JPWO2020067243A1 - Image display device with fingerprint authentication sensor - Google Patents
Image display device with fingerprint authentication sensor Download PDFInfo
- Publication number
- JPWO2020067243A1 JPWO2020067243A1 JP2020549085A JP2020549085A JPWO2020067243A1 JP WO2020067243 A1 JPWO2020067243 A1 JP WO2020067243A1 JP 2020549085 A JP2020549085 A JP 2020549085A JP 2020549085 A JP2020549085 A JP 2020549085A JP WO2020067243 A1 JPWO2020067243 A1 JP WO2020067243A1
- Authority
- JP
- Japan
- Prior art keywords
- film
- image display
- degrees
- display device
- fingerprint authentication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000007 visual effect Effects 0.000 claims abstract description 20
- 238000010791 quenching Methods 0.000 claims description 11
- 230000000171 quenching effect Effects 0.000 claims description 11
- 239000010408 film Substances 0.000 description 134
- 230000001681 protective effect Effects 0.000 description 17
- 239000010410 layer Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 230000003746 surface roughness Effects 0.000 description 7
- 239000012790 adhesive layer Substances 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- -1 polypropylene Polymers 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
- G06V10/14—Optical characteristics of the device performing the acquisition or on the illumination arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/13—Sensors therefor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Optics & Photonics (AREA)
- Multimedia (AREA)
- Polarising Elements (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Liquid Crystal (AREA)
Abstract
指紋認証センサーの視認側に偏光板を有する画像表示装置において、偏光板の視認側に配向フィルムが存在する場合であっても、指紋認証システムが正常に作動する画像表示装置を提供することができる。指紋認証センサーの視認側に偏光板を有し、前記偏光板の視認側に配向フィルムを有する画像表示装置であって、前記配向フィルムの主配向方向と前記偏光板の偏光子の消光軸方向がなす角度が0度±6度以下、または90度±6度以下である画像表示装置。(なお、上記において、「以下」は「±」の次の数値にのみかかるものとする。)In an image display device having a polarizing plate on the visual side of the fingerprint authentication sensor, it is possible to provide an image display device in which the fingerprint authentication system operates normally even when an alignment film is present on the visual side of the polarizing plate. .. An image display device having a polarizing plate on the viewing side of the fingerprint authentication sensor and an alignment film on the viewing side of the polarizing plate, in which the main alignment direction of the alignment film and the extinguishing axis direction of the polarizer of the polarizing plate are An image display device whose angle is 0 degrees ± 6 degrees or less, or 90 degrees ± 6 degrees or less. (In addition, in the above, "below" shall be applied only to the numerical value next to "±".)
Description
本発明は、指紋認証センサーを有し、その視認側に配向フィルムを有する画像表示装置に関する。 The present invention relates to an image display device having a fingerprint authentication sensor and an alignment film on the visual side thereof.
従来から、画像表示装置には、表面保護のため表面保護フィルムを貼り合わせることが行われてきた。表面保護フィルムは、表面の傷付き防止だけでなく、画像セルや表面ガラス板が割れた場合の飛散防止の目的もあり、耐衝撃性に優れた二軸延伸ポリエステルなどの配向フィルムが用いられてきた。また、画像表示装置には、タッチセンサーの部材やガラスの部材の飛散防止フィルムとしても、二軸延伸ポリエステルフィルムが用いられてきた。 Conventionally, a surface protection film has been attached to an image display device to protect the surface. The surface protective film has the purpose of preventing not only scratches on the surface but also scattering when the image cell or the surface glass plate is broken, and an oriented film such as biaxially stretched polyester having excellent impact resistance has been used. It was. Further, in the image display device, a biaxially stretched polyester film has been used as a shatterproof film for a touch sensor member and a glass member.
一方、モバイル端末等では、高度なセキュリティーを確保するため、顔認証システムや指紋認証システムが採用されるようになってきた(特許文献1、2)。
このようなモバイル端末は、モバイルという大きさの制約の中、大画面化とするため、本体全体を表示画面とし、画面内(視認側から見て画像表示領域であってその奥)に認証システムのセンサーを組み込むことが提案されている。特に有機エレクトロルミネッセンス(有機EL)画像表示装置では、画像表示セルのピクセルの隙間を通して指紋認証のセンサーを作動させることができ、このような方式が広がってきている。On the other hand, in mobile terminals and the like, face recognition systems and fingerprint recognition systems have come to be adopted in order to ensure a high degree of security (
In order to increase the screen size of such mobile terminals due to the size limitation of mobile, the entire main body is used as a display screen, and an authentication system is installed in the screen (the image display area when viewed from the visual side and behind it). It has been proposed to incorporate the sensor of. In particular, in an organic electroluminescence (organic EL) image display device, a fingerprint authentication sensor can be operated through a gap between pixels of an image display cell, and such a method is becoming widespread.
画面内に指紋認証システムを備える画像表示装置においては、認証のためのセンサーの視認側に偏光板が設けられることになるが、このような画像表示装置において、偏光板の視認側に配向フィルムが存在する場合、特に配向フィルムとして二軸延伸ポリエステルフィルムを用いると、指紋認証システムが作動(認知)しなかったり、誤作動(誤認値)したりすることがあった。 In an image display device provided with a fingerprint authentication system in the screen, a polarizing plate is provided on the visual side of the sensor for authentication. In such an image display device, an alignment film is provided on the visual side of the polarizing plate. If present, especially when a biaxially stretched polyester film is used as the alignment film, the fingerprint authentication system may not operate (recognize) or malfunction (misidentified value).
本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、指紋認証システムを有し、さらに配向フィルムを有していながら、指紋認証システムが正常に作動する画像表示装置を提供することにある。 The present invention has been made against the background of the problems of the prior art. That is, an object of the present invention is to provide an image display device having a fingerprint authentication system and further having an alignment film in which the fingerprint authentication system operates normally.
本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち代表的な本発明は、以下の通りである。
項1.
指紋認証センサーの視認側に偏光板を有し、前記偏光板の視認側に配向フィルムを有する画像表示装置であって、
前記配向フィルムの主配向方向と前記偏光板の偏光子の消光軸方向がなす角度が0度±6度以下、または90度±6度以下である画像表示装置。
(なお、上記において、「以下」は「±」の次の数値にのみかかるものとする。)The present inventor has completed the present invention as a result of diligent studies to achieve such an object. That is, a typical invention is as follows.
An image display device having a polarizing plate on the visual side of the fingerprint authentication sensor and an alignment film on the visual side of the polarizing plate.
An image display device in which the angle formed by the main orientation direction of the alignment film and the quenching axis direction of the polarizing element of the polarizing plate is 0 degrees ± 6 degrees or less, or 90 degrees ± 6 degrees or less.
(In addition, in the above, "below" shall be applied only to the numerical value next to "±".)
指紋認証センサーの視認側に偏光板を有する画像表示装置において、偏光板の視認側に配向フィルムが存在する場合であっても、指紋認証システムが正常に作動する画像表示装置を提供することができる。 In an image display device having a polarizing plate on the visual side of the fingerprint authentication sensor, it is possible to provide an image display device in which the fingerprint authentication system operates normally even when an alignment film is present on the visual side of the polarizing plate. ..
