JPWO2020046994A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020046994A5
JPWO2020046994A5 JP2021510328A JP2021510328A JPWO2020046994A5 JP WO2020046994 A5 JPWO2020046994 A5 JP WO2020046994A5 JP 2021510328 A JP2021510328 A JP 2021510328A JP 2021510328 A JP2021510328 A JP 2021510328A JP WO2020046994 A5 JPWO2020046994 A5 JP WO2020046994A5
Authority
JP
Japan
Prior art keywords
contact device
conduit
ultrapure water
ozone
delivery system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021510328A
Other languages
Japanese (ja)
Other versions
JP7422135B2 (en
JP2022502235A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2019/048411 external-priority patent/WO2020046994A1/en
Publication of JP2022502235A publication Critical patent/JP2022502235A/en
Publication of JPWO2020046994A5 publication Critical patent/JPWO2020046994A5/ja
Application granted granted Critical
Publication of JP7422135B2 publication Critical patent/JP7422135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

これに対して、オゾン水中のオゾンの崩壊速度を制御するために数多くの手法が用いられている。例えば、図1は、半導体製造用途において現在用いられているオゾン水デリバリシステムの一例を示すものである。図示されているように、オゾン水デリバリシステム1は、超純水源導路7(以下、UPW源導路7)を介して超純水源5(以下、UPW源5)と流体的に接続される接触装置3を含んでいる。気体源及び/又はオゾン生成器9(以下、気体源9)が気体流入導路11を介して接触装置3と接続されている。典型的には、気体混合物は、二酸化炭素(CO2)、オゾン(O3)、及び酸素(O2)を含んでいる。水を気体混合物から安全に分離し、水、気体、又はその両方が気体源9に逆流することを防止するために1以上のバルブ装置13及び/又はインジケータが使用される。使用中は、気体源9からの気体混合物を接触装置3内で向流を用いてUPW源5からの超純水と接触させることにより、気体源9からのオゾンの一部を超純水に溶解させる。気体混合物中の二酸化炭素(CO2)の一部は、水酸化物イオンの濃度を低下させる炭酸に変わる。炭酸イオンは、超純水中の溶解オゾンの崩壊速度を効果的に下げる水酸ラジカルを捕捉する。その後、溶解オゾンが接触装置3から放出又は除去され、溶解オゾン導路19を介して溶解オゾン出力17を形成する。二酸化炭素(CO2)、酸素(O2)、オゾン(O3)のようなオフガス21は、オフガス導路23を介して接触装置3から放出され得る。図1におけるシステムは有用なものであるとされているが、数多くの短所も判明している。例えば、図1に示されるオゾン水デリバリシステムによれば約25ppmから50ppmのオゾン濃度が得られる。しかしながら、図1に示されるオゾン水デリバリシステム1を用いて約50ppmよりも高いオゾン濃度を得ることは難しいとされている。さらに、物質移動効率を上げるためには、接触装置3の充填カラムを高く又は大きくする必要があるため、大きな作業領域が必要となる。加えて、二酸化炭素のような気体を超純水に溶解させる、あるいは超純水から残留酸素を除去するためには、通常、膜モジュールが使用される。不運なことに、市場において最も入手し易い膜モジュールは、ポリプロピレン及び/又はポリエチレンのようなプラスチック、あるいは、過酸化物やオゾンのような酸化剤に対して非常に反応し易い同様の材料を含んでいる。さらに、二酸化炭素とオゾンの溶解度は異なっている。このため、接触装置内の二酸化炭素の濃度は流れの構成によってかなり異なる。例えば、充填カラム接触装置内で向流を構成した場合には、接触装置3内の気体混合物導路11からの流入口の近傍で二酸化炭素が溶解し、UPW導路からの流入口の近傍でオゾンが溶解することになり得るため、オゾン水の形成の効率が低下し得る。図2は、向流の構成を用いた充填カラム接触装置3における二酸化炭素の濃度プロファイルをグラフで示すものである。図2の横軸は、接触装置3を形成する充填カラムの横セクションを表している(以下、カラムセクション)。セクション1は、UPW源導路7からの流入口とオフガス導路23への流出口の近傍のカラムの上部を表している。セクション20は、気体流入導路11及び溶解オゾン導路19の近傍のカラムの底部を表している。 On the other hand, many methods are used to control the decay rate of ozone in ozone water. For example, FIG. 1 shows an example of an ozone water delivery system currently used in semiconductor manufacturing applications. As shown in the figure, the ozone water delivery system 1 is fluidly connected to the ultrapure water source 5 (hereinafter, UPW source 5) via the ultrapure water source conduction path 7 (hereinafter, UPW source conduction path 7). The contact device 3 is included. A gas source and / or an ozone generator 9 (hereinafter referred to as a gas source 9) is connected to the contact device 3 via a gas inflow guide 11. Typically, the gaseous mixture contains carbon dioxide (CO 2 ), ozone (O 3 ), and oxygen (O 2 ). One or more valve devices 13 and / or indicators are used to safely separate water from the gas mixture and prevent water, gas, or both from flowing back into the gas source 9. During use, the gas mixture from the gas source 9 is brought into contact with the ultrapure water from the UPW source 5 using a countercurrent in the contact device 3, so that a part of ozone from the gas source 9 becomes ultrapure water. Dissolve. Some of the carbon dioxide (CO 2 ) in the gas mixture is converted to carbonic acid, which reduces the concentration of hydroxide ions. Carbonate ions capture the hydroxide radicals that effectively slow down the decay rate of dissolved ozone in ultrapure water. After that, the dissolved ozone is released or removed from the contact device 3 to form the dissolved ozone output 17 via the dissolved ozone guide 19. Off-gas 21 such as carbon dioxide (CO 2 ), oxygen (O 2 ), ozone (O 3 ) can be released from the contact device 3 via the off-gas conduit 23. Although the system in FIG. 1 is considered useful, it also reveals a number of disadvantages. For example, according to the ozone water delivery system shown in FIG. 1, an ozone concentration of about 25 ppm to 50 ppm can be obtained. However, it is difficult to obtain an ozone concentration higher than about 50 ppm by using the ozone water delivery system 1 shown in FIG. Further, in order to improve the mass transfer efficiency, it is necessary to increase or increase the filling column of the contact device 3, so that a large working area is required. In addition, membrane modules are typically used to dissolve gases such as carbon dioxide in ultrapure water or to remove residual oxygen from ultrapure water. Unfortunately, the most accessible membrane modules on the market include plastics such as polypropylene and / or polyethylene, or similar materials that are highly reactive to oxidants such as peroxides and ozone. I'm out. Moreover, the solubilities of carbon dioxide and ozone are different. For this reason, the concentration of carbon dioxide in the contact device varies considerably depending on the flow configuration. For example, when a countercurrent is configured in the packed column contact device, carbon dioxide dissolves in the vicinity of the inlet from the gas mixture lead 11 in the contact device 3, and the inflow from the UPW source lead 7 is dissolved. Since ozone may dissolve in the vicinity, the efficiency of ozone water formation may decrease. FIG. 2 is a graph showing the concentration profile of carbon dioxide in the packed column contact device 3 using the countercurrent configuration. The horizontal axis of FIG. 2 represents the horizontal section of the filling column forming the contact device 3 (hereinafter referred to as the column section). Section 1 represents the top of the column near the inlet from the UPW source 7 and the outlet to the off-gas conduit 23. Section 20 represents the bottom of the column in the vicinity of the gas inflow conduit 11 and the dissolved ozone conduit 19.

