, 15 μm or more, 20 μm or more, or 30 μm or more, and may be 80 μm or less, 70 μm or less, or 60 μm or less.

本実施の形態におけるウレタン樹脂を含む多孔質の防水層は、さらに表面全体または一部に摩耗保護層が設けられている。摩耗保護層は、ウレタン樹脂を含む多孔質の防水層の耐摩耗性を向上させる役割を担う。 The porous waterproof layer containing the urethane resin in the present embodiment is further provided with a wear protection layer on the entire surface or a part thereof. The abrasion protection layer plays a role of improving the abrasion resistance of the porous waterproof layer containing urethane resin.

本実施の形態に係る透湿防水性布帛では、多孔質の防水層を使用しているため、摩耗保護層の厚みが比較的厚い場合、例えば7μm以上の場合であっても、良好な透湿性を維持することが可能である。しかしながら、透湿度をより顕著に向上させるためには、摩耗保護層の厚みは、6μm以下が好ましい。より好ましくは5μm以下、さらにより好ましくは4.5μm以下、最も好ましくは4μm以下である。また、耐摩耗性の観点より下限は0.1μm以上がよい。摩耗保護層の厚みは0.5μm以上又は1μm以上であってもよい。一方で、前記摩耗保護層の厚みが薄くなりすぎると、透湿防水性布帛全体の凹凸に紛れる等で、後述する走査型電子顕微鏡での観察では摩耗保護層が不明瞭となり、摩耗保護層の厚みを求めることが困難となる場合がある。しかしながら、そのような場合には、加工時に消費した樹脂量と加工面積、および樹脂密度を基に、摩耗保護層が均一な厚みの膜を形成していると仮定して計算した摩耗保護層の厚みにて、0.1μm以上であれば、摩耗保護層の耐摩耗性が発揮されやすく、好ましい。
なお、摩耗保護層に粒状物等を含み、該粒状物等が摩耗保護層から突出している場合には、該突出箇所は摩耗保護層の厚みとはみなさないものとする。
Since the moisture-permeable and waterproof fabric according to the present embodiment uses a porous waterproof layer, good moisture permeability is good even when the thickness of the abrasion protection layer is relatively thick, for example, 7 μm or more. It is possible to maintain. However, in order to improve the moisture permeability more remarkably, the thickness of the wear protection layer is preferably 6 μm or less. It is more preferably 5 μm or less, even more preferably 4.5 μm or less, and most preferably 4 μm or less. Further, from the viewpoint of wear resistance, the lower limit is preferably 0.1 μm or more. The thickness of the wear protection layer may be 0.5 μm or more or 1 μm or more. On the other hand, if the thickness of the abrasion protection layer becomes too thin, the abrasion protection layer becomes unclear by observation with a scanning electron microscope described later because it is mixed with the unevenness of the entire moisture-permeable and waterproof fabric, and the abrasion protection layer becomes unclear. It may be difficult to determine the thickness. However, in such a case, the wear protection layer is calculated on the assumption that the wear protection layer forms a film having a uniform thickness based on the amount of resin consumed during processing, the processing area, and the resin density. When the thickness is 0.1 μm or more, the wear resistance of the wear protection layer is easily exhibited, which is preferable.
If the wear protection layer contains granules or the like and the granules or the like protrude from the wear protection layer, the protruding portion shall not be regarded as the thickness of the wear protection layer.

摩耗保護層は、疎水性でかつ防水層の耐摩耗性を向上させるものであれば特に限定はされない。具体的には(メタ)アクリル樹脂、(メタ)アクリルウレタン樹脂、ウレタン樹脂、エポキシ樹脂、メラミン樹脂、含フッ素樹脂、シリコーン樹脂などが挙げられる。布帛の風合いを損なわず、かつ耐候性が良好であるとの観点および耐摩耗性をさらに改善するとの観点から、ポリカーボネート系ウレタン樹脂が含まれていることが好ましい。また、表面滑性を向上させる等の観点から、シリコーン樹脂、またはシリコーン変性されている樹脂を含むことが好ましく、シリコーン変性ウレタン樹脂を含むことが特に好ましい。摩耗保護層に含まれているシリコーン樹脂、シリコーン変性樹脂中のシリコーンセグメントについて、摩耗保護層を形成するすべての成分に対して、質量比で10%以上がよく、20%以上が好ましい。一方で、水膨潤性材料は、水を吸収することで摩耗に対する抵抗性が低くなるため、摩耗保護機能を有しているとは言えず、よって本発明に係る摩耗保護層を構成することができない。 The abrasion protection layer is not particularly limited as long as it is hydrophobic and improves the abrasion resistance of the waterproof layer. Specific examples thereof include (meth) acrylic resin, (meth) acrylic urethane resin, urethane resin, epoxy resin, melamine resin, fluororesin, and silicone resin. It is preferable that the polycarbonate urethane resin is contained from the viewpoint that the texture of the fabric is not impaired, the weather resistance is good, and the abrasion resistance is further improved. Further, from the viewpoint of improving surface slipperiness, it is preferable to contain a silicone resin or a silicone-modified resin, and it is particularly preferable to include a silicone-modified urethane resin. Regarding the silicone resin contained in the wear protection layer and the silicone segment in the silicone-modified resin, the mass ratio is preferably 10% or more, preferably 20% or more, with respect to all the components forming the wear protection layer. On the other hand, the water-swellable material cannot be said to have a wear protection function because its resistance to wear is lowered by absorbing water, and therefore, the wear protection layer according to the present invention can be formed. Can not.

また、摩耗保護層として、フッ素系撥水剤、シリコーン系撥水剤、炭化水素系撥水剤などの撥水剤を含んだウレタン樹脂を用いることで、疎水性を高め、得られる防水層の水膨潤による外観品位低下の抑制機能を高めることも可能である。 Further, by using a urethane resin containing a water repellent such as a fluorine-based water repellent, a silicone-based water repellent, or a hydrocarbon-based water repellent as the wear protection layer, the hydrophobicity is enhanced and the obtained waterproof layer can be obtained. It is also possible to enhance the function of suppressing deterioration of appearance quality due to water swelling.

摩耗保護層は、ウレタン樹脂を含む多孔質の防水層の全面に設けられていてもよく、また点状、線状、格子状などあってもよく、特に限定されるものではない。摩耗保護層は、防水層の50%以上を覆っているものが好ましく、ほぼ隙間なく全面を覆っているものがより好ましい。 The wear protection layer may be provided on the entire surface of the porous waterproof layer containing the urethane resin, or may have a dot shape, a linear shape, a grid shape, or the like, and is not particularly limited. The wear protection layer preferably covers 50% or more of the waterproof layer, and more preferably covers the entire surface with almost no gap.

