JPWO2020044531A1 - イオンミリング装置 - Google Patents

イオンミリング装置 Download PDF

Info

Publication number
JPWO2020044531A1
JPWO2020044531A1 JP2020539980A JP2020539980A JPWO2020044531A1 JP WO2020044531 A1 JPWO2020044531 A1 JP WO2020044531A1 JP 2020539980 A JP2020539980 A JP 2020539980A JP 2020539980 A JP2020539980 A JP 2020539980A JP WO2020044531 A1 JPWO2020044531 A1 JP WO2020044531A1
Authority
JP
Japan
Prior art keywords
ion
ion beam
sample
ion source
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020539980A
Other languages
English (en)
Other versions
JP6998467B2 (ja
Inventor
鴨志田 斉
高須 久幸
上野 敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2020044531A1 publication Critical patent/JPWO2020044531A1/ja
Application granted granted Critical
Publication of JP6998467B2 publication Critical patent/JP6998467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24542Beam profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30477Beam diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

イオン分布の再現性を高めることができるイオンミリング装置を提供する。イオンミリング装置は、イオン源(1)と、イオン源(1)からの非集束のイオンビームを照射することにより加工される試料(4)が載置される試料ステージ(2)と、イオン源(1)と試料ステージ(2)との間に配置され、第1の方向に延在する線状のイオンビーム測定部材(7)を第1の方向と直交する第2の方向に移動させる駆動ユニット(8)とを有し、イオン源(1)から第1の照射条件でイオンビームが出力された状態で、駆動ユニット(8)によりイオンビーム測定部材(7)をイオンビームの照射範囲で移動させ、イオンビームがイオンビーム測定部材(7)に照射されることによりイオンビーム測定部材(7)に流れるイオンビーム電流を測定する。

