JP2012144609A - Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic - Google Patents

Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic Download PDF

Info

Publication number
JP2012144609A
JP2012144609A JP2011002987A JP2011002987A JP2012144609A JP 2012144609 A JP2012144609 A JP 2012144609A JP 2011002987 A JP2011002987 A JP 2011002987A JP 2011002987 A JP2011002987 A JP 2011002987A JP 2012144609 A JP2012144609 A JP 2012144609A
Authority
JP
Japan
Prior art keywords
waste plastic
furnace
catalytic cracking
catalyst
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011002987A
Other languages
Japanese (ja)
Inventor
Shinichiro Hotei
眞一郎 布袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ING Co Ltd
Original Assignee
ING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ING Co Ltd filed Critical ING Co Ltd
Priority to JP2011002987A priority Critical patent/JP2012144609A/en
Publication of JP2012144609A publication Critical patent/JP2012144609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalytic cracking furnace capable of more efficiently decomposing waste plastics, and to provide a continuous liquefaction apparatus for waste plastics capable of efficiently, inexpensively and continuously producing fuel oil or the like from waste plastics.SOLUTION: In the catalytic cracking furnace 100, an encapsulated type furnace body 102 is disposed inside an encapsulated type casing 101 while leaving a gap space d, a heating chamber 103 is formed to heat the inside of the furnace body from the periphery of the furnace body by hot air helically passing through the gap space between the inner circumference of the casing and the outer circumference of the furnace body, a decomposition chamber 104, to which a waste plastic raw material P is supplied, is formed in the furnace body, and in the decomposition chamber, a catalyst C for catalytic cracking of the supplied waste plastic raw material P under heating conditions is reserved and in the decomposition chamber, a pair of kneading members 105 for kneading the waste plastic raw material P and the catalyst C is disposed. The liquefaction apparatus includes: the catalytic cracking furnace; a raw material supply means 200 of a waste plastic raw material; a hot air generating furnace 300; a fractional distillation means 400 for achieving the fractional distillation of decomposed gas G generated in the catalytic cracking furnace; an oil reserving means 500 reserving the distilled component; and a regenerating means 600 for the catalyst.

Description

本発明は、廃プラスチックを触媒と接触反応させて分解させる接触分解炉と、同接触分解炉を備える廃プラスチック連続油化装置に関するものである。   The present invention relates to a catalytic cracking furnace in which waste plastic is decomposed by catalytic reaction with a catalyst, and a waste plastic continuous oil converting apparatus including the catalytic cracking furnace.

プラスチックは、高分子化合物であり、石油や天然ガスなどの天然資源から生産され、包装材、各種部品、日用品などあらゆる分野に使用されている。使用後のプラスチック製品は、大部分が廃棄プラスチックとして埋立地に廃棄処分されている。しかし、従来からの埋立地の用地確保や廃プラスチックの分解に時間がかかる等の問題に加え、近年の循環型環境社会の実現への取り組みに伴って、廃プラスチックのリサイクル活動(廃プラスチックの処理と資源化)が進められている。   Plastic is a polymer compound, is produced from natural resources such as oil and natural gas, and is used in various fields such as packaging materials, various parts, and daily necessities. Most used plastic products are disposed of in landfills as waste plastic. However, in addition to the conventional problems of securing land for landfills and disassembling waste plastics, waste plastic recycling activities (waste plastic treatment) have been implemented in recent years as efforts toward the realization of a recycling-oriented environmental society are achieved. And recycling).

かかる廃プラスチックのリサイクル技術の一つとして、廃プラスチックに流動性に富む無機酸化物粒子を加えて200〜500℃の温度で加熱し、加熱より得られた廃プラスチックの液化油をさらに別の無機酸化物粒子と200〜500℃の温度で接触させて分解し、燃料油を得る廃プラスチックの液化方法(特許文献1)が提案されている。   As one of such waste plastic recycling technologies, inorganic oxide particles rich in fluidity are added to waste plastic and heated at a temperature of 200 to 500 ° C., and the liquefied oil of waste plastic obtained by heating is further added to another inorganic plastic. A waste plastic liquefaction method (Patent Document 1) has been proposed in which a fuel oil is obtained by contacting with oxide particles at a temperature of 200 to 500 ° C. for decomposition.

特開2005−187794号JP 2005-187794 A

しかしながら、上記廃プラスチックの液化方法には、廃プラスチックをより効率的に接触分解させる具体的な方法や、分解生成物である分解ガスから効率的に精製する方法については開示されていない。   However, the above liquefaction method for waste plastics does not disclose a specific method for more efficiently catalytically cracking waste plastics or a method for efficiently purifying from cracked gas as a decomposition product.

本発明は、上記事情に鑑みてなされたもので、廃プラスチックのより効率的な分解を可能とする接触分解炉を提供すること、廃プラスチックを効率的に分解して燃料油等の効率的かつ低コストの連続生産を可能とする廃プラスチック連続油化装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a catalytic cracking furnace capable of more efficiently decomposing waste plastics, efficiently decomposing waste plastics, An object of the present invention is to provide a waste plastic continuous oil converting device that enables low-cost continuous production.

上記課題を解決するために、本発明に係る廃プラスチックの接触分解炉は、
密閉型のケーシングの内部に周囲に隙間空間を残して密閉型の炉本体が配置され、
ケーシングの内周と炉本体の外周の隙間空間には周囲から炉本体内を加熱する加熱室が形成され、
炉本体内には廃プラスチック原料が投入される分解室が形成され、
分解室には投入された廃プラスチック原料を加熱下で接触分解するための触媒が貯留され、
分解室には投入された廃プラスチック原料と触媒を混錬する一対の混錬部材が配置されている、ことを主要な特徴とする。
In order to solve the above problems, a waste cracking catalytic cracking furnace according to the present invention comprises:
A closed furnace body is arranged inside the closed casing leaving a gap space around it,
In the gap space between the inner periphery of the casing and the outer periphery of the furnace body, a heating chamber for heating the inside of the furnace body from the surroundings is formed,
A decomposition chamber into which waste plastic raw materials are charged is formed in the furnace body,
The cracking chamber stores a catalyst for catalytic cracking of the waste plastic raw material charged under heating,
A main feature is that a pair of kneading members for kneading the waste plastic raw material and the catalyst that are input are arranged in the decomposition chamber.

本発明に係る廃プラスチックの接触分解炉によると、ケーシングの内周と炉本体の外周の隙間空間に熱風を供給しあるいは炉本体の外周に電熱部材を巻回状に配置して、炉本体の外周全体から内部の触媒を加熱するようにしている。したがって、加熱室内の触媒が全体的に効率よく加熱され、加熱室内の混錬部材による廃プラスチック原料と触媒との混錬効果と合わせて、触媒の接触分解反応が促進される。これによって投入された廃プラスチック原料が効率的に熱分解されて分解ガスが得られる。そしてかかる分解ガスを冷却および分留することにより、燃料油(ナフサ、軽油、灯油、重油など)やプラスチック材料となる分留成分が効率的に得られる。   According to the waste cracking catalytic cracking furnace according to the present invention, hot air is supplied to the gap space between the inner periphery of the casing and the outer periphery of the furnace body, or an electric heating member is arranged in a wound shape on the outer periphery of the furnace body, The internal catalyst is heated from the entire outer periphery. Therefore, the catalyst in the heating chamber is efficiently heated as a whole, and the catalytic cracking reaction of the catalyst is promoted together with the kneading effect of the waste plastic raw material and the catalyst by the kneading member in the heating chamber. As a result, the waste plastic raw material introduced is efficiently thermally decomposed to obtain cracked gas. Then, by cooling and fractionating the cracked gas, a fractional component that becomes a fuel oil (naphtha, light oil, kerosene, heavy oil, etc.) or a plastic material can be obtained efficiently.