摩耗保護層には、本発明の目的を逸脱しない範囲で、顔料、制電剤、抗菌剤、紫外線吸収剤、赤外線吸収剤、消臭剤、酸化防止剤、吸湿剤、吸湿発熱材、難燃剤、撥水剤、架橋剤、また、樹脂膜強度や防水性や透湿性を高めるため、また、樹脂膜が肌に接触した際の触感を変える等の目的で無機粒子や有機粒子などの充填剤等が含まれていてもよい。 The wear protection layer includes pigments, antistatic agents, antibacterial agents, ultraviolet absorbers, infrared absorbers, deodorants, antioxidants, hygroscopic agents, moisture-absorbing heat-generating materials, and flame retardants, as long as the object of the present invention is not deviated. , Water repellent, cross-linking agent, and fillers such as inorganic particles and organic particles for the purpose of increasing the strength, waterproofness, and moisture permeability of the resin film, and for changing the tactile sensation when the resin film comes into contact with the skin. Etc. may be included.

上記の構成を有する本実施の形態に係る透湿防水性布帛によれば、当該透湿防水性布帛の防水性を顕著に向上させることができ、例えば2000mmH2O以上、好ましくは3000mmH2O以上、より好ましくは4000mmH2O以上の耐水圧を達成することが可能である。透湿防水性布帛の耐水圧が2000mmH2O未満であると、防水層としての本来の役割を十分に果たせられない場合があり、このような場合には被覆している物品が水に濡れてしまうおそれがある。なお、耐水圧の上限値は、特に限定されないが、例えば、100000mmH2O以下、80000mmH2O以下、60000mmH2O以下、または50000mmH2O以下であってもよい。According to the moisture-permeable and waterproof fabric according to the present embodiment having the above configuration, the waterproofness of the moisture-permeable and waterproof fabric can be remarkably improved, for example, 2000 mmH 2 O or more, preferably 3000 mmH 2 O or more. , More preferably, it is possible to achieve a water pressure resistance of 4000 mmH 2 O or more. If the water pressure resistance of the moisture permeable and waterproof fabric is less than 2000 mmH 2 O, it may not be able to fully fulfill its original role as a waterproof layer. In such a case, the covering article gets wet with water. There is a risk that it will end up. The upper limit of the water pressure resistance is not particularly limited, but may be, for example, 100,000 mmH 2 O or less, 80,000 mmH 2 O or less, 60,000 mmH 2 O or less, or 50,000 mmH 2 O or less.

また、上記の構成を有する本実施の形態に係る透湿防水性布帛によれば、当該透湿防水性布帛の透湿性を顕著に向上させることができ、例えばJIS L1099:2012 A−1法(塩化カルシウム法)に基づく透湿度およびB−1法(酢酸カリウム法)に基づく透湿度について、ともに3500g/m2/24hr以上、好ましくは4500g/m2/24hr以上、より好ましくは5000g/m2/24hr以上の透湿度を達成することが可能である。透湿防水性布帛の上記A−1法に基づく透湿度が3500g/m2/24hr以上であれば、不感蒸泄による衣服内の湿気がスムーズに排出され、不快なムレ感を抑える機能が十分に発揮される。また、上記B−1法に基づく透湿防水性布帛の透湿度が3500g/m2/24hr以上であれば、発汗による衣服内の結露を防止し、不快なべたつき感を抑える機能が十分に発揮される。なお、上記A−1法およびB−1法に基づく透湿度の上限値は、特に限定されないが、例えば、80000g/m2/24hr以下、60000g/m2/24hr以下、50000g/m2/24hr以下、または40000g/m2/24hr以下であってもよい。上記範囲の透湿防水性布帛の耐水圧および透湿度は、上で説明した繊維布帛、防水層、および摩耗保護層に用いられる材料やその特性(例えば、厚み、疎水性の度合いおよび細孔の孔径など)を適切に選択および/または制御することによって達成することが可能である。Further, according to the moisture-permeable and waterproof fabric according to the present embodiment having the above configuration, the moisture permeability of the moisture-permeable and waterproof fabric can be remarkably improved. for moisture permeability based on moisture permeability and B-1 method based on the calcium chloride method) (potassium acetate method), both 3500g / m 2 / 24hr or more, preferably 4500g / m 2 / 24hr or more, more preferably 5000 g / m 2 It is possible to achieve a moisture permeability of / 24 hr or more. If the moisture permeability based on the A-1 method of moisture-permeable waterproof fabric 3500g / m 2 / 24hr or more, moisture in the clothes due to insensible perspiration is discharged smoothly, sufficient function to suppress the unpleasant stuffiness feeling It is demonstrated in. Further, if the moisture permeability of the moisture permeable waterproof fabric based on the B-1 method is 3500g / m 2 / 24hr or more, to prevent condensation in the garment by sweating, function to suppress a feeling of uncomfortable sticky sufficiently exhibited Will be done. Incidentally, the A-1 method and moisture permeability upper limit based on the B-1 method is not particularly limited, for example, 80000g / m 2 / 24hr or less, 60000g / m 2 / 24hr or less, 50000g / m 2 / 24hr hereinafter, or 40000g / m 2 / 24hr may be less. The water pressure resistance and moisture permeability of the moisture permeable and waterproof fabric in the above range are the materials used for the fiber fabric, the waterproof layer, and the abrasion protection layer described above and their characteristics (for example, the thickness, the degree of hydrophobicity and the pores). This can be achieved by appropriately selecting and / or controlling the pore size, etc.).

また、上記の構成を有する本実施の形態に係る透湿防水性布帛によれば、当該透湿防水性布帛の耐摩耗性を顕著に向上させることができ、例えば当該透湿防水性布帛に対する、摩耗輪:No.CS−17、荷重:4.9Nを用いたJIS L1096:2010 摩耗強さC法(テーバ形法)に準じた試験で、樹脂膜、特に防水層に穴があくまでの摩擦回数が、500回以上の耐摩耗性を達成することが可能である。一般的には、本試験における摩擦回数が500回以上であればコートやジャンパーなどの一般的な衣服に透湿防水性布帛を使用することができる。より優れた耐摩耗性を有し、靴やカバン等においても本実施の形態の透湿防水性布帛を使用するとの観点からは1000回以上が好ましく、1500回以上が特に好ましい。なお、上記試験における摩擦回数は多ければ多いほどよく、特に上限値は規定されないが、一般的にはその上限値は、20000回以下、15000回以下、または10000回以下であってもよい。上記範囲の摩擦回数は、とりわけ上で説明した防水層および摩耗保護層に用いられる材料やその特性(例えば、厚みおよび細孔の孔径など)を適切に選択および/または制御することによって達成することが可能である。 Further, according to the moisture-permeable and waterproof fabric according to the present embodiment having the above configuration, the wear resistance of the moisture-permeable and waterproof fabric can be remarkably improved, for example, with respect to the moisture-permeable and waterproof fabric. Wear wheel: No. In a test based on JIS L1096: 2010 wear strength C method (Teva type method) using CS-17 and load: 4.9N, the number of frictions between holes in the resin film, especially the waterproof layer, was 500 or more. It is possible to achieve the wear resistance of. Generally, if the number of frictions in this test is 500 or more, a moisture-permeable and waterproof fabric can be used for general clothes such as coats and jumpers. From the viewpoint of having more excellent abrasion resistance and using the moisture-permeable and waterproof fabric of the present embodiment in shoes, bags and the like, 1000 times or more is preferable, and 1500 times or more is particularly preferable. The larger the number of frictions in the above test, the better, and the upper limit value is not specified, but in general, the upper limit value may be 20000 times or less, 15000 times or less, or 10000 times or less. The number of frictions in the above range shall be achieved, among other things, by appropriately selecting and / or controlling the materials used for the waterproof layer and the wear protection layer described above and their properties (eg, thickness and pore size, etc.). Is possible.