Description

本発明は、イオンミリング装置に関する。
特許文献1には、イオン源においてプラズマを生成してイオンを引き出し、引出したイオンを照射して基板等に加工処理を施すイオンミリング装置が開示される。このイオンミリング装置は例えば、4インチ(Φ100)基板に対して加工を行うものであって、均一あるいは所望の分布の大口径のイオンビームを得るため、イオン源内のプラズマ分布を電気的に制御することにより引出しイオンビームの分布を制御することが開示される。制御方法の一例として、ファラデーカップを用いてイオンビームの分布状態を測定し、測定結果に基づいてプラズマ制御電極に印加する電圧を調整することが開示されている。
特開2002−216653号公報
イオンミリング装置は、試料(例えば、金属、半導体、ガラス、セラミックなど)に対して非集束のイオンビームを照射し、スパッタリング現象によって試料表面の原子を無応力で弾き飛ばすことで、その表面あるいは断面を研磨するための装置である。イオンミリング装置には、走査電子顕微鏡(SEM:Scanning Electron Microscope)や透過電子顕微鏡(TEM:Transmission Electron Microscope)による試料の表面あるいは断面を観察するための前処理装置として用いられるものがある。このような前処理装置向けのイオン発生源には、構造を小型化するために有効なペニング方式を採用する場合が多い。
ペニング型イオン源からのイオンビームは収束させないまま試料に照射するため、試料のイオンビーム照射点付近でのイオン分布は、中心部でのイオン密度が最も高く、中心から外側に向かってイオン密度が低くなる特性を有する。一方、特に電子顕微鏡による表面観察では、構造・組成を正確に観察するため、試料表面を平滑に研磨する必要がある。このため、試料を回転させながらイオンビームを低入射角度で照射する。これにより、観察する部位を含む周辺範囲について、広範かつ平滑な加工面を得ることが可能になる。イオン密度は試料の加工速度(ミリングレート)に直結するため、イオン分布の特性は試料加工面の加工形状に大きく影響する。
ペニング方式イオン源はその構造から、発生させて射出したイオンが内部の構成部材を摩耗させることが知られている。また、試料を加工した結果、加工面から発生して浮遊した微小粒子がイオン発生源の、特にイオン射出口に付着して、汚れの原因となる。これらの要因などにより、イオンミリング装置を使用し続けているとイオンビームの特性が変化し、ひいては試料加工面の加工形状の再現性が低下する場合がある。電子顕微鏡による観察が量産工程管理目的で行われる場合には、多数の試料に対して同一の加工を施すことが求められるため、イオンミリング装置の加工形状の再現性の低下は欠陥検出精度の低下につながるおそれがある。
本発明はこのような課題を鑑み、試料の表面あるいは断面を観察の前処理加工を行うイオンミリング装置に適したイオンビーム調整法、及びイオンビームの照射条件を調整可能なイオンミリング装置を提供するものである。
本発明の一実施の形態であるイオンミリング装置は、イオン源と、イオン源からの非集束のイオンビームを照射することにより加工される試料が載置される試料ステージと、イオン源と試料ステージとの間に配置され、第1の方向に延在する線状のイオンビーム測定部材を第1の方向と直交する第2の方向に移動させる駆動ユニットと、制御部とを有し、制御部は、イオン源から第1の照射条件でイオンビームが出力された状態で、駆動ユニットによりイオンビーム測定部材をイオンビームの照射範囲で移動させ、イオンビームがイオンビーム測定部材に照射されることによりイオンビーム測定部材に流れるイオンビーム電流を測定する。
また、本発明の他の一実施の形態であるイオンミリング装置は、試料室と、試料室に設置されるイオン源位置調整機構と、イオン源位置調整機構を介して試料室に取り付けられるイオン源と、イオン源からの非集束のイオンビームを照射することにより加工される試料が載置される試料ステージと、制御部とを有し、制御部は、イオン源から第1の照射条件で試料にイオンビームを照射したときのイオン分布に基づき、第1の照射条件の調整値を求め、イオン源は、ぺニング型イオン源であり、第1の調整条件の調整値を求めるパラメータとして、イオン源の放電電圧、イオン源のガス流量及びイオン源と試料との距離の少なくとも1つを含む。
イオンミリング装置のイオン分布の再現性を高めることができる。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
イオンミリング装置の構成例(模式図)である。 ペニング型イオン源の構成を示す図である。 駆動ユニットの構成例である。 イオンビーム電流測定の様子を示す模式図(上面図)である。 イオンビーム測定部材を用いてイオンビーム電流を測定した結果である。 イオンビーム調整可能領域を示す図である。 イオンビームのイオン分布調整に関するブロック図である。 イオンビーム電流プロファイルの取得、およびイオンビーム照射条件の調整のフローチャートである。 イオンビーム電流プロファイルの模式図である。
