JPWO2020009169A1 - Pellicle frame - Google Patents

Pellicle frame Download PDF

Info

Publication number
JPWO2020009169A1
JPWO2020009169A1 JP2020529041A JP2020529041A JPWO2020009169A1 JP WO2020009169 A1 JPWO2020009169 A1 JP WO2020009169A1 JP 2020529041 A JP2020529041 A JP 2020529041A JP 2020529041 A JP2020529041 A JP 2020529041A JP WO2020009169 A1 JPWO2020009169 A1 JP WO2020009169A1
Authority
JP
Japan
Prior art keywords
pellicle frame
recess
filter
peripheral surface
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020529041A
Other languages
Japanese (ja)
Inventor
木村 幸広
幸広 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JPWO2020009169A1 publication Critical patent/JPWO2020009169A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor

Abstract

本開示の一つの局面におけるペリクル枠(1)は、平面視で矩形形状であり、ペリクル枠(1)の外周面(13)には、1又は複数の凹部(25)を備えるとともに、その1又は複数の凹部(25)は、4つの辺部のうち、1又は複数の辺部に設けられている。1又は複数の凹部(25)は、その凹部(25)が設けられた辺部を貫通して当該凹部(25)の内側と内周面(11)とに開口する貫通孔(27)を備えている。1又は複数の凹部(25)のうち、少なくとも一つの凹部(25)は、貫通孔(27)を複数備えている。さらに、貫通孔(27)が少なくとも一つ設けられた凹部(25)では、当該凹部(25)の外周面(13)側の開口端の面積である通気面積S1が、貫通孔(27)のなす気体流路の最小の断面積である最小断面積S2より大である。The pellicle frame (1) in one aspect of the present disclosure has a rectangular shape in a plan view, and the outer peripheral surface (13) of the pellicle frame (1) is provided with one or a plurality of recesses (25), and one of the same. Alternatively, the plurality of recesses (25) are provided on one or a plurality of side portions out of the four side portions. The one or a plurality of recesses (25) are provided with through holes (27) that penetrate the side portion provided with the recess (25) and open to the inside and the inner peripheral surface (11) of the recess (25). ing. Of the one or a plurality of recesses (25), at least one recess (25) is provided with a plurality of through holes (27). Further, in the recess (25) provided with at least one through hole (27), the ventilation area S1 which is the area of the opening end on the outer peripheral surface (13) side of the recess (25) is the through hole (27). It is larger than the minimum cross-sectional area S2, which is the minimum cross-sectional area of the gas flow path to be formed.

Description

関連出願の相互参照Cross-reference of related applications

本国際出願は、2018年7月4日に日本国特許庁に出願された日本国特許出願第2018−127636号に基づく優先権を主張するものであり、日本国特許出願第2018−127636号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-127636 filed with the Japan Patent Office on July 4, 2018, and Japanese Patent Application No. 2018-127636 The entire contents are incorporated in this international application by reference.

本開示は、ペリクル枠に関する。 The present disclosure relates to a pellicle frame.

半導体製造において、半導体ウェハに配線パターンを形成する露光工程ではフォトマスクが用いられるが、このフォトマスクに異物(パーティクル等)が付着すると配線パターンの欠陥が生じる。 In semiconductor manufacturing, a photomask is used in an exposure process for forming a wiring pattern on a semiconductor wafer, and if foreign matter (particles or the like) adheres to the photomask, a defect in the wiring pattern occurs.

この対策として、即ち防塵するために、フォトマスクの表面を覆うような透明な薄い膜(ペリクル膜)が張設されたペリクルが用いられる。 As a countermeasure, that is, in order to prevent dust, a pellicle on which a transparent thin film (pellicle film) covering the surface of the photomask is stretched is used.

また、ペリクル膜をフォトマスクから所定距離離して配置するために、ペリクル枠という長方形の枠体が用いられる。この枠体を構成する部材としては、例えば縦3mm×横2mmの角柱のような細径の部材が用いられる。 Further, in order to arrange the pellicle film at a predetermined distance from the photomask, a rectangular frame called a pellicle frame is used. As a member constituting this frame, a member having a small diameter such as a prism having a length of 3 mm and a width of 2 mm is used.

さらに、ペリクル枠には、ペリクルの内部と外部とを連通する細径の貫通孔(即ち通気孔)が設けられており、この通気孔の外側の開口端には、塵等がペリクル内部に侵入することを防ぐために、フィルタが配置されている。 Further, the pellicle frame is provided with a small-diameter through hole (that is, a ventilation hole) for communicating the inside and the outside of the pellicle, and dust or the like invades the inside of the pellicle at the opening end outside the ventilation hole. Filters are placed to prevent this from happening.

また、近年では、配線パターン等の微細化が進んでおり、それにともなって、露光光線の短波長化が進んでいる。例えば、主波長13.5nmのEUV(Extreme Ultra Violet)光を使用するEUV露光が検討されている。 Further, in recent years, the wiring pattern and the like have been miniaturized, and along with this, the wavelength of the exposed light beam has been shortened. For example, EUV exposure using EUV (Extreme Ultra Violet) light having a main wavelength of 13.5 nm is being studied.

このEUV露光では、ペリクルは大気下でフォトマスクに装着され、露光装置内では真空下で使用されるので、露光装置内などで真空引きが行われる。また、真空引きの後の工程では、大気解放等が行われる(特許文献1参照)。 In this EUV exposure, the pellicle is attached to the photomask in the atmosphere and used under vacuum in the exposure apparatus, so that vacuuming is performed in the exposure apparatus or the like. Further, in the process after evacuation, the air is released to the atmosphere (see Patent Document 1).

特開2016−191902号公報Japanese Unexamined Patent Publication No. 2016-191902

ところで、従来では、通気孔の開口端を直接に覆うようにフィルタが配置されているので、短時間で真空引き又は大気解放を行うことは容易ではないという問題があった。つまり、上述した真空引き等を行う場合には、空気がフィルタを通過できるのは、通気孔の断面積分の領域でのみである。そして、通気孔に比べてフィルタの圧損は非常に大きいので、空気は通気孔に比べてフィルタを通過し難い。そのため、短時間で真空引き等を行うことは容易ではない。 By the way, conventionally, since the filter is arranged so as to directly cover the open end of the ventilation hole, there is a problem that it is not easy to evacuate or release to the atmosphere in a short time. That is, when the above-mentioned evacuation or the like is performed, air can pass through the filter only in the region of the cross-sectional integration of the ventilation holes. And since the pressure loss of the filter is much larger than that of the ventilation holes, it is difficult for air to pass through the filter as compared with the ventilation holes. Therefore, it is not easy to evacuate in a short time.

この対策として、前記特許文献1には、通気孔に連通する部材をペリクル枠の内部や外部に張り出すように設け、その張り出し部分に、ペリクル膜と平行にフィルタを配置する技術が開示されている。 As a countermeasure against this, Patent Document 1 discloses a technique in which a member communicating with a vent is provided so as to project inside or outside the pellicle frame, and a filter is arranged in the overhanging portion in parallel with the pellicle film. There is.

しかしながら、この従来技術では、ペリクルの内部空間が小さくなって、露光範囲が小さくなるという問題がある。或いは、ペリクルの外形寸法が大きくなって、ペリクルが大型化するという問題がある。しかも、ペリクル枠の構造が非常に複雑化するので、細径の枠体であるペリクル枠に、そのような構造を設けることは容易ではない。 However, this conventional technique has a problem that the internal space of the pellicle becomes small and the exposure range becomes small. Alternatively, there is a problem that the external dimensions of the pellicle become large and the pellicle becomes large. Moreover, since the structure of the pellicle frame becomes very complicated, it is not easy to provide such a structure in the pellicle frame which is a frame body having a small diameter.

また、この対策とは別に、ペリクル枠に多数の通気孔を設けることが考えられるが、この場合には、ペリクル枠の材質によっては、ペリクル枠の強度が低下する恐れがある。 In addition to this measure, it is conceivable to provide a large number of ventilation holes in the pellicle frame, but in this case, the strength of the pellicle frame may decrease depending on the material of the pellicle frame.

本開示の一側面においては、速やかに真空引きや大気解放を行うことができ、しかも、簡易な構成であって、十分な強度を有するペリクル枠を提供することが望ましい。 In one aspect of the present disclosure, it is desirable to provide a pellicle frame that can be quickly evacuated and released to the atmosphere, has a simple structure, and has sufficient strength.

(1)本開示の一つの局面におけるペリクル枠は、平面視で矩形形状であり、矩形形状の各辺に対応する4つの辺部を備えるとともに、厚み方向の両側に設けられた第1面及び第2面と、第1面及び第2面に連接された内周面及び外周面と、を備えるペリクル枠に関するものである。 (1) The pellicle frame in one aspect of the present disclosure has a rectangular shape in a plan view, includes four side portions corresponding to each side of the rectangular shape, and has a first surface provided on both sides in the thickness direction and a first surface. It relates to a pellicle frame including a second surface and an inner peripheral surface and an outer peripheral surface connected to the first surface and the second surface.

このペリクル枠は、その外周面には、1又は複数の凹部を備えるとともに、1又は複数の凹部は、4つの辺部のうち、1又は複数の辺部に設けられている。1又は複数の凹部は、当該凹部が設けられた辺部を貫通して当該凹部の内側と内周面とに開口する貫通孔を備えている。さらに、1又は複数の凹部のうち、少なくとも一つの凹部は、貫通孔を複数備えている。 The pellicle frame is provided with one or a plurality of recesses on its outer peripheral surface, and one or a plurality of recesses are provided on one or a plurality of side portions among the four side portions. The one or a plurality of recesses are provided with through holes that penetrate the side portion provided with the recess and open to the inside and the inner peripheral surface of the recess. Further, at least one of the one or a plurality of recesses is provided with a plurality of through holes.