<透湿防水性布帛を用いた繊維製品>
本実施の形態における透湿防水性布帛を用いた繊維製品は、上記透湿防水性布帛を少なくとも一部、好ましくは上記透湿防水性布帛をその表側の少なくとも一部に用いたものであり、例えばウインドブレーカー、コート、ジャケット、ヤッケ、アノラック、スキーウエアー、スノーボードウエアー、合羽、作業服、帽子、手袋などの衣服をはじめ、テント、寝袋、マットレスカバー、靴、鞄などを提供することができる。
<Textile products using moisture-permeable and waterproof fabric>
The textile product using the moisture-permeable and waterproof fabric in the present embodiment is one in which the moisture-permeable and waterproof fabric is used for at least a part, preferably the moisture-permeable and waterproof fabric is used for at least a part of the front side thereof. For example, we can provide clothes such as windbreakers, coats, jackets, yackes, anoraks, ski wear, snowboard wear, a pair of feathers, work clothes, hats, gloves, tents, sleeping bags, mattress covers, shoes, bags, and the like.

本実施の形態における透湿防水性布帛を用いた繊維製品は、上記透湿防水性布帛を用いているため、防水性を有していながら、透湿性を有し、耐摩耗性に優れ、かつ樹脂膜が水に接触した場合においても水膨潤による外観品位の低下を抑制することができる。
したがって、本発明の透湿防水性布帛を用いれば、衣服等に雨などが浸入することを抑制し、かつムレを抑え、さらに摩耗に強い、樹脂膜面が表側に用いられている衣服、靴、鞄などの繊維製品を提供することができる。
Since the textile product using the moisture-permeable and waterproof fabric in the present embodiment uses the moisture-permeable and waterproof fabric, it has moisture permeability, excellent wear resistance, and is waterproof. Even when the resin film comes into contact with water, deterioration of appearance quality due to water swelling can be suppressed.
Therefore, if the moisture-permeable and waterproof fabric of the present invention is used, clothes and shoes having a resin film surface on the front side, which suppresses rain and the like from entering clothes and the like, suppresses stuffiness, and is resistant to wear. , Bags and other textile products can be provided.

以下、本実施の形態における透湿防水性布帛の実施例について説明するが、本発明は、これらの実施例に限定されるものではない。なお、以下の実施例および比較例におけるA〜Gの各評価項目における各種物性などの測定および評価は、次の方法によって行った。また、実施例および比較例における「%」、「部」は、「質量%」、「質量部」である。
[A:耐水圧]
耐水圧は、JIS L1092:2009 耐水度試験B法(高水圧法)に準じた方法で測定した。測定値はmmH2O単位に変換して表示した。
なお、水圧をかけることにより試験片が伸びる場合には、試験片の上にナイロンタフタ(2.54cm当りのタテ糸とヨコ糸の密度の合計が210本程度のもの)を重ねて、試験機に取り付けて測定を行った。
[B:透湿度]
透湿度については、JIS L1099−2012 A−1法(塩化カルシウム法)に基づく透湿度およびJIS L1099−2012 B−1法(酢酸カリウム法)に基づく透湿度の両方を測定した。
なお、接水面は繊維布帛面とし、いずれの透湿度も24時間当りの透湿量に換算した。
[C:耐摩耗性]
耐摩耗性は、JIS L1096:2010 摩耗強さC法(テーバ形法)に準じて試験を行い、防水層に穴が開くまでの回数(100回ごとに樹脂膜面に穴あきが発生したかを確認し、穴あきが確認された直前の回数)を測定することにより評価した。500回の試験後に防水層に穴あきが確認されなかった場合を合格とした。
なお、測定時に使用した摩耗輪はNo.CS−17、荷重4.90Nとした。
[D:摩耗保護層の厚み]
走査型電子顕微鏡(SEMEDX Type H形:株式会社日立サイエンスシステムズ)を用い、透湿防水性布帛の断面を1000倍〜4500倍にて観察し、摩耗保護層の任意の5カ所の厚みを測定し、それらの平均値を求め、摩耗保護層の厚みとして決定した。
[E:透湿防水性布帛のpH]
透湿防水性布帛のpHは、JIS L1096:2010 A法にて測定した。
Hereinafter, examples of the moisture-permeable and waterproof fabric according to the present embodiment will be described, but the present invention is not limited to these examples. The measurement and evaluation of various physical properties in each of the evaluation items A to G in the following Examples and Comparative Examples were carried out by the following methods. Further, "%" and "part" in Examples and Comparative Examples are "mass%" and "parts by mass".
[A: Water pressure resistance]
The water pressure resistance was measured by a method according to JIS L1092: 2009 water resistance test B method (high water pressure method). The measured values were converted into mmH 2 O units and displayed.
If the test piece is stretched by applying water pressure, a nylon taffeta (the total density of warp and weft threads per 2.54 cm is about 210) is placed on the test piece and the tester is used. It was attached to and measured.
[B: Moisture permeability]
Regarding the moisture permeability, both the moisture permeability based on the JIS L1099-2012 A-1 method (calcium chloride method) and the moisture permeability based on the JIS L1099-2012 B-1 method (potassium acetate method) were measured.
The water contact surface was a fiber cloth surface, and the moisture permeability of each was converted into the moisture permeability per 24 hours.
[C: Abrasion resistance]
The wear resistance was tested according to JIS L1096: 2010 wear strength C method (Teva type method), and the number of times until the waterproof layer was punctured (whether the resin film surface was punctured every 100 times). Was confirmed, and the evaluation was made by measuring the number of times immediately before the hole was confirmed). The case where no hole was confirmed in the waterproof layer after 500 tests was regarded as a pass.
The wear ring used at the time of measurement is No. The load was CS-17 and the load was 4.90N.
[D: Thickness of wear protection layer]
Using a scanning electron microscope (SEMEDX Type H type: Hitachi Science Systems Co., Ltd.), observe the cross section of the moisture-permeable and waterproof fabric at 1000 to 4500 times, and measure the thickness of the wear protection layer at any 5 points. , The average value of them was calculated and determined as the thickness of the wear protection layer.
[E: pH of moisture permeable and waterproof fabric]
The pH of the moisture permeable and waterproof fabric was measured by the JIS L1096: 2010 A method.