以下、本発明の実施例を図面に基づいて説明する。
図1は、本発明の実施の形態であるイオンミリング装置の主要部を上方から(鉛直方向をY方向とする)示した図(模式図)である。真空状態を保持可能な試料室6には、イオン源1、加工対象とする試料4を設置する試料ステージ2、回転中心R0を軸としてR方向に試料ステージ2を回転させる試料ステージ回転駆動源3、試料ステージ2の試料載置面に近接して配置されるイオンビーム測定部材7、イオンビーム測定部材7をX方向に往復駆動する駆動ユニット8、イオンビーム測定部材7と試料ステージ2の試料載置面との間に設置される試料保護シャッタ9が設けられている。
イオン源1からのイオンビームは、イオンビーム中心B0を中心に放射状に広がった状態で、試料ステージ2の試料載置面に載置された試料4に照射される。試料4の加工に際して、回転中心R0とイオンビーム中心B0とは一致するよう調整する必要がある。このような調整を容易にするため、イオン源1は、その位置をX方向、Y方向、およびZ方向に位置を調整するイオン源位置調整機構5を介して試料室6に取り付けられている。これにより、イオン源1のイオンビーム中心B0の位置、具体的にはXY面(X方向及びY方向を含む面)上の位置及び動作距離(Z方向の位置、具体的にはイオン源1のイオンビーム放出位置から試料ステージ2までの距離を指す)、を調整可能とされている。
試料ステージ2は、Z方向に延在する回転中心R0と、X方向に延在し、試料ステージ2の試料載置面で回転中心R0と交差するチルト軸T0とを有しており、チルト軸T0を中心として試料ステージ2を傾けることができる。図は、試料ステージ2の試料載置面とイオン源1とが正対している状態であり、この状態においてイオンビーム測定部材7及び駆動ユニット8はイオン源からみて試料ステージ2の試料載置面の直前に設置されている。イオンビーム測定部材7及び駆動ユニット8は、イオン源1と試料ステージ2との間に配置されていればよいが、できるだけ試料4に近い位置に配置されることが、試料4に作用するイオンビームの状態をより正確に推定するために望ましい。
イオンビーム測定部材7について詳細は後述するが、導電性部材であり、イオンビーム測定部材7にイオン源1からのイオンビームが照射されることにより流れるイオンビーム電流をイオンビーム電流検出配線37により試料室6外部の制御部まで導出し、イオン源1から放出されたイオン分布を電流量として検出する。
なお、図では駆動ユニット8及び試料保護シャッタ9はそれぞれ試料ステージ2とは別機構として示しているが、双方あるいはいずれか一方を試料ステージ2の機構として実装することも可能である。
図2にイオンミリング装置に使用するイオン源1の構成例を示す。ここでは、イオン源1としてぺニング型イオン源を用いる。ぺニング型イオン源は、イオン源内に配置され、放電電圧が印加されるアノード12と、アノード12との間に電位差を発生させる第1のカソード10及び第2のカソード11とを備え、アノード−カソード間の電位差により電子を発生させる。発生した電子は永久磁石13による磁場の作用を受けてイオン源1の内部に浮遊して留まる。一方、イオン源1には、外部から不活性ガスを導入するガス導入孔14が設けられており、不活性ガスとして例えば、アルゴンガスを導入する。内部に電子が発生しているイオン源にアルゴンガスが導入されると、アルゴン原子と電子とが衝突することによりアルゴンイオンが生成される。アルゴンイオンは、加速用電圧が印加された加速電極15に誘引され、イオン源内部からイオン射出口16を通り、加工対象に向かって射出される。
ぺニング型イオン源により試料の加工を実施すると、イオン源内部の構成部材が摩耗したり、試料から飛散した微小粒子がイオン射出口16に付着したりすることで、イオン源が放出するイオン分布が変動する。定期的な部材の交換、および清掃などを実施することでイオン源内部の構成部材の摩耗や汚れは解消することはできるが、イオン源が照射するイオンビームのイオン分布がメンテナンス前と同じ状態になることを保証するものではない。イオンミリング装置による試料の加工形状に高精度な再現性を求める場合には、交換作業、清掃作業後にイオンビームのイオン分布について、所望のイオン分布が再現されているかを確認し、確認結果に基づいてイオン源1の照射条件を調整することが必要となる。
そこで、本実施例のイオンミリング装置では、試料ステージ2またはその近傍にイオンビーム測定部材7を設置し、駆動ユニット8によりイオンビーム測定部材7をX方向に駆動させながらイオンビーム電流を測定することにより、イオン源1から試料に向けて照射される非集束イオンビームのイオン分布を推定する。