(画像表示装置)
本発明は、指紋認証センサーの視認側に偏光板、さらにその視認側に配向フィルムを有する画像表示装置である。指紋認証センサー(指紋認証センサー部)は表示画面の外に設置されていても、表示画面の内(視認側から見て画像表示領域であってその奥)に設置されていても良い。例えば、ここで言う表示画面の外とは図1の状態であり、表示画面の内(視認側から見て画像表示領域であってその奥)とは図2の状態である。表示画面の内に設置されるタイプは画面埋め込み型とも言われており、例えば、図3のように指紋認証センサー本外は視認側から見て画面の奥に設置されている。図3において、指紋認証センサー本体の視認側に、画像表示セル(例えば、有機ELセル)が配置されている。画像表示セルの視認側には、偏光板(画像表示セルが有機ELセルの場合には、円偏光板が好ましい)が配置されている。偏光板より視認側には、粘着剤層を介して配向フィルムが配置されている。(Image display device)
The present invention is an image display device having a polarizing plate on the visible side of the fingerprint authentication sensor and an alignment film on the visible side thereof. The fingerprint authentication sensor (fingerprint authentication sensor unit) may be installed outside the display screen or inside the display screen (the image display area when viewed from the visual side and behind it). For example, the outside of the display screen referred to here is the state of FIG. 1, and the inside of the display screen (the image display area and the back thereof when viewed from the visual side) is the state of FIG. The type installed inside the display screen is also called a screen-embedded type. For example, as shown in FIG. 3, the outside of the fingerprint authentication sensor is installed at the back of the screen when viewed from the visual side. In FIG. 3, an image display cell (for example, an organic EL cell) is arranged on the visual side of the fingerprint authentication sensor main body. A polarizing plate (preferably a circular polarizing plate is preferable when the image display cell is an organic EL cell) is arranged on the visual side of the image display cell. An alignment film is arranged on the visible side of the polarizing plate via an adhesive layer.
一般的には、画像表示セル上の画像表示領域内に偏光板が設けられているため、表示画面の内に指紋認証センサーが設置されているタイプの画像表示装置が本発明の対象となるが、表示画面の外に指紋認証センサーが設置されているタイプの画像表示装置でも、指紋認証センサーを覆う形で偏光板が設けられているものは本発明の対象となる。 Generally, since a polarizing plate is provided in the image display area on the image display cell, an image display device of a type in which a fingerprint authentication sensor is installed in the display screen is the object of the present invention. Even in an image display device of a type in which a fingerprint authentication sensor is installed outside the display screen, a device in which a polarizing plate is provided so as to cover the fingerprint authentication sensor is an object of the present invention.
画像表示装置はスマートホン、モバイルPC、PDA、携帯電話、ゲーム機、カメラ、電子辞書などであることが好ましい。 The image display device is preferably a smartphone, a mobile PC, a PDA, a mobile phone, a game machine, a camera, an electronic dictionary, or the like.
(画像表示セル)
本発明の画像表示装置に用いられる画像表示セルは、特に制限はないが、小型、薄型化できるという点で、液晶表示セルや有機EL(OLED)セルが好ましい例として挙げられる。なかでも、有機ELセルは、セルのピクセルの隙間を通して指紋認証のセンサーを作動させることができ、好ましい例である。(Image display cell)
The image display cell used in the image display device of the present invention is not particularly limited, but a liquid crystal display cell or an organic EL (OLED) cell is a preferable example in that it can be made smaller and thinner. Among them, the organic EL cell is a preferable example because the fingerprint authentication sensor can be operated through the gap between the pixels of the cell.
(指紋認証センサー)
指紋認証センサーは光学式、超音波式、静電容量式、電界強度測定式、感圧式、感熱式などが挙げられ、特に制限はないが、本発明の画像表示装置の構成との相性から光学式か超音波式が好ましく、特には光学式が好ましい。
光学式の指紋認証センサーとしては、例えば、Synaptics社から商品名「Clear ID」として市販されている。
超音波式の指紋承認センサーとしては、例えば、Qualcomm Technologies社から商品名「Qualcomm Fingerprint Sensors」として市販されている。(Fingerprint authentication sensor)
Examples of the fingerprint authentication sensor include an optical type, an ultrasonic type, a capacitance type, an electric field strength measurement type, a pressure-sensitive type, and a heat-sensitive type. The fingerprint authentication sensor is not particularly limited, but is optical due to compatibility with the configuration of the image display device of the present invention. The type or ultrasonic type is preferable, and the optical type is particularly preferable.
As an optical fingerprint authentication sensor, for example, it is commercially available from Synaptics under the trade name "Clear ID".
As an ultrasonic fingerprint approval sensor, for example, it is commercially available from Qualcomm Technologies, Inc. under the trade name "Qualcomm Fingerprint Sensors".
(偏光板)
上記の通り、画像表示装置は、指紋認証センサーの視認側に偏光板が設けられた状態である。偏光板は、偏光を生じさせる機能を有する偏光子と偏光子を保護するための偏光子保護フィルムを含むものであることが一般的であるが、偏光子の片面にのみ偏光子保護フィルムが積層されたものであっても良く、偏光子のみのものであっても良い。偏光子としては、一軸に配向したポリビニルアルコールにヨウ素や有機系の二色性色素などが吸着されている薄膜、液晶化合物と有機系二色性色素からなる配向膜などが挙げられるが、特に制限なく用いることができる。(Polarizer)
As described above, the image display device is in a state where a polarizing plate is provided on the visual side of the fingerprint authentication sensor. The polarizing plate generally includes a polarizer having a function of generating polarized light and a polarizer protective film for protecting the polarizer, but the polarizer protective film is laminated only on one side of the polarizer. It may be a thing, or it may be only a polarizer. Examples of the polarizer include a thin film in which iodine or an organic dichroic dye is adsorbed on uniaxially oriented polyvinyl alcohol, and an alignment film composed of a liquid crystal compound and an organic dichroic dye, but are particularly limited. Can be used without.
偏光子保護フィルムとしては、特に制限はされないが、セルロース系、ポリエステル系、環状ポリオレフィン系、アクリル系、ポリカーボネート系などの未延伸や延伸フィルムを用いることができる。但し、ポリエステルなどの延伸フィルムである場合は、偏光子の消光軸と延伸フィルムの主配向方向とは平行又は垂直であることが好ましい。ここで、平行又は垂直とは、偏光子の消光軸と延伸フィルムの主配向方向のなす角度が、厳密に0度または90度である必要はなく、許容幅は±6度であり、より好ましい許容幅は±5度であり、さらに好ましい許容幅は±4度であり、特に好ましい許容幅は±3度であり、最も好ましい許容幅は±2度である。 The polarizer protective film is not particularly limited, but unstretched or stretched films such as cellulose-based, polyester-based, cyclic polyolefin-based, acrylic-based, and polycarbonate-based films can be used. However, in the case of a stretched film such as polyester, it is preferable that the quenching axis of the polarizer and the main orientation direction of the stretched film are parallel or perpendicular. Here, parallel or vertical means that the angle formed by the quenching axis of the polarizer and the main orientation direction of the stretched film does not have to be exactly 0 degrees or 90 degrees, and the allowable width is ± 6 degrees, which is more preferable. The permissible width is ± 5 degrees, the more preferable permissible width is ± 4 degrees, the particularly preferable permissible width is ± 3 degrees, and the most preferable permissible width is ± 2 degrees.
偏光板の偏光子の消光軸は、画面の長辺に対して平行である場合、垂直である場合、45度の方向である場合などがある。これらの方向は画像表示セルの種類、目的によって決められ、本発明では特に制限するものではない。例えば有機EL表示セルの場合、45度に配置される場合も多い。 The quenching axis of the polarizing element of the polarizing plate may be parallel to the long side of the screen, perpendicular to it, or in the direction of 45 degrees. These directions are determined by the type and purpose of the image display cell, and are not particularly limited in the present invention. For example, in the case of an organic EL display cell, it is often arranged at 45 degrees.
偏光子と画像表示セルの間に、位相差層が設けられていてもよい。位相差層は樹脂を延伸した位相差フィルムであっても良く、液晶化合物を塗布、配向させた液晶化合物の配向膜であっても良い。
有機ELセルの場合は、セルの金属配線の反射などを抑制するため、位相差層として1/4波長層を設けた円偏光板が用いられる。円偏光板の位相差層を有機ELセル側にして配置される。A retardation layer may be provided between the polarizer and the image display cell. The retardation layer may be a retardation film in which a resin is stretched, or may be an alignment film of a liquid crystal compound coated and oriented with a liquid crystal compound.
In the case of an organic EL cell, a circular polarizing plate provided with a 1/4 wavelength layer as a retardation layer is used in order to suppress reflection of the metal wiring of the cell. The retardation layer of the circular polarizing plate is arranged on the organic EL cell side.