本発明に係る廃プラスチックの接触分解炉は、熱風発生手段からの熱風が前記加熱室を螺旋状に通過して熱を炉本体の外周から炉本体内に供給するようになっていることを第2の特徴とする。   In the waste plastic catalytic cracking furnace according to the present invention, the hot air from the hot air generating means passes through the heating chamber in a spiral shape and supplies heat into the furnace body from the outer periphery of the furnace body. Two features.

本発明に係る廃プラスチックの接触分解炉は、電熱部材が炉本体の周囲に巻回され、電熱部材から発生する熱を炉本体の外周から炉本体内に供給するようになっていることを第3の特徴とする。   In the waste plastic catalytic cracking furnace according to the present invention, the electric heating member is wound around the furnace main body, and heat generated from the electric heating member is supplied from the outer periphery of the furnace main body into the furnace main body. Three features.

本発明に係る廃プラスチックの接触分解炉は、前記一対の混錬部材が、互いに逆向きに回転する主軸をそれぞれ備え、各主軸の周囲に螺旋状のリボンスクリューが全体にわたり取り付けられ、リボンスクリューの隣接する頂部間に自身の軸心周りに羽根を所定角度傾斜させた返しパドル部材が一定の間隔で取り付けられていることを第4の特徴とする。   In the waste plastic catalytic cracking furnace according to the present invention, the pair of kneading members respectively include main shafts rotating in opposite directions, and a spiral ribbon screw is attached to the entire periphery of each main shaft. A fourth feature is that return paddle members, each of which has a blade inclined at a predetermined angle around its own axis, are attached at regular intervals between adjacent apexes.

本発明に係る廃プラスチックの接触分解炉は、分解室内において、各主軸の端部の一方に返しスクリュー羽根が、他方に止め羽根が互い違いに設けられていることを第5の特徴とする。   The waste plastic catalytic cracking furnace according to the present invention is characterized in that, in the cracking chamber, return screw blades are alternately provided at one end of each main shaft, and stop blades are alternately provided at the other.

本発明に係る廃プラスチックの接触分解炉は、廃プラスチック原料の代わりに、動植物油が投入されることを第6の特徴とする。   The waste plastic catalytic cracking furnace according to the present invention is characterized in that animal and vegetable oils are introduced in place of the waste plastic raw material.

本発明に係る廃プラスチック連続油化装置は、前記接触分解炉と、同接触分解炉に廃プラスチック原料を供給する原料供給手段と、接触分解炉内に熱を供給する熱供給手段と、接触分解炉で生成された分解ガスを分留し、目的の留出成分を得る分留手段と、分留手段により得られた留出成分を貯留する油貯留手段を備えることを主要な特徴とする。   The waste plastic continuous oil converting apparatus according to the present invention comprises the catalytic cracking furnace, a raw material supply means for supplying waste plastic raw material to the catalytic cracking furnace, a heat supply means for supplying heat into the catalytic cracking furnace, and catalytic cracking. The main features include a fractionation means for fractionating the cracked gas produced in the furnace to obtain the desired distillate component, and an oil storage means for storing the distillate component obtained by the fractionation means.

本発明に係る廃プラスチック連続油化装置は、分留手段が接触分解炉で生成された分解ガスを凝縮する凝縮器を備え、凝縮器で凝縮されなかった分解ガスを熱供給手段である熱風発生炉のバーナへ燃焼用ガスとして送ることを第2の特徴とする。   The waste plastic continuous oil converting apparatus according to the present invention includes a condenser in which the fractionating means condenses the cracked gas generated in the catalytic cracking furnace, and generates hot air that is the heat supply means for the cracked gas not condensed in the condenser. The second feature is that the combustion gas is sent to the burner of the furnace.

本発明に係る廃プラスチック連続油化装置は、接触分解炉の炉本体内に貯留された一定期間使用後の触媒を抜出して再生する再生手段を備えることを第3の特徴とする。   The third feature of the waste plastic continuous oil converting apparatus according to the present invention is that it comprises a regenerating means for extracting and regenerating the used catalyst stored in the furnace body of the catalytic cracking furnace for a certain period of time.

本発明に係る廃プラスチック連続油化装置は、前記再生手段が、加熱室を備える再生器本体と、再生された触媒を一時貯留する再生触媒タンクと、再生触媒タンクから接触分解炉に再生触媒を送る供給手段と、接触分解炉から抜出された使用後の触媒を前記加熱室に投入する触媒投入手段とを備えることを第4の特徴とする。   In the waste plastic continuous oil making apparatus according to the present invention, the regeneration means includes a regenerator body having a heating chamber, a regeneration catalyst tank for temporarily storing the regenerated catalyst, and a regeneration catalyst from the regeneration catalyst tank to the catalytic cracking furnace. A fourth feature is provided with a feeding means for feeding and a catalyst loading means for loading the used catalyst extracted from the catalytic cracking furnace into the heating chamber.

本発明に係る廃プラスチック連続油化装置は、前記加熱室に、熱供給手段としての熱風発生炉で生成された熱風の一部が導入され、同熱風により加熱室内に投入された使用後の触媒が加熱されて、再生されることを第5の特徴とする。   The waste plastic continuous oil making apparatus according to the present invention is a catalyst after use in which a part of hot air generated in a hot air generating furnace as heat supply means is introduced into the heating chamber, and the hot air is introduced into the heating chamber. A fifth feature is that the material is heated and regenerated.

以上説明したように、本発明に係る廃プラスチック分解炉によると、ケーシングの内周面と炉本体の外周面の隙間空間に形成した加熱室に熱を供給して、その輻射熱により炉本体内の触媒を周囲から効率よく加熱し、また、分解室内の混錬部材による廃プラスチック原料と触媒との混錬効果を加えたことにより、廃プラスチック原料を効率的に熱分解して、廃プラスチック原料から燃料油などの分留成分を効率よく得ることができるという優れた効果を奏する。   As described above, according to the waste plastic decomposition furnace according to the present invention, heat is supplied to the heating chamber formed in the gap space between the inner peripheral surface of the casing and the outer peripheral surface of the furnace main body, and the radiant heat in the furnace main body By efficiently heating the catalyst from the surroundings and adding a kneading effect between the waste plastic raw material and the catalyst by the kneading members in the cracking chamber, the waste plastic raw material is efficiently pyrolyzed, There is an excellent effect that a fractional component such as fuel oil can be efficiently obtained.

また、本発明に係る廃プラスチック連続油化装置によると、廃プラスチックを効率的に分解して燃料油などの分留成分を効率的にしかも低コストで生産することができるという優れた効果を奏する。   In addition, according to the waste plastic continuous oil converting apparatus according to the present invention, there is an excellent effect that the waste plastic can be efficiently decomposed and fractional components such as fuel oil can be produced efficiently and at low cost. .

本発明を実施するための最良の形態を、図面を参照しながら説明する。図1は本発明に係る廃プラスチックの接触分解炉100を備える廃プラスチック連続油化装置Sの全体構成を示している。   The best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 shows the overall configuration of a waste plastic continuous oil making apparatus S including a waste plastic catalytic cracking furnace 100 according to the present invention.