本出願は、従来技術のシステムよりも高い濃度の溶解オゾンを含む超純水をより多く供給することが可能なオゾン水デリバリシステムの様々な実施形態を開示している。ある実施形態においては、オゾン水デリバリシステムは、オゾン反応性を調整し、正確な溶解オゾン測定値を維持できるように構成され得る。より具体的には、一実施形態においては、本出願は、超純水を供給するように構成される少なくとも1つの超純水源と接続される少なくとも1つの接触装置を含むオゾン水デリバリシステムを開示している。少なくとも1つの超純水導路が超純水源に連結され得る。さらに、少なくとも1つの溶液導路が、超純水導路を介して接触装置及び超純水源と接続され得る。少なくとも1つの気体を含む1以上の気体源が、超純水源、超純水導路、及び溶液導路のうち少なくとも1つと接続され得る。使用中は、超純水と反応した際に少なくとも1つの溶液を形成するように気体が使用され得る。少なくとも1つの混合気体導路が、気体源及び接触装置と接続され得る。混合気体導路は、少なくとも1つの混合気体を接触装置に供給するように構成され得る。最後に、少なくとも1つのオゾン水出力導路が接触装置と接続され得る。 The present application discloses various embodiments of an ozone water delivery system capable of supplying more ultrapure water containing dissolved ozone at a higher concentration than the prior art system. In certain embodiments, the ozone water delivery system may be configured to regulate ozone reactivity and maintain accurate dissolved ozone measurements. More specifically, in one embodiment, the present application discloses an ozone water delivery system comprising at least one contact device connected to at least one ultrapure water source configured to supply ultrapure water. is doing. At least one ultrapure water conduit may be connected to the ultrapure water source. In addition, at least one solution guide can be connected to the contact device and the ultrapure water source via the ultrapure water guide. One or more gas sources containing at least one gas may be connected to at least one of an ultrapure water source, an ultrapure water source, and a solution source. During use, the gas may be used to form at least one solution when reacted with ultrapure water. At least one mixed gas conduit may be connected to the gas source and contact device. The mixed gas conduit can be configured to supply at least one mixed gas to the contact device. Finally, at least one ozone water output conduit may be connected to the contact device.