[F:水膨潤]
水膨潤は、10cm四方の試料の樹脂膜面に2gの水を滴下して塗り広げ、5分間静置したのちの外観を確認することにより評価した。
[G:実着摩耗試験]
試験用ジャケットの肩部に10cm×10cmにカットした透湿防水性布帛を膜面が表側になるよう縫い付け、重りを入れて合計5kgになるよう調整したリュックサックを背負い、1段18cmの階段を往復しながらのべ1800段ずつ上り下りした。試験後の縫い付けられた試験片の外観を以下の3段階で実着摩耗性を評価した。◎および〇を合格とした。
◎:変化なし
○:撚れが発生するも穴が開いていない
×:穴が開く
[F: Water swelling]
Water swelling was evaluated by dropping 2 g of water on the resin film surface of a 10 cm square sample, spreading it, allowing it to stand for 5 minutes, and then confirming the appearance.
[G: Actual wear test]
A breathable waterproof cloth cut to 10 cm x 10 cm is sewn on the shoulder of the test jacket so that the film surface is on the front side, and a rucksack adjusted to a total of 5 kg with a weight is carried on the back, and a staircase of 18 cm per step. It went up and down in total of 1800 steps while going back and forth. The appearance of the sewn test piece after the test was evaluated for actual wear resistance in the following three stages. ◎ and 〇 were accepted.
◎: No change ○: Twisting occurs but no holes are opened ×: Holes are opened

(実施例1)
<繊維布帛>
ナイロンタフタ(繊維太さ:経糸83デシテックス/72フィラメント、緯糸83デシテックス/72フィラメント。繊維密度:経糸114本/2.54cm、緯糸92本/2.54cm)を酸性染料でネビー色に染色した。
次いで、このナイロンタフタに、フッ素系撥水剤 アサヒガ−ド AG−E081(AGC株式会社製)の5%水溶液を用いて撥水加工を行ってから、170℃、圧力(線圧)128kgf/cmにてカレンダー加工したものを繊維布帛として用いた。
(Example 1)
<Fiber fabric>
Nylon taffeta (fiber thickness: warp 83 decitex / 72 filaments, weft 83 decitex / 72 filaments. Fiber density: warp 114 / 2.54 cm, weft 92 / 2.54 cm) was dyed in a navy color with an acid dye.
Next, this nylon taffeta is subjected to water repellent treatment using a 5% aqueous solution of the fluorine-based water repellent Asahigard AG-E081 (manufactured by AGC Co., Ltd.), and then at 170 ° C., pressure (linear pressure) 128 kgf / cm. The one processed by the calendar in 1 was used as the fiber cloth.

<延伸法によるウレタン樹脂を含む多孔質防水層>
ポリカーボネート系ウレタン樹脂 クリスボン NY−331(DIC株式会社製)100部に、平均粒径2μmの炭酸カルシウム1部、ステアリン酸1部を添加し、ラボプラストミルにて混練した。得られた混合溶液を離型紙上に塗布後、120℃にて熱風乾燥させて厚さ50μmのフィルムを成膜した。離型紙を剥離して得られたフィルムをロール延伸機にて延伸速度6m/分、延伸率300%の条件で延伸処理して、多孔質の防水フィルムを得た。
次に、グラビアコーターを用いて湿気硬化型ホットメルトタイプウレタン樹脂接着剤 タイフォース NH−320(DIC株式会社製)を110℃に加熱し溶融させ、点状に、前記防水フィルムの面に付与した。
次に、前記防水フィルムの接着剤を付与した面と、前記繊維布帛のカレンダー処理面を向き合うように重ね合せ、ニップロールを用いて100℃で熱圧着した。熱圧着したのち、70℃で72時間エージングすることで、繊維布帛に、延伸法により形成されたウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。
<Porous waterproof layer containing urethane resin by stretching method>
To 100 parts of polycarbonate urethane resin Chrisbon NY-331 (manufactured by DIC Corporation), 1 part of calcium carbonate and 1 part of stearic acid having an average particle size of 2 μm were added and kneaded with a laboplast mill. The obtained mixed solution was applied onto a paper pattern and then dried with hot air at 120 ° C. to form a film having a thickness of 50 μm. The film obtained by peeling the release paper was stretched with a roll stretching machine under the conditions of a stretching speed of 6 m / min and a stretching rate of 300% to obtain a porous waterproof film.
Next, using a gravure coater, a moisture-curable hot-melt type urethane resin adhesive Tyforce NH-320 (manufactured by DIC Corporation) was heated to 110 ° C. to melt it, and the adhesive was applied to the surface of the waterproof film in dots. ..
Next, the surface to which the adhesive of the waterproof film was applied and the calendar-treated surface of the fiber fabric were overlapped so as to face each other, and heat-pressed at 100 ° C. using a nip roll. After heat-pressing, it was aged at 70 ° C. for 72 hours to obtain a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin formed by a stretching method was laminated on the fiber cloth.

<摩耗保護層の付与>
次に、シリコーン変性ポリカーボネート系ウレタン樹脂 クリスボン NY−373(DIC株式会社製)100部をトルエン60部で希釈した溶液を、上記防水層を積層した透湿防水性布帛の防水層の表面全面にグラビアコーターにて塗工した後、120℃にて熱風乾燥させることにより、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表1に記載した。
<Giving a wear protection layer>
Next, a solution obtained by diluting 100 parts of silicone-modified polycarbonate-based urethane resin Chrisbon NY-373 (manufactured by DIC Corporation) with 60 parts of toluene is gravured on the entire surface of the waterproof layer of the moisture-permeable waterproof fabric in which the waterproof layer is laminated. After coating with a coater, it was dried with hot air at 120 ° C. to obtain a moisture-permeable waterproof cloth having a wear protection layer provided on the surface of the waterproof layer. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 1.

(比較例1)
<延伸法によるPTFEを含む多孔質防水層>
延伸法により多孔質とされた厚さ30μmのPTFEフィルム Tetratex(日本ドナルドソン株式会社製)に、グラビアコーターを用いて湿気硬化型ホットメルトタイプウレタン樹脂接着剤 タイフォース NH−320(DIC株式会社製)を110℃に加熱し溶融させ、点状に、前記PTFEフィルムの面に付与した。
次に、前記PTFEフィルムの接着剤を付与した面と、実施例1に記載した繊維布帛のカレンダー処理面を向き合うように重ね合せ、ニップロールを用いて100℃で熱圧着した。熱圧着したのち、70℃で72時間エージングすることで、延伸法により形成されたPTFEを含む多孔質防水層が積層された透湿防水性布帛を得た。
(Comparative Example 1)
<Porous waterproof layer containing PTFE by stretching method>
Moisture-curing hot-melt type urethane resin adhesive Typorex NH-320 (manufactured by DIC Co., Ltd.) using a gravure coater on a 30 μm-thick PTFE film Tetratex (manufactured by Nippon Donaldson Co., Ltd.) that has been made porous by the stretching method. ) Was heated to 110 ° C. to melt it, and the film was applied to the surface of the PTFE film in dots.
Next, the adhesive-coated surface of the PTFE film and the calendar-treated surface of the fiber fabric described in Example 1 were overlapped so as to face each other, and heat-pressed at 100 ° C. using a nip roll. After heat-bonding, it was aged at 70 ° C. for 72 hours to obtain a moisture-permeable and waterproof fabric on which a porous waterproof layer containing PTFE formed by a stretching method was laminated.