図1において、廃プラスチック連続油化装置(以下、「油化装置」という)Sは、廃プラスチックの接触分解炉100と、同接触分解炉100に廃プラスチック原料Pを供給する原料供給手段200と、接触分解炉100に熱を供給する熱供給手段である熱風発生炉300と、接触分解炉100内で生成された分解ガスGを分留する分留手段400と、分留された軽質油などの分留成分を貯留する油貯留タンク500と、接触分解炉100内の触媒Cを再生する再生手段600から主要構成されている。   In FIG. 1, a waste plastic continuous oil converting apparatus (hereinafter referred to as “oil converting apparatus”) S includes a waste plastic catalytic cracking furnace 100, and a raw material supply means 200 for supplying the plastic waste P to the catalytic cracking furnace 100. , A hot air generating furnace 300 which is a heat supply means for supplying heat to the catalytic cracking furnace 100, a fractionating means 400 for fractionating the cracked gas G generated in the catalytic cracking furnace 100, a light oil fractionated, etc. The main components are an oil storage tank 500 for storing the fractional distillation components and a regeneration means 600 for regenerating the catalyst C in the catalytic cracking furnace 100.

接触分解炉100は、廃プラスチック原料Pを加熱下で触媒Cと接触させて、熱分解により分解ガスを生成するもので、横長で密閉型のケーシング101の内部に密閉型の炉本体102が配置されている。図2および図3に示すように、ケーシング101の内周面と炉本体102の外周面の間は全周にわたり隙間dが設けられており、当該隙間dの空間が熱風発生炉300からの熱風がらせん状に通過して周囲全体から炉本体102内を加熱する加熱室103とされている。炉本体102の内部には廃プラスチック原料Pの分解室104が形成され、分解室104には触媒Cが所定の高さまで貯留されている。   The catalytic cracking furnace 100 generates waste gas by contacting the waste plastic raw material P with the catalyst C under heating, and a sealed furnace body 102 is disposed inside a horizontally long and sealed casing 101. Has been. As shown in FIGS. 2 and 3, a gap d is provided over the entire circumference between the inner peripheral surface of the casing 101 and the outer peripheral surface of the furnace main body 102, and the space of the gap d is hot air from the hot air generating furnace 300. A heating chamber 103 that passes in a spiral shape and heats the inside of the furnace main body 102 from the entire periphery is formed. A decomposition chamber 104 for waste plastic material P is formed inside the furnace body 102, and the catalyst C is stored in the decomposition chamber 104 to a predetermined height.

分解室104には、図2および図3に示すように、一対(2本)の混錬部材105,105が配置され、各混錬部材105は、前後の端面側の軸受106,106間に互いに異なる向き(内向き)に回転する主軸107の両端が支持されている。各主軸107の周囲には全体にわたり一定のピッチpでリボンスクリュー108が螺旋状に取り付けられている。リボンスクリュー108の隣接する頂部間には、自身の軸心周りに羽根を所定角度傾斜させた返しパドル部材109が一定のピッチpでかつ周方向に90度間隔で取り付けられている。また、各主軸107の両軸受106付近には、一方に返しスクリュー羽根110が、他方に止め羽根111が互い違いに設けられている。   As shown in FIGS. 2 and 3, a pair (two) of kneading members 105, 105 are arranged in the decomposition chamber 104, and each kneading member 105 is placed between the front and rear bearings 106, 106. Both ends of the main shaft 107 rotating in different directions (inward) are supported. A ribbon screw 108 is spirally attached around each main shaft 107 at a constant pitch p throughout. Between adjacent apexes of the ribbon screw 108, return paddle members 109, each having a blade inclined at a predetermined angle around its own axis, are attached at a constant pitch p and at intervals of 90 degrees in the circumferential direction. Further, in the vicinity of both bearings 106 of each main shaft 107, return screw blades 110 are alternately provided on one side, and stop blades 111 are alternately provided on the other side.

かかる構造の攪拌部材105,105は、駆動源112からの駆動力により両回転軸107を、図3に示すように、互いに内向きに回転させると、リボンスクリュー108が、後述する原料投入部115から炉本体102の分解室104に投入された廃プラスチック原料Pを触媒Cと一緒に、図4の矢印に示すように、分解室104の一方の端部側へと搬送し、次いで同端部付近で返しスクリュー羽根110がこれらの混合体を隣のリボンスクリュー108側へ返し、隣のリボンスクリュー108から分解室104の他方の端部へと搬送し、次いで同端部付近で返しスクリュー羽根110がこれらの混合体を最初のリボンスクリュー108側へ返し、最初のリボンスクリュー108が再び一方の端部へと搬送するようになっている。そして、廃プラスチック原料Pと触媒Cの混合体が一緒に分解室104内を矢印の向きに従って搬送される間、多数の返しパドル部材109が廃プラスチック原料Pと触媒Cの混合体を繰り返し上下に混錬し、これによって、廃プラスチック原料P全体と触媒C全体の接触率が飛躍的に高まるようになっている。   When the agitating members 105 and 105 having such a structure are rotated inward with respect to each other as shown in FIG. 3 by the driving force from the driving source 112, the ribbon screw 108 causes the material charging unit 115 to be described later. The waste plastic raw material P charged into the decomposition chamber 104 of the furnace main body 102 is conveyed to one end side of the decomposition chamber 104 together with the catalyst C as shown by the arrow in FIG. In the vicinity, the return screw blade 110 returns the mixture to the adjacent ribbon screw 108 side, transports it from the adjacent ribbon screw 108 to the other end of the decomposition chamber 104, and then returns the mixture to the other end of the decomposition chamber 104. Returns the mixture to the first ribbon screw 108 side, and the first ribbon screw 108 is conveyed again to one end. While the mixture of the waste plastic raw material P and the catalyst C is conveyed together in the decomposition chamber 104 in the direction of the arrow, a large number of return paddle members 109 repeatedly move the mixture of the waste plastic raw material P and the catalyst C up and down. By kneading, the contact ratio of the entire waste plastic raw material P and the entire catalyst C is drastically increased.

ケーシング101の外周面には、加熱室103の一端寄りに熱風が導入される熱風導入部113と、加熱室103の他端寄りから熱風が排出される熱風排出部114が設けられている。また、炉本体102の外周面上部には、廃プラスチック原料Pの原料投入部115と、触媒Cの触媒投入部116と、炉本体102内で生成された分解ガスGのガス取出部117が設けられている。それらの原料投入部115、触媒投入部116およびガス取出部117はいずれもケーシング101を貫通しその外方に突出している。なお、炉本体102の外周面下部には、使用後の触媒を再生用に排出する触媒排出部118と、廃プラスチック原料Pの分解残渣を抜出する残渣排出部119が設けられている。   On the outer peripheral surface of the casing 101, there are provided a hot air introducing portion 113 for introducing hot air near one end of the heating chamber 103 and a hot air discharging portion 114 for discharging hot air from the other end of the heating chamber 103. In addition, a raw material input portion 115 for waste plastic raw material P, a catalyst input portion 116 for catalyst C, and a gas extraction portion 117 for cracked gas G generated in the main body 102 are provided on the outer peripheral surface of the furnace main body 102. It has been. The raw material charging unit 115, the catalyst charging unit 116, and the gas extraction unit 117 all penetrate the casing 101 and protrude outward. Note that a catalyst discharge unit 118 that discharges the used catalyst for regeneration and a residue discharge unit 119 that extracts a decomposition residue of the waste plastic raw material P are provided at the lower outer peripheral surface of the furnace body 102.