他の実施形態においては、本出願は、オゾン水デリバリシステムにより生成されるオゾン水の様々な特性、濃度、流量などを測定するように構成される1以上のセンサを含むオゾン水デリバリシステムを開示している。より具体的には、オゾン水デリバリシステムは、超純水を供給するように構成される少なくとも1つの超純水源と接続される少なくとも1つの接触装置を含み得る。少なくとも1つの超純水導路が超純水源に連結され得る。さらに、少なくとも1つの溶液導路が、超純水導路を介して接触装置及び超純水源と接続され得る。少なくとも1つの気体を含む1以上の気体源が、超純水源、超純水導路、及び溶液導路のうち少なくとも1つと接続され得る。使用中は、超純水と反応した際に少なくとも1つの溶液を形成するように気体が使用され得る。少なくとも1つの混合気体導路が、気体源及び接触装置と接続され得る。混合気体導路は、少なくとも1つの混合気体を接触装置に供給するように構成され得る。最後に、少なくとも1つのオゾン水出力導路が接触装置と接続され得る。1以上のセンサは、オゾン水デリバリシステム内に位置していてもよく、オゾン濃度、流量、温度などの出力オゾン水の様々な特性を測定するために使用されてもよい。 In other embodiments, the present application discloses an ozone water delivery system comprising one or more sensors configured to measure various properties, concentrations, flow rates, etc. of ozone water produced by the ozone water delivery system. is doing. More specifically, the ozone water delivery system may include at least one contact device connected to at least one source of ultrapure water configured to supply ultrapure water. At least one ultrapure water conduit may be connected to the ultrapure water source. In addition, at least one solution guide can be connected to the contact device and the ultrapure water source via the ultrapure water guide. One or more gas sources containing at least one gas may be connected to at least one of an ultrapure water source, an ultrapure water source, and a solution source. During use, the gas may be used to form at least one solution when reacted with ultrapure water. At least one mixed gas conduit may be connected to the gas source and contact device. The mixed gas conduit can be configured to supply at least one mixed gas to the contact device. Finally, at least one ozone water output conduit may be connected to the contact device. One or more sensors may be located within the ozone water delivery system and may be used to measure various properties of the output ozone water such as ozone concentration, flow rate, temperature and the like.

図8及び図9は、オゾン水デリバリシステムの他の実施形態を示すものである。図示されているように、オゾン水デリバリシステム100は、第1の接触装置102aと、少なくとも第2の接触装置102bとを含んでいる。一実施形態においては、第1の接触装置102a、第2の接触装置102b、又はその両方が、充填カラム構成を含んでいる。必要に応じて、第1の接触装置102a及び/又は第2の接触装置102bの少なくとも一方は、充填カラム構成を含んでいなくてもよい。例えば、第1の接触装置102a及び/又は第2の接触装置102bの少なくとも一方は、メンブレンを利用した装置又は少なくとも1つの膜モジュールを含んでいてもよい。第1の接触装置102aは、少なくとも1つの超純水導路106(以下、UPW導路106)を介して少なくとも1つの超純水源104(以下、UPW104)と流体的に接続され得る。図8及び図9には示されていないが、再び、当業者であれば、1以上のコントローラ、バルブ装置、センサ、インジケータなどを連結部材118上に含めてもよいことを理解するであろう。
8 and 9 show other embodiments of the ozone water delivery system. As shown, the ozone water delivery system 100 includes a first contact device 102a and at least a second contact device 102b. In one embodiment, the first contact device 102a, the second contact device 102b, or both include a packed column configuration. If necessary, at least one of the first contact device 102a and / or the second contact device 102b may not include a filling column configuration. For example, at least one of the first contact device 102a and / or the second contact device 102b may include a membrane-based device or at least one membrane module. The first contact device 102a may be fluidly connected to at least one ultrapure water source 104 (hereinafter, UPW104) via at least one ultrapure water conduction path 106 (hereinafter, UPW conduction path 106). Although not shown in FIGS. 8 and 9, those skilled in the art will once again appreciate that one or more controllers, valve devices, sensors, indicators, etc. may be included on the connecting member 118 . ..

Claims (31)