しかも、このペリクル枠は、貫通孔が少なくとも一つ設けられた凹部では、当該凹部の外周面側の開口端の面積である通気面積(S1)が、貫通孔のなす気体流路の最小の断面積である最小断面積(S2)より大である。 Moreover, in this pellicle frame, in a recess provided with at least one through hole, the ventilation area (S1), which is the area of the opening end on the outer peripheral surface side of the recess, is the minimum disconnection of the gas flow path formed by the through hole. It is larger than the minimum cross-sectional area (S2), which is the area.

このペリクル枠は、ペリクルを構成する枠体として用いられる。このペリクル枠には、例えば第2面側にペリクル膜が張設され、貫通孔(即ち通気孔)が開口する凹部の外周面側には、塵等がペリクルの内部に侵入しないように、フィルタ(即ち第1フィルタ)が配置される。 This pellicle frame is used as a frame body constituting the pellicle. In this pellicle frame, for example, a pellicle film is stretched on the second surface side, and a filter is provided on the outer peripheral surface side of the recess in which the through hole (that is, the ventilation hole) is opened so that dust or the like does not enter the inside of the pellicle. (That is, the first filter) is arranged.

特に、このペリクル枠は、通気面積(S1)が上述した最小断面積(S2)より大である。詳しくは、ペリクル枠では、凹部の外周面側の開口端の面積、即ち凹部が外周面にて開口する部分の面積(即ち開口部分の面積)である通気面積(S1)、従って開口端に面して開口端の全体を覆うフィルタの面積(いわゆる通気有効面積)は、貫通孔のなす気体流路の最小の断面積である最小断面積(S2)より大である。 In particular, this pellicle frame has a ventilation area (S1) larger than the above-mentioned minimum cross-sectional area (S2). Specifically, in the pellicle frame, the area of the opening end on the outer peripheral surface side of the recess, that is, the ventilation area (S1) which is the area of the portion where the recess opens on the outer peripheral surface (that is, the area of the opening portion), and therefore the surface to the opening end. The area of the filter that covers the entire opening end (so-called effective ventilation area) is larger than the minimum cross-sectional area (S2), which is the minimum cross-sectional area of the gas flow path formed by the through hole.

そのため、凹部の開口端を覆うようにフィルタを配置して、例えばペリクル内を真空にする場合(即ち真空引きする場合)等には、短時間で真空引きを行うことができる。 Therefore, when the filter is arranged so as to cover the open end of the concave portion and the inside of the pellicle is evacuated (that is, when evacuated), the evacuation can be performed in a short time.

つまり、貫通孔よりフィルタの圧損は大きいので、単に貫通孔の開口端をフィルタで覆った場合には、フィルタによって空気の流れが規制されて、真空引きの時間が長くなる。それに対して、このペリクル枠では、フィルタは、貫通孔の最小断面積(S2)よりも大きな通気面積(S1)を有する凹部の開口端を覆うように配置されるので、即ちフィルタの面積は貫通孔の断面積よりも大きいので、貫通孔の開口端が直接にフィルタで覆われている場合に比べて、短時間で真空引きを行うことができる。 That is, since the pressure loss of the filter is larger than that of the through hole, when the open end of the through hole is simply covered with the filter, the air flow is regulated by the filter and the evacuation time becomes long. On the other hand, in this pellicle frame, the filter is arranged so as to cover the open end of the recess having a ventilation area (S1) larger than the minimum cross-sectional area (S2) of the through hole, that is, the area of the filter penetrates. Since it is larger than the cross-sectional area of the hole, vacuuming can be performed in a shorter time than when the open end of the through hole is directly covered with a filter.

なお、ペリクルの外部からペリクルの内部に大気を導入する大気解放の場合も同様であり、短時間で大気開放を行うことができる。 The same applies to the case of releasing the atmosphere from the outside of the pellicle to the inside of the pellicle, and the atmosphere can be released in a short time.

また、このペリクル枠では、従来のように、ペリクルの内部空間が小さくならないので、露光範囲が小さくなることがない。或いは、ペリクルの外形寸法が大きくなって、ペリクルが大型化するという問題もない。 Further, in this pellicle frame, the internal space of the pellicle is not reduced as in the conventional case, so that the exposure range is not reduced. Alternatively, there is no problem that the external dimensions of the pellicle become large and the pellicle becomes large.

しかも、ペリクル枠の構造が、従来のように複雑化しないので、細径の枠体であるペリクル枠でも、前記凹部を容易に設けることができる。また、通気孔を多く設ける必要がないので、通気孔を多数設けることによる、ペリクル枠の強度の低下を抑制できる。 Moreover, since the structure of the pellicle frame is not complicated as in the conventional case, the recess can be easily provided even in the pellicle frame which is a frame body having a small diameter. Further, since it is not necessary to provide a large number of ventilation holes, it is possible to suppress a decrease in the strength of the pellicle frame by providing a large number of ventilation holes.

なお、前記厚み方向とは、平面視の方向、即ち、第1面から第2面に到る方向である。また、気体流路の最小の断面積とは、気体流路において気体の流れる方向(即ち流路の方向)に対して垂直の断面積のうち最小の断面積である。 The thickness direction is the direction in a plan view, that is, the direction from the first surface to the second surface. The minimum cross-sectional area of the gas flow path is the smallest cross-sectional area of the cross-sectional areas perpendicular to the gas flow direction (that is, the flow path direction) in the gas flow path.

(2)上述したペリクル枠では、最小断面積(S2)は、貫通孔が1つの場合には当該貫通孔のなす気体流路の最小の断面積であり、また、貫通孔が複数の場合には当該各貫通孔のなす各気体流路の各最小の断面積の合計である。
(3)上述したペリクル枠では、全ての凹部の開口端の総面積(Smm)とペリクル枠の内周面で囲まれた内側空間の体積(内容積:Vmm)との比(開口面積比:S/V)は、0.002mm−1以上0.025mm−1以下であってもよい。
(2) In the above-mentioned pellicle frame, the minimum cross-sectional area (S2) is the minimum cross-sectional area of the gas flow path formed by the through hole when there is one through hole, and when there are a plurality of through holes. Is the sum of the minimum cross-sectional areas of each gas flow path formed by each through hole.
(3) In the above-mentioned pellicle frame, the ratio (opening area) of the total area of the opening ends of all the recesses (Smm 2 ) and the volume of the inner space surrounded by the inner peripheral surface of the pellicle frame (internal volume: Vmm 3). The ratio: S / V) may be 0.002 mm -1 or more and 0.025 mm -1 or less.

このペリクル枠では、前記比(S/V)が、0.002mm−1以上0.025mm 以下の場合においても、短時間で真空引きや大気解放を行うことができる。This pellicle frame, the ratio (S / V) is, 0.002 mm -1 or 0.025 mm - 1 In each case below, it is possible to perform evacuation and air released in a short time.

(4)上述したペリクル枠では、凹部の外周面側の開口端を覆う第1フィルタを備えていてもよい。 (4) The above-mentioned pellicle frame may be provided with a first filter that covers the open end on the outer peripheral surface side of the recess.

このペリクル枠は、フィルタ(即ち第1フィルタ)を備えたペリクル枠を例示している。このような構成の場合には、例えば外部から凹部や貫通孔を介してペリクル枠の内周側に空気が導入されるときには、空気中の塵等の異物を第1フィルタによって捕集することができる。 This pellicle frame exemplifies a pellicle frame including a filter (that is, a first filter). In the case of such a configuration, for example, when air is introduced from the outside to the inner peripheral side of the pellicle frame through a recess or a through hole, foreign matter such as dust in the air can be collected by the first filter. can.

(5)上述したペリクル枠では、凹部の内側の表面及び貫通孔の内側の表面の少なくとも一方に、粘着材層を備えていてもよい。 (5) In the pellicle frame described above, an adhesive layer may be provided on at least one of the inner surface of the recess and the inner surface of the through hole.

このような構成の場合には、空気が例えば第1フィルタから凹部及び貫通孔を介してペリクル枠の内周面側に至る間に、粘着材層が設けられているので、空気中の異物が粘着材層によって捕集され易い。よって、異物の捕集効率が高いという利点がある。 In the case of such a configuration, since the adhesive layer is provided between the first filter and the inner peripheral surface side of the pellicle frame through the recess and the through hole, for example, foreign matter in the air can be prevented. It is easily collected by the adhesive layer. Therefore, there is an advantage that the collection efficiency of foreign matter is high.

(6)上述したペリクル枠では、凹部の内側の表面は、凹凸を備えていてもよい。 (6) In the pellicle frame described above, the inner surface of the recess may be provided with irregularities.

このような構成の場合には、空気が例えば第1フィルタから貫通孔に至る間に、凹凸があるので、異物が凹部の凹凸によって捕集されやすい。よって、異物の捕集効率が向上するという利点がある。 In the case of such a configuration, since the air has irregularities between, for example, from the first filter to the through hole, foreign matter is likely to be collected by the irregularities of the recesses. Therefore, there is an advantage that the collection efficiency of foreign matter is improved.

(7)上述したペリクル枠では、第1フィルタにおいて、貫通孔の開口に対向する対向領域に、第1フィルタの通気を抑制する通気抑制部を備えていてもよい。 (7) In the pellicle frame described above, in the first filter, a ventilation suppressing portion for suppressing the ventilation of the first filter may be provided in the facing region facing the opening of the through hole.

このような構成の場合には、空気が例えば第1フィルタから貫通孔に至るときに、第1フィルタから直接に(即ち最短距離で)貫通孔に至るのではなく、通気が抑制された通気抑制部を介して又は通気抑制部を避けるようにして貫通孔に至る。そのため、空気中の異物を捕集する効率が向上するという効果がある。 In such a configuration, when air reaches, for example, from the first filter to the through hole, it does not reach the through hole directly (that is, at the shortest distance) from the first filter, but the ventilation is suppressed. It reaches the through hole through the portion or avoiding the ventilation suppression portion. Therefore, there is an effect that the efficiency of collecting foreign substances in the air is improved.