触媒Cは、無機酸化物微粒子や無機複合酸化物微粒子、例えばSiO2、Al23、ZrO2、TiO2、MgO、Sb23、SiO2-Al23、SiO2-TiO2、SiO2-ZrO2、Al23-MgO、Al23-ZrO2、Al23-TiO2等が用いられる。さらに、ベントナイト、カオリナイト、セピオライトなどの粘土鉱物の他天然ゼオライト等も好適に用いることができ、特に複合酸化物微粒子は廃プラスチックの液化をより低温で行えるので好ましい。触媒Cを構成する無機酸化物微粒子は、平均粒子径が30μm〜5mm、好ましくは30μm〜1mm、特に好ましくは30〜150μmの範囲とする。かかる範囲により、流動性を高め、廃プラスチックとの接触効率を高めて、液化温度の低減が可能である。 The catalyst C is an inorganic oxide fine particle or an inorganic composite oxide fine particle, such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , MgO, Sb 2 O 3 , SiO 2 —Al 2 O 3 , SiO 2 —TiO 2. SiO 2 —ZrO 2 , Al 2 O 3 —MgO, Al 2 O 3 —ZrO 2 , Al 2 O 3 —TiO 2, etc. are used. Furthermore, natural zeolite and the like can be suitably used in addition to clay minerals such as bentonite, kaolinite and sepiolite, and composite oxide fine particles are particularly preferable because waste plastics can be liquefied at a lower temperature. The inorganic oxide fine particles constituting the catalyst C have an average particle diameter of 30 μm to 5 mm, preferably 30 μm to 1 mm, particularly preferably 30 to 150 μm. With such a range, it is possible to increase fluidity, increase the contact efficiency with waste plastic, and reduce the liquefaction temperature.

原料供給手段200は、廃プラスチック原料Pを一時貯留する原料タンク201と原料投入コンベア202を備え、原料投入コンベア202から接触分解炉100の原料投入部110に原料を投入するようになっている。廃プラスチック原料Pとしては、ポリエチレン、ポリプロピレン、ポリスチレン、エポキシ樹脂、ポリエステル樹脂、フェノール樹脂、ポリカーボネート樹脂、メラミン樹脂、尿素樹脂、アルキッド、ポリウレタン樹脂等の廃プラスチックを用いることができる。廃プラスチックには各種添加剤や着色料などを含んでいてよい。また、塩化ビニル樹脂は予め取り除いておくことが望ましいが、多少含まれていても差し支えない。廃プラスチック原料Pは、できるだけ小さいもの、粉砕、細断等したものが好ましく、廃プラスチック原料Pの大きさは2mm〜50mm程度が好ましい。   The raw material supply means 200 includes a raw material tank 201 for temporarily storing the waste plastic raw material P and a raw material input conveyor 202, and inputs the raw material from the raw material input conveyor 202 to the raw material input unit 110 of the catalytic cracking furnace 100. As the waste plastic raw material P, waste plastics such as polyethylene, polypropylene, polystyrene, epoxy resin, polyester resin, phenol resin, polycarbonate resin, melamine resin, urea resin, alkyd, and polyurethane resin can be used. Waste plastics may contain various additives and coloring agents. Further, it is desirable to remove the vinyl chloride resin in advance, but it may be contained in some amount. The waste plastic raw material P is preferably as small as possible, crushed, shredded, etc., and the size of the waste plastic raw material P is preferably about 2 mm to 50 mm.

熱風発生炉300は、加熱室103に供給する熱風(500〜650℃)Hを発生する炉で、ケーシング301の内部に燃焼室302が形成され、ケーシング301に付属のバーナ303の着火により、燃焼室302内で燃料油(軽油、灯油、重油など)または後述するオフガスラインLからのガスを燃焼し、燃焼ガスを発生させて、熱風(500〜650℃)Hを発生するようになっている。熱風発生炉300のケーシング301の熱風出口部304から接触分解炉100の熱風導入部113までは熱風供給ラインLが設けられている。また、接触分解炉100の熱風排出部114から熱風発生炉300の熱風戻り部305までは熱風循環ラインLが設けられており、熱風循環ラインLの途中に設けられた循環ブロワー306により、熱風発生炉300で発生させた熱風を、接触分解炉100の加熱室103を経由して熱風発生炉300の燃焼室に循環させるようになっている。 The hot air generating furnace 300 is a furnace that generates hot air (500 to 650 ° C.) H to be supplied to the heating chamber 103. A combustion chamber 302 is formed inside the casing 301, and combustion is performed by ignition of a burner 303 attached to the casing 301. fuel oil within chamber 302 to combustion (diesel, kerosene, heavy oil, etc.) of gas from the off-gas line L 6 to or later, to generate combustion gases, so as to generate hot air (500 to 650 ° C.) H Yes. A hot air supply line L 1 is provided from the hot air outlet 304 of the casing 301 of the hot air generating furnace 300 to the hot air introducing section 113 of the catalytic cracking furnace 100. Further, a hot air circulation line L 2 is provided from the hot air discharge part 114 of the catalytic cracking furnace 100 to the hot air return part 305 of the hot air generator 300, and a circulation blower 306 provided in the middle of the hot air circulation line L 2 Hot air generated in the hot air generating furnace 300 is circulated to the combustion chamber of the hot air generating furnace 300 via the heating chamber 103 of the catalytic cracking furnace 100.

分留手段400は、接触分解炉100のガス取出部117から炉外へ上昇する分解ガスGを、沸点差を利用して分留する装置で、蒸留塔401内には蒸留用の充填物402が複数段組み込まれるとともに、最下段には湿式の集塵用充填物403が組み込まれている。蒸留塔401の上側には凝縮器(コンデンサ)404が配置されており、蒸留塔401内を上昇した分解ガスGは凝縮器(コンデンサ)404に送られ、冷却されて凝縮され、凝縮液を、還流ラインLを通して蒸留塔401に還流させるようになっている。蒸留塔401に還流された凝縮液は、液分散器405から下の充填物402に落下され、充填物402の表面で下からの分解ガスGと気液接触が行われる。 The fractionating means 400 is an apparatus for fractionating the cracked gas G rising from the gas extraction part 117 of the catalytic cracking furnace 100 using the difference in boiling point, and the distillation column 401 has a packing 402 for distillation. Are incorporated in a plurality of stages, and a wet dust collection filler 403 is incorporated in the lowermost stage. A condenser (condenser) 404 is arranged on the upper side of the distillation column 401, and the cracked gas G that has risen in the distillation column 401 is sent to the condenser (condenser) 404, cooled and condensed, and it is adapted to reflux the distillation column 401 through reflux line L 3. The condensate refluxed to the distillation column 401 is dropped from the liquid disperser 405 to the lower packing 402, and the cracked gas G from below is brought into gas-liquid contact on the surface of the packing 402.

蒸留塔401の中段より上寄りに収液器406とその下に再分散器407が配置されている。収液器406で留出物としての低沸点の軽質油成分(ナフサ、灯油、軽油)が収液され、収液された軽質油(燃料油)Oは、成分取出ラインLを通して製品油貯留タンク500内に貯留されるようになっている。収液されなかった凝縮液Lは、再分散器407からその下の充填物402に落下され、最終的に接触分解炉100内に至り、再び分解ガスGとして、蒸留塔401内を上昇する。これを繰り返すことにより、蒸留塔401の上部では沸点の低い軽質油成分の割合が高くなり、下部では沸点の高い重質油成分(重油など)の割合が高くなる。収液器406および再分散器407の高さ位置を適宜調整することにより、目的成分を分離し、取り出すことができる。 A liquid collector 406 is disposed above the middle stage of the distillation column 401, and a redisperser 407 is disposed below the liquid collector 406. Low-boiling light oil component as a distillate in Osamueki 406 (naphtha, kerosene, gas oil) are Osamueki, Osamueki been light oil (fuel oil) O is product oil storage through component extraction line L 4 It is stored in the tank 500. The condensate L that has not been collected is dropped from the re-dispersing device 407 into the packing 402 under it, finally reaches the catalytic cracking furnace 100, and rises again in the distillation column 401 as the cracked gas G. By repeating this, the ratio of the light oil component having a low boiling point increases in the upper part of the distillation column 401, and the ratio of the heavy oil component (such as heavy oil) having a high boiling point increases in the lower part. By appropriately adjusting the height positions of the liquid collector 406 and the re-disperser 407, the target component can be separated and taken out.