(配向フィルム)
本発明の画像表示装置では、指紋認証センサーの視認側に偏光板を有し、前記偏光板より視認側に配向フィルムを有する。配向フィルムは、画像表示装置の表面に位置し、画像表示面の傷付を防いだり、衝撃を受けて画像表示セルやタッチセンサー、表面カバーガラスなどのガラス部材が割れた時にガラスの飛散を防止するための表面保護フィルム、タッチセンサーの電極としても用いられる透明導電フィルム、表示装置内部に位置してガラス部材に貼り合わせガラスの飛散を防止する飛散防止フィルム等として用いられれるが、本発明では、表面保護フィルムとして用いられることが好ましい形態である。
なお、表面保護フィルムは、フィルム自体が傷付いた場合には剥がし、貼り替えるものであることが好ましい。表面保護フィルムは、光学用の基材レス粘着剤シートで画像表示装置に貼り合わされていることが好ましい。(Orientation film)
The image display device of the present invention has a polarizing plate on the viewing side of the fingerprint authentication sensor, and has an alignment film on the viewing side of the polarizing plate. The alignment film is located on the surface of the image display device to prevent scratches on the image display surface and prevent the glass from scattering when the glass members such as the image display cell, touch sensor, and surface cover glass are broken due to impact. It is used as a surface protective film for this purpose, a transparent conductive film that is also used as an electrode of a touch sensor, and an anti-scattering film that is located inside a display device and is attached to a glass member to prevent the glass from scattering. , It is a preferable form to be used as a surface protective film.
When the film itself is damaged, the surface protective film is preferably peeled off and replaced. The surface protective film is preferably a base-less adhesive sheet for optics and is attached to an image display device.
配向フィルムを構成する樹脂は、ポリエステル、ポリアミド、ポリプロピレン、ポリカーボネート、ポリスチレン、アクリル樹脂、環状ポリオレフィン、セルロース系など任意のものが用いられるが、耐熱性、機械的強度、寸法安定性など保護フィルムとしての特性から、ポリエステル、特にポリエチレンテレフタレートであることが好ましい。 As the resin constituting the alignment film, any resin such as polyester, polyamide, polypropylene, polycarbonate, polystyrene, acrylic resin, cyclic polyolefin, and cellulose is used, but as a protective film such as heat resistance, mechanical strength, and dimensional stability. From the viewpoint of characteristics, polyester, particularly polyethylene terephthalate, is preferable.
配向フィルムは、延伸により配向され、機械的強度が向上されている。配向フィルムは、一軸配向フィルム(一軸延伸フィルム)でも二軸配向フィルム(二軸延伸フィルム)でもよい。全方向に対して機械的強度が優れている観点では、二軸配向フィルム(二軸延伸フィルム)であることが好ましい。一方、配向の均一性に優れる観点からは一軸延伸フィルムが好ましい。フィルムを工業的にテンターで二軸延伸すると主配向方向はフィルムの幅方向で弓形に歪む(ボーイング現象)が、幅方向に一軸延伸された一軸配向フィルムでは、この歪みが低減され、幅方向に広く意図したとおりの配向方向を有し、配向の均一性に優れたフィルムを確保することができ、同一条件での貼り合わせや打ち抜き加工などが可能で、生産性向上の面で有利である。しかし、完全な一軸延伸フィルムでは、配向方向に直交する力に対しての機械強度が弱くなる場合がある。この様な場合、主配向方向に対して直交する方向の機械的強度を上げるため、主延伸方向と直交する方向にも弱く延伸をかけること(こうして得られたフィルムを、以降、弱二軸延伸フィルム、又は、弱二軸配向フィルムという)も好ましい。この弱い延伸は主延伸の後に行っても良いが、主延伸前に行うか、同時に行うことが好ましい。むろん、完全な一軸延伸であっても良い。
なお、延伸は、一般的には、フィルムの流れ方向(縦方向)には連続するロールを用いたロール延伸が用いられ、幅方向(横方向)や縦横の同時延伸にはテンターを用いた延伸が用いられる。
本発明において、主配向方向(主延伸方向)は、流れ方向であっても幅方向であっても良い。The oriented film is oriented by stretching to improve the mechanical strength. The alignment film may be a uniaxially oriented film (uniaxially stretched film) or a biaxially oriented film (biaxially stretched film). From the viewpoint of excellent mechanical strength in all directions, a biaxially oriented film (biaxially stretched film) is preferable. On the other hand, a uniaxially stretched film is preferable from the viewpoint of excellent orientation uniformity. When the film is industrially biaxially stretched with a tenter, the main orientation direction is distorted in an arch shape in the width direction of the film (Boeing phenomenon), but in the uniaxially oriented film stretched uniaxially in the width direction, this distortion is reduced and in the width direction. It is possible to secure a film having a broadly intended orientation direction and excellent orientation uniformity, and it is possible to perform bonding and punching under the same conditions, which is advantageous in terms of improving productivity. However, in a perfect uniaxially stretched film, the mechanical strength against a force orthogonal to the orientation direction may be weakened. In such a case, in order to increase the mechanical strength in the direction orthogonal to the main orientation direction, the film is weakly stretched in the direction orthogonal to the main stretching direction (the film thus obtained is subsequently weakly biaxially stretched). A film or a weak biaxially oriented film) is also preferable. This weak stretching may be performed after the main stretching, but it is preferably performed before the main stretching or at the same time. Of course, it may be a complete uniaxial extension.
As for stretching, roll stretching using continuous rolls is generally used in the flow direction (longitudinal direction) of the film, and stretching using a tenter is used for simultaneous stretching in the width direction (horizontal direction) and vertical and horizontal directions. Is used.
In the present invention, the main orientation direction (main stretching direction) may be the flow direction or the width direction.
なお、ここで(主配向方向と直交する方向の弾性率)/(主配向方向の弾性率)が0.5以下であるか、または、(主配向方向と直交する方向の破断強度)/(主配向方向の破断強度)が0.5以下であるかのいずれかであるものが一軸配向フィルム、又は、弱二軸配向フィルムであるといえる。
延伸は、それぞれの素材に合わせて適正な温度、倍率、速度で行えばよい。また、二軸延伸と弱二軸延伸は、主にそれぞれの延伸倍率で調整することができる。
また、ポリエチレンテレフタレートフィルムであれば、主配向方向の屈折率とそれに直交する方向の屈折率の差(ΔNxy)が0.055以上、好ましくは0.06以上であれば弱二軸延伸フィルムと言える。また、遅相軸の屈折率が1.68以上、好ましくは1.685以上であり、かつΔNxyが0.095以下、好ましくは0.093以下であれば弱い二軸延伸がかかっていると言える。
なお、上述のように各方向からの機械的強度の確保のためには、二軸配向フィルム(二軸延伸フィルム)が好ましく、ΔNxyは0.06未満が好ましく、さらに好ましくは0.055未満であるが、均質・均等な二軸配向は困難であるだけでなく、わずかの製造条件のぶれ等で同一生産のフィルムの中で配向方向が変化し易くなる。製造上、フィルムの広い面積で均一な配向方向であるためには、ΔNxyは0.01以上が好ましく、より好ましくは0.015以上、特に好ましくは0.02以上である。Here, (elastic modulus in the direction orthogonal to the main orientation direction) / (elastic modulus in the main orientation direction) is 0.5 or less, or (breaking strength in the direction orthogonal to the main orientation direction) / ( It can be said that a uniaxially oriented film or a weakly biaxially oriented film has a breaking strength) of 0.5 or less in the main orientation direction.
Stretching may be performed at an appropriate temperature, magnification, and speed according to each material. Further, the biaxial stretching and the weak biaxial stretching can be adjusted mainly by the respective stretching ratios.
Further, in the case of a polyethylene terephthalate film, if the difference (ΔNxy) between the refractive index in the main orientation direction and the refractive index in the direction orthogonal to the refractive index is 0.055 or more, preferably 0.06 or more, it can be said to be a weak biaxially stretched film. .. Further, if the refractive index of the slow axis is 1.68 or more, preferably 1.685 or more, and ΔNxy is 0.095 or less, preferably 0.093 or less, it can be said that weak biaxial stretching is applied. ..