例えば通気抑制部が、通気を完全に遮断するものである場合には、空気は通気抑制部を回避して移動するので、その流路が長くなり、よって、異物が直接に貫通孔に入り難いという利点がある。 For example, when the ventilation suppression part completely blocks the ventilation, the air moves avoiding the ventilation suppression part, so that the flow path becomes long, and thus it is difficult for foreign matter to directly enter the through hole. There is an advantage.

(8)上述したペリクル枠では、凹部の内部に、第1フィルタより通気性が高く貫通孔の開口を覆う第2フィルタを備えるとともに、第2フィルタは自身の気体流路の周囲に粘着材層を備えていてもよい。 (8) In the above-mentioned pellicle frame, a second filter having higher air permeability than the first filter and covering the opening of the through hole is provided inside the recess, and the second filter has an adhesive layer around its own gas flow path. May be provided.

このような構成の場合には、第1フィルタだけでなく第2フィルタ(特にその粘着材層)によっても、空気中の異物を捕集できるので、異物の捕集効率が向上するという利点がある。 In the case of such a configuration, foreign matter in the air can be collected not only by the first filter but also by the second filter (particularly the adhesive layer thereof), so that there is an advantage that the collection efficiency of the foreign matter is improved. ..

(9)上述したペリクル枠では、凹部の内側の表面の角部は、R面取りされていてもよい。 (9) In the above-mentioned pellicle frame, the corners of the inner surface of the recess may be R-chamfered.

このような構成の場合には、凹部の内周面に沿った大気の流れが生じ易いので、異物の捕集効率が向上する。しかも、ペリクル枠の強度が向上するという利点がある。 In the case of such a configuration, the air flow along the inner peripheral surface of the recess is likely to occur, so that the efficiency of collecting foreign matter is improved. Moreover, there is an advantage that the strength of the pellicle frame is improved.

(10)上述したペリクル枠では、ペリクル枠は、導電性を有するセラミック焼結体からなっていてもよい。 (10) In the above-mentioned pellicle frame, the pellicle frame may be made of a conductive ceramic sintered body.

このような構成の場合には、放電加工によって、容易にペリクル枠の加工を行うことができる。 In the case of such a configuration, the pellicle frame can be easily machined by electric discharge machining.

(11)上述したペリクル枠では、ペリクル枠は、ヤング率が300GPa以上、強度が500MPa以上であってもよい。 (11) In the pellicle frame described above, the pellicle frame may have a Young's modulus of 300 GPa or more and a strength of 500 MPa or more.

このような構成の場合には、ペリクル枠は、十分な剛性や強度を有するので、変形や破損が生じにくく、好適である。 In the case of such a configuration, since the pellicle frame has sufficient rigidity and strength, it is less likely to be deformed or damaged, which is suitable.

ここで、強度とは、JIS R1601:2008で規定するL=30mmでの3点曲げ強度を示している。 Here, the strength indicates the three-point bending strength at L = 30 mm defined in JIS R1601: 2008.

(12)上述したペリクル枠では、ペリクル枠は、熱伝導率が15W/mK以上のセラミック焼結体からなっていてもよい。 (12) In the pellicle frame described above, the pellicle frame may be made of a ceramic sintered body having a thermal conductivity of 15 W / mK or more.

このような構成の場合には、ペリクル枠の伝熱性が高いので、ペリクル枠により、露光の際にペリクル膜に発生した熱を効率良く拡散し、ペリクル膜が熱により破損することを抑制できる。 In the case of such a configuration, since the pellicle frame has high heat transfer property, the pellicle frame can efficiently diffuse the heat generated in the pellicle film during exposure and prevent the pellicle film from being damaged by the heat.

(13)上述したペリクル枠では、ペリクル枠は、熱膨張率が10ppm/℃以下であるセラミック焼結体からなっていてもよい。 (13) In the above-mentioned pellicle frame, the pellicle frame may be made of a ceramic sintered body having a thermal expansion coefficient of 10 ppm / ° C. or less.

このような構成の場合には、ペリクル枠が、露光の際の温度上昇によって変形することを、好適に抑制できる。 In the case of such a configuration, it is possible to preferably suppress the deformation of the pellicle frame due to the temperature rise during exposure.

なお、この熱膨張率は、常温(25℃)〜600℃の温度範囲における線熱膨張率である。 The coefficient of thermal expansion is the coefficient of linear thermal expansion in the temperature range of room temperature (25 ° C.) to 600 ° C.

(14)上述したペリクル枠では、以下の関係式を満たしていてもよい。 (14) The above-mentioned pellicle frame may satisfy the following relational expression.

50×最小断面積(S2)≦通気面積(S1)
この構成である場合には、より短時間で真空引き等を行うことができる。
50 x minimum cross-sectional area (S2) ≤ ventilation area (S1)
With this configuration, evacuation and the like can be performed in a shorter time.

<以下、本開示の構成について説明する>
ペリクル枠の材料としては、導電性又は非導電性の材料を採用できる。例えばペリクル枠を構成する材料として、セラミックスを主成分とする材料を採用できる。なお、主成分とは、最も多い成分量(例えば重量%)を示している。
<The structure of the present disclosure will be described below>
As the material of the pellicle frame, a conductive or non-conductive material can be adopted. For example, as a material constituting the pellicle frame, a material containing ceramics as a main component can be adopted. The main component indicates the largest amount of components (for example,% by weight).

例えば、導電性の材料としては、アルミナ・炭化チタン、アルミナ・炭化チタン・窒化チタン、ジルコニア・炭化チタン、超硬、サーメット等を採用できる。また、ジュラルミン等の金属(例えば合金)を採用できる。 For example, as the conductive material, alumina / titanium carbide, alumina / titanium carbide / titanium nitride, zirconia / titanium carbide, cemented carbide, cermet and the like can be adopted. Further, a metal such as duralumin (for example, an alloy) can be adopted.

ペリクル枠を構成する材料が、導電性の材料である場合には、放電加工(例えばワイヤー放電加工、細穴放電加工、形彫放電加工など)によって、ペリクル枠の外形や凹部や貫通孔等を容易に所望の形状に加工できる。 When the material constituting the pellicle frame is a conductive material, the outer shape of the pellicle frame, recesses, through holes, etc. are removed by electric discharge machining (for example, wire electric discharge machining, fine hole electric discharge machining, die-sinking electric discharge machining, etc.). It can be easily processed into a desired shape.

また、非導電性の材料としては、例えば、アルミナ、窒化ケイ素、ジルコニア等のセラミックスなどを採用できる。 Further, as the non-conductive material, for example, ceramics such as alumina, silicon nitride, and zirconia can be adopted.

ペリクル枠の寸法としては、枠部分の幅、厚さとも、例えば2.0mm〜5.0mmの範囲を採用できる。開口部(中央貫通孔)の寸法としては、例えば縦120mm〜150mm、横150mm〜120mmの範囲を採用できる。 As the dimensions of the pellicle frame, the width and thickness of the frame portion can be, for example, in the range of 2.0 mm to 5.0 mm. As the size of the opening (central through hole), for example, a range of 120 mm to 150 mm in length and 150 mm to 120 mm in width can be adopted.

第1実施形態のペリクル枠を示す斜視図である。It is a perspective view which shows the pellicle frame of 1st Embodiment. 図2Aは第1実施形態のペリクル枠の第4辺部を示す正面図、図2Bは図2AのIIB−IIB断面を示す断面図、図2Cは図2AのIIC−IIC断面を示す断面図である。2A is a front view showing a fourth side portion of the pellicle frame of the first embodiment, FIG. 2B is a cross-sectional view showing a cross section of IIB-IIB of FIG. 2A, and FIG. 2C is a cross-sectional view showing a cross section of IIC-IIC of FIG. 2A. be. 第1実施形態のペリクルを示す斜視図である。It is a perspective view which shows the pellicle of 1st Embodiment. 図4Aは第1実施形態のペリクルの第4辺部を示す正面図、図4Bは図4AのIVB−IVB断面を示す断面図、図4Cは図4AのIVC−IVC断面を示す断面図である。4A is a front view showing a fourth side portion of the pellicle of the first embodiment, FIG. 4B is a cross-sectional view showing an IVB-IVB cross section of FIG. 4A, and FIG. 4C is a cross-sectional view showing an IVC-IVC cross section of FIG. 4A. .. 第1実施形態のペリクル枠の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of the pellicle frame of 1st Embodiment. 第2実施形態のペリクル枠の凹部や通気孔を含む要部の断面(XY平面に平行な断面)を示す断面図である。It is sectional drawing which shows the cross section (cross section parallel to the XY plane) of the main part including the recess and the ventilation hole of the pellicle frame of 2nd Embodiment. 図7Aは第3実施形態のペリクル枠の凹部や通気孔を含む要部を示す平面図、図7Bは図7AのVIIB−VIIB断面を示す断面図である。FIG. 7A is a plan view showing a main part including a recess and a ventilation hole of the pellicle frame of the third embodiment, and FIG. 7B is a cross-sectional view showing a cross section of VIIB-VIIB of FIG. 7A. 図8Aは変形例1のペリクル枠の凹部や通気孔を含む要部を示す平面図、図8Bは変形例2のペリクル枠の凹部や通気孔を含む要部を示す平面図である。FIG. 8A is a plan view showing a concave portion of the pellicle frame of the modified example 1 and a main part including a ventilation hole, and FIG. 8B is a plan view showing a main part including the concave portion and the vent hole of the pellicle frame of the modified example 2. 図9Aは第4実施形態のペリクル枠の凹部や通気孔を含む要部を示す平面図、図9Bは図9AのIXB−IXB断面を示す断面図である。9A is a plan view showing a main part including a recess and a ventilation hole of the pellicle frame of the fourth embodiment, and FIG. 9B is a cross-sectional view showing a cross section of IXB-IXB of FIG. 9A. 第5実施形態のペリクル枠の凹部や通気孔を含む要部の断面(XY平面に平行な断面)を示す断面図である。It is sectional drawing which shows the cross section (cross section parallel to the XY plane) of the main part including the recess and the ventilation hole of the pellicle frame of 5th Embodiment. 図11Aは第6実施形態のペリクル枠の凹部や通気孔を含む要部を示す平面図、図11Bは図11AのXIB−XIB断面を示す断面図である。11A is a plan view showing a main part including a recess and a ventilation hole of the pellicle frame of the sixth embodiment, and FIG. 11B is a cross-sectional view showing a cross section of XIB-XIB of FIG. 11A.