図3にイオンビーム測定部材7を駆動する駆動ユニット8の構成例を示す。図では、駆動ユニット8の上面図と、イオンビーム測定部材7を駆動ユニット8のベース35に固定した状態における断面図とを示している。イオンビーム測定部材7は、ベース35の固定部材36により駆動ユニット8に固定されている。固定部材36は絶縁体であり、イオンビーム測定部材7及びイオンビーム電流検出配線37は固定部材36により他の構成部品とは絶縁されている。ベース35は駆動機構によりX方向に往復移動可能とされる。本例の駆動機構はモータ30、傘歯車31、ギア32、レール部材33を有する。モータ30の駆動軸に設けた傘歯車31及びギア32により、ベース35の移動方向(X方向)に沿って設けたレール部材33に駆動を伝達することにより、ベース35をX方向に往復移動可能とする。なお、モータ30は駆動ユニット8専用に設ける必要はなく、試料ステージ2を回転させる試料ステージ回転駆動源3と兼用することも可能である。
イオンビーム測定部材7は、イオンビーム電流の測定中はイオン源1からのイオンビームが照射されることにより、加工されている状態となる。このように測定ごとに消耗する部材であるため、イオンにより加工されにくい、低スパッタ収率の部材が適している。また、イオンビーム測定部材7として線状部材を使用し、非収束イオンビーム照射範囲をイオンビーム測定部材7が移動することにより、イオン分布を把握する。このことは、イオンビーム測定部材7の径が測定可能なイオン分布の空間分解能を決定することを意味する。このため、イオンビーム測定部材7の径は、加工の際のイオンビームの半値幅よりも小さい径とすることが望ましい。例えば、0.2mm以上、0.5mm以下の径を有するグラファイトカーボンの線状材を用いることができる。イオンビーム測定部材7にイオンが衝突することによるイオンの不規則な挙動を抑制するため、イオンビーム測定部材7の断面形状は円形とすることが望ましい。グラファイトカーボンの線状材の他にも、タングステンの線状材なども使用可能である。イオンビーム測定部材7は、駆動ユニット8に対して取り外し可能とされ、イオンビーム測定部材7がイオンビームにより消耗した場合には、新たなイオンビーム測定部材に交換する。
図4は、本実施例のイオンミリング装置におけるイオンビーム電流測定の様子を示す模式図(上面図)である。イオン源1、イオン源1に正対させた試料ステージ2及びイオンビーム測定部材7を示している。イオン源1より照射されるイオンビームは非集束であるため、破線で示す領域41を放射状に広がりながら進行する。イオンビーム測定部材7は、試料ステージ2の試料載置面40に沿って、イオンビーム電流を測定しながら、イオンビーム照射範囲全域をX方向に、例えば座標X0から座標X5に向かって移動する。本実施例では、イオンビーム測定部材7はX方向に移動する例を示しているが、イオン源1より照射されるイオンビームはイオンビーム中心B0を中心に、X方向及びY方向に広がっているので、イオンビーム測定部材7の長手方向をX方向とし、試料ステージ2の試料載置面40に沿って、イオンビーム電流を測定しながら、イオンビーム照射範囲全域をY方向に移動するよう駆動ユニットを構成して、イオンビーム電流測定を行うことも可能である。
図5Aに本実施例のイオンミリング装置において、座標X0〜X5(図4参照)にかけて、イオンビーム測定部材7を用いてイオンビーム電流を測定した結果を示す。図に示す、ビーム測定位置とイオンビーム電流量との関係(ここでは、「イオンビーム電流プロファイル」と呼ぶ)が、イオン源1から試料4に照射されるイオン分布とみなせる。(A)はイオン源と試料との距離D1、(B)はイオン源と試料との距離D2(D2>D1)でのイオンビーム電流量測定結果である。さらに、(A)(B)における複数のイオンビーム電流プロファイルは、イオン源1の放電電圧を変化させて測定した測定結果である(放電電圧は、(A)(B)ともに同様に変化させて測定した)。なお、縦軸はイオンビーム電流量であるが、(A)(B)どちらも共通の基準で正規化した値で示している。
このように、イオン源1から試料までの距離を変化させることによりイオン分布は変化する。また、イオン源1から試料までの距離が同じであっても、放電電圧を変化させることによりイオン分布は変化する。
図5Bに示すグラフは、図5Aとして示した2つのグラフを重畳させて表示したグラフであり、領域50は、2つのグラフに含まれる全プロファイルの最大値と最小値とに挟まれる領域である。すなわち、領域50が、イオン源と試料との距離D及び放電電圧という2つのパラメータを調整することによりイオン分布を調整可能な領域であるといえる。本実施例では、イオン源1から試料4に照射されるイオン分布を、イオンビーム測定部材7を用いて測定したイオンビーム電流プロファイルにより把握し、イオンビーム電流プロファイルの形状を所望の状態に近づけるようにイオン源1の照射条件を調整することにより、イオンミリング装置による試料の加工形状の再現性を高める。具体的には、イオン源1の照射条件のうち、イオン源から試料との距離、放電電圧、ガス流量を調整する。
図6に、イオンビームのイオン分布調整に関するブロック図を示す。イオン源1として、図2に示したペニング型イオン源を用いる。配管17よりアルゴンガスをイオン源1に導入し、アルゴンイオンを発生させて加工を行う。