As described above, in order to secure the mechanical strength from each direction, a biaxially oriented film (biaxially stretched film) is preferable, ΔNxy is preferably less than 0.06, and more preferably less than 0.055. However, not only is it difficult to achieve uniform and uniform biaxial orientation, but also the orientation direction tends to change in films of the same production due to slight fluctuations in production conditions. In manufacturing, ΔNxy is preferably 0.01 or more, more preferably 0.015 or more, and particularly preferably 0.02 or more, in order to have a uniform orientation direction over a wide area of the film.
また、一軸性を強め、フィルム全幅での配向方向を安定化させるためには、ΔNxyは0.065以上であることが好ましく、より好ましくは0.070以上、さらに好ましくは0.75以上、特に好ましくは0.80以上、最も好ましくは0.85以上である。ΔNxyは0.16以下であることが好ましく、さらに好ましくは0.15以下であり、特に好ましくは0.14以下であり、最も好ましくは0.13以下である。上記を超えるとけやすくなり過ぎ、表面保護フィルムとして用いた場合の機能が保てなくなる場合がある。 Further, in order to strengthen the uniaxiality and stabilize the orientation direction in the entire width of the film, ΔNxy is preferably 0.065 or more, more preferably 0.070 or more, still more preferably 0.75 or more, and particularly. It is preferably 0.80 or more, and most preferably 0.85 or more. ΔNxy is preferably 0.16 or less, more preferably 0.15 or less, particularly preferably 0.14 or less, and most preferably 0.13 or less. If it exceeds the above, it becomes too easy to melt, and the function when used as a surface protective film may not be maintained.
配向フィルムの製造方法は特に制限されない。例えば、配向フィルムとして、ポリエチレンテレフタレートフィルムの場合を例にすると、以下の方法で製造することができる。
一般的には、延伸は、第一段目の延伸として縦方向(フィルムの流れ方向)に連続ロールで行い、その後、第二段目の延伸として幅方向(フィルムの流れ方向とは直交する方向)の延伸では、フィルムの幅両端をクリップで把持しテンター内で延伸する。なお、第一段目の延伸と第2段目の延伸方法が逆であっても良い。第一段目の延伸倍率は1.0〜3.5倍が好ましく、特に好ましくは1.0倍〜3.0倍である。また、第二段目の延伸倍率は2.5〜6.0倍が好ましく、特に好ましくは3.0〜5.5倍である。なお、一軸延伸のみの場合、延伸倍率は第二段目の延伸倍率を採用することが好ましい。いずれの延伸においても、延伸温度は80〜130℃が好ましく、特に好ましくは90〜120℃である。また、未延伸フィルムの幅両端をクリップで把持し、縦方向、幅方向に同時に二軸延伸しても良い。引き続き、好ましくは100〜250℃、より好ましくは180〜245℃で、熱処理することが好ましい。また、上記のテンター延伸は幅方向であったが、縦方向に対して斜め方向に延伸を行ってもよい。 The method for producing the oriented film is not particularly limited. For example, taking the case of a polyethylene terephthalate film as an alignment film as an example, it can be produced by the following method.
In general, stretching is performed by continuous rolls in the vertical direction (film flow direction) as the first-stage stretching, and then in the width direction (direction orthogonal to the film flow direction) as the second-stage stretching. ) Is stretched in the tenter by grasping both ends of the width of the film with clips. The stretching method of the first step and the stretching method of the second step may be reversed. The draw ratio of the first stage is preferably 1.0 to 3.5 times, particularly preferably 1.0 to 3.0 times. The draw ratio of the second stage is preferably 2.5 to 6.0 times, particularly preferably 3.0 to 5.5 times. In the case of uniaxial stretching only, it is preferable to adopt the stretching ratio of the second stage as the stretching ratio. In any of the stretching, the stretching temperature is preferably 80 to 130 ° C, particularly preferably 90 to 120 ° C. Further, both ends of the width of the unstretched film may be gripped by clips and biaxially stretched simultaneously in the vertical direction and the width direction. Subsequently, it is preferable to heat-treat at 100 to 250 ° C., more preferably 180 to 245 ° C. Further, although the tenter stretching described above was in the width direction, stretching may be performed in an oblique direction with respect to the longitudinal direction.
(偏光子の消光軸(吸収軸)と配向フィルムの主配向方向との角度)
本発明において、偏光子の消光軸(吸収軸)と配向フィルムの主配向方向(主配向軸と平行の方向)とは、平行又は垂直であることが好ましい。ここで、平行又は垂直とは、偏光子の消光軸と配向フィルムの主配向方向とのなす角度が、厳密に0度、または90度である必要はなく、0度±6度以下又は90度±6度以下が好ましく、0度±5度以下又は90度±5度以下がより好ましく、0度±4度以下又は90度±4度以下がさらに好ましく、0度±3度以下又は90度±3度以下が特に好ましく、0度±2度以下又は90度±2度以下が特に好ましい。なお、「以下」という用語は、「±」の次の数値のみにかかることを意味する。従って、例えば、前記「0度±6度以下」とは、0度を中心に上下6度の範囲の変動を許容することを意味する。また、同様に、「90度±6度以下」とは、90度を中心に上下6度の範囲の変動を許容することを意味する。
配向フィルムが複数存在する場合はすべての配向フィルムが上記関係になっていることが好ましい。(Angle between the quencher axis (absorption axis) of the polarizer and the main orientation direction of the alignment film)
In the present invention, the quenching axis (absorption axis) of the polarizer and the main orientation direction (direction parallel to the main orientation axis) of the alignment film are preferably parallel or perpendicular. Here, parallel or vertical means that the angle formed by the extinguishing axis of the polarizer and the main orientation direction of the alignment film does not have to be exactly 0 degrees or 90 degrees, and is 0 degrees ± 6 degrees or less or 90 degrees. ± 6 degrees or less is preferable, 0 degrees ± 5 degrees or less or 90 degrees ± 5 degrees or less is more preferable, 0 degrees ± 4 degrees or less or 90 degrees ± 4 degrees or less is further preferable, and 0 degrees ± 3 degrees or less or 90 degrees. ± 3 degrees or less is particularly preferable, and 0 degrees ± 2 degrees or less or 90 degrees ± 2 degrees or less is particularly preferable. The term "less than or equal to" means that it applies only to the numerical value next to "±". Therefore, for example, the above-mentioned "0 degree ± 6 degrees or less" means that a fluctuation in a range of 6 degrees up and down around 0 degrees is allowed. Similarly, "90 degrees ± 6 degrees or less" means that fluctuations in the range of 6 degrees up and down around 90 degrees are allowed.
When there are a plurality of oriented films, it is preferable that all the oriented films have the above relationship.
偏光子の消光軸と配向フィルムの主配向方向との角度が好ましい範囲から外れると、センサーが作動しない、誤作動が生じるといった問題が起こる場合がある。これは、光学的な指紋センサーは下部から表示装置表面に向かって光を照射し、その反射光で指紋を読みとっているが、センサーの上(視認側)に偏光子が存在すると、偏光子で直線偏光になった光が位相差のある配向フィルム内を光学軸とずれた角度で進むために楕円偏光になり、これが反射して再度偏光子を通過する時にも位相差のある配向フィルムの影響を受けて、センサーの受像画像で特定の波長領域で光量が低下するため、センサーの受光波長が決まっている場合は指紋の正確なパターンを検知しにくくなるためだと考えられる。また、センサーが広い波長領域を受光する場合であっても全体の光量が低下し、センサー及びその後の処理の精度が保てなくなるためと考えられる。なお、これらの理由は推測の域を出るものではなく、本技術を限定するものではない。
なお、主配向方向は、分子配向計(例えば、王子計測機器株式会社製、MOA−6004型分子配向計)で遅相軸、進相軸を測定し、遅相軸を主配向軸とする。なお、スチレン系樹脂など、光弾性係数が負であるものは進相軸を主配向方向とする。If the angle between the quenching axis of the polarizer and the main orientation direction of the alignment film deviates from the preferable range, problems such as the sensor not operating or malfunctioning may occur. This is because the optical fingerprint sensor irradiates light from the bottom toward the surface of the display device and reads the fingerprint with the reflected light, but if there is a polarizer on the sensor (visual side), it is a polarizer. Since the linearly polarized light travels in the alignment film with a phase difference at an angle deviated from the optical axis, it becomes elliptically polarized light, and when this is reflected and passes through the polarizer again, the effect of the alignment film with the phase difference In response to this, the amount of light in the image received by the sensor decreases in a specific wavelength range, and it is thought that it becomes difficult to detect the exact pattern of the fingerprint when the light receiving wavelength of the sensor is fixed. Further, it is considered that even when the sensor receives a wide wavelength region, the total amount of light decreases, and the accuracy of the sensor and the subsequent processing cannot be maintained. It should be noted that these reasons are beyond speculation and do not limit the present technology.