少なくとも1つの接触装置と、
超純水を供給するように構成される少なくとも1つの超純水源と、
前記少なくとも1つの超純水源に連結される少なくとも1つの超純水導路と、
前記少なくとも1つの超純水導路を介して前記少なくとも1つの接触装置及び前記少なくとも1つの超純水源と接続される少なくとも1つの溶液導路と、
前記超純水と反応して少なくとも1つの溶液を形成する少なくとも1つの気体を含み、前記少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路のうち少なくとも1つと接続される少なくとも1つの気体源と、
前記少なくとも1つの気体源及び前記少なくとも1つの接触装置と接続される少なくとも1つの混合気体導路であって、少なくとも1つの混合気体を前記少なくとも1つの接触装置に供給するように構成される少なくとも1つの混合気体導路と、
前記少なくとも1つの接触装置と接続される少なくとも1つのオゾン水出力導路と
を備える、オゾン水デリバリシステム。
With at least one contact device,
With at least one source of ultrapure water configured to supply ultrapure water,
At least one ultrapure water conduit connected to the at least one ultrapure water source,
The at least one solution conduit connected to the at least one contact device and the at least one ultrapure water source via the at least one ultrapure water conduit.
Of the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit containing at least one gas that reacts with the ultrapure water to form at least one solution. With at least one gas source connected to at least one,
At least one of the mixed gas leads connected to the at least one gas source and the at least one contact device, configured to supply the at least one mixed gas to the at least one contact device. Two mixed gas leads and
An ozone water delivery system comprising at least one ozone water output conduit connected to the at least one contact device.
前記接触装置は、少なくとも1つの充填カラム接触装置を含む、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein the contact device includes at least one packed column contact device. 前記接触装置は、塔充填物を内部に含む少なくとも1つの充填カラム接触装置を含む、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein the contact device includes at least one packed column contact device containing a tower filling inside. 前記接触装置は、少なくとも1つの膜モジュールを内部に含む少なくとも1つのメンブレン接触装置を含む、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein the contact device includes at least one membrane contact device including at least one membrane module inside. 前記少なくとも1つの気体源は、前記少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路のうち少なくとも1つに二酸化炭素を供給することにより、二酸化炭素水溶液を形成するように構成される、請求項1に記載のオゾン水デリバリシステム。 The at least one gas source is carbon dioxide by supplying carbon dioxide to at least one of the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit. The ozone water delivery system according to claim 1, which is configured to form an aqueous solution. 前記少なくとも1つの気体源は、約0.01SLPMから約0.5SLPMの流量で少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路に二酸化炭素を流すように構成される、請求項5に記載のオゾン水デリバリシステム。 The at least one gas source is such that carbon dioxide flows through the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit at a flow rate of about 0.01 SLPM to about 0.5 SLPM. The ozone water delivery system according to claim 5, which is configured. 前記少なくとも1つの気体源は、約0.05SLPMから約0.3SLPMの流量で少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路に二酸化炭素を流すように構成される、請求項5に記載のオゾン水デリバリシステム。 The at least one gas source is such that carbon dioxide flows through the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit at a flow rate of about 0.05 SLPM to about 0.3 SLPM. The ozone water delivery system according to claim 5, which is configured. 前記少なくとも1つの気体源は、約0.1SLPMから約0.2SLPMの流量で少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路に二酸化炭素を流すように構成される、請求項5に記載のオゾン水デリバリシステム。 The at least one gas source is such that carbon dioxide flows through the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit at a flow rate of about 0.1 SLPM to about 0.2 SLPM. The ozone water delivery system according to claim 5, which is configured. 前記少なくとも1つの気体源は、一定の気体流量で少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路に二酸化炭素を流すように構成される、請求項5に記載のオゾン水デリバリシステム。 The at least one gas source is configured to flow carbon dioxide through at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit at a constant gas flow rate. Item 5. The ozone water delivery system according to Item 5. 前記少なくとも1つの気体源は、可変の気体流量で少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路に二酸化炭素を流すように構成される、請求項5に記載のオゾン水デリバリシステム。 The at least one gas source is configured to flow carbon dioxide through the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit at a variable gas flow rate. Item 5. The ozone water delivery system according to Item 5. 前記少なくとも1つの気体源から前記少なくとも1つの混合気体導路を介して前記少なくとも1つの接触装置に流れる少なくとも1つの混合気体は、酸素、オゾン、及び二酸化炭素を含む、請求項1に記載のオゾン水デリバリシステム。 The ozone according to claim 1, wherein the at least one mixed gas flowing from the at least one gas source to the at least one contact device through the at least one mixed gas conduit contains oxygen, ozone, and carbon dioxide. Water delivery system. 前記少なくとも1つの気体源から前記少なくとも1つの混合気体導路を介して前記少なくとも1つの接触装置に流れる少なくとも1つの混合気体は、窒素、二酸化窒素、及び二酸化二窒素からなる群から選択される少なくとも1つの気体を含、請求項11に記載のオゾン水デリバリシステム。 The at least one mixed gas flowing from the at least one gas source to the at least one contact device through the at least one mixed gas conduit is at least selected from the group consisting of nitrogen, nitrogen dioxide, and dinitrogen dioxide. The ozone water delivery system according to claim 11, which comprises one gas. 前記少なくとも1つの気体源、少なくとも1つの超純水源、少なくとも1つの超純水導路、少なくとも1つの溶液導路、少なくとも1つの混合気体導路、少なくともオゾン水流出導路のうち少なくとも1つに配置されたプロセッサ、バルブ、質量流量コントローラ、流量センサ、ゲージ、インジケータ、流体絞り、及びセンサのうち少なくとも1つをさらに備える、請求項1に記載のオゾン水デリバリシステム。 To at least one of the at least one gas source, at least one ultrapure water source, at least one ultrapure water conduit, at least one solution conduit, at least one mixed gas conduit, and at least an ozone water outflow conduit. The ozone water delivery system according to claim 1, further comprising at least one of an arranged processor, valve, mass flow controller, flow sensor, gauge, indicator, fluid throttle, and sensor. 前記接触装置に形成され、前記少なくとも1つの超純水導路及び少なくとも1つの溶液導路のうち少なくとも1つを介して前記少なくとも1つの超純水源と接続される少なくとも1つの超純水流入口と、