次に、実施例1に記載した方法により、防水層の表面に摩耗保護層を付与し、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表1に記載した。 Next, by the method described in Example 1, a abrasion protection layer was applied to the surface of the waterproof layer, and a moisture-permeable waterproof fabric provided with the abrasion protection layer on the surface of the waterproof layer was obtained. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 1.

(比較例2)
<乾式ラミネート法によるウレタン樹脂を含む無孔質防水層>
離型紙上にエステル系ウレタン樹脂 クリスボン S−125(DIC株式会社製)100部を2−ブタノン(MEK)50部で希釈した溶液を塗布後、120℃にて熱風乾燥させて厚さ13μmのウレタン樹脂フィルムを製膜した。
次に、エステル系ウレタン樹脂接着剤 クリスボン 4070(DIC株式会社製)100部、ポリイソシアネート溶液 コロネート L(東ソー株式会社製)12部、N−メチルジエタノールアミン0.2部を調合、トルエン60部で希釈し撹拌した溶剤を、前記防水フィルム上に塗布後、90℃にて熱風乾燥して防水フィルムに接着剤層を付与した。
次に、フィルムの接着剤層に、実施例1に記載した繊維布帛のカレンダー処理面を向き合うように重ね合せ、ニップロールを用いて120℃で熱圧着した。熱圧着したのち、60℃で24時間エージング後に離型紙を剥離することで、乾式ラミネート法により形成されたウレタン樹脂を含む無孔質防水層が積層された透湿防水性布帛を得た。
(Comparative Example 2)
<Non-porous waterproof layer containing urethane resin by dry laminating method>
After applying a solution of 100 parts of ester urethane resin Chrisbon S-125 (manufactured by DIC Corporation) diluted with 50 parts of 2-butanone (MEK) on the release paper, it is dried with hot air at 120 ° C. to make urethane with a thickness of 13 μm. A resin film was formed.
Next, 100 parts of ester urethane resin adhesive Chrisbon 4070 (manufactured by DIC Co., Ltd.), 12 parts of polyisocyanate solution Coronate L (manufactured by Toso Co., Ltd.), and 0.2 part of N-methyldiethanolamine were prepared and diluted with 60 parts of toluene. The stirred solvent was applied onto the waterproof film and then dried with hot air at 90 ° C. to impart an adhesive layer to the waterproof film.
Next, the adhesive layer of the film was superposed so that the calendar-treated surfaces of the fiber fabric described in Example 1 faced each other, and heat-pressed at 120 ° C. using a nip roll. After heat-bonding and aging at 60 ° C. for 24 hours, the release paper was peeled off to obtain a moisture-permeable waterproof fabric on which a non-porous waterproof layer containing a urethane resin formed by a dry laminating method was laminated.

次に、実施例1に記載した方法により、防水層の表面に摩耗保護層を付与し、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表1に記載した。 Next, by the method described in Example 1, a abrasion protection layer was applied to the surface of the waterproof layer, and a moisture-permeable waterproof fabric provided with the abrasion protection layer on the surface of the waterproof layer was obtained. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 1.

(比較例3)
離型紙上にエーテル系ウレタン樹脂 クリスボン S−525(DIC株式会社製)100部をMEK50部で希釈した溶液を塗布後、120℃にて熱風乾燥させて厚さ13μmのウレタン樹脂フィルムを製膜した。
次に、エーテル/エステル系ウレタン樹脂接着剤 クリスボン TA−150(DIC株式会社製)100部、ポリイソシアネート溶液 コロネート L(東ソー株式会社製)12部、N−メチルジエタノールアミン0.2部を調合、トルエン60部で希釈し撹拌した溶剤を離型紙上に製膜したフィルム上に塗布後、90℃にて熱風乾燥してフィルムに接着剤層を付与した。
次に、フィルムの接着剤層に、実施例1に記載した繊維布帛のカレンダー処理面を向き合うように重ね合せ、ニップロールを用いて120℃で熱圧着した。熱圧着したのち、60℃で24時間エージング後に離型紙を剥離することで、乾式ラミネート法により形成されたウレタン樹脂を含む無孔質防水層が積層された透湿防水性布帛を得た。
(Comparative Example 3)
A solution obtained by diluting 100 parts of ether-based urethane resin Chrisbon S-525 (manufactured by DIC Corporation) with 50 parts of MEK was applied on a release paper, and then dried with hot air at 120 ° C. to form a urethane resin film having a thickness of 13 μm. ..
Next, 100 parts of ether / ester urethane resin adhesive Chrisbon TA-150 (manufactured by DIC Co., Ltd.), 12 parts of polyisocyanate solution Coronate L (manufactured by Toso Co., Ltd.), and 0.2 part of N-methyldiethanolamine were prepared, and toluene was prepared. A solvent diluted in 60 parts and stirred was applied onto a film formed on a release paper, and then dried with hot air at 90 ° C. to give an adhesive layer to the film.
Next, the adhesive layer of the film was superposed so that the calendar-treated surfaces of the fiber fabric described in Example 1 faced each other, and heat-pressed at 120 ° C. using a nip roll. After heat-bonding and aging at 60 ° C. for 24 hours, the release paper was peeled off to obtain a moisture-permeable waterproof fabric on which a non-porous waterproof layer containing a urethane resin formed by a dry laminating method was laminated.

次に、実施例1に記載した方法により、防水層の表面に摩耗保護層を付与し、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表1に記載した。 Next, by the method described in Example 1, a abrasion protection layer was applied to the surface of the waterproof layer, and a moisture-permeable waterproof fabric provided with the abrasion protection layer on the surface of the waterproof layer was obtained. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 1.

(比較例4)
<湿式凝固法によるウレタン樹脂を含む多孔質防水層>
実施例1に記載した繊維布帛のカレンダー処理面に、エステル系ウレタン樹脂 クリスボン MP−858(DIC株式会社製)100部をDMF40部で希釈した溶液を塗布後、20℃の水に5分間浸漬してウレタン樹脂を凝固させ、さらに40℃の温水に浸漬して5分間の脱溶媒を行った。さらに、該繊維布帛を120℃にて熱風乾燥して、繊維布帛に、厚さ40μmの湿式凝固法により形成されたウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表1に記載した。
(Comparative Example 4)
<Porous waterproof layer containing urethane resin by wet solidification method>
A solution obtained by diluting 100 parts of ester urethane resin Chrisbon MP-858 (manufactured by DIC Corporation) with 40 parts of DMF was applied to the calendar-treated surface of the fiber cloth described in Example 1, and then immersed in water at 20 ° C. for 5 minutes. The urethane resin was coagulated and further immersed in warm water at 40 ° C. for 5 minutes of desolvation. Further, the fiber cloth was dried with hot air at 120 ° C. to obtain a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin formed by a wet coagulation method having a thickness of 40 μm was laminated on the fiber cloth. .. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 1.