As for the main orientation direction, the slow phase axis and the phase advance axis are measured with a molecular orientation meter (for example, MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd.), and the slow phase axis is set as the main orientation axis. For styrene-based resins with a negative photoelastic coefficient, the phase-advancing axis is the main orientation direction.
配向フィルムの厚みは、それぞれの目的に合わせて適宜設定できるが、5〜200μmであることが好ましい。さらに好ましくは10〜150μm、特に好ましくは20〜100μmである。5μm未満であると薄すぎて取り扱いが悪くなる場合があるだけでなく、表面保護フィルム等として用いる場合に、目的にあった十分な機械強度が確保できない場合がある。200μmを超えると、剛性が高くなりすぎ取り扱い性が悪くなる場合があるだけでなく、表示装置の薄型化に合わない場合がある。 The thickness of the alignment film can be appropriately set according to each purpose, but is preferably 5 to 200 μm. It is more preferably 10 to 150 μm, and particularly preferably 20 to 100 μm. If it is less than 5 μm, not only may it be too thin to be handled poorly, but also when it is used as a surface protective film or the like, sufficient mechanical strength suitable for the purpose may not be secured. If it exceeds 200 μm, not only the rigidity may become too high and the handleability may be deteriorated, but also the display device may not be suitable for thinning.
配向フィルムの面内リタデーションは、分子の配向方向として明確な状態が観察される程度以上であれば特に制限するものではないが、1000nm以上あることが好ましい。 また、スマートフォン等では野外で偏光サングラスをかけた状態で操作することも多く、偏光サングラスをかけた時に斜め方向から見た時に着色や虹ムラが生じることがある。斜め方向から画像表示装置を見た場合に生じる虹ムラを低減させるためには、配向フィルムの面内リタデーションは3000nm以上であることが好ましい。さらに好ましくは4500nm以上、特に好ましくは6000nm以上である。また、面内リタデーションは、30000nm以下が好ましく、10000nm以下がより好ましく、さらに好ましくは9000nm以下である。面内リタデーションが30000nmを超えても、虹ムラ改善効果の大幅向上は見込みにくくなる上、厚みが必要になり、薄くするためには著しく一軸配向を高める必要があり、配向方向と直交する方向の機械的強度が低下する場合がある。 The in-plane retardation of the alignment film is not particularly limited as long as a clear state is observed as the orientation direction of the molecules, but it is preferably 1000 nm or more. In addition, smartphones and the like are often operated outdoors with polarized sunglasses on, and when polarized sunglasses are worn, coloring or rainbow unevenness may occur when viewed from an oblique direction. In order to reduce rainbow unevenness that occurs when the image display device is viewed from an oblique direction, the in-plane retardation of the alignment film is preferably 3000 nm or more. It is more preferably 4500 nm or more, and particularly preferably 6000 nm or more. The in-plane retardation is preferably 30,000 nm or less, more preferably 10,000 nm or less, and even more preferably 9000 nm or less. Even if the in-plane retardation exceeds 30,000 nm, it is difficult to expect a significant improvement in the effect of improving rainbow unevenness, and a thickness is required. In order to make the thickness thinner, it is necessary to significantly increase the uniaxial orientation, which is orthogonal to the orientation direction. Mechanical strength may decrease.
(表面加工、他)
配向フィルムは、それぞれの目的に合わせて表面加工がされていても良い。例えば、表面保護フィルムであれば、ハードコート、反射防止コート、低反射コート、帯電防止コートなどである。また、易接着コートを設けても良い。(Surface processing, etc.)
The oriented film may be surface-processed according to each purpose. For example, in the case of a surface protective film, a hard coat, an antireflection coat, a low reflection coat, an antistatic coat and the like. Further, an easy-adhesion coat may be provided.
配向フィルムの表面に指紋を押し当ててその反射を検知する場合、表面保護フィルムの視認側は指紋が認識できる程度に平滑であることが好ましい。視認側の表面の表面粗さSRaは100nm以下であることが好ましく、さらに好ましくは50nm以下であり、特に好ましくは30nm以下である。 When the fingerprint is pressed against the surface of the alignment film to detect its reflection, it is preferable that the visible side of the surface protective film is smooth enough to recognize the fingerprint. The surface roughness SRa of the surface on the viewing side is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
配向フィルムの全光線透過率は、80%以上であることが好ましく、さらに好ましくは85%以上であり、特に好ましくは88%以上である。また、配向フィルムのヘイズは3%以下であることが好ましく、さらに好ましくは2.5%以下であり、特に好ましくは2%以下である。 The total light transmittance of the alignment film is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more. The haze of the alignment film is preferably 3% or less, more preferably 2.5% or less, and particularly preferably 2% or less.
以下、実施例を参照して本発明についてさらに詳細に説明するが、本発明はこれらに制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
(1)破断強度
JIS C−2318に準じて測定した。(1) Breaking strength Measured according to JIS C-2318.
(2)弾性率
JIS C−2318に準じて測定した。(2) Elastic modulus The elastic modulus was measured according to JIS C-2318.
(3)リタデーション、△Nxy
リタデーションとは、フィルム上の直交する二軸の屈折率の異方性(△Nxy=|nx−ny|)とフィルム厚みd(nm)との積(△Nxy×d)で定義されるパラメーターであり、光学的等方性、異方性を示す尺度である。二軸の屈折率の異方性(△Nxy)は、以下の方法により求めた。分子配向計(王子計測機器株式会社製、MOA−6004型分子配向計)を用いて、フィルムの遅相軸方向を求め、遅相軸方向が測定用サンプル長辺と平行になるように、4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(遅相軸方向の屈折率:nx,面内で遅相軸方向と直交する方向の屈折率(即ち進相軸方向の屈折率):ny)、及び厚さ方向の屈折率(nz)をアッベ屈折率計(アタゴ社製、NAR−4T、測定波長589nm)によって求め、前記二軸の屈折率差の絶対値(|nx−ny|)を屈折率の異方性(△Nxy)とした。フィルムの厚みd(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。屈折率の異方性(△Nxy)とフィルムの厚みd(nm)の積(△Nxy×d)より、リタデーション(Re)を求めた。(3) Reference, ΔNxy
The retardation is a parameter defined by the product (ΔNxy × d) of the anisotropy of the refractive indexes of the two orthogonal axes on the film (ΔNxy = | nx−ny |) and the film thickness d (nm). Yes, it is a scale showing optical isotropic and anisotropy. The biaxial refractive index anisotropy (ΔNxy) was determined by the following method. Using a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd.), determine the slow-phase axial direction of the film, and make the slow-phase axial direction parallel to the long side of the measurement sample, 4 cm. A rectangle of × 2 cm was cut out and used as a measurement sample. For this sample, the refractive index of two orthogonal axes (refractive index in the slow axis direction: nx, refractive index in the direction orthogonal to the slow axis direction in the plane (that is, refractive index in the phase advance axis direction): ny), And the refractive index (nz) in the thickness direction is determined by an Abbe refractive index meter (manufactured by Atago, NAR-4T, measurement wavelength 589 nm), and the absolute value (| nx-ny |) of the refractive index difference between the two axes is refracted. The index was an index (ΔNxy). The thickness d (nm) of the film was measured using an electric micrometer (Millitron 1245D manufactured by Finereuf), and the unit was converted to nm. The retardation (Re) was determined from the product (ΔNxy × d) of the anisotropy of the refractive index (ΔNxy) and the thickness d (nm) of the film.