このように、接触分解炉100の上に分留手段400を配置することにより、廃プラスチック原料Pを分解して生成した分解ガスGから、効率よく軽質油成分や重質油成分に分離してそれらを取り出すことができる。なお、蒸留塔401の最下段に集塵用充填物403を組み込むことで、接触分解炉100内で発生する浮遊成分(触媒、廃プラスチック)が蒸留塔401内に侵入するのを防止できる。また凝縮器404からバーナ303までオフガスラインLを配設することにより、未凝縮の分解ガスGをオフガスとしてバーナ303の燃焼用ガスとして供給することができる。 Thus, by disposing the fractionating means 400 on the catalytic cracking furnace 100, the cracked gas G generated by cracking the waste plastic raw material P is efficiently separated into light oil components and heavy oil components. You can take them out. Incorporating the dust collection filler 403 at the bottom of the distillation column 401 can prevent floating components (catalyst, waste plastic) generated in the catalytic cracking furnace 100 from entering the distillation column 401. Also by disposing the offgas line L 5 from the condenser 404 to the burner 303, the decomposition gas G uncondensed can be supplied as a combustion gas of the burner 303 as off gas.

再生手段600は、接触分解炉100内の触媒Cを少しずつ抜出して再生し再び戻すもので、触媒Cは、繰り返し使用によりその表面に廃プラスチックの反応残渣成分が付着して接触面積が減少し、触媒としての性能が次第に低下する。再生手段600は、加熱室601を備える再生器本体602と、再生された触媒Cを一時貯留する再生触媒タンク603を備えている。再生器本体602には加熱室601内に使用後の触媒を少しずつ投入する投入コンベア604を備え、投入コンベア604は搬送スクリュー605を備えている。炉本体102側の触媒排出部118から投入コンベア604までは触媒搬送ラインLが延びており、触媒排出部118から使用後の触媒Cを少しずつ抜出すようになっている。また、再生器本体602の熱風導入部606には、熱風循環ラインLの途中から分岐された熱風分岐ラインLが延びて接続され、熱風の一部を加熱室601内に導入するようになっている。 The regeneration means 600 is a means for gradually removing the catalyst C in the catalytic cracking furnace 100 and regenerating and returning it again. The catalyst C has a reaction area component of waste plastic adhering to its surface due to repeated use, and the contact area is reduced. The performance as a catalyst gradually decreases. The regenerating unit 600 includes a regenerator main body 602 including a heating chamber 601 and a regenerated catalyst tank 603 that temporarily stores the regenerated catalyst C. The regenerator main body 602 is provided with a charging conveyor 604 for gradually charging the used catalyst into the heating chamber 601, and the charging conveyor 604 is provided with a conveying screw 605. From furnace body 102 side of the catalyst discharge portion 118 to the charging conveyor 604 extends catalyst transport line L 6, and the catalyst C 1 after use from the catalyst discharge unit 118 so withdrawn little by little. Further, a hot air branch line L 7 branched from the middle of the hot air circulation line L 2 is extended and connected to the hot air introducing portion 606 of the regenerator body 602 so that a part of the hot air is introduced into the heating chamber 601. It has become.

再生器本体602の加熱室601では投入された使用後の触媒Cに対し熱風Hを付加して加熱し、表面の反応残渣成分を分解して触媒を再生するようになっている。再生後の触媒Cは搬送スクリュー607により搬送ラインLを通して再生触媒タンク603に一時貯留され、再生触媒タンク603の下部に配置された搬送コンベア608および搬送ラインLを通して、接触分解炉100の触媒投入部116から分解室104内に戻すようになっている。また、再生器602の加熱室601内で発生した触媒微粒子は、取出部609からサイクロン610に送られ、サイクロン610内で遠心分離されて、搬送ラインLに合流するようになっている。 Was heated to catalyst C 1 after use, which is turned in the heating chamber 601 of the regenerator body 602 by adding hot air H, it adapted to regenerate the catalyst by decomposing the reaction residue component surface. Catalyst C after regeneration is temporarily stored in the regenerated catalyst tank 603 through transport line L 8 by the conveying screw 607, through the conveyor 608 and conveying line L 8 arranged underneath the regenerated catalyst tank 603, catalytic cracking furnace 100 of the catalyst It returns to the decomposition chamber 104 from the input part 116. Further, the catalyst particles generated in the heating chamber 601 of the regenerator 602 is sent from the extraction unit 609 to the cyclone 610, it is centrifugally separated in the cyclone 610, so as to join the conveying line L 8.

次に、以上のように構成された廃プラスチック連続油化装置Sの作用について説明する。   Next, the operation of the waste plastic continuous oil making apparatus S configured as described above will be described.

まず、循環ブロワー306を作動させて空気を燃焼室302内に送ると共に、バーナ303の着火により燃焼ガスを発生させて、500〜650℃の熱風を、熱風出口部304から熱風供給ラインLを通り、接触分解炉100の熱風導入部113から加熱室103に供給する。熱風Hは、加熱室103を螺旋状に通過して熱を周囲全体から炉本体102内に与えた後、450〜500℃程度となって熱風排出部114から出て、熱風循環ラインLを通り、熱風発生炉300の熱風戻り部305に戻る。また、同時に、駆動源112の作動により攪拌部材105,105を互いに内向きに回転させて触媒Cを攪拌する。その間、炉本体102内の加熱室103は400〜450℃程度の高温になる。 First, the circulation blower 306 is actuated and sends the air into the combustion chamber 302, thereby generating combustion gases by the ignition of the burner 303, the hot air of 500 to 650 ° C., the hot air supply line L 1 from the hot air outlet 304 As described above, the hot air introduction unit 113 of the catalytic cracking furnace 100 supplies the heating chamber 103. The hot air H passes through the heating chamber 103 in a spiral shape and gives heat from the entire periphery into the furnace main body 102, then reaches about 450 to 500 ° C. and exits from the hot air discharge unit 114, and passes through the hot air circulation line L 2 . As a result, the process returns to the hot air return unit 305 of the hot air generating furnace 300. At the same time, the catalyst C is stirred by rotating the stirring members 105 and 105 inward by the operation of the drive source 112. In the meantime, the heating chamber 103 in the furnace main body 102 becomes high temperature of about 400-450 degreeC.

炉本体102内の触媒Cが反応温度に達したら、原料投入コンベア202の作動により、原料タンク201内の廃プラスチック原料Pを接触分解炉100の原料投入部110に投入する。分解室104内では、攪拌部材105,105の回転により、リボンスクリュー108の作用により図4に示す矢印のように触媒Cおよび投入された廃プラスチック原料Pの混合体が一緒に一方向へ搬送され、その際に多数の返しパドル部材109が廃プラスチック原料Pと触媒Cの混合体を繰り返し上下に混錬する。なお、原料投入コンベア202は、分解室104内に配置した温度センサーからの信号に基づき作動させてよい。   When the catalyst C in the furnace body 102 reaches the reaction temperature, the waste plastic raw material P in the raw material tank 201 is charged into the raw material charging unit 110 of the catalytic cracking furnace 100 by the operation of the raw material charging conveyor 202. In the decomposition chamber 104, the mixture of the catalyst C and the introduced waste plastic raw material P is conveyed together in one direction as indicated by the arrow shown in FIG. At that time, a large number of return paddle members 109 repeatedly knead the mixture of the waste plastic raw material P and the catalyst C up and down. The raw material feeding conveyor 202 may be operated based on a signal from a temperature sensor disposed in the decomposition chamber 104.