Figure 2020080084
Figure 2020080084

(実施例2)
実施例1に記載した繊維布帛のカレンダー処理面に、エステル系ウレタン樹脂 クリスボン MP−858(DIC株式会社製)100部、二酸化チタン系顔料 レザミンCUT−934T(大日精化工業株式会社製)20部を調合、DMF40部で希釈し撹拌した溶液を塗布後、20℃の水に5分間浸漬してウレタン樹脂を凝固させ、さらに40℃の温水に浸漬して5分間の脱溶媒を行った。さらに、該繊維布帛を120℃にて熱風乾燥して、繊維布帛に、厚さ40μmの湿式凝固法により形成されたウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。
(Example 2)
100 parts of ester-based urethane resin Chrisbon MP-858 (manufactured by DIC Corporation) and 20 parts of titanium dioxide-based pigment Resamine CUT-934T (manufactured by Dainichi Seika Kogyo Co., Ltd.) on the calendar-treated surface of the fiber cloth described in Example 1. Was prepared, diluted with 40 parts of DMF and stirred, and then immersed in water at 20 ° C. for 5 minutes to solidify the urethane resin, and further immersed in warm water at 40 ° C. for 5 minutes to remove the solvent. Further, the fiber cloth was dried with hot air at 120 ° C. to obtain a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin formed by a wet coagulation method having a thickness of 40 μm was laminated on the fiber cloth. ..

次に、実施例1に記載した方法により、防水層の表面に摩耗保護層を付与し、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表2に記載した。 Next, by the method described in Example 1, a abrasion protection layer was applied to the surface of the waterproof layer, and a moisture-permeable waterproof fabric provided with the abrasion protection layer on the surface of the waterproof layer was obtained. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 2.

(実施例3)
実施例2に記載した方法により、繊維布帛に防水層を積層し、ウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。
(Example 3)
By the method described in Example 2, a waterproof layer was laminated on the fiber cloth to obtain a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin was laminated.

次に、シリコーン変性ポリカーボネート系ウレタン樹脂 クリスボン NY−373(DIC株式会社製)100部をトルエン60部で希釈した溶液を、上記防水層を積層した透湿防水性布帛の防水層の表面全面にバーコーターにて塗工した後、120℃にて熱風乾燥させることにより、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表2に記載した。 Next, a solution obtained by diluting 100 parts of silicone-modified polycarbonate-based urethane resin Chrisbon NY-373 (manufactured by DIC Corporation) with 60 parts of toluene is applied to the entire surface of the waterproof layer of the moisture-permeable waterproof cloth in which the waterproof layer is laminated. After coating with a coater, it was dried with hot air at 120 ° C. to obtain a moisture-permeable waterproof cloth having a wear protection layer provided on the surface of the waterproof layer. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 2.

(実施例4)
実施例2に記載した方法により、繊維布帛に防水層を積層し、ウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。
(Example 4)
By the method described in Example 2, a waterproof layer was laminated on the fiber cloth to obtain a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin was laminated.

次に、シリコーン変性エステル系ウレタン樹脂 ラックスキン U2960−2(セイコー化成株式会社製)100部をトルエン60部で希釈した溶液を、上記防水層を積層した透湿防水性布帛の防水層の表面全面にグラビアコーターにて塗工した後、120℃にて熱風乾燥させることにより、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表2に記載した。 Next, a solution obtained by diluting 100 parts of silicone-modified ester-based urethane resin Luxkin U2960-2 (manufactured by Seiko Kasei Co., Ltd.) with 60 parts of toluene was added to the entire surface of the waterproof layer of the moisture-permeable waterproof cloth in which the above waterproof layer was laminated. After coating with a gravure coater, it was dried with hot air at 120 ° C. to obtain a moisture-permeable waterproof cloth in which a wear protection layer was provided on the surface of the waterproof layer. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 2.

(実施例5)
比較例4に記載した方法により、繊維布帛に防水層を積層し、ウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。
次に、実施例1に記載した方法により、防水層の表面に摩耗保護層を付与し、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表2に記載した。
(Example 5)
By the method described in Comparative Example 4, a waterproof layer was laminated on the fiber cloth, and a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin was laminated was obtained.
Next, by the method described in Example 1, a abrasion protection layer was applied to the surface of the waterproof layer, and a moisture-permeable waterproof fabric provided with the abrasion protection layer on the surface of the waterproof layer was obtained. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 2.

(実施例6)
実施例1に記載した繊維布帛のカレンダー処理面に、エステル系ウレタン樹脂 クリスボン MP−858(DIC株式会社製)100部、炭酸カルシウム系顔料 ダイラック フィラー F−14(DIC株式会社製)20部を調合、DMF40部で希釈し撹拌した溶液を塗布後、20℃の水に5分間浸漬してウレタン樹脂を凝固させ、さらに40℃の温水に浸漬して5分間の脱溶媒を行った。さらに、該繊維布帛を120℃にて熱風乾燥して、繊維布帛に、厚さ40μmの湿式凝固法により形成されたウレタン樹脂を含む多孔質防水層が積層された透湿防水性布帛を得た。
(Example 6)
100 parts of ester urethane resin Chrisbon MP-858 (manufactured by DIC Corporation) and 20 parts of calcium carbonate pigment Dilac filler F-14 (manufactured by DIC Corporation) are blended on the calendar-treated surface of the fiber cloth described in Example 1. After applying the solution diluted with 40 parts of DMF and stirred, the solution was immersed in water at 20 ° C. for 5 minutes to solidify the urethane resin, and further immersed in warm water at 40 ° C. for 5 minutes to remove the solvent. Further, the fiber cloth was dried with hot air at 120 ° C. to obtain a moisture-permeable waterproof cloth in which a porous waterproof layer containing a urethane resin formed by a wet coagulation method having a thickness of 40 μm was laminated on the fiber cloth. ..

次に、実施例1に記載した方法により、防水層の表面に摩耗保護層を付与し、防水層の表面に摩耗保護層が設けられた透湿防水性布帛を得た。得られた透湿防水性布帛の性能を表2に記載した。 Next, by the method described in Example 1, a abrasion protection layer was applied to the surface of the waterproof layer, and a moisture-permeable waterproof fabric provided with the abrasion protection layer on the surface of the waterproof layer was obtained. The performance of the obtained moisture-permeable and waterproof fabric is shown in Table 2.