イオン源1に印加される放電電圧V及び加速電圧Vは電源部60により生成される。また、電源部60は電流計を有しており、電流計61は放電電流を計測し、電流計62はイオンビーム測定部材7にイオン源1からのイオンが衝突することにより流れるイオンビーム電流を計測する。放電電圧V及び加速電圧Vの値は、制御部63により設定される。
また、イオン源1はイオン源位置調整機構5に固定され、イオン源1の位置はX方向、Y方向、Z方向に独立に移動可能とされている。
試料保護シャッタ9は、駆動ユニット8と試料4との間に配置され、制御部63の制御により、Y方向に上下動可能な構成となっている。試料保護シャッタ9の駆動源としては、モータやソレノイドが利用でき、また移動制御を実施するため、シャッタの上下移動位置を検知するセンサを有することが望ましい。試料保護シャッタ9は、試料ステージ2に試料4を載置した状態でイオンビーム電流プロファイルの取得を行う場合において、試料4に不要なイオンビームを照射しないために設けられる。
電源部60、イオン源位置調整機構5、駆動ユニット8、試料保護シャッタ9、試料ステージ2及び試料ステージ回転駆動源3は制御部63に接続されており、制御部63からイオンビーム電流プロファイルの取得、イオンビーム照射条件の調整、試料の加工を実行する。さらに、制御部63は表示部64に接続されており、制御部63に対するオペレータからのユーザインタフェースとして機能するとともに、制御部63が収集したイオンミリング装置の動作状態を示すセンシングデータの表示なども行う。例えば、表示部64に表示されるセンシングデータとしては、電源部60からの放電電圧値V、放電電流値、加速電圧値V、イオンビーム電流値などが含まれる。
図6に示すイオンミリング装置において、制御部63が実施するイオンビーム電流プロファイルの取得、およびイオンビーム照射条件の調整方法について、図7を用いて説明する。
ステップS701:制御部63は駆動ユニット8を制御し、イオンビーム測定部材7をX方向の原点位置に移動する。ここでは、説明の簡単化のためにX方向の原点位置は、イオンビーム照射範囲の最も外側の位置と一致するように定める。原点位置の取り方はこれに限られるものではない。
ステップS702:制御部63は、試料保護シャッタ9の移動制御を実施し、試料保護シャッタ9をビーム遮蔽位置に移動させる。
ステップS703:制御部63は、電源部60等を制御し、現在の設定として保持しているイオンビーム照射条件により、イオン源1よりイオンビームを出力する。現在の設定とは、試料4の加工条件として定められたイオンビーム照射条件をいう。一般的には、試料4を加工する際のイオン源1の加速電圧、放電電圧、ガス流量が定められている。
ステップS704:イオンビームの出力開始後、制御部63は駆動ユニット8を制御して、イオンビーム測定部材7をX方向への移動を開始させる。移動方向は、図4にて説明したように、イオンビーム照射範囲の最も外側の位置(X方向の原点位置)から、もう一方の照射範囲の端部に向かう方向である。制御部63は、移動させているイオンビーム測定部材7のX方向における現在位置の管理を行う。
ステップS705:電流計62は、イオンビーム測定部材7にイオン源1からのイオンビームが照射されることにより、イオンビーム測定部材7及びイオンビーム電流検出配線37に流れるイオンビーム電流の測定を開始する。制御部63は、電流計62により数値化されたイオンビーム電流検出値を取得し、記憶する。
ステップS706:制御部63は、取得したイオンビーム電流値を電流検知結果として表示部64に表示する。表示形式は図5Aとして示したビーム測定位置−イオンビーム電流量グラフ(イオンビーム電流プロファイル)とすることが望ましい。なお、図示しないLANやシリアル回線などでイオンミリング装置に接続されるホストPCに電流検知結果を表示するようにしてもよい。
ステップS707:制御部63は、駆動ユニット8により移動させているイオンビーム測定部材7のX方向における現在位置を確認し、未了の場合はステップS704からステップS706を、イオンビーム測定部材7がイオンビーム照射範囲全域を移動完了するまで繰り返し実行する。
ステップS708:ステップS707において、イオンビーム測定部材7がイオンビーム照射範囲全域の移動を完了したことを確認した場合、制御部63はイオンビーム測定部材7の移動を終了する。
ステップS709:制御部63は、イオンビーム電流測定結果から調整量の算出を行う。調整量の比較対象は、試料4の加工に適用される加工条件を決定したときに同様の測定を行って制御部63に記憶したイオンビーム電流測定結果、あるいは前回測定したイオンビーム電流測定結果を用いる。どのような比較対象を用いるかは、オペレータがあらかじめ設定しておくことができる。比較対象とする基準イオンビーム電流プロファイル(基準イオン分布)と今回測定したイオンビーム電流測定結果として得られたイオンビーム電流プロファイル(イオン分布)とが、理想的には等しくなる、あるいは近似するようにイオンビーム照射条件を調整できれば、イオンミリング装置による試料の加工形状の再現性を高めることができる。近似の程度は、要求される試料加工形状の再現性の程度に依存して定めればよい。