そして、一方向の端部で返しスクリュー羽根110がこれらの混合体を隣のリボンスクリュー108側へ返し、隣のリボンスクリュー108から他方の端部へと搬送し、返しスクリュー羽根110がこれらの混合体を最初のリボンスクリュー108側へ返す。高温の分解室104内では、廃プラスチック原料Pと触媒Cが互いに接触を繰り返して触媒反応が促進される結果、廃プラスチック原料Pが熱分解されて分解ガスGが生成される。   Then, at the end in one direction, the return screw blade 110 returns these mixtures to the adjacent ribbon screw 108 side and conveys them from the adjacent ribbon screw 108 to the other end, and the return screw blade 110 mixes these. Return the body to the first ribbon screw 108 side. In the high-temperature decomposition chamber 104, the waste plastic raw material P and the catalyst C are repeatedly brought into contact with each other and the catalytic reaction is promoted. As a result, the waste plastic raw material P is thermally decomposed and a cracked gas G is generated.

加熱室104内で生成された分解ガスGは、蒸留塔401において分留されて、低沸点の軽質油成分(ナフサ、灯油、軽油)と沸点の高い重質油成分(重油など)に分離され、収液器406から留出成分である前者の軽質油Oが成分取出ラインLを通して製品油貯留タンク500内に貯留される。このように、接触分解炉100の上に蒸留塔401を配置することにより、廃プラスチック原料Pを分解して生成した分解ガスGから、効率よく軽質油成分や重質油成分に分離してそれらを取り出すことができる。 The cracked gas G generated in the heating chamber 104 is fractionated in the distillation column 401 and separated into a light oil component having a low boiling point (naphtha, kerosene, light oil) and a heavy oil component having a high boiling point (heavy oil, etc.). , light oil O in the former from Osamueki 406 is distillate components are stored in the product oil storage tank 500 through the component take-out line L 4. In this way, by disposing the distillation tower 401 on the catalytic cracking furnace 100, the cracked gas G generated by cracking the waste plastic raw material P is efficiently separated into light oil components and heavy oil components and those components are separated. Can be taken out.

凝縮器404から蒸留塔401に還流されなかった未凝縮の分解ガスGは、オフガスラインLを通り、バーナ303に送り、熱風発生用の燃焼ガスとして用いることができる。これにより重油等の燃料代を節約することができる。 Decomposition gas G uncondensed that was not refluxed to the distillation column 401 from the condenser 404 passes through the offgas line L 5, sent to the burner 303 can be used as combustion gas for hot air generator. Thereby, fuel costs, such as heavy oil, can be saved.

炉本体102側の触媒排出部118からは使用後の触媒Cを少しずつ抜出し操作する。触媒排出部118から抜出された触媒Cは触媒搬送ラインLを通り投入コンベア604から再生器本体602内に投入される。投入コンベア604は原料投入コンベア202の作動から一定時間経過後に自動的に作動させるようにしてよい。加熱室601には、熱風循環ラインLの途中から分岐された一部の熱風が導入される結果、新たな熱源を用意することなく、加熱室601内に投入された使用後の触媒Cが加熱され、表面の反応残渣成分が熱分解されて触媒が再生される。 Little by little withdrawn operating the catalyst C 1 after use from the furnace body 102 side of the catalyst discharge portion 118. The catalyst C 1 extracted from the catalyst discharge unit 118 passes through the catalyst transport line L 6 and is input into the regenerator body 602 from the input conveyor 604. The input conveyor 604 may be automatically operated after a predetermined time has elapsed from the operation of the raw material input conveyor 202. As a result of introducing a part of the hot air branched from the middle of the hot air circulation line L 2 into the heating chamber 601, the used catalyst C 1 that has been put into the heating chamber 601 without preparing a new heat source is used. Is heated, and the reaction residue components on the surface are thermally decomposed to regenerate the catalyst.

再生された触媒は、再生触媒タンク603に貯留された後、搬送コンベア608から搬送ラインLを通り、接触分解炉100の分解室104内に戻されるので、分解室104内では、投入された廃プラスチック原料Pに対し、常に新鮮な触媒を供給することができ、廃プラスチック原料Pの接触分解能力を常時一定に保持することができる。 The regenerated catalyst, after being stored in the regenerated catalyst tank 603 through the conveying line L 8 from conveyor 608, so returned to the decomposition chamber 104 of the catalytic cracking reactor 100, the decomposition chamber 104, which is turned on A fresh catalyst can always be supplied to the waste plastic raw material P, and the catalytic cracking ability of the waste plastic raw material P can be always kept constant.

熱風発生炉300を備える上記廃プラスチック連続油化装置Sは、大型の装置に好適である。熱供給手段として、熱風発生炉300の代わりに、電熱部材を用いることができる。すなわち、接触分解炉100の加熱室103において、炉本体102の周囲に電熱部材を巻回し、電熱部材から発生する熱を炉本体102の外周から炉本体102内に供給するようにし、装置全体を小型化することができる。   The waste plastic continuous oil making apparatus S including the hot air generating furnace 300 is suitable for a large apparatus. Instead of the hot air generator 300, an electric heating member can be used as the heat supply means. That is, in the heating chamber 103 of the catalytic cracking furnace 100, an electric heating member is wound around the furnace main body 102 so that heat generated from the electric heating member is supplied from the outer periphery of the furnace main body 102 into the furnace main body 102, and the entire apparatus is It can be downsized.

かくして、本発明に係る廃プラスチックの接触分解炉を用いることにより、廃プラスチックを効率的に分解することができ、また、廃プラスチック連続油化装置Sを用いることにより、廃プラスチックを効率的に分解して目的とする燃料油を連続的にかつ効率的にしかも低コストで生産することができる。   Thus, the waste plastic can be efficiently decomposed by using the waste plastic catalytic cracking furnace according to the present invention, and the waste plastic can be efficiently decomposed by using the waste plastic continuous oil converting apparatus S. Thus, the target fuel oil can be produced continuously and efficiently at a low cost.

なお、本発明に係る廃プラスチックの接触分解炉は、動植物油を原料とするバイオディーゼル燃料(BDF)の生産炉として用いることもできる。すなわち、原料投入部115から原料として動植物油を炉本体102の分解室104に投入し、2軸の混練部材105を回転駆動して、加熱下で触媒Cと接触分解させることにより、バイオディーゼル燃料(BDF)を効率よく生産することができる。   The waste plastic catalytic cracking furnace according to the present invention can also be used as a biodiesel fuel (BDF) production furnace using animal and vegetable oils as a raw material. That is, animal and vegetable oils as raw materials are fed from the raw material charging unit 115 into the cracking chamber 104 of the furnace body 102, and the biaxial kneading member 105 is rotationally driven to be catalytically cracked with the catalyst C under heating. (BDF) can be produced efficiently.