Figure 2020080084
Figure 2020080084

表1および2を参照すると、防水層をPTFEによって構成した比較例1の透湿防水性布帛では、PTFE自体が耐摩耗性に劣るため、その上に摩耗保護層を設けても、当該摩耗保護層の上からの摩耗作用によって防水層が損傷し、結果として十分な耐摩耗性が得られなかった。比較例2では、防水層が無孔質であったためにA−1法およびB−1法の両方法に基づく透湿度が低く、十分な透湿性が得られなかった。比較例3では、防水層が無孔質であるにもかかわらず、当該防水層を水膨潤性のエーテル系ウレタン樹脂によって構成したために比較例2と比べて透湿性は幾らか改善された。しかしながら、比較例3では、防水層に水膨潤性のエーテル系ウレタン樹脂を使用したために、水膨潤が生じて外観品位の低下が観察された。比較例4では、摩耗保護層を設けなかったために、JIS L1096:2010 摩耗強さC法(テーバ形法)に準じた試験で200回の試験後に防水層に穴あきが確認され、実着摩耗試験も不合格であり、耐摩耗性の性能が最も低かった。 With reference to Tables 1 and 2, in the moisture-permeable waterproof fabric of Comparative Example 1 in which the waterproof layer is made of PTFE, the PTFE itself is inferior in abrasion resistance. The waterproof layer was damaged by the abrasion action from above the layer, and as a result, sufficient wear resistance was not obtained. In Comparative Example 2, since the waterproof layer was non-porous, the moisture permeability based on both the A-1 method and the B-1 method was low, and sufficient moisture permeability could not be obtained. In Comparative Example 3, although the waterproof layer was non-porous, the moisture permeability was somewhat improved as compared with Comparative Example 2 because the waterproof layer was composed of a water-swellable ether urethane resin. However, in Comparative Example 3, since the waterproof layer was made of a water-swellable ether urethane resin, water swelling was observed and deterioration of the appearance quality was observed. In Comparative Example 4, since the wear protection layer was not provided, holes were confirmed in the waterproof layer after 200 tests in a test according to JIS L1096: 2010 wear strength C method (Teva type method), and actual wear was observed. The test also failed, with the lowest wear resistance performance.

これとは対照的に、本発明に係る全ての実施例の透湿防水性布帛において、防水層を疎水性のエステル系および/またはポリカーボネート系ウレタン樹脂で構成してさらに多孔質とし、その上に摩耗保護層を設けることで、水膨潤による外観品位の低下なしに高い防水性および透湿性を達成し、具体的には最も低い実施例でも2000mmH2O以上の耐水圧および3500g/m2/24hr以上のA−1法およびB−1法に基づく透湿度を達成し、さらに優れた耐摩耗性を達成することができた。とりわけ、摩耗保護層の厚みが7μmであり、他の実施例と比べて比較的厚い実施例3の透湿防水性布帛でさえ、3500g/m2/24hr以上のA−1法およびB−1法に基づく透湿度を達成することができた。一方で、摩耗保護層の厚みを薄くしたこと以外は実施例3と同じ構成を有する実施例2の透湿防水性布帛では、摩耗保護層の厚みを6μm以下に薄くすることで、十分な防水性および耐摩耗性を維持しつつ、透湿性を顕著に向上させることができていることがわかる。In contrast, in the moisture permeable and waterproof fabrics of all the examples according to the present invention, the waterproof layer is further made porous by being composed of a hydrophobic ester-based and / or polycarbonate-based urethane resin, and on the waterproof layer. by providing the wear protection layer, high without loss of appearance quality due to water swelling waterproof and achieve moisture permeability of 2000mmH 2 O or more at the lowest embodiments specifically water pressure resistance and 3500g / m 2 / 24hr The moisture permeability based on the above A-1 method and B-1 method was achieved, and further excellent wear resistance could be achieved. Especially, the thickness of the wear protection layer is 7 [mu] m, even moisture permeable waterproof fabric of relatively thick Example 3 as compared with other examples, 3500g / m 2 / 24hr or more A-1 method and B-1 We were able to achieve legal moisture permeability. On the other hand, in the moisture-permeable waterproof fabric of Example 2 having the same configuration as that of Example 3 except that the thickness of the abrasion protection layer is reduced, the thickness of the abrasion protection layer is reduced to 6 μm or less to provide sufficient waterproofing. It can be seen that the moisture permeability can be significantly improved while maintaining the properties and abrasion resistance.

また、摩耗保護層をエステル系ウレタン樹脂によって構成した実施例4では、JIS L1096:2010 摩耗強さC法(テーバ形法)に準じた試験で900回の試験後に防水層に穴あきが確認されたのに対し、摩耗保護層をポリカーボネート系ウレタン樹脂によって構成した他の実施例では2000回の試験後においても防水層に穴あきは確認されなかった。さらに、防水層に無機粒子を含めていない実施例5の透湿防水性布帛と比較して、防水層に無機粒子を含めた以外は実施例5と同様の構成を有する実施例2の透湿防水性布帛では、その透湿性が大きく改善されていることがわかる。加えて、無機粒子として炭酸カルシウムを用いた実施例6の透湿防水性布帛では、優れた透湿性を達成することができたものの、弱アルカリ性のpH値を示した。一方、無機粒子として二酸化チタンを使用した実施例2及び4では、無機粒子を使用することで透湿性を顕著に改善しつつ、人の肌に優しい4.0〜7.0のpHに制御することができた。 Further, in Example 4 in which the wear protection layer was made of an ester-based urethane resin, holes were confirmed in the waterproof layer after 900 tests in a test according to JIS L1096: 2010 wear strength C method (Teva type method). On the other hand, in other examples in which the wear protection layer was made of a polycarbonate-based urethane resin, no holes were confirmed in the waterproof layer even after 2000 tests. Further, as compared with the moisture-permeable waterproof fabric of Example 5 in which the waterproof layer does not contain inorganic particles, the moisture-permeable fabric of Example 2 has the same configuration as that of Example 5 except that the waterproof layer contains inorganic particles. It can be seen that the moisture permeability of the waterproof fabric is greatly improved. In addition, the moisture-permeable and waterproof fabric of Example 6 using calcium carbonate as the inorganic particles was able to achieve excellent moisture permeability, but showed a weakly alkaline pH value. On the other hand, in Examples 2 and 4 in which titanium dioxide was used as the inorganic particles, the pH was controlled to 4.0 to 7.0, which is gentle on human skin, while remarkably improving the moisture permeability by using the inorganic particles. I was able to.

以上のようにして得られた透湿防水性布帛は、疎水性のウレタン樹脂を含む多孔質の防水層を布帛に積層し、さらに前記防水層の表面全体または一部に摩耗保護層を設けられているため、防水性を有していながら、透湿性を有し、耐摩耗性に優れ、かつ樹脂膜が水に接触した場合においても水膨潤による外観品位の低下を抑制することができる。
したがって、本発明の透湿防水性布帛を用いれば、衣服等に雨などが侵入することを抑制し、かつ、蒸れを抑え、さらに摩耗に強い、樹脂膜面が表面に用いられている衣服、靴、鞄などの繊維製品を提供することができる。
In the moisture-permeable waterproof fabric obtained as described above, a porous waterproof layer containing a hydrophobic urethane resin is laminated on the fabric, and a wear protection layer is provided on the entire surface or a part of the waterproof layer. Therefore, while having waterproofness, it has moisture permeability, is excellent in abrasion resistance, and can suppress deterioration of appearance quality due to water swelling even when the resin film comes into contact with water.
Therefore, by using the moisture-permeable and waterproof fabric of the present invention, clothes having a resin film surface used on the surface, which suppresses rain or the like from entering clothes, suppresses stuffiness, and is resistant to wear, We can provide textile products such as shoes and bags.