1、31、41、51、61、71、81、91…ペリクル枠
5…第1フィルタ
11…内周面
13…外周面
15…第2面
17…第1面
21…辺部
25…凹部
27…通気孔
27a…開口
33…粘着材層
73…通気抑制部
83…第2フィルタ
1, 31, 41, 51, 61, 71, 81, 91 ... Pellicle frame 5 ... First filter 11 ... Inner peripheral surface 13 ... Outer peripheral surface 15 ... Second surface 17 ... First surface 21 ... Side 25 ... Recessed 27 ... Vent hole 27a ... Opening 33 ... Adhesive material layer 73 ... Ventilation suppression part 83 ... Second filter

以下、本開示のペリクル枠の実施形態について、図面を用いて説明する。 Hereinafter, embodiments of the pellicle frame of the present disclosure will be described with reference to the drawings.

[1.第1実施形態]
[1−1.全体構成]
まず、第1実施形態のペリクル枠の全体構成について説明する。
[1. First Embodiment]
[1-1. overall structure]
First, the overall configuration of the pellicle frame of the first embodiment will be described.

図1〜図4に模式的に示すように、ペリクル枠1は、自身の片面(図4Aの上方)にペリクル膜3(図4A参照)が張設される部材である。このペリクル枠1は、セラミックを主成分とする材料(例えばアルミナを主成分とし、炭化チタンを含有する導電性セラミックス)から構成されている。つまり、ペリクル枠1は、例えばアルミナを主成分とする導電性を有するセラミック焼結体である。 As schematically shown in FIGS. 1 to 4, the pellicle frame 1 is a member to which a pellicle film 3 (see FIG. 4A) is stretched on one side of the pellicle frame 1 (above FIG. 4A). The pellicle frame 1 is made of a material containing ceramic as a main component (for example, conductive ceramics containing alumina as a main component and titanium carbide as a main component). That is, the pellicle frame 1 is, for example, a conductive ceramic sintered body containing alumina as a main component.

なお、図1及び図2では、ペリクル枠1自体を示し、図3及び図4では、ペリクル枠1にペリクル膜3と後述するフィルタ5とを備えたペリクル7を示している。 Note that FIGS. 1 and 2 show the pellicle frame 1 itself, and FIGS. 3 and 4 show a pellicle 7 having a pellicle film 3 and a filter 5 described later in the pellicle frame 1.

また、以下では、ペリクル枠1の全ての面のうち、ペリクル枠1自身で囲まれた内側の面を内周面11、内側と反対側の外側の面を外周面13と呼ぶ。また、内周面11と外周面13とに連接された面のうち、ペリクル膜3が張設される側を上面(例えば第2面)15、反対の面をフォトマスク(図示せず)に貼り付けられる下面(例えば第1面)17と呼ぶ。 Further, in the following, among all the surfaces of the pellicle frame 1, the inner surface surrounded by the pellicle frame 1 itself is referred to as an inner peripheral surface 11, and the outer surface opposite to the inner surface is referred to as an outer peripheral surface 13. Of the surfaces connected to the inner peripheral surface 11 and the outer peripheral surface 13, the side on which the pellicle film 3 is stretched is the upper surface (for example, the second surface) 15, and the opposite surface is a photomask (not shown). It is called the lower surface (for example, the first surface) 17 to be attached.

図1に示すように、直交するX軸、Y軸、Z軸の座標系において、ペリクル枠1は、Z方向から見た平面視で、矩形形状である長方形状の枠体(即ち環状の部材)であり、中央には平面視で長方形の中央貫通孔19を有している。 As shown in FIG. 1, in the orthogonal X-axis, Y-axis, and Z-axis coordinate systems, the pellicle frame 1 is a rectangular frame (that is, an annular member) having a rectangular shape in a plan view from the Z direction. ), And has a rectangular central through hole 19 in the center in a plan view.

つまり、ペリクル枠1は、同一平面上にて、平面視で、上下左右の四方に配置された長尺の枠部からなる。詳しくは、ペリクル枠1は、X軸に平行に配置された第1辺部21a及び第2辺部21bと、Y軸に平行に配置された第3辺部21c及び第4辺部21dとによって構成されている。この第1辺部21a及び第2辺部21bは、第3辺部21c及び第4辺部21dよりも寸法が短い。なお、第1〜第4辺部21a〜21dを辺部21と総称する。 That is, the pellicle frame 1 is composed of long frame portions arranged on the same plane in the four directions of up, down, left, and right in a plan view. Specifically, the pellicle frame 1 is composed of a first side portion 21a and a second side portion 21b arranged parallel to the X axis, and a third side portion 21c and a fourth side portion 21d arranged parallel to the Y axis. It is configured. The first side portion 21a and the second side portion 21b are shorter in size than the third side portion 21c and the fourth side portion 21d. The first to fourth side portions 21a to 21d are collectively referred to as side portions 21.

このペリクル枠1の外形の寸法は、例えば、縦(Y方向)149mm×横(X方向)120mm×厚み(Z方向)1.8mmである。また、ペリクル枠1の各辺部21は四角柱であり、その幅の寸法(Z方向から見た幅の寸法:枠幅)は、同一(例えば2mm)である。 The outer dimensions of the pellicle frame 1 are, for example, 149 mm in the vertical direction (Y direction) × 120 mm in the horizontal direction (X direction) × 1.8 mm in the thickness (Z direction). Further, each side portion 21 of the pellicle frame 1 is a square pillar, and the width dimension (width dimension when viewed from the Z direction: frame width) is the same (for example, 2 mm).

また、このペリクル枠1は、ヤング率が300GPa以上であり、強度(JIS R1601:2008にて規定される3点曲げ強度)が500MPa以上である。さらに、ペリクル枠1は、熱伝導率が15W/mK以上であり、常温(25℃)〜600℃の温度範囲における熱膨張率が10ppm/℃以下である。なお、ペリクル枠1の第2面15及び第1面17おける平面度は10μm以下である。 Further, the pellicle frame 1 has a Young's modulus of 300 GPa or more and a strength (three-point bending strength defined by JIS R1601: 2008) of 500 MPa or more. Further, the pellicle frame 1 has a thermal conductivity of 15 W / mK or more and a thermal expansion coefficient of 10 ppm / ° C. or less in a temperature range of room temperature (25 ° C.) to 600 ° C. The flatness of the second surface 15 and the first surface 17 of the pellicle frame 1 is 10 μm or less.

さらに、ペリクル枠1には、図1に示すように、X方向における両枠部(即ち長辺の第3辺部21c及び第4辺部21d)の外周面13側において、それぞれ2箇所(合計4個所)に、有底孔23が形成されている。 Further, as shown in FIG. 1, the pellicle frame 1 has two locations (total) on the outer peripheral surface 13 side of both frame portions (that is, the third side portion 21c and the fourth side portion 21d of the long side) in the X direction. Bottomed holes 23 are formed at four places).

この有底孔23は、例えばφ1.5mm、深さ1.2mmの有底の丸穴であり、底部は円錐形状に整えられている。なお、有底孔23は、ペリクル7の製造およびその後のフォトマスクに取り付ける際の位置決めや搬送の際の把持部等に用いられる。 The bottomed hole 23 is, for example, a bottomed round hole having a diameter of 1.5 mm and a depth of 1.2 mm, and the bottom portion is arranged in a conical shape. The bottomed hole 23 is used for positioning the pellicle 7 and subsequent attachment to the photomask, and for a grip portion during transportation.

[1−2.要部の構成]
次に、第1実施形態のペリクル枠1の要部について説明する。
[1-2. Composition of key parts]
Next, the main part of the pellicle frame 1 of the first embodiment will be described.

図1に示すように、ペリクル枠1の全ての辺部21の外周面13には、それぞれ溝形状の凹部25が形成されている。 As shown in FIG. 1, groove-shaped recesses 25 are formed on the outer peripheral surfaces 13 of all the side portions 21 of the pellicle frame 1.

以下では、この凹部25について、第4辺部21dに設けられた凹部25を例に挙げて説明するが、第1〜第3辺部21a〜21cの凹部25も同様な形状であるので、その説明は省略する。詳しくは、第1辺部21aの凹部25と第2辺部21bの凹部25とは同じ形状であり、第3辺部21cと第4辺部21dの凹部25とは、同じ形状である。また、第3辺部21c及び第4辺部21dの凹部25は、第1辺部21a及び第2辺部21bの凹部25よりも長手方向の寸法が長いが、その他の寸法は、第1辺部21a及び第2辺部21bと同じである。 Hereinafter, the recess 25 will be described by taking as an example the recess 25 provided in the fourth side portion 21d, but since the recess 25 of the first to third side portions 21a to 21c also has the same shape, the recess 25 is described. The description is omitted. Specifically, the recess 25 of the first side portion 21a and the recess 25 of the second side portion 21b have the same shape, and the recess 25 of the third side portion 21c and the fourth side portion 21d have the same shape. Further, the recess 25 of the third side portion 21c and the fourth side portion 21d has a longer dimension in the longitudinal direction than the recess 25 of the first side portion 21a and the second side portion 21b, but the other dimensions are the first side. It is the same as the portion 21a and the second side portion 21b.