前記接触装置に形成され、前記少なくとも1つの混合気体導路を介して前記少なくとも1つの気体源と接続される少なくとも1つの混合気体流入口と
をさらに備える、請求項1に記載のオゾン水デリバリシステム。
With at least one ultrapure water inlet formed in the contact device and connected to the at least one ultrapure water source via at least one of the at least one ultrapure water conduit and the at least one solution conduit. ,
The ozone water delivery system according to claim 1, further comprising at least one mixed gas inlet which is formed in the contact device and is connected to the at least one gas source via the at least one mixed gas conduction path. ..
前記少なくとも1つの混合気体流入口は、前記少なくとも1つの超純水流入口から離れた位置にある、請求項14に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 14, wherein the at least one mixed gas inlet is located at a position away from the at least one ultrapure water inlet. 前記少なくとも1つの混合気体流入口は、前記少なくとも1つの超純水流入口に隣接した位置にある、請求項14に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 14, wherein the at least one mixed gas inlet is located adjacent to the at least one ultrapure water inlet. 前記少なくともオゾン水流出導路は、オゾン水を出力するように構成される、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein at least the ozone water outflow conduit is configured to output ozone water. 前記少なくともオゾン水流出導路は、毎分0.2リットルから毎分70リットルの流量でオゾン水を出力するように構成される、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein at least the ozone water outflow conduit is configured to output ozone water at a flow rate of 0.2 liters per minute to 70 liters per minute. 前記少なくともオゾン水流出導路は、毎分3リットルから毎分40リットルの流量でオゾン水を出力するように構成される、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein at least the ozone water outflow conduit is configured to output ozone water at a flow rate of 3 liters per minute to 40 liters per minute. 前記少なくともオゾン水流出導路は、毎分2リットルから毎分20リットルの流量でオゾン水を出力するように構成される、請求項1に記載のオゾン水デリバリシステム。 The ozone water delivery system according to claim 1, wherein at least the ozone water outflow conduit is configured to output ozone water at a flow rate of 2 liters per minute to 20 liters per minute. 第1の接触装置と、
超純水を前記第1の接触装置に供給するように構成される少なくとも1つの超純水源と、
前記少なくとも1つの超純水源及び前記第1の接触装置に連結される少なくとも1つの超純水導路と、
前記少なくとも1つの超純水導路を介して前記第1の接触装置及び前記少なくとも1つの超純水源と接続される少なくとも1つの溶液導路と、
前記超純水と反応して少なくとも1つの溶液を形成する少なくとも1つの気体を含み、前記少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路のうち少なくとも1つと接続される少なくとも1つの気体源と、
少なくとも1つの第1の接触装置導路を介して前記第1の接触装置と接続される少なくとも1つの第2の接触装置であって、前記第1の接触装置導路は、前記第1の接触装置から出力されたオゾン水を前記少なくとも1つの第2の接触装置に移送するように構成された、少なくとも1つの第2の接触装置と、
前記少なくとも1つの気体源及び前記少なくとも1つの第2の接触装置と接続され、少なくとも1つの混合気体を前記少なくとも1つの第2の接触装置に供給するように構成された少なくとも1つの混合気体導路と、
前記少なくとも1つの第2の接触装置及び前記第1の接触装置と接続され、前記少なくとも1つの第2の接触装置からの前記少なくとも1つの混合気体の一部を前記第1の接触装置に向けるように構成された少なくとも1つのオフガス導路と、
前記少なくとも1つの第2の接触装置と接続される少なくとも1つのオゾン水出力導路と
を備える、オゾン水デリバリシステム。
The first contact device and
With at least one source of ultrapure water configured to supply the ultrapure water to the first contact device,
The at least one ultrapure water source and at least one ultrapure water conduit connected to the first contact device.
With the at least one solution conduit connected to the first contact device and the at least one ultrapure water source via the at least one ultrapure water conduit.
Of the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit containing at least one gas that reacts with the ultrapure water to form at least one solution. With at least one gas source connected to at least one,
At least one second contact device connected to the first contact device via at least one first contact device guide, wherein the first contact device guide is the first contact. An at least one second contact device configured to transfer ozone water output from the device to the at least one second contact device.
At least one mixed gas conduit connected to the at least one gas source and the at least one second contact device and configured to supply the at least one mixed gas to the at least one second contact device. When,
Connected to the at least one second contact device and the first contact device so that a portion of the at least one mixed gas from the at least one second contact device is directed at the first contact device. With at least one off-gas conduit configured in
An ozone water delivery system comprising at least one ozone water output conduit connected to the at least one second contact device.