本発明に係る廃プラスチックの接触分解炉は、廃プラスチックを分解する炉として、また、BDFの生産炉として、廃プラスチック連続油化装置は、灰プラスチックから燃料油を連続的に得ることのできる装置として、また、動植物油からBDFを連続生産する装置としても利用可能である。   The waste plastic catalytic cracking furnace according to the present invention is used as a furnace for decomposing waste plastic and as a BDF production furnace, and the continuous plasticizer for waste plastic is an apparatus capable of continuously obtaining fuel oil from ash plastic. In addition, it can also be used as an apparatus for continuously producing BDF from animal and vegetable oils.

本発明に係る廃プラスチック連続油化装置の全体構成を示す図、The figure which shows the whole structure of the waste plastic continuous oil-ized apparatus which concerns on this invention, 図1の廃プラスチック連続油化装置に含まれる接触分解炉の水平断面図、FIG. 1 is a horizontal sectional view of a catalytic cracking furnace included in the waste plastic continuous oil converting apparatus of FIG. 図2に示す接触分解炉のA−A線矢視断面図、AA sectional view of the catalytic cracking furnace shown in FIG. 図2に示す接触分解炉の作用を示す図である。It is a figure which shows the effect | action of the catalytic cracking furnace shown in FIG.

100 廃プラスチックの接触分解炉
101,301 ケーシング
102 炉本体
103,601 加熱室
104 分解室
105 混錬部材
106 軸受
107 回転軸
108 リボンスクリュー
109 返しパドル部材
110 返しスクリュー羽根
111 止め羽根
112 駆動源
113,606 熱風導入部
114 熱風排出部
115 原料投入部
116 触媒投入部
117 ガス取出部
118 触媒排出部
119 残渣排出部
120 再生触媒投入部
200 原料タンク
300 熱風発生炉
302 燃焼室
303 バーナ
304 熱風出口部
305 熱風戻り部
306 循環ブロワー
400 分留手段
401 蒸留塔
402 充填物
403 集塵用充填物
404 凝縮器
405 液分散器
406 収液器
407 再分散器
500 製品油貯留タンク
600 再生手段
602 再生器本体
603 再生触媒タンク
604 投入コンベア
607 搬送スクリュー
608 搬送コンベア
609 取出部
610 サイクロン
熱風供給ライン
熱風循環ライン
還流ライン
成分取出ライン
オフガスライン
触媒搬送ライン
熱風分岐ライン
搬送ライン
C,C 触媒
G 分解ガス
O 凝縮液
S 廃プラスチック連続油化装置
DESCRIPTION OF SYMBOLS 100 Waste plastic contact cracking furnace 101,301 Casing 102 Furnace main body 103,601 Heating chamber 104 Decomposition chamber 105 Kneading member 106 Bearing 107 Rotating shaft 108 Ribbon screw 109 Return paddle member 110 Return screw blade 111 Stop blade 112 Drive source 113, 606 Hot air introduction section 114 Hot air discharge section 115 Raw material input section 116 Catalyst input section 117 Gas extraction section 118 Catalyst discharge section 119 Residue discharge section 120 Regenerated catalyst input section 200 Raw material tank 300 Hot air generating furnace 302 Combustion chamber 303 Burner 304 Hot air outlet section 305 Hot air return section 306 Circulating blower 400 Fractionation means 401 Distillation tower 402 Packing material 403 Dust collection packing 404 Condenser 405 Liquid disperser 406 Liquid collector 407 Redisperser 500 Product oil storage tank 600 Regenerator 602 regenerator body 603 regenerated catalyst tank 604 feed conveyor 607 conveying screw 608 conveyor 609 extraction unit 610 cyclone L 1 hot air supply line L 2 hot air circulation line L 3 return line L 4 component extraction line L 5 offgas line L 6 catalyst transfer line L 7 Hot air branch line L 8 Conveying line C, C 1 catalyst G Decomposed gas O Condensate S Waste plastic continuous oil generator

Claims (11)

密閉型のケーシングの内部に周囲に隙間空間を残して密閉型の炉本体が配置され、
ケーシングの内周と炉本体の外周の隙間空間には周囲から炉本体内を加熱する加熱室が形成され、
炉本体内には廃プラスチック原料が投入される分解室が形成され、
分解室には投入された廃プラスチック原料を加熱下で接触分解するための触媒が貯留され、
分解室には投入された廃プラスチック原料と触媒を混錬する一対の混錬部材が配置されていることを特徴とする廃プラスチックの接触分解炉。
A closed furnace body is arranged inside the closed casing leaving a gap space around it,
In the gap space between the inner periphery of the casing and the outer periphery of the furnace body, a heating chamber for heating the inside of the furnace body from the surroundings is formed,
A decomposition chamber into which waste plastic raw materials are charged is formed in the furnace body,
The cracking chamber stores a catalyst for catalytic cracking of the waste plastic raw material charged under heating,
A waste plastic catalytic cracking furnace characterized in that a pair of kneading members for kneading charged waste plastic raw material and catalyst are arranged in the cracking chamber.
熱風発生手段からの熱風が前記加熱室を螺旋状に通過して熱を炉本体の外周から炉本体内に供給することを特徴とする請求項1記載の廃プラスチックの接触分解炉。   The waste plastic catalytic cracking furnace according to claim 1, wherein hot air from the hot air generating means passes through the heating chamber in a spiral shape and supplies heat into the furnace body from the outer periphery of the furnace body. 電熱部材が炉本体の周囲に巻回され、電熱部材から発生する熱を炉本体の外周から炉本体内に供給することを特徴とする請求項1記載の廃プラスチックの接触分解炉。   2. The waste plastic catalytic cracking furnace according to claim 1, wherein the electric heating member is wound around the furnace main body, and heat generated from the electric heating member is supplied into the furnace main body from the outer periphery of the furnace main body. 前記一対の混錬部材が、互いに異なる向きに回転する主軸をそれぞれ備え、各主軸の周囲に螺旋状のリボンスクリューが全体にわたり取り付けられ、リボンスクリューの隣接する頂部間に自身の軸心周りにパドル羽根を所定角度傾斜させた返しパドル部材が一定の間隔で取り付けられていることを特徴とする、請求項1ないし請求項3のいずれか一項に記載の廃プラスチックの接触分解炉。   Each of the pair of kneading members includes main shafts that rotate in different directions, and a spiral ribbon screw is attached to the entire periphery of each main shaft, and a paddle around its own axis is placed between adjacent tops of the ribbon screws. The waste plastic catalytic cracking furnace according to any one of claims 1 to 3, wherein return paddle members having blades inclined at a predetermined angle are attached at regular intervals. 分解室内において、各主軸の端部の一方に返しスクリュー羽根が、他方に止め羽根が互い違いに設けられていることを特徴とする、請求項1ないし請求項4のいずれか一項に記載の廃プラスチックの接触分解炉。   5. The waste according to claim 1, wherein in the decomposition chamber, return screw blades are provided alternately at one end of each main shaft, and stop blades are provided alternately at the other end. Plastic catalytic cracking furnace. 廃プラスチック原料の代わりに、動植物油が投入されることを特徴とする、請求項1ないし請求項5のいずれか一項に記載の接触分解炉。   The catalytic cracking furnace according to any one of claims 1 to 5, wherein animal and vegetable oil is introduced in place of the waste plastic raw material. 請求項1ないし請求項5のいずれか一項に記載の接触分解炉と、同接触分解炉に廃プラスチック原料を供給する原料供給手段と、接触分解炉に熱を供給する熱供給手段と、接触分解炉で生成された分解ガスを分留し、目的の留出成分を得る分留手段と、分留手段により得られた留出成分を貯留する油貯留手段を備えることを特徴とする、廃プラスチック連続油化装置。   A catalytic cracking furnace according to any one of claims 1 to 5, a raw material supply means for supplying waste plastic raw material to the catalytic cracking furnace, a heat supply means for supplying heat to the catalytic cracking furnace, Waste comprising: a fractionating means for fractionating a cracked gas generated in a cracking furnace to obtain a target distillate component; and an oil storage means for storing the distillate component obtained by the fractionating means. Plastic continuous oiling equipment. 分留手段が接触分解炉で生成された分解ガスを凝縮する凝縮器を備え、凝縮器で凝縮されなかった分解ガスを熱供給手段である熱風発生炉のバーナへ燃焼用ガスとして送ることを特徴とする、請求項7記載の廃プラスチック連続油化装置。   The fractionation means is equipped with a condenser that condenses the cracked gas generated in the catalytic cracking furnace, and the cracked gas that has not been condensed in the condenser is sent as a combustion gas to the burner of the hot-air generator that is the heat supply means. The waste plastic continuous oil-ized device according to claim 7. 接触分解炉の炉本体内に貯留された一定期間使用後の触媒を抜出して再生する再生手段を備えることを特徴とする、請求項7または請求項8に記載の廃プラスチック連続油化装置。   The waste plastic continuous oil making apparatus according to claim 7 or 8, further comprising a regenerating unit that extracts and regenerates the catalyst stored in the furnace body of the catalytic cracking furnace after use for a certain period of time. 前記再生手段が、加熱室を備える再生器本体と、再生された触媒を一時貯留する再生触媒タンクと、再生触媒タンクから接触分解炉に再生触媒を送る供給手段と、接触分解炉から抜出された使用後の触媒を前記加熱室に投入する触媒投入手段とを備えることを特徴とする、請求項7ないし請求項9のいずれか一項に記載の廃プラスチック連続油化装置。   The regeneration means is extracted from the regenerator body having a heating chamber, a regeneration catalyst tank for temporarily storing the regenerated catalyst, a supply means for sending the regeneration catalyst from the regeneration catalyst tank to the catalytic cracking furnace, and the catalytic cracking furnace. The waste plastic continuous oil-producing apparatus according to any one of claims 7 to 9, further comprising catalyst charging means for charging the used catalyst into the heating chamber. 前記加熱室に、熱供給手段としての熱風発生炉で生成された熱風の一部が導入され、同熱風により加熱室内に投入された使用後の触媒が加熱されて、再生されることを特徴とする、請求項7ないし請求項10のいずれか一項に記載の廃プラスチック連続油化装置。   A part of hot air generated in a hot air generating furnace as heat supply means is introduced into the heating chamber, and the used catalyst charged into the heating chamber is heated and regenerated by the hot air. The waste plastic continuous oil-ized apparatus as described in any one of Claims 7 thru | or 10.
JP2011002987A 2011-01-11 2011-01-11 Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic Pending JP2012144609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002987A JP2012144609A (en) 2011-01-11 2011-01-11 Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002987A JP2012144609A (en) 2011-01-11 2011-01-11 Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic

Publications (1)

Publication Number Publication Date
JP2012144609A true JP2012144609A (en) 2012-08-02

Family

ID=46788519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002987A Pending JP2012144609A (en) 2011-01-11 2011-01-11 Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic

Country Status (1)

Country Link
JP (1) JP2012144609A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105368478A (en) * 2015-12-11 2016-03-02 青岛伊诺威能源化工新技术有限公司 Continuous internal heating solid organic matter cracking furnace
CN105778971A (en) * 2015-06-07 2016-07-20 高影 Waste plastic oil refining device
JP2021535265A (en) * 2018-08-28 2021-12-16 リライアンス、インダストリーズ、リミテッドReliance Industries Limited How to catalytically convert plastic waste into liquid fuel
KR20230065650A (en) * 2021-11-05 2023-05-12 김용진 Low-temperature catalytic carbonizer
JP7343234B1 (en) 2022-05-20 2023-09-12 國立高雄科技大學 Method and equipment for cutting carbon fiber recycled material with twin screws
KR102677738B1 (en) 2022-02-18 2024-06-21 김용진 A low-temperature catalytic carbonizer having a dust filter cleaning device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778971A (en) * 2015-06-07 2016-07-20 高影 Waste plastic oil refining device
CN105778971B (en) * 2015-06-07 2017-05-24 山东永平再生资源股份有限公司 Waste plastic oil refining device
CN105368478A (en) * 2015-12-11 2016-03-02 青岛伊诺威能源化工新技术有限公司 Continuous internal heating solid organic matter cracking furnace
CN105368478B (en) * 2015-12-11 2017-01-25 青岛伊诺威能源化工新技术有限公司 Continuous internal heating solid organic matter cracking furnace
JP2021535265A (en) * 2018-08-28 2021-12-16 リライアンス、インダストリーズ、リミテッドReliance Industries Limited How to catalytically convert plastic waste into liquid fuel
JP7391088B2 (en) 2018-08-28 2023-12-04 リライアンス、インダストリーズ、リミテッド How to catalytically convert plastic waste into liquid fuel
KR20230065650A (en) * 2021-11-05 2023-05-12 김용진 Low-temperature catalytic carbonizer
KR102623303B1 (en) * 2021-11-05 2024-01-09 김용진 Low-temperature catalytic carbonizer
KR102677738B1 (en) 2022-02-18 2024-06-21 김용진 A low-temperature catalytic carbonizer having a dust filter cleaning device
JP7343234B1 (en) 2022-05-20 2023-09-12 國立高雄科技大學 Method and equipment for cutting carbon fiber recycled material with twin screws

Similar Documents

Publication Publication Date Title
Qureshi et al. A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil
US9545609B2 (en) Pyrolysis oil made with a microwave-transparent reaction chamber for production of fuel from an organic-carbon-containing feedstock
EP2585556B1 (en) Method of grinding pyrolysis of particulate carbonaceous feedstock
JP4055829B2 (en) Organic substance decomposition method and decomposition apparatus therefor
KR100843585B1 (en) The system for manufacturing energy from combustible waste
CN102858861B (en) For the method and apparatus coming to recycle completely by depolymerization
JP2012144609A (en) Catalytic cracking furnace for waste plastic, and continuous liquefaction apparatus for waste plastic
CN110225958A (en) Method and apparatus for producing bio-fuel
RU2621097C2 (en) Device for thermal destruction of waste from polyethylene and polypropylene
US20130303637A1 (en) Method and apparatus for producing liquid hydrocarbon fuels from coal
Matuszewska et al. Current trends in waste plastics’ liquefaction into fuel fraction: A review
EP2478070A2 (en) Decomposition of waste plastics
JP5639386B2 (en) Waste plastic pyrolysis tank
RU2619688C2 (en) Method of thermal destruction of waste from polyethylene and polypropylene
CN104907319B (en) Garbage disposal device
KR100517881B1 (en) Recovery System for Waste Plastics Using Liquifaction
JP5478130B2 (en) Petrochemical waste liquefaction equipment
CN102794163A (en) Thermal regeneration furnace for waste powdered activated carbon
AU2020291320B2 (en) Apparatus for producing biochar using combustion heat generator
EP3573750B1 (en) Method for thermal conversion of hydrocarbons using a reaction pump
JP3367815B2 (en) Oil recovery method and system from waste plastic
JP6012106B2 (en) Oil processing equipment
CN202730065U (en) Equipment for garbage disposal and new energy extraction
RU2766091C1 (en) Rotor element for use in an ablative pyrolysis reactor, an ablative pyrolysis reactor and a pyrolysis method
CN103523778A (en) Circulating type garbage treatment device