(4)偏光子の消光軸
表面保護フィルム等をはがして直線偏光が出光されるようにした画像表示装置を点灯させ、その上に消光軸が既知である偏光フィルタを載せて最も暗くなる状態の偏光フィルターの消光軸の方向を求め、これと90度の方向を消光軸方向とした。(4) Quenching axis of the polarizer The image display device is turned on so that linearly polarized light is emitted by removing the surface protective film, etc., and a polarizing filter with a known quenching axis is placed on it to make it the darkest. The direction of the quenching axis of the polarizing filter was determined, and the direction of 90 degrees was defined as the quenching axis direction.
(5)主配向方向
分子配向計(王子計測機器株式会社製、MOA−6004型分子配向計)で測定した。(5) Main orientation direction The measurement was performed with a molecular orientation meter (MOA-6004 type molecular orientation meter manufactured by Oji Measuring Instruments Co., Ltd.).
(6)光線透過率
JIS K−7105に準じて測定した。(6) Light transmittance Measured according to JIS K-7105.
(7)ヘイズ
JIS K−7105に準じて測定した。(7) Haze Measured according to JIS K-7105.
(8)三次元中心面平均表面粗さ(SRa):
50mm×50mmの面積のフィルムを切り出し、3次元表面形状測定装置(菱化システム社製、マイクロマップ550N(測定条件:waveモード、測定波長560nm、対物レンズ10倍))を用いて、フィルム面に対して垂直方向から測定し、400μm×400μmのCCDカメラ画像取り込み領域を指定し、次式により与えられるSRaを求めた。フィルム両面において、測定数をそれぞれ16とし、それらの平均値を求めた。また、小数点以下の端数は、四捨五入によりまるめた。(8) Three-dimensional central surface average surface roughness (SRa):
A film having an area of 50 mm × 50 mm is cut out and used on a film surface using a three-dimensional surface shape measuring device (Micromap 550N (measurement conditions: wave mode, measurement wavelength 560 nm, objective lens 10 times) manufactured by Ryoka System Co., Ltd.). On the other hand, the measurement was performed from the vertical direction, the CCD camera image capture area of 400 μm × 400 μm was specified, and the SRa given by the following equation was obtained. The number of measurements was set to 16 on both sides of the film, and the average value thereof was calculated. In addition, the fractions after the decimal point were rounded off.
ここで、SM=Lx×Lyであり、Lx,Lyは、x, y方向の範囲、f(x, y)は、測定点(x, y)の平均面からの高さである。 Here, an S M = Lx × Ly, Lx , Ly are x, y-direction range, f (x, y) is the height from the average surface of the measurement point (x, y).
(9)認証成功回数
指紋認証による10回の起動を試み、起動できた回数で表した。なお、指先は濡れたタオルで汚れを拭き取った後、乾いたタオルで水分を除き、約3秒後にセンサー部に指先を載せて行った。(9) Number of successful authentications The number of successful activations expressed by 10 attempts by fingerprint authentication. The fingertips were wiped off with a wet towel, the water was removed with a dry towel, and the fingertips were placed on the sensor unit about 3 seconds later.
(10)表面保護特性
光学用粘着剤を用いて、市販のスマートフォン用表面保護ガラスに、配向フィルムを貼り付け、テストサンプルを作成した。サンプルの各辺部分に厚さ5mmのスペーサーを介してサンプルを台の上に置き(フィルム面は上)、上から鋼球を落下させた。5枚のサンプルでテストした。なお、ガラスが割れなかった場合は再度綱球を落下させた。
○:ガラスは割れたがフィルムが裂けるサンプルはなかった。
△:鋼球の衝突部分にわずかなフィルムの裂けが認められるサンプルがあった。
×:フィルムが大きく裂けるサンプルがあった。(10) Surface protection characteristics Using an optical adhesive, an alignment film was attached to a commercially available surface protection glass for smartphones to prepare a test sample. The sample was placed on a table (the film surface was on the top) via a spacer having a thickness of 5 mm on each side of the sample, and a steel ball was dropped from above. Tested with 5 samples. If the glass did not break, the rope was dropped again.
◯: The glass was broken, but there was no sample in which the film was torn.
Δ: There was a sample in which a slight tear of the film was observed at the collision portion of the steel ball.
X: There was a sample in which the film was severely torn.
(11)虹ムラ観察
指紋認証テスト用の画像表示装置を、偏光サングラスをかけた状態で斜め方向から観察した。
○:虹むらは認められなかった
△:弱い虹むらが認められた
×:明らかな虹むらが認められた。(11) Observation of rainbow unevenness The image display device for the fingerprint authentication test was observed from an oblique direction while wearing polarized sunglasses.
◯: No rainbow unevenness was observed Δ: Weak rainbow unevenness was observed ×: Clear rainbow unevenness was observed.
(配向フィルムの準備)
下記の配向フィルムA、B、Cを準備した。それぞれの特性は表1に示す。(Preparation of alignment film)
The following alignment films A, B, and C were prepared. The characteristics of each are shown in Table 1.
配向フィルムA:
東洋紡株式会社製コスモシャイン(登録商標)A4300のフィルム厚み75μmのフィルムを用いた。なお、主配向方向はフィルムロールのスリット位置で異なるため、主配向方向がフィルムロールの長さ方向に対して90度±6度以下である部分を切り出して使用した。Orientation film A:
A film having a film thickness of 75 μm of Cosmo Shine (registered trademark) A4300 manufactured by Toyobo Co., Ltd. was used. Since the main orientation direction differs depending on the slit position of the film roll, a portion whose main orientation direction is 90 degrees ± 6 degrees or less with respect to the length direction of the film roll was cut out and used.
配向フィルムB:
平均粒径0.9μmの多孔質シリカを0.7質量%含むポリエチレンテレフタレートチップ(固有粘度 0.60dl/g(フェノール:1,1,2,2−テトラクロルエタン=6:4混合溶媒で溶解し30℃で測定)、以後、PETと略す。)を乾燥後、溶融押出機により280℃で溶融して冷却ロール上にシート状に押し出し、未延伸ポリエチレンテレフタレートシートを得た。次いで、この未延伸シートの片面に、水分散性ポリエステル樹脂とブロックイソシアネート変性ポリウレタン水分散体からなる易接着層用コート剤を塗布し、引き続き、テンター型の同時二軸延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の熱風ゾーンに導き、縦方向に1.8倍、幅方向に4倍に延伸した。状態を保ったまま、温度225℃、10秒間で処理し、さらに縦、横それぞれで2.5%の緩和処理を行った。生産したフィルムロールは端部位置でボーイングによる配向の歪みがやや見られたため、主配向方向がフィルムロールの長さ方向に対して90度±6度以下である部分を切り出して使用した。Orientation film B:
Polyethylene terephthalate chip containing 0.7% by mass of porous silica having an average particle size of 0.9 μm (intrinsic viscosity 0.60 dl / g (phenol: 1,1,2,2-tetrachloroethane = 6: 4 dissolved in a mixed solvent) (Measured at 30 ° C.), hereinafter abbreviated as PET) was dried, melted at 280 ° C. by a melt extruder, and extruded into a sheet on a cooling roll to obtain an unstretched polyethylene terephthalate sheet. Next, a coating agent for an easy-adhesive layer composed of a water-dispersible polyester resin and a blocked isocyanate-modified polyurethane aqueous dispersion was applied to one side of this unstretched sheet, and subsequently led to a tenter-type simultaneous biaxial stretching machine to form a film. While grasping the end with a clip, the film was guided to a hot air zone having a temperature of 125 ° C. and stretched 1.8 times in the vertical direction and 4 times in the width direction. While maintaining the state, the treatment was carried out at a temperature of 225 ° C. for 10 seconds, and further subjected to a relaxation treatment of 2.5% in each of the vertical and horizontal directions. Since the produced film roll showed some distortion of orientation due to Boeing at the end position, a portion whose main orientation direction was 90 degrees ± 6 degrees or less with respect to the length direction of the film roll was cut out and used.