前記第1の接触装置及び前記少なくとも1つの第2の接触装置のうち少なくとも1つは、少なくとも1つの充填カラム接触装置を含む、請求項21に記載のオゾン水デリバリシステム。 21. The ozone water delivery system of claim 21, wherein at least one of the first contact device and the at least one second contact device comprises at least one packed column contact device. 前記第1の接触装置及び前記少なくとも1つの第2の接触装置のうち少なくとも1つは、塔充填物を含む内部に含む少なくとも1つの充填カラム接触装置を含む、請求項21に記載のオゾン水デリバリシステム。 21. The ozone water delivery according to claim 21, wherein at least one of the first contact device and the at least one second contact device includes at least one packed column contact device contained inside including a tower filling. system. 前記第1の接触装置及び前記少なくとも1つの第2の接触装置のうち少なくとも1つは、少なくとも1つの膜モジュールを内部に含む少なくとも1つのメンブレン接触装置を含む、請求項21に記載のオゾン水デリバリシステム。 21. The ozone water delivery according to claim 21, wherein at least one of the first contact device and the at least one second contact device includes at least one membrane contact device including at least one membrane module inside. system. 前記第1の接触装置及び前記少なくとも1つの第2の接触装置と接続され、前記第1の接触装置から出力されるオゾン水を前記少なくとも1つの第2の接触装置に汲み上げるように構成される少なくとも1つのポンプをさらに備える、請求項21に記載のオゾン水デリバリシステム。 At least configured to be connected to the first contact device and the at least one second contact device and pumping ozone water output from the first contact device to the at least one second contact device. 21. The ozone water delivery system according to claim 21, further comprising one pump. 前記少なくとも1つの気体源は、前記少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路のうち少なくとも1つに二酸化炭素を供給することにより、二酸化炭素水溶液を形成するように構成される、請求項21に記載のオゾン水デリバリシステム。 The at least one gas source is carbon dioxide by supplying carbon dioxide to at least one of the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit. The ozone water delivery system according to claim 21, which is configured to form an aqueous solution. 前記少なくとも1つの気体源は、約0.01SLPMから約0.5SLPMの流量で少なくとも1つの超純水源、前記少なくとも1つの超純水導路、及び前記少なくとも1つの溶液導路に二酸化炭素を流すように構成される、請求項26に記載のオゾン水デリバリシステム。 The at least one gas source is such that carbon dioxide flows through the at least one ultrapure water source, the at least one ultrapure water conduit, and the at least one solution conduit at a flow rate of about 0.01 SLPM to about 0.5 SLPM. The ozone water delivery system according to claim 26, which is configured. 前記少なくとも1つの気体源から前記少なくとも1つの混合気体導路を介して前記少なくとも1つの第2の接触装置に流れる少なくとも1つの混合気体は、酸素、オゾン、及び二酸化炭素を含む、請求項21に記載のオゾン水デリバリシステム。 21. The at least one mixed gas flowing from the at least one gas source to the at least one second contact device through the at least one mixed gas conduit includes oxygen, ozone, and carbon dioxide. The ozone water delivery system described. 前記少なくとも1つの気体源から前記少なくとも1つの混合気体導路を介して前記少なくとも1つの第2の接触装置に流れる少なくとも1つの混合気体は、窒素、二酸化窒素、及び二酸化二窒素からなる群から選択される少なくとも1つの気体を含、請求項21に記載のオゾン水デリバリシステム。 The at least one mixed gas flowing from the at least one gas source to the at least one second contact device via the at least one mixed gas conduit is selected from the group consisting of nitrogen, nitrogen dioxide, and dinitrogen dioxide. 21. The ozone water delivery system according to claim 21, wherein the ozone water delivery system comprises at least one gas. 前記少なくとも1つの気体源、少なくとも1つの超純水源、少なくとも1つの超純水導路、少なくとも1つの溶液導路、少なくとも1つの第1の接触装置導路、少なくとも1つの混合気体導路、少なくとも1つのオフガス連結導路、及び少なくともオゾン水流出導路のうち少なくとも1つに配置されたプロセッサ、バルブ、質量流量コントローラ、流量センサ、ゲージ、インジケータ、流体絞り、ポンプ、及びセンサのうち少なくとも1つをさらに備える、請求項21に記載のオゾン水デリバリシステム。 The at least one gas source, at least one ultrapure water source, at least one ultrapure water conduit, at least one solution conduit, at least one first contact device conduit, at least one mixed gas conduit, at least. At least one of a processor, valve, mass flow controller, flow sensor, gauge, indicator, fluid throttle, pump, and sensor located in at least one of one off-gas connecting lead and at least one of the ozone water outflow leads. 21. The ozone water delivery system according to claim 21. オゾン水を供給する方法であって、
超純水中に二酸化炭素が溶解した二酸化炭素水溶液を形成し、
前記二酸化炭素水溶液を少なくとも1つの接触装置に流し込み、
内部に前記二酸化炭素水溶液が流れる前記少なくとも1つの接触装置に少なくとも一部にオゾンを含む少なくとも1つの混合気体を流し込み、
前記少なくとも1つの接触装置内の前記超純水中に前記オゾンの少なくとも一部を溶解させ、
前記超純水中に溶解したオゾンのオゾン崩壊速度を前記二酸化炭素水溶液の二酸化炭素成分を用いて遅くし、
前記少なくとも1つの接触装置からオゾン水を出力する、
方法。
It is a method of supplying ozone water.
Forming a carbon dioxide aqueous solution in which carbon dioxide is dissolved in ultrapure water,
The carbon dioxide aqueous solution is poured into at least one contact device, and the carbon dioxide aqueous solution is poured into at least one contact device.
At least one mixed gas containing ozone is poured into the at least one contact device through which the carbon dioxide aqueous solution flows.
At least a part of the ozone is dissolved in the ultrapure water in the at least one contact device.
The ozone decay rate of ozone dissolved in the ultrapure water is slowed down by using the carbon dioxide component of the carbon dioxide aqueous solution.
Output ozone water from the at least one contact device,
Method.
JP2021510328A 2018-08-29 2019-08-27 Ozone water delivery system and usage method Active JP7422135B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862724368P 2018-08-29 2018-08-29
US62/724,368 2018-08-29
PCT/US2019/048411 WO2020046994A1 (en) 2018-08-29 2019-08-27 Ozonated water delivery system and method of use