ただし、本実施例においてはあくまでイオンビーム電流によりイオン分布を観察しているため、調整可能なイオン源1のパラメータのうち、加速電圧Vについては変更しない。加速電圧Vを変えてしまうと同じイオンビーム電流であっても試料の加工速度(ミリングレート)が大幅に変わってしまうためである。すなわち、本実施例の調整においては、試料の加工時間を調整対象としないことを前提としている。
図8にイオンビーム電流プロファイルの模式図を示す。イオンビーム電流プロファイルの形状をあわせる簡単な方法として、イオンビーム電流プロファイルの形状の代表値として、そのピーク値Pと半値幅HW(イオンビーム電流量がピーク値Pの半分になるイオンビーム電流プロファイルの広がり)とが同じになるように調整する方法について説明する。この2つの値が一致していれば、イオンビーム電流プロファイルの形状がおよそ同等のものになっていると評価できるためである。調整するイオンビーム照射条件のパラメータは、イオン源1の放電電圧、ガス流量及びイオン源1と試料4(もしくは試料ステージ2の試料載置面、ほぼ同一のため試料4で代表させる)との距離Dである。
イオン源1と試料4との距離を変化させることで、図5Aに示したように、ピーク値Pの値を主に調整することができる。また、放電電圧Vを高くすることにより、イオン源1内部に発生したアルゴンイオンの広がりを抑制でき、この結果、半値幅HWの大きさを調整することができる。同様に、ガス流量を大きくすると、イオン源1内部に発生したアルゴンイオンの広がりを抑制でき、この結果、半値幅HWの大きさを調整することができる。このように、イオン源1と試料4との距離と少なくとも放電電圧V及びガス流量のいずれか一方との値を調整することにより、イオンビーム電流プロファイルを所望の形状に近づけることができる。図5Bに示されるように、イオン源1と試料4との距離と放電電圧Vとを調整するだけでも、広い調整領域が得られていることが分かる。
ここでは、イオンビーム電流プロファイルのピーク値Pと半値幅HWとを用いて調整量を求める例について説明したが、さらに多くのプロファイル形状の特徴量を抽出して調整を行ってもよい。例えば、プロファイル形状の対称性に関する特徴量を抽出して調整してもよい。
ステップS710:ステップS709において算出した調整量に基づき、イオンビームの照射条件を調整する。具体的には、制御部63は、イオン源位置調整機構5の制御によるイオン源1と試料4との距離の調整、電源部60の制御によるイオン源1の放電電圧Vの制御、及びガス供給機構(図示せず)の制御によるイオン源1に供給するガス流量の制御のうち、ステップS709の算出結果に基づき、1または複数の制御を実行する。
ステップS711:ステップS710による調整後、イオンビーム電流プロファイルを再測定する場合にはステップS701から再実行し、再測定を行わない場合には、調整を完了する。
ステップS712:制御部63は、試料保護シャッタ9をビーム非遮蔽位置に移動し、調整を終了する。
なお、図7のフローチャートは一例であり、さまざまな変形が可能である。例えば、ステップS706において、イオンビーム電流測定結果とともに調整量の比較対象とする基準イオンビーム電流プロファイルとを重畳して表示するようにしてもよい。さらに、重畳表示により調整不要とオペレータが判断する場合には、イオンビームの調整を中止するステップを設けてもよい。また、ステップS710において、イオン源1と試料4との距離の制御を制御部63が実施しているが、例えば、制御量を表示部64に表示し、オペレータが手動でイオン源位置調整機構5によりイオン源1の位置を移動させることで調整してもよい。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は記述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、図1の構成では、イオンビーム電流プロファイルの取得時に試料へのイオンビームの照射を防止する試料保護シャッタが設けられているが、当該期間のイオンビームの試料への照射を無視できる場合には、試料保護シャッタ9はなくてもよい。また、実施の形態では平面ミリング加工を行うイオンミリング装置を例に説明したが、断面ミリング加工を行うイオンミリング装置についても本発明は適用可能なものである。断面ミリング加工の場合は、試料ステージ2の回転軸(スイング軸)がY方向に延在するように配置されるといった違いはあるが、同様の構造によりイオンビームの照射条件を調整することが可能になる。
1:イオン源、2:試料ステージ、3:試料ステージ回転駆動源、4:試料、5:イオン源位置調整機構、6:試料室、7:イオンビーム測定部材、8:駆動ユニット、9:試料保護シャッタ、10,11:カソード、12:アノード、13:永久磁石、14:ガス導入孔、15:加速電極、16:イオン射出口、17:配管、30:モータ、31:傘歯車、32:ギア、33:レール部材、35:ベース、36:固定部材、37:イオンビーム電流検出配線、40:試料載置面、60:電源部、61,62:電流計、63:制御部、64:表示部。