なお、本第1実施形態では、ペリクル枠1の全ての辺部21の外周面13には、凹部25が形成されているが、全ての辺部21うち、少なくとも1つの辺部21に、凹部25を設けてもよい。また、1つの辺部21に設けられた凹部25は、複数に分割された複数個の凹部25としてもよい。つまり、1つの辺部21に複数個の凹部25を設けてもよい。 In the first embodiment, recesses 25 are formed on the outer peripheral surfaces 13 of all the side portions 21 of the pellicle frame 1, but recesses are formed in at least one side portion 21 of all the side portions 21. 25 may be provided. Further, the recess 25 provided in one side portion 21 may be a plurality of recesses 25 divided into a plurality of portions. That is, a plurality of recesses 25 may be provided on one side portion 21.

図2に示すように、凹部25は、第4辺部21dの長手方向(Y方向)に沿って形成された溝である。なお、溝内の空間の形状は直方体状である。 As shown in FIG. 2, the recess 25 is a groove formed along the longitudinal direction (Y direction) of the fourth side portion 21d. The shape of the space in the groove is a rectangular parallelepiped.

詳しくは、図2Aに示すように、凹部25のY方向の寸法L1は例えば139mmであり、第4辺部21dのY方向の両端に至らない範囲で設けられている。 Specifically, as shown in FIG. 2A, the dimension L1 of the recess 25 in the Y direction is, for example, 139 mm, and is provided in a range not reaching both ends of the fourth side portion 21d in the Y direction.

第4辺部21dの厚み(即ちZ方向の寸法)W1は例えば1.8mmであるので、凹部25のZ方向の寸法W2はそれより短い例えば1.2mmである。つまり、凹部25の第2面15側の内周面である側面25aから第4辺部21dの第2面15に至る間には、フィルタ5を貼り付けるための余地である間隙W3があり、同様に、凹部25の第1面17側の内周面である側面25bから第4辺部21dの第1面17に至る間には、間隙W4がある。 Since the thickness (that is, the dimension in the Z direction) W1 of the fourth side portion 21d is, for example, 1.8 mm, the dimension W2 in the Z direction of the recess 25 is shorter, for example, 1.2 mm. That is, there is a gap W3 that is room for attaching the filter 5 between the side surface 25a, which is the inner peripheral surface of the recess 25 on the second surface 15 side, and the second surface 15 of the fourth side portion 21d. Similarly, there is a gap W4 between the side surface 25b, which is the inner peripheral surface of the recess 25 on the first surface 17 side, and the first surface 17 of the fourth side portion 21d.

なお、ここでは、両間隙W3、W4の寸法は同じであり(異なっていてもよい)、フィルタ5を確実に貼り付けるためには、0.2mm以上あることが好ましい(例えば0.2mm〜0.3mmである)。 Here, the dimensions of both gaps W3 and W4 are the same (may be different), and in order to securely attach the filter 5, it is preferably 0.2 mm or more (for example, 0.2 mm to 0). .3 mm).

また、図2Bに示すように、第4辺部21dの幅(即ちX方向の寸法)D1は例えば2mmであるので、凹部25の深さ(X方向)の寸法D2は、例えばD1の20%〜50%の範囲の例えば0.5mmである。 Further, as shown in FIG. 2B, the width (that is, the dimension in the X direction) D1 of the fourth side portion 21d is, for example, 2 mm, so that the dimension D2 in the depth (X direction) of the recess 25 is, for example, 20% of D1. For example, 0.5 mm in the range of ~ 50%.

さらに、第4辺部21dは、複数の通気孔27を備えている。詳しくは、第4辺部21dの凹部25の矩形状の底部25c(なお、底部25cは内周面11と平行である)には、第4辺部21dをX軸方向に貫通して、凹部25の内側の底部25cとペリクル枠1の内周面11側とに開口する2個の通気孔27を備えている。この通気孔27は、直径が例えばφ0.5mmの円柱状の貫通孔である。なお、ここでは、通気孔27は、第4辺部21dに2個設けられているが、例えば3個以上でもよい。 Further, the fourth side portion 21d is provided with a plurality of ventilation holes 27. Specifically, the rectangular bottom portion 25c of the recess 25 of the fourth side portion 21d (the bottom portion 25c is parallel to the inner peripheral surface 11) penetrates the fourth side portion 21d in the X-axis direction and is recessed. It is provided with two ventilation holes 27 that open to the inner bottom portion 25c of the 25 and the inner peripheral surface 11 side of the pellicle frame 1. The ventilation hole 27 is a columnar through hole having a diameter of, for example, φ0.5 mm. Here, two ventilation holes 27 are provided on the fourth side portion 21d, but for example, three or more ventilation holes 27 may be provided.

また、ここでは、4個の全ての辺部21(従って4個所の全ての凹部25)に、それぞれ複数(例えば2個)の通気孔27を設けた例を挙げているが、少なくとも一つの凹部25に、通気孔27を複数備えた構成であれば良い。 Further, here, an example in which a plurality of (for example, two) ventilation holes 27 are provided in all four side portions 21 (hence, all four recesses 25) is given, but at least one recess is provided. The configuration may be such that the 25 is provided with a plurality of ventilation holes 27.

なお、一つの凹部25に設ける通気孔27の数は、2個でもよく又は3個以上であってもよい。また、少なくとも一つの凹部25に、通気孔27を複数備えた構成であれば良いので、他の凹部25には一つの通気孔27を設けるようにしてもよい。 The number of ventilation holes 27 provided in one recess 25 may be two or three or more. Further, since it is sufficient that at least one recess 25 is provided with a plurality of ventilation holes 27, one ventilation hole 27 may be provided in the other recess 25.

特に、本第1実施形態では、「通気面積S1」は「最小断面積S2」より大である。 In particular, in the first embodiment, the "ventilation area S1" is larger than the "minimum cross-sectional area S2".

ここで、第4辺部21dを例に挙げると、通気面積S1とは、第4辺部21dの凹部25の外周面13側の開口端(即ち外周面13と同じ面にて開口する部分)の面積を示している。
また、最小断面積S2とは、第4辺部21dの凹部25の2つの通気孔27において、各通気孔27のそれぞれの最小の断面積の合計を示している。詳しくは、最小の断面積S2とは、各通気孔27において、それぞれ軸線方向と垂直な断面積(即ち垂直な面の断面積)を求め、それらの断面積の合計を求めたものである。なお、各通気孔27の断面積は、軸線方向において同じであるので、各通気孔27において最小の断面積は、軸線方向のどの位置でも同じとなる。
Here, taking the fourth side portion 21d as an example, the ventilation area S1 is an opening end on the outer peripheral surface 13 side of the recess 25 of the fourth side portion 21d (that is, a portion that opens on the same surface as the outer peripheral surface 13). Shows the area of.
Further, the minimum cross-sectional area S2 indicates the total of the minimum cross-sectional areas of the respective vent holes 27 in the two vent holes 27 of the recess 25 of the fourth side portion 21d. Specifically, the minimum cross-sectional area S2 is obtained by obtaining the cross-sectional area perpendicular to the axial direction (that is, the cross-sectional area of the vertical surface) in each of the ventilation holes 27, and obtaining the total of the cross-sectional areas. Since the cross-sectional area of each vent hole 27 is the same in the axial direction, the minimum cross-sectional area of each vent hole 27 is the same at any position in the axial direction.

なお、通気孔27が一つの場合には、一つ各通気孔27の軸線方向と垂直な断面積が、最小断面積S2である。 When there is one ventilation hole 27, the cross-sectional area perpendicular to the axial direction of each ventilation hole 27 is the minimum cross-sectional area S2.

また、通気孔27の軸線方向と垂直な断面積とは、ここでは、貫通孔である通気孔27のなす流路(即ち気体流路の断面積)である。つまり、気体が流れる方向に対して垂直の断面積である。なお、各通気孔27の軸線方向に垂直な面とは、第4辺部21dにおける外周面13と平行な面(即ちYZ平面)である。 Further, the cross-sectional area perpendicular to the axial direction of the vent hole 27 is, here, the flow path formed by the vent hole 27 which is a through hole (that is, the cross-sectional area of the gas flow path). That is, it is a cross-sectional area perpendicular to the direction in which the gas flows. The plane perpendicular to the axial direction of each of the ventilation holes 27 is a plane (that is, a YZ plane) parallel to the outer peripheral surface 13 of the fourth side portion 21d.

なお、ここでは、各通気孔27の軸線方向と垂直な断面積は、軸線方向においてどの位置の断面をとっても同じであるが、仮に、各通気孔27において場所によって断面積が異なる場合には、各通気孔27のそれぞれの断面積として最小の断面積を求め、その合計を最小断面積S2とする。 Here, the cross-sectional area perpendicular to the axial direction of each vent hole 27 is the same regardless of the cross-sectional area at any position in the axial direction, but if the cross-sectional area of each vent hole 27 differs depending on the location, The minimum cross-sectional area is obtained as the cross-sectional area of each of the ventilation holes 27, and the total is taken as the minimum cross-sectional area S2.

具体的には、第4辺部21dの凹部25の通気面積S1は、L1×W2であるので、例えば139mm×1.2mm=166.8mmである。また、その凹部25における2つの通気孔27の断面積の合計である最小断面積S2は、例えば(0.25mm×0.25mm×π)×2=約0.39mmである。よって、第4辺部21dの凹部25においては、「通気面積S1>最小断面積S2」の条件を満たしている。Specifically, the ventilation area S1 of the recess 25 of the fourth side portion 21d is L1 × W2, so that it is, for example, 139 mm × 1.2 mm = 166.8 mm 2 . The minimum cross-sectional area S2 is the sum of the cross-sectional area of the two vent holes 27 in the recess 25, for example (0.25mm × 0.25mm × π) × 2 = about 0.39 mm 2. Therefore, the recess 25 of the fourth side portion 21d satisfies the condition of "ventilation area S1> minimum cross-sectional area S2".