Publications (3)

Publication Number Publication Date
JP2022502235A JP2022502235A (en) 2022-01-11
JPWO2020046994A5 true JPWO2020046994A5 (en) 2022-06-02
JP7422135B2 JP7422135B2 (en) 2024-01-25

Family

ID=69639551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510328A Active JP7422135B2 (en) 2018-08-29 2019-08-27 Ozone water delivery system and usage method

Country Status (9)

Country Link
US (1) US11518696B2 (en)
EP (1) EP3814284A4 (en)
JP (1) JP7422135B2 (en)
KR (2) KR20230165878A (en)
CN (1) CN112601720A (en)
IL (1) IL281134A (en)
SG (1) SG11202100619PA (en)
TW (1) TW202023962A (en)
WO (1) WO2020046994A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020126A1 (en) * 2022-07-20 2024-01-25 Evoqua Water Technologies Llc Mobile ultrapure water system

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261966A (en) 1991-01-28 1993-11-16 Kabushiki Kaisha Toshiba Method of cleaning semiconductor wafers using mixer containing a bundle of gas permeable hollow yarns
EP0598424A3 (en) 1992-11-16 1996-05-15 Novellus Systems Inc Device for removing dissolved gas from a liquid.
JP3174856B2 (en) 1993-05-07 2001-06-11 日本エア・リキード株式会社 Mixed gas supply device
US6001223A (en) 1995-07-07 1999-12-14 Air Liquide America Corporation On-site ammonia purification for semiconductor manufacture
DE69830121T2 (en) 1997-10-31 2006-02-23 Ebara Corp. Polishing slurry dispenser
US20070119816A1 (en) 1998-04-16 2007-05-31 Urquhart Karl J Systems and methods for reclaiming process fluids in a processing environment
US7980753B2 (en) 1998-04-16 2011-07-19 Air Liquide Electronics U.S. Lp Systems and methods for managing fluids in a processing environment using a liquid ring pump and reclamation system
JP2000037695A (en) 1998-07-24 2000-02-08 Kurita Water Ind Ltd Apparatus for supplying ozone water
US6247838B1 (en) 1998-11-24 2001-06-19 The Boc Group, Inc. Method for producing a liquid mixture having a predetermined concentration of a specified component
JP2000262874A (en) * 1999-03-15 2000-09-26 Mitsubishi Electric Corp Method and apparatus for producing ozone water
JP3748731B2 (en) 1999-03-26 2006-02-22 株式会社荏原製作所 Abrasive fluid supply device
EP1237824B1 (en) 1999-10-19 2007-06-20 Phifer Smith Corporation A method and apparatus for treating a substrate with an ozone-solvent solution
JP2001129376A (en) * 1999-11-08 2001-05-15 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for manufacturing ozone water
TW512071B (en) 2000-07-31 2002-12-01 Kinetics Chempure Systems Inc Method and apparatus for blending process materials
US6805791B2 (en) 2000-09-01 2004-10-19 Applied Science And Technology, Inc. Ozonated water flow and concentration control apparatus
US6884359B2 (en) * 2000-09-27 2005-04-26 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
US6766818B2 (en) 2001-04-06 2004-07-27 Akrion, Llc Chemical concentration control device
CN1602538A (en) 2001-11-13 2005-03-30 Fsi国际公司 Advanced process control for immersion processing
US6732017B2 (en) 2002-02-15 2004-05-04 Lam Research Corp. System and method for point of use delivery, control and mixing chemical and slurry for CMP/cleaning system
JP2003334433A (en) 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
KR100519843B1 (en) 2002-05-29 2005-10-06 도요탄소 가부시키가이샤 Fluorine gas generator
KR20050030204A (en) 2002-07-19 2005-03-29 마이크롤리스 코포레이션 Fluid flow measuring and proportional fluid flow control device
JP2005534111A (en) 2002-07-19 2005-11-10 マイクロリス・コーポレーション Liquid flow controller and precision dispensing device and system
KR20050035865A (en) 2002-07-19 2005-04-19 키네틱 시스템즈, 인코포레이티드 Method and apparatus for blending process materials