配向フィルムC:
東洋紡株式会社製コスモシャイン(登録商標)超複屈折タイプ(SRF)の厚み80μmのフィルムを用いた。なお、主配向方向はフィルムロールの幅方向でほぼ安定しているため、任意に選び、主配向方向がフィルムロールの長さ方向に対して90度±6度以下であることを確認した。Orientation film C:
A film of Cosmo Shine (registered trademark) super birefringence type (SRF) manufactured by Toyobo Co., Ltd. with a thickness of 80 μm was used. Since the main orientation direction is almost stable in the width direction of the film roll, it was arbitrarily selected and it was confirmed that the main orientation direction was 90 degrees ± 6 degrees or less with respect to the length direction of the film roll.
(ハードコート層及び粘着剤層が積層された配向フィルムの作成)
配向フィルムA、B、Cの易接着コート面に、UV硬化型のハードコート剤を塗工、乾燥後、高圧水銀灯で紫外線を照射して、片面にハードコート層を有する配向フィルムA,B,Cを得た。さらに各配向フィルムの、ハードコート層を積層した面とは反対面に、市販の光学粘着剤(基材レスタイプ)を、軽剥離シートを剥がしてロールツーロールで積層した。各配向フィルムについて、ハードコート層側の三次元中心面平均表面粗さSRaの測定結果を表2に示す。(Creation of an oriented film in which a hard coat layer and an adhesive layer are laminated)
Alignment films A, B, which have a hard coat layer on one side, are coated with a UV-curable hard coating agent on the easily adhesive coated surfaces of the alignment films A, B, and C, dried, and then irradiated with ultraviolet rays with a high-pressure mercury lamp. C was obtained. Further, a commercially available optical adhesive (base material-less type) was laminated on the surface of each alignment film opposite to the surface on which the hard coat layer was laminated by peeling off the light release sheet and rolling to roll. Table 2 shows the measurement results of the three-dimensional center plane average surface roughness SRa on the hard coat layer side for each oriented film.
(表面保護フィルムを有する画像表示装置の組み立て)
実施例1〜15、比較例1、2
上記のハードコート層及び粘着剤層が積層された配向フィルムを、光学的指紋認証センサーを表示画面に組み込んだ有機EL表示装置VIVO社製X20 Plus UDの画面全体の大きさにカットした。これを表面保護フィルムとして、粘着剤面を介して、前記有機EL表示装置の画面上に貼り付けた。なお、購入時に貼り付けられていた表面保護フィルムは剥がした。貼り合わせる時の角度及びその評価結果を表3〜5に示した。角度はカットした各ハードコート層及び粘着剤層が積層された配向フィルムで確認して貼り合わせた。(Assembly of an image display device having a surface protective film)
Examples 1 to 15, Comparative Examples 1 and 2
The alignment film in which the above-mentioned hard coat layer and adhesive layer were laminated was cut to the size of the entire screen of the organic EL display device VIVO X20 Plus UD in which an optical fingerprint authentication sensor was incorporated in the display screen. This was used as a surface protective film and was attached onto the screen of the organic EL display device via the adhesive surface. The surface protective film attached at the time of purchase was peeled off. Tables 3 to 5 show the angles at the time of bonding and the evaluation results thereof. The angle was confirmed with an alignment film in which each of the cut hard coat layers and the pressure-sensitive adhesive layer was laminated, and then bonded.
実施例16
タッチセンサーとしてポリエステルフィルムの透明導電性フィルムが用いられる場合を模して、ハードコート層及び粘着剤層を積層した配向フィルムA及びCを積層して上記と同様に貼り合わせた。Example 16
Imitation of the case where a transparent conductive film of a polyester film is used as a touch sensor, alignment films A and C in which a hard coat layer and an adhesive layer are laminated are laminated and bonded in the same manner as described above.
表3〜5において、正の数値は、偏光子の透光軸に対して主配向軸が視認側から見て右回り方向、負の数値は左回り方向を示す。 In Tables 3 to 5, positive values indicate a clockwise direction when the main orientation axis is viewed from the visual side with respect to the light transmitting axis of the polarizer, and negative values indicate a counterclockwise direction.
1 画像表示装置
2 画像表示部
3 指紋認証センサー部
21 画像表示セル
22 偏光板
23 粘着剤層
24 配向フィルム(表面保護フィルム)
31 指紋認証センサー本体1
31 Fingerprint authentication sensor body
Claims (1)
前記配向フィルムの主配向方向と前記偏光板の偏光子の消光軸方向がなす角度が0度±6度以下、または90度±6度以下である画像表示装置。
(なお、上記において、「以下」は「±」の次の数値にのみかかるものとする。)An image display device having a polarizing plate on the visual side of the fingerprint authentication sensor and an alignment film on the visual side of the polarizing plate.
An image display device in which the angle formed by the main orientation direction of the alignment film and the quenching axis direction of the polarizing element of the polarizing plate is 0 degrees ± 6 degrees or less, or 90 degrees ± 6 degrees or less.
(In addition, in the above, "below" shall be applied only to the numerical value next to "±".)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021041287A JP7405107B2 (en) | 2018-09-28 | 2021-03-15 | Image display device with fingerprint authentication sensor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018184069 | 2018-09-28 | ||
JP2018184069 | 2018-09-28 | ||
PCT/JP2019/037763 WO2020067243A1 (en) | 2018-09-28 | 2019-09-26 | Image display device with fingerprint authentication sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021041287A Division JP7405107B2 (en) | 2018-09-28 | 2021-03-15 | Image display device with fingerprint authentication sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020067243A1 true JPWO2020067243A1 (en) | 2021-02-15 |
JP6863530B2 JP6863530B2 (en) | 2021-04-21 |
Family
ID=69950672
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020549085A Active JP6863530B2 (en) | 2018-09-28 | 2019-09-26 | Image display device with fingerprint authentication sensor |
JP2021041287A Active JP7405107B2 (en) | 2018-09-28 | 2021-03-15 | Image display device with fingerprint authentication sensor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021041287A Active JP7405107B2 (en) | 2018-09-28 | 2021-03-15 | Image display device with fingerprint authentication sensor |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP6863530B2 (en) |
KR (2) | KR102344400B1 (en) |
CN (2) | CN115394189B (en) |
TW (1) | TW202018343A (en) |
WO (1) | WO2020067243A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109946780B (en) * | 2018-02-13 | 2020-09-04 | 华为技术有限公司 | Protective film, method and device for cutting protective film |
JP6863530B2 (en) * | 2018-09-28 | 2021-04-21 | 東洋紡株式会社 | Image display device with fingerprint authentication sensor |
JPWO2020196317A1 (en) * | 2019-03-28 | 2020-10-01 | ||
JP2022021638A (en) * | 2020-07-22 | 2022-02-03 | 恵和株式会社 | Protective film |
US11880104B2 (en) | 2020-10-15 | 2024-01-23 | 3M Innovative Properties Company | Reflective polarizer and display system including same |
KR102472872B1 (en) * | 2020-10-20 | 2022-12-01 | 도레이첨단소재 주식회사 | Polyester film for display protection |
KR20240024067A (en) * | 2021-06-23 | 2024-02-23 | 스미또모 가가꾸 가부시키가이샤 | display device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014013390A (en) * | 2013-07-16 | 2014-01-23 | Dainippon Printing Co Ltd | Liquid crystal display device and polarizing plate protection film |
JP2014112252A (en) * | 2014-02-17 | 2014-06-19 | Dainippon Printing Co Ltd | Liquid crystal display device and polarizing plate-protecting film |
JP2016006648A (en) * | 2014-06-18 | 2016-01-14 | ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド | Touch panel with function of fingerprint identification function |
CN107392132A (en) * | 2017-07-14 | 2017-11-24 | 上海天马微电子有限公司 | Display panel and display device |