さらに、第4辺部21dの凹部25において、通気面積S1と最小断面積S2とは、以下の関係式を満たしている。 Further, in the recess 25 of the fourth side portion 21d, the ventilation area S1 and the minimum cross-sectional area S2 satisfy the following relational expression.

50×最小断面積S2≦通気面積S1・・・(A)
このように、通気面積S1を最小断面積S2の50倍以上とすることで、より短時間で真空引き等を行うことができる。
50 x minimum cross-sectional area S2 ≤ ventilation area S1 ... (A)
In this way, by setting the ventilation area S1 to 50 times or more the minimum cross-sectional area S2, vacuuming or the like can be performed in a shorter time.

ここでは、第4辺部21dの凹部25を例に挙げたが、他の第1〜第3辺部21a〜21cの凹部25についても、同様に、「通気面積S1>最小断面積S2」の条件や、「50×最小断面積S2≦通気面積S1」の条件を満たしている。 Here, the recess 25 of the fourth side portion 21d is taken as an example, but the recesses 25 of the other first to third side portions 21a to 21c also have the same “ventilation area S1> minimum cross-sectional area S2”. The condition and the condition of "50 x minimum cross-sectional area S2 ≤ ventilation area S1" are satisfied.

なお、各通気孔27が同一の開口径である場合には、最小断面積S2は、上述のように、1つの通気孔27の断面積を、通気孔27の個数の数だけ掛ければよい。 When each of the ventilation holes 27 has the same opening diameter, the minimum cross-sectional area S2 may be obtained by multiplying the cross-sectional area of one ventilation hole 27 by the number of ventilation holes 27 as described above.

図3及び図4に示すように、フィルタ(即ち第1フィルタ)5は、フォトマスクヘ固定したペリクル7内への塵等の異物の流入を防止する周知のフィルタであり、異物の流入を防止可能な周知の材料で形成されている。 As shown in FIGS. 3 and 4, the filter (that is, the first filter) 5 is a well-known filter that prevents the inflow of foreign matter such as dust into the pellicle 7 fixed to the photomask, and prevents the inflow of foreign matter. It is made of a well-known material that is possible.

このフィルタ5としては、目的に応じたフィルタを適宜用いればよい。 As the filter 5, a filter according to the purpose may be appropriately used.

例えば、ULPAフィルタ(Ultra Low Penetration Air Filter)を用いることができる。ULPAフィルタは、定格風量で粒径が0.15μmの粒子に対して99.9995%以上の粒子捕集率をもち、且つ、初期圧力損失が245Pa以下の性能を持つエアフィルタである。 For example, a ULPA filter (Ultra Low Penetration Air Filter) can be used. The ULPA filter is an air filter having a particle collection rate of 99.9995% or more with respect to particles having a particle size of 0.15 μm at a rated air volume and having an initial pressure loss of 245 Pa or less.

また、フィルタ5として、HEPAフィルタ(High Efficiency Particulate Air Filter)を用いてもよい。HEPAフィルタは、定格風量で粒径が0.3μmの粒子に対して99.97%以上の粒子捕集率をもち、且つ、初期圧力損失が245Pa以下の性能を持つエアフィルタである。 Further, as the filter 5, a HEPA filter (High Efficiency Particulate Air Filter) may be used. The HEPA filter is an air filter having a particle collection rate of 99.97% or more and an initial pressure loss of 245 Pa or less with respect to particles having a rated air volume and a particle size of 0.3 μm.

図4Aに示すように、フィルタ5は、外周面13側から見た場合、その形状は矩形状であり、凹部25の矩形状の開口端を全て覆うとともに、開口端の全周を所定幅で枠状に覆っている。 As shown in FIG. 4A, the filter 5 has a rectangular shape when viewed from the outer peripheral surface 13 side, covers all the rectangular opening ends of the concave portions 25, and covers the entire circumference of the opening ends with a predetermined width. It covers in a frame shape.

前記フィルタ5は、例えば接着剤によって、第4辺部21dの外周面13、詳しくは、凹部25の開口端の周囲に貼り付けられている。なお、フィルタ5のうち、凹部25の開口端の周囲を覆う部分は、いわゆる糊代であり、その幅としては例えば0.2mm〜0.3mmの範囲を採用できる。 The filter 5 is attached to the outer peripheral surface 13 of the fourth side portion 21d, specifically, around the open end of the recess 25, by, for example, an adhesive. The portion of the filter 5 that covers the periphery of the open end of the recess 25 is a so-called glue allowance, and the width thereof can be, for example, in the range of 0.2 mm to 0.3 mm.

なお、本第1実施形態では、全ての(即ち4箇所の)凹部25の開口端の総面積(Smm)とペリクル枠1の内周面11で囲まれた内側空間の体積(Vmm)との比(開口面積比:S/V)は、0.002mm−1以上0.025mm−1以下である。 In the first embodiment, the total area (Smm 2 ) of the open ends of all (that is, four) recesses 25 and the volume of the inner space surrounded by the inner peripheral surface 11 of the pellicle frame 1 (Vmm 3 ). The ratio with and (opening area ratio: S / V) is 0.002 mm -1 or more and 0.025 mm -1 or less.

[1ー3.ペリクル枠の製造方法]
次に、ペリクル枠1の製造方法について説明する。なお、各部の寸法は例示である。
(第1工程P1)
図5に示すように、まず、第1工程(素地の作製工程)P1では、ペリクル枠1の原料である粉体(即ち素地粉末)を作製した。
[1-3. Manufacturing method of pellicle frame]
Next, a method of manufacturing the pellicle frame 1 will be described. The dimensions of each part are examples.
(First step P1)
As shown in FIG. 5, first, in the first step (base material preparation step) P1, a powder (that is, base material powder) which is a raw material of the pellicle frame 1 was prepared.

ここで粉体とは、ペリクル枠1を構成する焼結体の元になる物質であり、アルミナや導電性材料などの原料粉末に、焼結助剤などを適宜加え湿式混合した後、噴霧乾燥法によって50μm〜100μmの顆粒に作製したものである。なお、原料粉末の粒径の測定は、レーザー回折・散乱法により行なったが、動的光散乱法や沈降法により行なってもよい。 Here, the powder is a substance that is the basis of the sintered body that constitutes the pellicle frame 1. After appropriately adding a sintering aid or the like to the raw material powder such as alumina or a conductive material, wet mixing is performed, and then spray drying is performed. It was prepared into granules of 50 μm to 100 μm by the method. The particle size of the raw material powder was measured by a laser diffraction / scattering method, but it may also be measured by a dynamic light scattering method or a sedimentation method.

詳しくは、この素地の作製工程では、平均粒径0.5μmのα−アルミナ粉末63体積%、平均粒径1.0μmの炭化チタン10体積%、平均粒径1.0μmの窒化チタン25体積%、残部をMgO:Y=1:1の焼結助剤からなる複合材料を調製した。Specifically, in the process of producing the substrate, 63% by volume of α-alumina powder having an average particle size of 0.5 μm, 10% by volume of titanium carbide having an average particle size of 1.0 μm, and 25% by volume of titanium nitride having an average particle size of 1.0 μm. the balance MgO: Y 2 O 3 = 1 : prepare a composite material comprising a first sintering aid.

そして、この複合材料を湿式混合し、成形用有機バインダを加えた後、通常の噴霧乾燥法により、アルミナ・炭化チタン・窒化チタンの複合セラミックス素地粉末を作製した。(第2工程P2)
次に、第2工程(成形工程)P2では、この粉体を成形し、ペリクル枠1の原形を形成した。
Then, this composite material was wet-mixed, an organic binder for molding was added, and then a composite ceramic base powder of alumina, titanium carbide, and titanium nitride was prepared by a normal spray drying method. (Second step P2)
Next, in the second step (molding step) P2, this powder was molded to form the original shape of the pellicle frame 1.

詳しくは、複合セラミックス素地粉末を、金型プレス法により、外形寸法を縦182mm×横147mm×厚さ6mm、枠幅5mm程度の枠形状に成形し、ペリクル枠1の原型(粉末成形体)を作製した。 Specifically, the composite ceramic base powder is molded into a frame shape having external dimensions of 182 mm in length × 147 mm in width × 6 mm in thickness and a frame width of about 5 mm by a mold pressing method, and the prototype (powder molded body) of the pellicle frame 1 is formed. Made.

ここでは、後述する焼成工程により、ペリクル枠1の外形は、20〜30%程度縮むため、予め、焼成後のペリクル枠1より大きく成形する。なお、ペリクル枠1は、半導体露光装置における露光用マスクの大きさに合わせて種々の大きさが可能である。
(第3工程P3)
次に、第3工程(焼成工程)P3では、前記粉体の成形後、これを所定温度で焼成した。
Here, since the outer shape of the pellicle frame 1 shrinks by about 20 to 30% by the firing step described later, the pellicle frame 1 is formed larger than the fired pellicle frame 1 in advance. The pellicle frame 1 can have various sizes according to the size of the exposure mask in the semiconductor exposure apparatus.
(Third step P3)
Next, in the third step (baking step) P3, after molding the powder, it was fired at a predetermined temperature.

詳しくは、粉末成形体を脱バインダし、不活性ガス中にて1700℃で3時間保持して焼成し、導電性を有する緻密なセラミックス焼結体を得た。 Specifically, the powder molded body was debindered, held in an inert gas at 1700 ° C. for 3 hours, and fired to obtain a dense ceramic sintered body having conductivity.

なお、焼成温度は、粉体の組成によるが、一般に1500℃以上である。焼成することにより、高いヤング率と強度とを持つ焼結体が得られる。 The firing temperature depends on the composition of the powder, but is generally 1500 ° C. or higher. By firing, a sintered body having a high Young's modulus and strength can be obtained.