Claims (15)

  1. イオン源と、
    前記イオン源からの非集束のイオンビームを照射することにより加工される試料が載置される試料ステージと、
    前記イオン源と前記試料ステージとの間に配置され、第1の方向に延在する線状のイオンビーム測定部材を前記第1の方向と直交する第2の方向に移動させる駆動ユニットと、
    制御部とを有し、
    前記制御部は、前記イオン源から第1の照射条件で前記イオンビームが出力された状態で、前記駆動ユニットにより前記イオンビーム測定部材を前記イオンビームの照射範囲で移動させ、前記イオンビームが前記イオンビーム測定部材に照射されることにより前記イオンビーム測定部材に流れるイオンビーム電流を測定するイオンミリング装置。
  2. 請求項1において、
    前記制御部は、前記イオンビーム電流と当該イオンビーム電流が測定されたときの前記イオンビーム測定部材の位置との関係を示すイオンビーム電流プロファイルを記憶するイオンミリング装置。
  3. 請求項2において、
    前記制御部は、前記イオンビーム電流プロファイルに基づき、前記第1の照射条件の調整値を求めるイオンミリング装置。
  4. 請求項3において、
    前記制御部は、前記イオンビーム電流プロファイルとあらかじめ設定した基準イオンビーム電流プロファイルとを比較して、前記第1の照射条件の調整値を求めるイオンミリング装置。
  5. 請求項4において、
    前記制御部は、前記イオンビーム電流プロファイルのピーク値及び半値幅が、前記基準イオンビーム電流プロファイルのピーク値及び半値幅に等しくなる、あるいは近似するように、前記第1の照射条件の調整値を求めるイオンミリング装置。
  6. 請求項3〜5のいずれか1項において、
    試料室と、
    前記試料室に設置されるイオン源位置調整機構とを有し、
    前記イオン源は前記イオン源位置調整機構を介して前記試料室に取り付けられ、
    前記イオン源は、ぺニング型イオン源であり、
    前記制御部は、前記第1の照射条件の調整値を求めるパラメータとして、前記イオン源の放電電圧、前記イオン源のガス流量及び前記イオン源と前記試料との距離の少なくとも1つを含むイオンミリング装置。
  7. 請求項4において、
    前記イオンビーム電流プロファイルと前記基準イオンビーム電流プロファイルとを重畳表示する表示部を有するイオンミリング装置。
  8. 請求項1において、
    前記イオン源からの前記イオンビームのイオンビーム中心は、前記第1の方向と前記第2の方向により形成される平面に対して直交するイオンミリング装置。
  9. 請求項1において、
    前記イオンビーム測定部材は、断面が円柱形状であり、径が前記イオンビームの半値幅以下であるグラファイトカーボンの線状材であるイオンミリング装置。
  10. 請求項1において、
    前記試料ステージと前記駆動ユニットとの間に、前記イオン源からの前記イオンビームから前記試料を遮蔽する試料保護シャッタを有するイオンミリング装置。
  11. 試料室と、
    前記試料室に設置されるイオン源位置調整機構と、
    前記イオン源位置調整機構を介して前記試料室に取り付けられるイオン源と、
    前記イオン源からの非集束のイオンビームを照射することにより加工される試料が載置される試料ステージと、
    制御部とを有し、
    前記制御部は、前記イオン源から第1の照射条件で前記試料にイオンビームを照射したときのイオン分布に基づき、前記第1の照射条件の調整値を求め、
    前記イオン源は、ぺニング型イオン源であり、
    前記第1の照射条件の調整値を求めるパラメータとして、前記イオン源の放電電圧、前記イオン源のガス流量及び前記イオン源と前記試料との距離の少なくとも1つを含むイオンミリング装置。
  12. 請求項11において、
    前記制御部は、前記イオン源から前記第1の照射条件で前記試料にイオンビームを照射したときのイオン分布とあらかじめ設定した基準イオン分布とを比較して、前記第1の照射条件の調整値を求めるイオンミリング装置。
  13. 請求項12において、
    前記制御部は、前記イオン源から前記第1の照射条件で前記試料にイオンビームを照射したときのイオン分布のピーク値及び半値幅が、前記基準イオン分布のピーク値及び半値幅に等しくなる、あるいは近似するように、前記第1の照射条件の調整値を求めるイオンミリング装置。
  14. 請求項11において、
    前記イオン源と前記試料ステージとの間に配置され、第1の方向に延在する線状のイオンビーム測定部材を前記第1の方向と直交する第2の方向に移動させる駆動ユニットを有し、
    前記制御部は、前記イオン源から前記第1の照射条件でイオンビームが出力された状態で、前記駆動ユニットにより前記イオンビーム測定部材を前記イオンビームの照射範囲で移動させ、前記イオンビームが前記イオンビーム測定部材に照射されることにより前記イオンビーム測定部材に流れるイオンビーム電流を測定し、
    前記イオンビーム電流を当該イオンビーム電流が測定されたときの前記イオンビーム測定部材の位置における前記イオン分布とみなすイオンミリング装置。
  15. 請求項14において、
    前記イオン源からの前記イオンビームのイオンビーム中心は、前記第1の方向と前記第2の方向により形成される平面に対して直交するイオンミリング装置。
JP2020539980A 2018-08-31 2018-08-31 イオンミリング装置 Active JP6998467B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032337 WO2020044531A1 (ja) 2018-08-31 2018-08-31 イオンミリング装置