Claims (9)

繊維布帛の少なくとも片面に、ウレタン樹脂を含む多孔質の防水層、および前記防水層の表面全面または一部に形成された摩耗保護層を含み、前記ウレタン樹脂がエステル系および/またはポリカーボネート系ウレタン樹脂であることを特徴とする透湿防水性布帛。 At least one surface of the fiber cloth contains a porous waterproof layer containing a urethane resin and an abrasion protection layer formed on the entire surface or a part of the surface of the waterproof layer, and the urethane resin is an ester-based and / or polycarbonate-based urethane resin. A moisture-permeable and waterproof fabric characterized by being. 耐水圧が2000mmH2O以上であり、かつJIS L1099:2012 A−1法に基づく透湿度およびB−1法に基づく透湿度がいずれも3500g/m2/24hr以上であることを特徴とする請求項1に記載の透湿防水性布帛。According moisture permeability based on based on the 2012 A-1 method moisture permeability and B-1 method is characterized in that it is both 3500g / m 2 / 24hr or more: water pressure resistance is at 2000mmH 2 O or more, and JIS L1099 Item 2. The moisture-permeable and waterproof fabric according to Item 1. 前記透湿防水性布帛に対する、摩耗輪:No.CS−17、荷重:4.9Nを用いたJIS L1096:2010 摩耗強さC法(テーバ形法)に準じた試験で、500回の試験後に前記防水層に穴あきが確認されないことを特徴とする請求項1または請求項2に記載の透湿防水性布帛。 Abrasion wheel: No. It is a test based on JIS L1096: 2010 abrasion strength C method (Teva type method) using CS-17 and load: 4.9N, and it is characterized in that no holes are confirmed in the waterproof layer after 500 tests. The moisture-permeable and waterproof fabric according to claim 1 or 2. 前記摩耗保護層の厚みが6μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載の透湿防水性布帛。 The moisture-permeable and waterproof fabric according to any one of claims 1 to 3, wherein the thickness of the abrasion protection layer is 6 μm or less. 前記摩耗保護層が、シリコーン樹脂、またはシリコーン変性樹脂を含むことを特徴とする請求項1〜請求項4のいずれか1項に記載の透湿防水性布帛。 The moisture-permeable and waterproof fabric according to any one of claims 1 to 4, wherein the wear protection layer contains a silicone resin or a silicone-modified resin. 前記摩耗保護層がポリカーボネート系ウレタン樹脂を含むことを特徴とする請求項1〜請求項4のいずれか1項に記載の透湿防水性布帛。 The moisture-permeable and waterproof fabric according to any one of claims 1 to 4, wherein the wear protection layer contains a polycarbonate-based urethane resin. 前記防水層中に無機粒子が含まれていることを特徴とする請求項1〜請求項6のいずれか1項に記載の透湿防水性布帛。 The moisture-permeable and waterproof fabric according to any one of claims 1 to 6, wherein the waterproof layer contains inorganic particles. 前記無機粒子が酸化アルミニウム、二酸化ケイ素、二酸化チタンおよびそれらの組み合わせからなる群より選択されることを特徴とする請求項7に記載の透湿防水性布帛。 The moisture-permeable and waterproof fabric according to claim 7, wherein the inorganic particles are selected from the group consisting of aluminum oxide, silicon dioxide, titanium dioxide and a combination thereof. 請求項1〜請求項8のいずれか1項に記載の透湿防水性布帛を少なくとも一部に用いた繊維製品。 A textile product using at least a part of the moisture-permeable and waterproof fabric according to any one of claims 1 to 8.
JP2020553023A 2018-10-19 2019-09-30 Moisture-permeable and waterproof fabric and textile products using the same Active JP7372257B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018197384 2018-10-19
JP2018197384 2018-10-19
PCT/JP2019/038612 WO2020080084A1 (en) 2018-10-19 2019-09-30 Moisture-permeable waterproof cloth, and fiber product using same

Publications (2)

Publication Number Publication Date
JPWO2020080084A1 true JPWO2020080084A1 (en) 2021-09-09
JP7372257B2 JP7372257B2 (en) 2023-10-31

Family

ID=70283194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020553023A Active JP7372257B2 (en) 2018-10-19 2019-09-30 Moisture-permeable and waterproof fabric and textile products using the same

Country Status (2)

Country Link
JP (1) JP7372257B2 (en)
WO (1) WO2020080084A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588924B (en) 2007-01-24 2014-04-16 小松精练株式会社 Vapor permeable waterproof sheet and method for producing the same
JP5396010B2 (en) 2007-06-15 2014-01-22 小松精練株式会社 Moisture permeable waterproof fabric and method for producing the same
JP5378067B2 (en) 2008-06-03 2013-12-25 セーレン株式会社 Moisture permeable waterproof fabric and method for producing the same
JP5593011B2 (en) 2009-09-28 2014-09-17 ユニチカトレーディング株式会社 Moisture permeable waterproof membrane and manufacturing method thereof
JP6587947B2 (en) 2016-01-27 2019-10-09 ユニチカトレーディング株式会社 Blood / virus barrier laminate fabric and method for producing the same

Also Published As

Publication number Publication date
JP7372257B2 (en) 2023-10-31
WO2020080084A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
AU2016294611B2 (en) Silk performance apparel and products and methods of preparing the same
JP4931938B2 (en) Moisture permeable waterproof sheet and method for producing the same
JP5463089B2 (en) Laminated fabric and method for producing the same
CN106715772B (en) Fabric containing expanded polytetrafluoroethylene fiber
CN101517155B (en) Fabric, composite fabric and fiber product excelling in abrasion resistance, and process for producing the same
CN111712514A (en) Silk coated fabrics and products and methods of making same
JP5147252B2 (en) Moisture permeable waterproof fabric
JP2007136970A (en) Moisture-permeable waterproof cloth
JP7443062B2 (en) Waterproof fabric and textile products using the same
JP6262660B2 (en) Moisture permeable waterproof sheet and method for producing the same
ES2448740B1 (en) Procedure for obtaining a skin-like fabric, similar to leather, and corresponding tissue obtained
KR102298944B1 (en) Waterproof fabric and textile product employing same
JP7112932B2 (en) Heat shielding fiber fabric and clothing using it
JP5396010B2 (en) Moisture permeable waterproof fabric and method for producing the same
JP7372257B2 (en) Moisture-permeable and waterproof fabric and textile products using the same
JP2007210217A (en) Moisture-permeable waterproof fabric
KR101912828B1 (en) Non-swelling porous film and manufacturing method tereof and its use using the same
JP4767012B2 (en) Moisture permeable waterproof fabric
JP6422115B2 (en) Fabric and manufacturing method thereof
JP7330024B2 (en) Moisture-permeable and waterproof fabric, clothing containing the same, and method for producing the moisture-permeable and waterproof fabric
JP5183980B2 (en) Waterproof fabric and method for producing the same
WO2024004784A1 (en) Moisture-permeable waterproofing layered fabric, production method therefor, and garment obtained using same
JP2006132033A (en) Method for producing moisture permeation-preventing fabric
WO2023047824A1 (en) Fiber laminated structure and production method therefor
JP2003119673A (en) Production of moisture-permeable and waterproof coated fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150