US20180121703A1 (en) * | 2016-10-28 | 2018-05-03 | Samsung Electronics Co., Ltd. | Apparatus for reducing noise input to fingerprint sensor |
CN108153027A (en) * | 2018-01-30 | 2018-06-12 | 京东方科技集团股份有限公司 | A kind of display device |
JP2018515820A (en) * | 2015-10-30 | 2018-06-14 | エッセンシャル プロダクツ インコーポレイテッドEssential Products, Inc. | Fingerprint sensor for mobile devices |
JP2020038254A (en) * | 2018-09-03 | 2020-03-12 | 住友化学株式会社 | Optical film |
WO2020054529A1 (en) * | 2018-09-12 | 2020-03-19 | 東レ株式会社 | Laminate film |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100405183C (en) * | 2005-02-25 | 2008-07-23 | 日东电工株式会社 | Manufacturing method of elliptical polarizing plate and image display use same |
JP2007334194A (en) * | 2006-06-19 | 2007-12-27 | Fujifilm Corp | Transflective liquid crystal display device |
KR20080035877A (en) * | 2006-10-20 | 2008-04-24 | 삼성전자주식회사 | Display apparatus for 3 dimensional image |
CN101846851B (en) * | 2010-03-10 | 2011-07-27 | 深圳市三利谱光电科技股份有限公司 | Production method of polaroid for STN (Supper Twisted Nematic) LCD |
TWI551919B (en) * | 2011-05-18 | 2016-10-01 | 東洋紡績股份有限公司 | Liquid-crystal display device |
WO2013046897A1 (en) * | 2011-09-28 | 2013-04-04 | コニカミノルタアドバンストレイヤー株式会社 | Stereoscopic image display system |
TWI436128B (en) * | 2011-09-30 | 2014-05-01 | Dainippon Printing Co Ltd | Liquid crystal display device and polarizing plate protective film |
JP2014153559A (en) * | 2013-02-08 | 2014-08-25 | Toyobo Co Ltd | Image display device |
JP6459159B2 (en) * | 2013-02-15 | 2019-01-30 | 東洋紡株式会社 | Image display device |
JP6398148B2 (en) * | 2013-02-15 | 2018-10-03 | 東洋紡株式会社 | Image display device |
JP2018018096A (en) * | 2013-03-08 | 2018-02-01 | 富士フイルム株式会社 | Optical film, polarizing plate, and liquid crystal display |
CN105143967B (en) * | 2013-04-19 | 2019-02-19 | 东洋纺株式会社 | Liquid crystal display device, polarizer and polaroid protective film |
CN108169955B (en) * | 2015-03-04 | 2022-03-25 | 东洋纺株式会社 | Liquid crystal display device having a plurality of pixel electrodes |
CN117908178A (en) * | 2015-11-30 | 2024-04-19 | 日东电工株式会社 | Polarizing plate with retardation layer and image display device |
CN106067018B (en) * | 2016-08-08 | 2019-01-04 | 京东方科技集团股份有限公司 | A kind of fingerprint recognition display panel and display device |
CN106249457B (en) * | 2016-09-26 | 2019-09-13 | 京东方科技集团股份有限公司 | A kind of control method of array substrate, display device and fingerprint recognition |
CN107025451B (en) * | 2017-04-27 | 2019-11-08 | 上海天马微电子有限公司 | Display panel and display device |
JP2017199019A (en) * | 2017-06-29 | 2017-11-02 | 東洋紡株式会社 | Image display device |
CN107748874B (en) * | 2017-11-01 | 2020-12-04 | 京东方科技集团股份有限公司 | Full-screen fingerprint identification OLED module, fingerprint identification method and display device |
JP6863530B2 (en) | 2018-09-28 | 2021-04-21 | 東洋紡株式会社 | Image display device with fingerprint authentication sensor |
-
2019
- 2019-09-26 JP JP2020549085A patent/JP6863530B2/en active Active
- 2019-09-26 CN CN202210934475.2A patent/CN115394189B/en active Active
- 2019-09-26 KR KR1020217010426A patent/KR102344400B1/en active IP Right Grant
- 2019-09-26 WO PCT/JP2019/037763 patent/WO2020067243A1/en active Application Filing
- 2019-09-26 KR KR1020217042285A patent/KR102532989B1/en active IP Right Grant
- 2019-09-26 CN CN201980061456.XA patent/CN112740304A/en active Pending
- 2019-09-27 TW TW108135042A patent/TW202018343A/en unknown
-
2021
- 2021-03-15 JP JP2021041287A patent/JP7405107B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014013390A (en) * | 2013-07-16 | 2014-01-23 | Dainippon Printing Co Ltd | Liquid crystal display device and polarizing plate protection film |
JP2014112252A (en) * | 2014-02-17 | 2014-06-19 | Dainippon Printing Co Ltd | Liquid crystal display device and polarizing plate-protecting film |
JP2016006648A (en) * | 2014-06-18 | 2016-01-14 | ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド | Touch panel with function of fingerprint identification function |
JP2018515820A (en) * | 2015-10-30 | 2018-06-14 | エッセンシャル プロダクツ インコーポレイテッドEssential Products, Inc. | Fingerprint sensor for mobile devices |
US20180121703A1 (en) * | 2016-10-28 | 2018-05-03 | Samsung Electronics Co., Ltd. | Apparatus for reducing noise input to fingerprint sensor |
CN107392132A (en) * | 2017-07-14 | 2017-11-24 | 上海天马微电子有限公司 | Display panel and display device |
CN108153027A (en) * | 2018-01-30 | 2018-06-12 | 京东方科技集团股份有限公司 | A kind of display device |
JP2020038254A (en) * | 2018-09-03 | 2020-03-12 | 住友化学株式会社 | Optical film |
WO2020054529A1 (en) * | 2018-09-12 | 2020-03-19 | 東レ株式会社 | Laminate film |
Also Published As
Publication number | Publication date |
---|---|
JP7405107B2 (en) | 2023-12-26 |
KR20210046071A (en) | 2021-04-27 |
JP2021101250A (en) | 2021-07-08 |
KR102344400B1 (en) | 2021-12-28 |
TW202018343A (en) | 2020-05-16 |
WO2020067243A1 (en) | 2020-04-02 |
CN115394189A (en) | 2022-11-25 |
KR20220002705A (en) | 2022-01-06 |
CN115394189B (en) | 2024-06-21 |
KR102532989B1 (en) | 2023-05-16 |
CN112740304A (en) | 2021-04-30 |
JP6863530B2 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6863530B2 (en) | Image display device with fingerprint authentication sensor | |
JP6284606B2 (en) | Optical display device having polarizing film | |
JP7081676B2 (en) | Base film for surface protective film of image display device with fingerprint authentication sensor, surface protective film and image display device | |
JP2012014001A (en) | Method for manufacturing polarizer, polarizer, polarizing plate, optical film and image display device | |
JP2019095661A (en) | Optical film and method for producing the same, polarizing plate and liquid display device | |
KR20170016354A (en) | Method for manufacturing phase difference film and method for manufacturing layered polarizing plate | |
CN111164499A (en) | Liquid crystal display device having a plurality of pixel electrodes | |
JP7527971B2 (en) | Polarizing plates and polarizing plate rolls | |
CN114502998A (en) | Polarizing plate with retardation layer and organic electroluminescent display device using the same | |
KR20220019102A (en) | Method for producing a polarizing plate with a retardation layer and a hard coat layer | |
JP2003075637A (en) | Phase difference film and light emission type display device using the same | |
TWI657919B (en) | Circular polarizing film, circular polarizing film with adhesive layer, and image display device | |
JP2012073646A (en) | Manufacturing method of retardation plate | |
JP2019073598A (en) | Film and conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200911 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200911 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20201009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210315 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6863530 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |