JPWO2020044248A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020044248A5
JPWO2020044248A5 JP2021510954A JP2021510954A JPWO2020044248A5 JP WO2020044248 A5 JPWO2020044248 A5 JP WO2020044248A5 JP 2021510954 A JP2021510954 A JP 2021510954A JP 2021510954 A JP2021510954 A JP 2021510954A JP WO2020044248 A5 JPWO2020044248 A5 JP WO2020044248A5
Authority
JP
Japan
Prior art keywords
catalyst
gas
liquid
gas stream
plastic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021510954A
Other languages
Japanese (ja)
Other versions
JP7391088B2 (en
JP2021535265A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2019/057228 external-priority patent/WO2020044248A1/en
Publication of JP2021535265A publication Critical patent/JP2021535265A/en
Publication of JPWO2020044248A5 publication Critical patent/JPWO2020044248A5/ja
Application granted granted Critical
Publication of JP7391088B2 publication Critical patent/JP7391088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

発明の要約
本発明はプラスチック廃材を液体燃料に触媒変換する方法を提供する。この方法はプラスチック廃材と触媒を供給ホッパー (101)の中で混合して混合物を得ることから構成する。この混合物をロータリーキルン反応炉(108)にねじ式供給装置(102)で投入する。この混合物に含まれるプラスチック廃材は温度範囲350 ~ 650 ℃、圧力範囲 0.0010 psi ~ 0.030 psi で熱分解し、ガス流にする。このガス流に担体ガスを通してロータリーキルン回転体 (108)からパージする。パージしたガス流をサイクロンセパレータ(110)に投入し、ガス流から固形粒子を分離する。残留触媒と炭化物の粒子からなる固形粒子を生体炭化物ドラム(111)に回収する。サイクロンセパレータ(110)から取得したガス流を凝縮装置(112)で-5から-15 ℃の範囲で連続的に冷却し、液体燃料を得る。凝縮装置(112)から得られる非凝縮気体をさらに気液セパレータ(115)に投入し、C1からC4の炭化水素 (117) と液状留分で構成される製品ガスを得る。
SUMMARY OF THE INVENTION The present invention provides a method for the catalytic conversion of plastic waste to liquid fuels. The method comprises mixing plastic waste and catalyst in a feed hopper (101) to obtain a mixture. This mixture is introduced into a rotary kiln reactor (108) via a screw feeder (102). The plastic waste contained in this mixture is pyrolyzed into a gas stream at temperatures ranging from 350-650°C and pressures ranging from 0.0010 psi to 0.030 psi. A carrier gas is passed through this gas stream to purge the rotary kiln rotor (108). The purged gas stream enters a cyclone separator (110) to separate solid particles from the gas stream. Solid particles consisting of residual catalyst and char particles are collected in a biochar drum (111). The gas stream obtained from the cyclone separator (110) is continuously cooled in the condenser (112) in the range of -5 to -15°C to obtain liquid fuel. The non- condensable gas obtained from the condensing device (112) is further introduced into the gas-liquid separator (115) to obtain a product gas composed of C1 to C4 hydrocarbons (117) and liquid fractions.

さらに、本発明はプラスチック廃材を液体燃料に変換するためのシステム(100)を提供する。このシステムの構成要素は、プラスチック廃材の供給ホッパー (101)、プラスチック廃材と触媒をロータリーキルン反応炉(108)に投入するねじ式供給装置(102)、プラスチック廃材の熱分解用ロータリーキルン反応炉(108)、キルン反応炉 (108)の開口領域(107)を所定温度にするために回収した排ガスを燃焼するロータリーキルン反応炉 (108) に外付けしたファーネス(105)、キルン反応炉(108)の開口領域(107)でプラスチック廃材の熱分解用に、ロータリーキルン反応炉 (108) の中心に配置した円筒形のパイプ (109) 、ここに、円筒形のパイプ (109) は両端が閉じている。さらに、ロータリーキルン反応炉(108) のライニング両端部に渡って取り付け、触媒と溶融プラスチックの滞留時間を長くするように構成したらせん状邪魔板(106)、ロータリーキルン反応炉 (108)内部に負圧を発生させる通風機(114)、ロータリーキルン反応炉 (108)内で発生するガス流から残留触媒と炭化物の粒子を分離するサイクロンセパレータ(110)、前記ガス流を凝縮して液体燃料を取得するための四段階式凝縮装置(112)、凝縮液体燃料を凝縮装置(112)から回収するための液体燃料回収タンクユニット(113)、非凝縮性気体を液状留分から分離するための気液セパレータ(115)である。 Further, the present invention provides a system (100) for converting plastic waste into liquid fuel. The components of this system are a feed hopper (101) for plastic waste, a screw feeder (102) for feeding plastic waste and catalyst into a rotary kiln reactor (108), and a rotary kiln reactor (108) for pyrolysis of plastic waste. , a furnace (105) externally attached to the rotary kiln reactor (108) for burning the recovered exhaust gas to bring the opening region (107) of the kiln reactor (108) to a predetermined temperature, the opening region of the kiln reactor (108) A cylindrical pipe (109) placed in the center of a rotary kiln reactor (108) for the pyrolysis of plastic waste at (107), wherein the cylindrical pipe (109) is closed at both ends. In addition, spiral baffles (106) mounted across the lining of the rotary kiln reactor (108) and configured to increase the residence time of the catalyst and molten plastic, provide a negative pressure inside the rotary kiln reactor (108). A ventilator (114) to generate, a cyclone separator (110) to separate residual catalyst and carbide particles from the gas stream generated in the rotary kiln reactor (108), and a cyclone separator (110) for condensing said gas stream to obtain liquid fuel. A four-stage condensing device (112), a liquid fuel recovery tank unit (113) for recovering the condensed liquid fuel from the condensing device (112), and a gas-liquid separator (115) for separating the non- condensable gas from the liquid fraction. is.

参照番号凡例
供給ホッパー:101
ねじ式供給装置:102
モータ:103
反応炉に取り付けた回転ホイール:104
ファーネス:105
らせん状邪魔板:106
反応炉開口空間:107
ロータリーキルン反応炉:108
円筒形のパイプ:109
サイクロンセパレータ:110
生体炭化物ドラム:111
四段階方式凝縮装置:112A-112D
液体燃料回収タンク:113A-113D
誘導通風機:114
気液セパレータ:115
触媒再生装置:116
製品ガス:117
排ガス:118
再生後の触媒:119
発電タービンシステム:120
Reference number Legend Feed hopper: 101
Screw feeder: 102
Motor: 103
Rotating wheel attached to reactor: 104
Furnace: 105
Spiral baffle: 106
Reactor opening space: 107
Rotary kiln reactor: 108
Cylindrical pipe: 109
Cyclone Separator: 110
Biological char drum: 111
Four-stage condensing device: 112A-112D
Liquid fuel recovery tank: 113A-113D
Induction fan: 114
Gas-liquid separator: 115
Catalyst regenerator: 116
Product gas: 117
Exhaust gas: 118
Catalyst after regeneration: 119
Power generation turbine system: 120

代替手段としては、プラスチック廃材を粉砕またはすり潰して所定粒形のプラスチック粒子を取得する。典型的にこの所定粒径は1~10 cmとする。所定サイズの粒子を触媒と混ぜて混合物を得、これを温度範囲350~650 ℃、好ましくは 350~450 ℃で熱分解する。
次にこのガス流を窒素ガス、アルゴンガスあるいは回収した製品ガス (117)から選択する担体ガスでロータリーキルン回転体 (108)からパージする。パージされたガス流をサイクロンセパレータ(110)に導入し、ガス流から固形粒子を除去する。固形粒子をセパレータ底に設置した生体炭化物ドラム(111)の中で回収する。典型的に、固形粒子は残留触媒と炭化物粒子から成る。
サイクロンセパレータ(110)から得られる固形粒子が除去されたガス流を凝縮装置(112)で-5 ~ -15 ℃の範囲まで順次冷却し、液体燃料を得る。
As an alternative means, plastic waste materials are pulverized or ground to obtain plastic particles of a predetermined particle size. Typically this predetermined particle size is between 1 and 10 cm. Particles of predetermined size are mixed with a catalyst to obtain a mixture which is pyrolyzed in a temperature range of 350-650°C, preferably 350-450°C.
This gas stream is then purged from the rotary kiln rotor (108) with a carrier gas selected from nitrogen gas, argon gas or recovered product gas (117). The purged gas stream is introduced into a cyclone separator (110) to remove solid particles from the gas stream. Solid particles are collected in a biochar drum (111) located at the bottom of the separator. Typically, the solid particles consist of residual catalyst and carbide particles.
The solid particle-removed gas stream obtained from the cyclone separator (110) is sequentially cooled to a range of -5 to -15°C in a condenser (112) to obtain liquid fuel.

凝縮装置(112)から出る非凝縮性気体は気液セパレータ(115)へ送られ、C1-C4炭化水素と液状留分で成る製品ガス (117)を取得する。
プラスチック廃材は高密度と低密度ポリエチレン、鎖状低密度ポリエチレン、ポロプロピレン、ポリスチレン、PET、EPDMおよびこれらの混合物で成る一群の物質から選択する。
触媒は使用済みFCC (流動接触分解)触媒、Yゼオライト、ZSM-5ゼオライトで成る一群の物質から選択する。本発明に基づき、低酸度触媒でプラスチック廃材を変換するが、これは低酸度触媒の場合は過度の分解を阻止し、乾燥ガスの生成を最小限にできるためである。
投入廃材と触媒の重量比は1: 0.1ないし1: 3、好ましくは 1: 0.15から1:1.5である。
Non- condensable gases exiting the condenser (112) are sent to a gas-liquid separator (115) to obtain a product gas (117) consisting of C1 - C4 hydrocarbons and liquid fractions.
Plastic waste is selected from the group of materials consisting of high and low density polyethylene, linear low density polyethylene, polypropylene, polystyrene, PET, EPDM and mixtures thereof.
The catalyst is selected from the group of materials consisting of spent FCC (fluid catalytic cracking) catalyst, Y zeolite, ZSM-5 zeolite. In accordance with the present invention, plastic waste is converted with a low-acidity catalyst because it prevents excessive decomposition and minimizes the production of dry gas.
The weight ratio of input waste to catalyst is 1:0.1 to 1:3, preferably 1:0.15 to 1:1.5.

生体炭化物ドラム(111)内のサイクロンセパレータの底で回収される残留触媒と炭化物の粒子はさらに別個のロックホッパー炭化物排出システムに入る(図示されていない)。炭化物の粒子が触媒の再生のためにボイラーへ送られ、ボイラーで炭化物は空気により燃焼されて熱を発生する。さらに、炭化物の燃焼中に発せいする排ガス(118)は発電タービンシステム(120)での発電に消費されるか反応炉を加熱するために使用される。
サイクロンセパレータ(110)から出るガス流は四段階冷却システム(112A-112D)で構成される四段階凝縮システム(112)を通る。
Residual catalyst and char particles collected at the bottom of the cyclone separator in the biochar drum (111) also enter a separate lockhopper char discharge system (not shown). The char particles are sent to a boiler for regeneration of the catalyst, where the char is combusted with air to generate heat. Additionally, the exhaust gas (118) generated during the combustion of the char is consumed in power generation in the power generation turbine system (120) or used to heat the reactor.
The gas stream exiting the cyclone separator (110) passes through a four stage condensation system (112) comprising a four stage cooling system (112A-112D).

第一段階(112A)で、水を利用してガス流を冷却し、 >C20炭化水素を成分とする第一の液状留分を取得し、第一の液体回収タンク(113A)に回収する。第二段階(112B)でこのガス流を水で10 ℃まで冷却し、C13~C20炭化水素を成分とする第二の液状留分を得て、これを第二の液体回収タンク(113B)に回収する。第三段階(112C)でこのガス流をエチレングリコールで0 ℃に冷却し、C7~C12炭化水素から成る第三の液状留分を取得し、これを第三の液体回収タンク(113C)に回収する。第四段階(112D)ではこのガス流をエチレングリコールで-10 ℃まで冷却し、C5~C6炭化水素を成分とする第四の液状留分を取得し、これを第四の液体回収タンク(113D)に回収する。
凝縮装置(112)から出る非凝縮性気体 (C1~C4)で組成される製品ガス (117)は気液セパレータ(115)の中で液状留分から分離される。
分離された製品ガス(117)は発電タービンシステム(120) から選択される少なくとも一基のユニットへ送られ、発電に使用され、ロータリーキルン反応炉 (108)ではガス流をパージし、触媒再生装置 (116)では残留触媒の再生に使用される。
In the first stage (112A), water is used to cool the gas stream to obtain a first liquid fraction composed of > C20 hydrocarbons and collected in a first liquid recovery tank (113A). . In a second stage (112B), this gas stream is cooled with water to 10° C. to obtain a second liquid fraction composed of C13 - C20 hydrocarbons, which is transferred to a second liquid recovery tank (113B). ). In the third stage (112C) this gas stream is cooled to 0° C. with ethylene glycol to obtain a third liquid fraction consisting of C7 - C12 hydrocarbons, which is transferred to a third liquid recovery tank (113C). to collect. In the fourth stage (112D), this gas stream is cooled to -10°C with ethylene glycol to obtain a fourth liquid fraction composed of C5 - C6 hydrocarbons, which is transferred to a fourth liquid recovery tank. Collect at (113D).
The product gas (117), which is composed of non- condensable gases (C 1 -C 4 ) leaving the condenser (112), is separated from the liquid fraction in a gas-liquid separator (115).
The separated product gas (117) is sent from the power generation turbine system (120) to at least one selected unit for use in generating electricity, a rotary kiln reactor (108) to purge the gas stream, and a catalyst regenerator ( 116) is used to regenerate residual catalysts.

さらにこのシステムは触媒再生装置 (116)と発電タービンシステム(120)から構成される。
本発明はプラスチック廃材を高い歩留まりで高品質の液体燃料に変換する省エネ触媒方式を提供する。本発明によるこの方法では処理のために外部からのエネルギー投入が不要である。この工程で発生する非凝縮ガスを使用してエネルギーを供給できるため、この方法は自給型で経済的になる。
The system further comprises a catalyst regenerator (116) and a power generation turbine system (120).
The present invention provides an energy-saving catalytic system for converting plastic waste into high quality liquid fuel with high yield. The method according to the invention does not require an external energy input for the treatment. The non- condensable gases generated in the process can be used to provide energy, making the process self-contained and economical.

傾斜角を1.2°とし、キルンの反応炉を実験中1.5 rpmの定速とした。反応炉内の温度を目標反応温度に一貫して維持した。反応炉圧力を水圧系で測定し、実験を一貫して2 mmの水柱に維持した。
投入材料率を3時間にわたって一定の10 kg/時とし、使用済みFCC 触媒(E-Cat)対触媒対投入材料比を0.2とした。五種類のプラスチック廃材投入材料はアクリロニトリルブタジエンスチレン(ABS)の廃材ペレット、高密度ポリエチレン (HDPE)廃材ペレット、鎖状低密度ポリエチレン (PE) フィルムのポリ袋グレード廃材と牛乳パウチのごみ混合物、ポリプロピレン(PP)ストローのごみ、ポリスチレン (PS)製電気電子プラスチック廃材であり、これらの試料を用いて異なる温度での触媒変換率を研究した。
The tilt angle was 1.2° and the kiln reactor was kept at a constant speed of 1.5 rpm during the experiment. The temperature in the reactor was maintained consistently at the target reaction temperature. The reactor pressure was measured hydraulically and maintained at 2 mm water column throughout the experiment.
The input rate was constant at 10 kg/hr over 3 hours with a spent FCC catalyst (E-Cat) to catalyst to input ratio of 0.2. The five types of plastic waste input materials are acrylonitrile butadiene styrene (ABS) waste pellets, high density polyethylene (HDPE) waste pellets, linear low density polyethylene (PE) film plastic bag grade waste and milk pouch waste mixture, polypropylene ( PP) straw waste and polystyrene (PS) electro-electronic plastic waste, these samples were used to study the catalytic conversion rate at different temperatures.

Claims (17)

プラスチック廃材の液体燃料への触媒変換法であって、以下の工程からなる:
i) プラスチック廃材と触媒を供給ホッパー (101)の中で混合して混合物を得る
ii) この混合物をロータリーキルン回転体(108)にねじ式供給装置(102)から投入する
iii) 混合物中のプラスチック廃材を温度範囲350 ~ 650 ℃、圧力範囲 0.0010 psi (6.9Pa)~ 0.030 psi (207Pa)で熱分解し、ガス流を得る
iv) このガス流に担体ガスを通してロータリーキルン回転体 (108)からパージする
v) パージしたガス流をサイクロンセパレータ(110)に投入し、ガス流から固形粒子を分離する
vi) サイクロンセパレータ(110)から取得したガス流を凝縮装置(112)で-5から-15 ℃の範囲で連続的に冷却し、凝縮された液体燃料を得る
vii) 凝縮液体燃料を液体回収タンク(113)で回収し
viii) 凝縮装置(112)から出る非凝縮性ガスは気液セパレータ(115)へ送られ、C1-C4炭化水素と液状留分で成る製品ガス (117)を取得する。

前記ガス流の連続冷却工程は、冷却液を使用し、
・第一段階で(112A)、ガス流を30~20 ℃まで冷却し、C 20 炭化水素より大きい成分を含む液体燃料に凝縮する
・第二段階で(112B)、ガス流を15~10 ℃まで冷却し、C 13 C 20 炭化水素を含む液体燃料に凝縮する
・第三段階(112C)で、ガス流を 5~0 ℃まで冷却し、C 7 ~C 12 炭化水素を含む液体燃料に凝縮し
・第四段階(112D)で、ガス流を-10~-15 ℃まで冷却し、C 5 ~C 6 炭化水素を含む液体燃料に凝縮する
四段階冷却とすることを特徴とするプラスチック廃材の液体燃料への触媒変換法。
A method for the catalytic conversion of plastic waste to liquid fuels, comprising the steps of:
i) Mix plastic waste and catalyst in feed hopper (101) to obtain a mixture
ii) Charge this mixture into the rotary kiln rotor (108) from the screw feeder (102)
iii) pyrolyzing the plastic waste in the mixture at a temperature range of 350-650°C and a pressure range of 0.0010 psi (6.9Pa) to 0.030 psi (207Pa) to obtain a gas stream;
iv) Purging the rotary kiln rotor (108) by passing a carrier gas through this gas stream.
v) Injecting the purged gas stream into a cyclone separator (110) to separate solid particles from the gas stream.
vi) The gas stream obtained from the cyclone separator (110) is continuously cooled in the condenser (112) in the range of -5 to -15°C to obtain condensed liquid fuel.
vii) Collect the condensed liquid fuel in the liquid collection tank (113).
viii) The non- condensable gas exiting the condensing device (112) is sent to a gas-liquid separator (115) to obtain a product gas (117) consisting of C1 - C4 hydrocarbons and liquid fractions.

The continuous cooling step of said gas stream uses a cooling liquid,
- In the first stage (112A), the gas stream is cooled to 30-20°C and condensed into a liquid fuel containing components larger than C20 hydrocarbons.
- In a second stage (112B), the gas stream is cooled to 15-10°C and C13- Condenses into liquid fuels containing C20 hydrocarbons
- In the third stage (112C), the gas stream is cooled to 5-0°C and condensed into a liquid fuel containing C7 - C12 hydrocarbons .
- In the fourth stage (112D), the gas stream is cooled to -10 to -15°C and condensed into a liquid fuel containing C5 -C6 hydrocarbons .
A method for catalytic conversion of plastic waste to liquid fuel characterized by four-stage cooling.
請求項1で請求される方法はさらに、プラスチック廃材を粉砕および/またはすりつぶし、触媒と攪拌し、所定粒径の粒子を得る。この所定粒径iは1~10 cmの範囲である。 The method claimed in claim 1 further comprises crushing and/or grinding plastic waste and agitating with a catalyst to obtain particles of a predetermined particle size. This predetermined particle size i is in the range of 1 to 10 cm. 請求項1で請求される方法であって、ここに、プラスチック廃材を粉砕および/またはすりつぶし、触媒と攪拌プラスチック廃材は高密度と低密度ポリエチレン、鎖状低密度ポリエチレン、ポロプロピレン、ポリスチレン、PET、EPDMおよびこれらの混合物で成る一群の物質から選択する。 A method as claimed in claim 1, wherein the plastic waste is ground and/or ground, the catalyst and agitation plastic waste are high and low density polyethylene, linear low density polyethylene, polypropylene, polystyrene, PET, Select from a group of substances consisting of EPDM and mixtures thereof. 請求項1で請求される方法であって、ここに、触媒は使用済みFCC (流動接触分解)触媒、Yゼオライト、ZSM-5ゼオライトで成る一群の物質から選択する。 A method as claimed in claim 1, wherein the catalyst is selected from the group of materials consisting of spent FCC (fluid catalytic cracking) catalyst, Y zeolite, ZSM-5 zeolite. 請求項1で請求される方法であって、ここに、投入材料対触媒の重量比は1: 0.1~1:3である。 The method as claimed in claim 1, wherein the weight ratio of input material to catalyst is from 1:0.1 to 1:3. 請求項1で請求される方法であって、ここに、担体ガスは窒素ガス、アルゴンガス、製品ガス (117)から選択する。 A method as claimed in claim 1, wherein the carrier gas is selected from nitrogen gas, argon gas, product gas (117). 請求項1で請求される方法であって、ここに、サイクロンセパレータで分離される固形粒子は残留触媒と炭化物粒子であって、この場合、固形粒子を生体炭化物ドラム(111)に回収する。 A method as claimed in claim 1, wherein the solid particles separated in the cyclone separator are residual catalyst and char particles, wherein the solid particles are recovered in a biochar drum (111). 請求項1で請求される方法であって、ここに、冷却液は水とエチレングリコールから選択する。 A method as claimed in claim 1 , wherein the coolant is selected from water and ethylene glycol. 請求項1で請求される方法であって、ここに、第一、第二段階で水を冷却液として使用する。 A method as claimed in claim 1 , wherein water is used as cooling liquid in the first and second stages. 請求項7で請求される方法であって、ここに、第三、第四段階でエチレングリコールを冷却液として使用する。 A method as claimed in claim 7 , wherein in the third and fourth stages ethylene glycol is used as cooling liquid. 請求項1で請求される方法であって、ここに、プロセスはさらにC1からC4炭化水素で成る製品ガス (117)を発電タービンシステム(120) に投入して発電する。 A method as claimed in claim 1, wherein the process further injects a product gas (117) comprising C1 to C4 hydrocarbons into a power generation turbine system (120) to generate electricity. 請求項1か請求項7で請求される方法であって、ここに、残留触媒触媒再生装置 (116)で再生する。 A method as claimed in claim 1 or claim 7, wherein the residual catalyst is regenerated in a catalyst regenerator (116). プラスチック廃材を液体燃料に変換するシステム(100)であって、システムは以下で構成する:
a.プラスチック廃材の供給ホッパー(101)
b.プラスチック廃材と触媒を ロータリーキルン反応炉 (108)に投入するねじ式供給装置(102)
c.プラスチック廃材の熱分解用ロータリーキルン反応炉 (108)
d.ロータリーキルン反応炉 (108) 内に設置し、キルン反応炉の開口領域におけるプラスチック廃材の熱分解を容易にし、製品蒸気を加速する円筒形のパイプ (109) であって、この円筒形のパイプ (109) は両端が閉じる構造をしている
e.ロータリーキルン反応炉 (108) のライニング全長に渡り設置され、触媒と溶融プラスチックの滞留時間を長くするためのらせん状邪魔板(106)
f.ロータリーキルン反応炉 (108)に負圧を発生させる誘導通風機(114)
g.残留触媒と炭化物の粒子をロータリーキルン反応炉 (108)で発生するガス流から分離し、ガス流を得るためのサイクロンセパレータ(110)
h.サイクロンセパレータ(110)で分離された固形粒子を回収するための生体炭化物ドラム(111)
i.ガス流の冷却用四段階方式凝縮装置(112)
j.凝縮された液体を凝縮装置(112)から回収する液体燃料回収タンクユニット(113)
k.非凝縮性気体を液状留分から分離するための気液セパレータ(115)。
A system (100) for converting plastic waste into liquid fuel, the system comprising:
a. Feed Hopper for Plastic Waste(101)
b. Threaded feeder (102) feeding plastic waste and catalyst into rotary kiln reactor (108)
c. Rotary kiln reactor for pyrolysis of plastic waste (108)
d. A cylindrical pipe (109) installed within the rotary kiln reactor (108) to facilitate pyrolysis of plastic waste in the open area of the kiln reactor and accelerate product vapors, the cylindrical pipe (109) ) has a structure with both ends closed e. Spiral baffles (106) installed along the length of the lining of the rotary kiln reactor (108) to increase the residence time of the catalyst and molten plastic
f. Induction draft fan (114) to create negative pressure in rotary kiln reactor (108)
g. A cyclone separator (110) for separating residual catalyst and carbide particles from the gas stream generated in the rotary kiln reactor (108) to obtain a gas stream.
h. A biochar drum (111) for collecting the solid particles separated by the cyclone separator (110)
i. Four-stage condenser for cooling gas streams [112]
j. a liquid fuel recovery tank unit (113) for recovering condensed liquid from the condensing device (112);
k. A gas-liquid separator (115) for separating non- condensable gases from liquid fractions.
請求項13に請求するシステムはさらに、触媒再生装置 (116)を含む。 The system as claimed in claim 13 further includes a catalyst regenerator (116). 請求項13に請求するシステムはさらに、発電タービンシステム(120)を含む。 The system as claimed in claim 13 further includes a power generation turbine system (120). 請求項13に請求するシステムであって、ここに、ロータリーキルン反応炉 (108) の傾斜角は1~10°である。 A system as claimed in claim 13 , wherein the tilt angle of the rotary kiln reactor (108) is between 1 and 10 degrees. 請求項13に請求するシステムであって、ここに、ロータリーキルン反応炉 (108) の回転速度は0.2~20 rpmである。 A system as claimed in claim 13 , wherein the rotation speed of the rotary kiln reactor (108) is between 0.2 and 20 rpm.
JP2021510954A 2018-08-28 2019-08-28 How to catalytically convert plastic waste into liquid fuel Active JP7391088B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201821032224 2018-08-28
IN201821032224 2018-08-28
PCT/IB2019/057228 WO2020044248A1 (en) 2018-08-28 2019-08-28 A method for catalytic conversion of waste plastic into liquid fuel

Publications (3)

Publication Number Publication Date
JP2021535265A JP2021535265A (en) 2021-12-16
JPWO2020044248A5 true JPWO2020044248A5 (en) 2023-08-21
JP7391088B2 JP7391088B2 (en) 2023-12-04

Family

ID=69645095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021510954A Active JP7391088B2 (en) 2018-08-28 2019-08-28 How to catalytically convert plastic waste into liquid fuel

Country Status (5)

Country Link
US (1) US11319493B2 (en)
EP (1) EP3844247B1 (en)
JP (1) JP7391088B2 (en)
ES (1) ES2968752T3 (en)
WO (1) WO2020044248A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
WO2017161463A1 (en) 2016-03-24 2017-09-28 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
CN114479173A (en) 2016-09-29 2022-05-13 绿色颂歌再生科技有限公司 Reactor for treating polystyrene materials
JP2023508350A (en) * 2019-12-23 2023-03-02 シェブロン ユー.エス.エー. インコーポレイテッド Circular Economy of Waste Plastics to Polypropylene and Lubricating Oils via Refining FCC and Isomerization Dewaxing Units
US11566182B2 (en) 2020-03-30 2023-01-31 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC feed pretreater and FCC units
WO2023225501A2 (en) * 2022-05-16 2023-11-23 Plastics Decoded Llc Carbon capture system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136287A (en) * 1974-09-20 1976-03-27 Kobe Steel Ltd Netsukasoseijushikarajuyonabutsushitsuokaishusuruhoho
JPH0465485A (en) * 1990-07-05 1992-03-02 Nirai Kk Device for oiling and reclaiming plastics
US5216149A (en) * 1991-06-07 1993-06-01 Midwest Research Institute Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products
JP3370859B2 (en) 1996-09-09 2003-01-27 株式会社日立製作所 Waste plastic processing and power generation system
US6184427B1 (en) * 1999-03-19 2001-02-06 Invitri, Inc. Process and reactor for microwave cracking of plastic materials
US6736940B2 (en) * 1999-12-14 2004-05-18 Renaissance Recycling, Inc. Process for pyrolyzing tire shreds and tire pyrolysis systems
US7344622B2 (en) * 2003-04-08 2008-03-18 Grispin Charles W Pyrolytic process and apparatus for producing enhanced amounts of aromatic compounds
US7932424B2 (en) * 2006-01-26 2011-04-26 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for catalytically cracking waste plastics and apparatus for catalytically cracking waste plastics
CA2668886A1 (en) * 2006-11-06 2008-05-15 Stanislaw Koster, Sr. Methods and apparatus for pyrolyzing material
US7893307B2 (en) * 2007-02-23 2011-02-22 Smith David G Apparatus and process for converting feed material into reusable hydrocarbons
JP2008260832A (en) * 2007-04-11 2008-10-30 Micro Energy:Kk Method for waste regeneration treatment and system for waste regeneration treatment
US9234138B1 (en) * 2008-09-17 2016-01-12 Nantong Tianyi Environmental Energy Technology Limited Corporation Revolving waste plastic-oil converting equipment and method of using the same
JP2012144609A (en) * 2011-01-11 2012-08-02 Ing Co Ltd Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic
EP2721098A4 (en) * 2011-06-17 2015-04-01 Amit Tandon Method and apparatus for continuous recycling of waste plastic into liquid fuels
JP5803779B2 (en) * 2012-03-29 2015-11-04 富士通株式会社 Cracked oil recovery device and cracked oil manufacturing method
US9428695B2 (en) 2013-02-12 2016-08-30 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
JP6070580B2 (en) * 2014-01-14 2017-02-01 Jfeスチール株式会社 Method and system for reducing the molecular weight of organic substances
US10472487B2 (en) * 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
EP3408352A1 (en) 2016-03-31 2018-12-05 Trifol Resources Limited PROCESS FOR THE PREPARATION OF A C20 to C60 WAX FROM THE SELECTIVE THERMAL DECOMPOSITION OF PLASTIC POLYOLEFIN POLYMER

Similar Documents

Publication Publication Date Title
CN102341485B (en) Process and system for thermochemical conversion of biomass
JP7391088B2 (en) How to catalytically convert plastic waste into liquid fuel
CA1113881A (en) Process and apparatus for treating a comminuted solid carbonizable material
US4308103A (en) Apparatus for the pyrolysis of comminuted solid carbonizable materials
JP5819607B2 (en) Low pressure pyrolysis equipment and continuous oil carbonization equipment
US5662052A (en) Method and system including a double rotary kiln pyrolysis or gasification of waste material
JP2004523646A (en) Processing method of carbonaceous material
ZA200305257B (en) Process and gas generator for generating fuel gas.
EP3310881A1 (en) A gasification system
WO2009104981A1 (en) Method and device for processing domestic and industrial organic waste
KR20020052168A (en) A process for producing gasoline and diesel from waste plastics and/or heavy oil
RU2494128C2 (en) Device for producing soot from rubber wastes
EP2367757A1 (en) Conversion of carbon based material to natural gas and activated carbon
US10119087B2 (en) Process for and processor of natural gas and activated carbon together with blower
JPWO2020044248A5 (en)
CN87102450A (en) The cocurrent gasification of coal Processes and apparatus
RU2632812C2 (en) Plant for thermochemical processing of carbonaceous raw material
RU58533U1 (en) PLANT FOR THE PYROLYSIS OF RUBBER-CONTAINING WASTE
RU2721695C1 (en) Method of processing organic material to produce synthetic fuel gas in a high-temperature ablation pyrolisis of gravitational type
CN1225521C (en) Quickly thermolyzing and liquefying apparatus for centrifugal separated biomass
JPS63260981A (en) Apparatus for producing pylorytic gas from combustible waste
RU106246U1 (en) ORGANIC RAW MATERIAL PROCESSING PLANT
JP2001049265A (en) Thermal process for removing contamination factor substance from oil
KR20060060793A (en) Recyling of food waste by rapid pyrolysis process
RU2796745C1 (en) Method for processing raw materials to obtain motor fuel components