Publications (2)

Publication Number Publication Date
JPWO2020044531A1 true JPWO2020044531A1 (ja) 2021-10-21
JP6998467B2 JP6998467B2 (ja) 2022-01-18

Family

ID=69644021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020539980A Active JP6998467B2 (ja) 2018-08-31 2018-08-31 イオンミリング装置

Country Status (6)

Country Link
US (1) US11508552B2 (ja)
JP (1) JP6998467B2 (ja)
KR (1) KR102506984B1 (ja)
CN (1) CN112585714A (ja)
TW (1) TWI719564B (ja)
WO (1) WO2020044531A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102551000B1 (ko) * 2018-02-28 2023-07-05 주식회사 히타치하이테크 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법
US11715622B2 (en) * 2020-08-05 2023-08-01 Kla Corporation Material recovery systems for optical components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073359A (ja) * 2004-09-02 2006-03-16 Nissin Ion Equipment Co Ltd イオンビーム照射装置およびイオンビーム照射方法
JP2008047459A (ja) * 2006-08-18 2008-02-28 Nissin Ion Equipment Co Ltd イオン注入装置におけるビーム進行角補正方法
JP2008262748A (ja) * 2007-04-10 2008-10-30 Sen Corp An Shi & Axcelis Company イオン注入装置
JP2016031869A (ja) * 2014-07-30 2016-03-07 株式会社日立ハイテクノロジーズ イオンガン及びイオンミリング装置、イオンミリング方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241588A (ja) * 1997-02-21 1998-09-11 Hitachi Ltd 集束イオンビーム加工方法およびその装置
JP2002216653A (ja) 2001-01-23 2002-08-02 Hitachi Ltd イオンビーム分布制御方法およびイオンビーム処理装置
US8835869B2 (en) * 2003-02-04 2014-09-16 Veeco Instruments, Inc. Ion sources and methods for generating an ion beam with controllable ion current density distribution
US7109499B2 (en) * 2004-11-05 2006-09-19 Varian Semiconductor Equipment Associates, Inc. Apparatus and methods for two-dimensional ion beam profiling
JP4882456B2 (ja) 2006-03-31 2012-02-22 株式会社Ihi イオン注入装置
US7550748B2 (en) * 2007-03-30 2009-06-23 Tel Epion, Inc. Apparatus and methods for systematic non-uniformity correction using a gas cluster ion beam
JP6100619B2 (ja) * 2013-06-04 2017-03-22 株式会社日立ハイテクノロジーズ イオン源およびイオンミリング装置
US9558912B2 (en) * 2013-06-10 2017-01-31 Hitachi High-Technologies Corporation Ion milling device
US9761412B2 (en) * 2014-05-09 2017-09-12 Hitachi High-Technologies Corporation Ion milling apparatus and sample processing method
US11004656B2 (en) * 2014-10-15 2021-05-11 Gatan, Inc. Methods and apparatus for determining, using, and indicating ion beam working properties
US9738968B2 (en) * 2015-04-23 2017-08-22 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for controlling implant process
JP6638479B2 (ja) 2015-08-05 2020-01-29 日新電機株式会社 イオンビーム照射方法およびイオンビーム照射装置
KR102123887B1 (ko) * 2016-07-14 2020-06-17 주식회사 히타치하이테크 이온 밀링 장치
US10395889B2 (en) * 2016-09-07 2019-08-27 Axcelis Technologies, Inc. In situ beam current monitoring and control in scanned ion implantation systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073359A (ja) * 2004-09-02 2006-03-16 Nissin Ion Equipment Co Ltd イオンビーム照射装置およびイオンビーム照射方法
JP2008047459A (ja) * 2006-08-18 2008-02-28 Nissin Ion Equipment Co Ltd イオン注入装置におけるビーム進行角補正方法
JP2008262748A (ja) * 2007-04-10 2008-10-30 Sen Corp An Shi & Axcelis Company イオン注入装置
JP2016031869A (ja) * 2014-07-30 2016-03-07 株式会社日立ハイテクノロジーズ イオンガン及びイオンミリング装置、イオンミリング方法

Also Published As

Publication number Publication date
TW202011444A (zh) 2020-03-16
WO2020044531A1 (ja) 2020-03-05
JP6998467B2 (ja) 2022-01-18
US11508552B2 (en) 2022-11-22
KR102506984B1 (ko) 2023-03-08
CN112585714A (zh) 2021-03-30
KR20210028258A (ko) 2021-03-11
US20210183615A1 (en) 2021-06-17
TWI719564B (zh) 2021-02-21

Similar Documents

Publication Publication Date Title
JP7350916B2 (ja) イオンミリング装置及びイオンミリング装置のイオン源調整方法
JP6556993B2 (ja) 断面形成用途のプロセス自動化のためのパターン認識を伴う差分画像化
JP6998467B2 (ja) イオンミリング装置
TWI767464B (zh) 離子研磨裝置
JP6294182B2 (ja) イオンガン及びイオンミリング装置、イオンミリング方法
JP2007048588A (ja) ガス流量設定方法およびイオンビーム加工装置
TWI773042B (zh) 離子研磨裝置
JP7506830B2 (ja) イオンミリング装置
TWI821868B (zh) 離子銑削裝置
JP2018049842A (ja) イオンガン及びイオンミリング装置、イオンミリング方法
JP2010116615A (ja) イオンプレーティング装置およびプラズマビーム照射位置調整プログラム

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20210222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150