この焼結体の寸法は、縦151mm×横122mm×厚さ5mm、枠幅4mm程度であった。なお、0.3mm程度の歪みがあった。
(第4工程P4)
次に、第4工程(厚さ加工工程)P4では、焼結体に対して、その厚さを調節する厚さ加工(具体的には研削加工)を行った。
The dimensions of this sintered body were about 151 mm in length × 122 mm in width × 5 mm in thickness and about 4 mm in frame width. There was a distortion of about 0.3 mm.
(4th step P4)
Next, in the fourth step (thickness processing step) P4, the sintered body was subjected to thickness processing (specifically, grinding processing) for adjusting the thickness thereof.

詳しくは、焼結体の上下面(厚さ方向の両面)を、平面研削盤にてほぼ同量研削し、厚さ2.1mmに加工した。なお、平面研削後の平面度は、20μm〜40μmであった。 Specifically, the upper and lower surfaces (both sides in the thickness direction) of the sintered body were ground in approximately the same amount with a surface grinding machine and processed to a thickness of 2.1 mm. The flatness after surface grinding was 20 μm to 40 μm.

なお、ここでは、後述する精密平面加工(第10工程P10)の研削代(例えば0.05mm〜0.10mm)を残して厚さを揃えた。
(第5工程P5)
次に、第5工程(内形・外形加工工程)P5では、厚さ加工後の焼結体に対して、内形・外形加工を行った。
Here, the thickness is made uniform while leaving the grinding allowance (for example, 0.05 mm to 0.10 mm) of the precision flat surface processing (10th step P10) described later.
(Fifth step P5)
Next, in the fifth step (inner shape / outer shape processing step) P5, the inner shape / outer shape processing was performed on the sintered body after the thickness processing.

詳しくは、ワイヤー放電加工により、焼結体の内形及び外形を、縦149mm×横120mm、枠幅2mmに加工した。つまり、保持治具(図示せず)で焼結体の外周面を把持し、焼結体の内周面と外周面とに対してワイヤー放電加工を行い、内形や外形を目的とする寸法に加工した。なお、この際に、稜部(コーナー部)のR加工を行ってもよい。
(第6工程P6)
次に、第6工程(穴開け加工工程)P6では、形彫放電加工にて、焼結体の対向する長辺に、有底孔23をそれぞれ2個形成した。
Specifically, the inner shape and outer shape of the sintered body were machined to a length of 149 mm, a width of 120 mm, and a frame width of 2 mm by wire electric discharge machining. That is, the outer peripheral surface of the sintered body is gripped by a holding jig (not shown), wire electric discharge machining is performed on the inner peripheral surface and the outer peripheral surface of the sintered body, and the dimensions for the inner shape and outer shape are intended. Processed into. At this time, the ridge portion (corner portion) may be R-processed.
(6th step P6)
Next, in the sixth step (drilling step) P6, two bottomed holes 23 were formed on the opposite long sides of the sintered body by the die-sinking electric discharge machining.

詳しくは、焼結体に対して、ペリクル枠1の第3辺部21c及び第4辺部21dの外周面13に対応する部分に、例えば直径φ1.6mm×深さ1.2mmの有底孔23を形成した。
(第7工程P7)
次に、第7工程(溝加工工程)P6では、形彫放電加工にて、焼結体に対して、ペリクル枠1の各辺部21の外周面13に対応する部分に、それぞれ溝の形状の凹部25を形成した。
Specifically, with respect to the sintered body, a bottomed hole having a diameter of φ1.6 mm and a depth of 1.2 mm is formed in a portion of the pellicle frame 1 corresponding to the outer peripheral surface 13 of the third side portion 21c and the fourth side portion 21d. 23 was formed.
(7th step P7)
Next, in the seventh step (grooving step) P6, in the die-sinking electric discharge machining, the shape of the groove is formed on the portion corresponding to the outer peripheral surface 13 of each side portion 21 of the pellicle frame 1 with respect to the sintered body. The recess 25 of the above was formed.

詳しくは、溝の形状の反転形状の持つ電極を用いて、形彫放電加工を行った。
(第8工程P8)
次に、第8工程(貫通穴開け加工工程)P8では、細穴放電加工機(図示せず)によって、凹部25の底部25cに、気圧調整用の貫通孔である通気孔27を形成した。
Specifically, die-sinking electric discharge machining was performed using an electrode having an inverted groove shape.
(8th step P8)
Next, in the eighth step (through hole drilling step) P8, a ventilation hole 27, which is a through hole for adjusting the atmospheric pressure, was formed in the bottom 25c of the recess 25 by a small hole electric discharge machine (not shown).

なお、通気孔27は、各凹部25に2個ずつ形成した。
(第9工程P9)
次に、第9工程(放電加工面の表面処理工程)P9では、上述した第5〜第8工程P5〜P8において放電加工を行った表面(即ち放電加工面)の表面処理を行った。
Two ventilation holes 27 were formed in each recess 25.
(9th step P9)
Next, in the ninth step (surface treatment step of the electric discharge machined surface) P9, the surface treatment of the surface (that is, the electric discharge machined surface) subjected to the electric discharge machining in the above-mentioned fifth to eighth steps P5 to P8 was performed.

詳しくは、サンドブラスト処理により、放電加工によって生じた熱変質層を除去した。なお、サンドブラスト処理では、粒度#600(平均粒径約30μm)の炭化ケイ素砥粒を使用した。除去した層の厚みは、5μm程度であった。
(第10工程P10)
次に、第10工程(精密平面加工工程)P10では、サンドブラスト処理後の焼結体に対して、精密平面加工を行った。
Specifically, the heat-altered layer generated by electric discharge machining was removed by sandblasting. In the sandblasting treatment, silicon carbide abrasive grains having a particle size of # 600 (average particle size of about 30 μm) were used. The thickness of the removed layer was about 5 μm.
(10th step P10)
Next, in the tenth step (precision flat surface processing step) P10, precision flat surface processing was performed on the sintered body after the sandblasting treatment.

この精密平面加工では、ダイアモンド砥石を用いて、焼結体の片面25μm〜50μmずつ研磨加工を行い、厚さ2.0mm、平面度を10μm未満に加工した。 In this precision flat surface processing, a diamond grindstone was used to polish each side of the sintered body by 25 μm to 50 μm, and the thickness was 2.0 mm and the flatness was reduced to less than 10 μm.

以上の処理により、アルミナを主成分とするペリクル枠1を得た。 Through the above treatment, a pellicle frame 1 containing alumina as a main component was obtained.

このペリクル枠1のヤング率と強度とを計測したところ、ヤング率420GPa、強度690MPaであった。 When the Young's modulus and the strength of the pellicle frame 1 were measured, the Young's modulus was 420 GPa and the strength was 690 MPa.

なお、形成されたペリクル枠1の稜部に対して、ブラシ研磨加工を行い、R半径が0.03mm〜0.05mmの面取り加工を行ってもよい。 The ridge portion of the formed pellicle frame 1 may be brush-polished and chamfered with an R radius of 0.03 mm to 0.05 mm.

その後、前記ペリクル枠1に対して、各凹部25の外周面13に開口する開口端を全て覆うように、周知の接着剤を用いて、それぞれフィルタ5を貼り付けた。つまり、フィルタ5の外縁部分を凹部25の開口端の周囲に貼り付けた。 Then, the filter 5 was attached to the pellicle frame 1 using a well-known adhesive so as to cover all the open ends opened in the outer peripheral surface 13 of each recess 25. That is, the outer edge portion of the filter 5 is attached around the open end of the recess 25.

そして、ペリクル枠1の中央貫通孔19の全面を覆うように、ペリクル膜3をペリクル枠1の第2面15側に配置し、周知の接着剤を用いて、ペリクル膜3をペリクル枠1の第2面15に貼り付けた。つまり、ペリクル膜3の外縁部分を、ペリクル枠1の第2面15に貼り付けた。 Then, the pellicle film 3 is arranged on the second surface 15 side of the pellicle frame 1 so as to cover the entire surface of the central through hole 19 of the pellicle frame 1, and the pellicle film 3 is placed on the pellicle frame 1 using a well-known adhesive. It was attached to the second surface 15. That is, the outer edge portion of the pellicle film 3 was attached to the second surface 15 of the pellicle frame 1.

このようにして、ペリクル7を製造することができた。 In this way, the pellicle 7 could be manufactured.

[1−4.効果]
(1)本第1実施形態では、各辺部21において、各凹部25の開口端の通気面積(S1)、即ちフィルタ5の通気有効面積(S1)は、当該凹部25に開口する2個の通気孔27の断面積の合計、即ち通気孔27の最小断面積(S2)より大であるので、ペリクル7に対して、フィルタ5を介して真空引きする場合や大気解放する場合に、短時間で真空引きや大気解放を行うことができる。
[1-4. effect]
(1) In the first embodiment, in each side portion 21, the ventilation area (S1) at the open end of each recess 25, that is, the effective ventilation area (S1) of the filter 5, is two open to the recess 25. Since it is larger than the total cross-sectional area of the vent holes 27, that is, the minimum cross-sectional area (S2) of the vent holes 27, it takes a short time when the pellicle 7 is evacuated through the filter 5 or released to the atmosphere. Can be evacuated and released to the atmosphere.

また、従来のように、ペリクル枠1の内部や外部に特別な構造を設ける必要がないので、ペリクル枠1の好ましい形状を容易に実現できる。つまり、露光領域を低減することなく、また、ペリクル枠1が大型化することなく、しかも、構成が複雑化することを抑制できる。 Further, unlike the conventional case, it is not necessary to provide a special structure inside or outside the pellicle frame 1, so that a preferable shape of the pellicle frame 1 can be easily realized. That is, it is possible to prevent the exposure area from being reduced, the pellicle frame 1 from becoming large, and the configuration from becoming complicated.