JP3527735B1 (en) 2002-11-20 2004-05-17 東洋炭素株式会社 Fluorine gas generator
US7976718B2 (en) 2003-12-30 2011-07-12 Akrion Systems Llc System and method for selective etching of silicon nitride during substrate processing
US7107128B2 (en) 2004-02-13 2006-09-12 Entegris, Inc. System for controlling fluid flow
WO2006010109A2 (en) * 2004-07-08 2006-01-26 Akrion Technologies, Inc. Method and apparatus for creating ozonated process solutions having high ozone concentration
US20060080041A1 (en) 2004-07-08 2006-04-13 Anderson Gary R Chemical mixing apparatus, system and method
JP3777451B2 (en) 2004-08-18 2006-05-24 株式会社プレテック Ozone water generation method and ozone water production apparatus
TWI402098B (en) 2005-06-22 2013-07-21 Advanced Tech Materials Apparatus and process for integrated gas blending
TWI402423B (en) 2006-02-28 2013-07-21 Entegris Inc System and method for operation of a pump
US7743783B2 (en) 2006-04-04 2010-06-29 Air Liquide Electronics U.S. Lp Method and apparatus for recycling process fluids
JP4830731B2 (en) 2006-09-06 2011-12-07 栗田工業株式会社 Gas dissolved water supply device
US8448925B2 (en) * 2006-10-17 2013-05-28 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
JP5466817B2 (en) 2007-09-03 2014-04-09 シャープ株式会社 Ozone water production equipment
JP5020784B2 (en) 2007-11-08 2012-09-05 野村マイクロ・サイエンス株式会社 Ozone water production apparatus and production method
JP5412135B2 (en) 2009-02-23 2014-02-12 野村マイクロ・サイエンス株式会社 Ozone water supply device
US8747762B2 (en) 2009-12-03 2014-06-10 Applied Materials, Inc. Methods and apparatus for treating exhaust gas in a processing system
JP5779321B2 (en) * 2010-06-18 2015-09-16 シャープ株式会社 High concentration ozone water manufacturing method and high concentration ozone water manufacturing apparatus
US9056262B2 (en) * 2012-11-08 2015-06-16 Mks Instruments, Inc. Pressure-less ozonated Di-water (DIO3) recirculation reclaim system
KR102447374B1 (en) 2016-11-11 2022-09-23 엠케이에스 인스트루먼츠, 인코포레이티드 Systems and methods for producing a conductive liquid comprising deionized water in which ammonia gas is dissolved

Similar Documents

Publication Publication Date Title
JP4920751B2 (en) Apparatus, system and method for carbonating deionized water
KR101664217B1 (en) Devices, systems, and methods for carbonation of deionized water
US7622037B2 (en) Ozonated water flow and concentration control apparatus and method
CN103426795A (en) Method of preparing a chemical liquid for substrate processing, chemical liquid preparation unit, and substrate processing system
Chen et al. Absorption of NO2 in a packed tower with Na2SO3 aqueous solution
JP2022122987A (en) System and method for generating conductive liquid comprising deionized water with ammonia gas dissolved therein
Boributh et al. Analytical solutions for membrane wetting calculations based on log-normal and normal distribution functions for CO2 absorption by a hollow fiber membrane contactor
WO1994007795A1 (en) Water generating method
US11518696B2 (en) Ozonated water delivery system and method of use
JPWO2020046994A5 (en)
JP4069334B2 (en) Ozone dissolver
Kasim et al. The Study of Carbon Dioxide Removal in Membrane Module by Single and Mixture of Alkanolamine Aqueous Solutions
Mshewa Carbon dioxide desorption/absorption with aqueous mixtures of methyldiethanolamine and diethanolamine at 40 to 120 degrees C
Wu et al. ICOPE-15-C147 Simultaneous removal of SO_2 and NO_x using ammonia-based aqueous solution in a submerged circulative impinging stream reactor
JPS5827059A (en) Method and apparatus of measuring so2 gas density
JP2007091570A (en) Method and device for reducing gaseous oxygen remaining in gaseous nitrogen with high concentration produced from air