さらに、細径の枠体であるペリクル枠1でも、前記凹部25を容易に設けることができる。しかも、通気孔27を多く設ける必要がないので、通気孔27を多数設けた場合の、ペリクル枠1の強度の低下を抑制できる。 Further, the recess 25 can be easily provided even in the pellicle frame 1 which is a frame body having a small diameter. Moreover, since it is not necessary to provide a large number of ventilation holes 27, it is possible to suppress a decrease in the strength of the pellicle frame 1 when a large number of ventilation holes 27 are provided.

(2)本第1実施形態では、全ての凹部25の開口端の総面積(Smm)とペリクル枠1の内側空間の体積(Vmm)との比(S/V)は、0.002mm−1以上0.025mm−1以下である。このような場合でも、短時間で真空引きや大気解放を行うことができる。(2) In the first embodiment, the ratio (S / V) of the total area (Smm 2 ) of the open ends of all the recesses 25 to the volume (Vmm 3 ) of the inner space of the pellicle frame 1 is 0.002 mm. -1 or more and 0.025 mm -1 or less. Even in such a case, evacuation and release to the atmosphere can be performed in a short time.

(3)本第1実施形態では、ペリクル枠1は、導電性を有するセラミック焼結体からなるので、ペリクル枠1を、放電加工によって容易に加工することができる。 (3) In the first embodiment, since the pellicle frame 1 is made of a conductive ceramic sintered body, the pellicle frame 1 can be easily machined by electric discharge machining.

(4)本第1実施形態では、ペリクル枠1は、ヤング率が300GPa以上、強度が500MPa以上であるので、ペリクル枠1は、十分な剛性や強度を有する。 (4) In the first embodiment, since the pellicle frame 1 has a Young's modulus of 300 GPa or more and a strength of 500 MPa or more, the pellicle frame 1 has sufficient rigidity and strength.

(5)本第1実施形態では、ペリクル枠1は、熱伝導率が15W/mK以上のセラミック焼結体からなるので、ペリクル枠1により、露光の際にペリクル膜3に発生した熱を効率良く拡散し、ペリクル膜3が熱により破損することを抑制できる。 (5) In the first embodiment, since the pellicle frame 1 is made of a ceramic sintered body having a thermal conductivity of 15 W / mK or more, the pellicle frame 1 efficiently uses the heat generated in the pellicle film 3 during exposure. It diffuses well and can prevent the pellicle film 3 from being damaged by heat.

(6)本第1実施形態では、ペリクル枠1は、熱膨張率が10ppm/℃以下であるセラミック焼結体からなるので、ペリクル枠1が、露光の際の温度上昇によって変形することを、好適に抑制できる。 (6) In the first embodiment, since the pellicle frame 1 is made of a ceramic sintered body having a thermal expansion coefficient of 10 ppm / ° C. or less, the pellicle frame 1 is deformed by a temperature rise during exposure. It can be suppressed suitably.

[1−5.文言の対応関係]
第1実施形態の、ペリクル枠1、第1フィルタ5、内周面11、外周面13、第2面15、第1面17、辺部21、凹部25、通気孔27、開口27a、粘着材層33、通気抑制部73、第2フィルタ83、それぞれ、本開示の、ペリクル枠、第1フィルタ、内周面、外周面、第2面、第1面、辺部、凹部、貫通孔、開口、粘着材層、通気抑制部、第2フィルタの一例に相当する。
[1-5. Correspondence of wording]
The pellicle frame 1, the first filter 5, the inner peripheral surface 11, the outer peripheral surface 13, the second surface 15, the first surface 17, the side portion 21, the recess 25, the ventilation hole 27, the opening 27a, and the adhesive material of the first embodiment. The layer 33, the ventilation suppressing portion 73, and the second filter 83, respectively, of the present disclosure, the pellicle frame, the first filter, the inner peripheral surface, the outer peripheral surface, the second surface, the first surface, the side portion, the recess, the through hole, and the opening. , Corresponds to an example of an adhesive layer, a ventilation suppression part, and a second filter.

[2.第2実施形態]
次に、第2実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
[2. Second Embodiment]
Next, the second embodiment will be described, but the description thereof will be omitted or simplified for the same contents as those of the first embodiment. In addition, the same number is given to the structure which is the same as the 1st Embodiment.

図6に示すように、本第2実施形態のペリクル枠31は、凹部25及び通気孔27の表面(即ち内周面)の全体にわたって、空気中の塵等の異物を接着して捕集可能な粘着材層33が形成されている。 As shown in FIG. 6, the pellicle frame 31 of the second embodiment can collect foreign matter such as dust in the air by adhering it over the entire surface (that is, the inner peripheral surface) of the recess 25 and the ventilation hole 27. Adhesive material layer 33 is formed.

なお、図6では、1個の辺部21における1個の凹部25に1個の通気孔27が設けられている例を示しているが、他の3個の辺部21の各凹部25のうち、少なくとも1個の凹部25には、複数の通気孔27が設けられている(図示せず)。 Note that FIG. 6 shows an example in which one vent hole 27 is provided in one recess 25 in one side portion 21, but in each recess 25 of the other three side portions 21. Of these, at least one recess 25 is provided with a plurality of ventilation holes 27 (not shown).

この粘着材層33の材料としては、例えば特開2011−107519号公報に記載のシリコーン粘着剤等の材料を採用できる。 As the material of the pressure-sensitive adhesive layer 33, for example, a material such as the silicone pressure-sensitive adhesive described in Japanese Patent Application Laid-Open No. 2011-107519 can be adopted.

なお、粘着材層33は、凹部25及び通気孔27のうち、少なくとも一部に形成されていてもよい。 The adhesive layer 33 may be formed in at least a part of the recess 25 and the ventilation hole 27.

本第2実施形態は、第1実施形態と同様な効果を奏する。また、本第2実施形態では、粘着材層33を備えているので、第1実施形態よりも異物の捕集能力が優れているという利点がある。 The second embodiment has the same effect as that of the first embodiment. Further, since the second embodiment includes the adhesive layer 33, there is an advantage that the ability to collect foreign substances is superior to that of the first embodiment.

[3.第3実施形態]
次に、第3実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
[3. Third Embodiment]
Next, the third embodiment will be described, but the description thereof will be omitted or simplified for the same contents as those of the first embodiment. In addition, the same number is given to the structure which is the same as the 1st Embodiment.

図7に示すように、本第3実施形態のペリクル枠41は、凹部25の底部25cに、多数の帯状の凹凸が平行に配列された凹凸部43が設けてある。つまり、図7Bに示すように、底部25cが、波状(即ちサインカーブ状)の形状となるように、凹凸が繰り返して配列された凹凸部43が設けてある。 As shown in FIG. 7, the pellicle frame 41 of the third embodiment is provided with a concavo-convex portion 43 in which a large number of strip-shaped concavities and convexities are arranged in parallel on the bottom portion 25c of the recess 25. That is, as shown in FIG. 7B, a concavo-convex portion 43 in which the concavo-convex portion is repeatedly arranged so that the bottom portion 25c has a wavy shape (that is, a sine curve shape) is provided.

また、本第3実施形態のペリクル枠41は、第2実施形態と同様に凹部25及び通気孔27の表面(即ち内周面)の全体にわたって、空気中の塵等の異物を接着して捕集可能な粘着材層(図示せず)が形成されている。 Further, the pellicle frame 41 of the third embodiment adheres and catches foreign matter such as dust in the air over the entire surface (that is, the inner peripheral surface) of the recess 25 and the ventilation hole 27 as in the second embodiment. A collectable adhesive layer (not shown) is formed.

本第3実施形態は、第1実施形態と同様な効果を奏する。また、本第3実施形態では、凹部25の底部25cに凹凸部43を設けてあるので、第2実施形態よりも異物の捕集能力が優れているという利点がある。 The third embodiment has the same effect as that of the first embodiment. Further, in the third embodiment, since the uneven portion 43 is provided on the bottom portion 25c of the concave portion 25, there is an advantage that the foreign matter collecting ability is superior to that of the second embodiment.

なお、図7では、1個の凹部25に2個の通気孔27が設けられている例を挙げているが、それに限定されるものではない。つまり、少なくとも1個の凹部25に複数の通気孔27が設けてあれば、他の凹部25に設けられている通気孔27の数に特に限定はない(以下同様)。 Note that FIG. 7 gives an example in which two ventilation holes 27 are provided in one recess 25, but the present invention is not limited thereto. That is, as long as a plurality of ventilation holes 27 are provided in at least one recess 25, the number of ventilation holes 27 provided in the other recesses 25 is not particularly limited (the same applies hereinafter).

また、図8Aに変形例1のペリクル枠51を示すが、本変形例1では、上述した凹凸部43と同様な形状の凹凸部53が、凹部25の内周面のうち、Z方向の両側の側面25a、25bに形成してある。 Further, FIG. 8A shows the pellicle frame 51 of the modified example 1. In the modified example 1, the concave-convex portion 53 having the same shape as the concave-convex portion 43 described above is formed on both sides of the inner peripheral surface of the concave portion 25 in the Z direction. It is formed on the side surfaces 25a and 25b of the above.

本変形例1では、前記第3実施形態と同様な効果を奏する。なお、凹部25の底部25cと両側面25a、25bとの両方に、前記凹凸部43、53を設けてよい。 In the first modification, the same effect as that of the third embodiment is obtained. The uneven portions 43 and 53 may be provided on both the bottom portion 25c of the concave portion 25 and the both side surfaces 25a and 25b.

さらに、図8Bに変形例2のペリクル枠61を示すが、本変形例2では、凹部25の底部25cに、半球形状の凸部63が複数形成してある。なお、半球形状の凹部(ディンプル)を複数設けてもよい。 Further, FIG. 8B shows the pellicle frame 61 of the modified example 2. In the modified example 2, a plurality of hemispherical convex portions 63 are formed on the bottom portion 25c of the concave portion 25. A plurality of hemispherical recesses (dimples) may be provided.

本変形例1、および変形例2では、第3実施形態と同様な効果を奏する。 In the first modification and the second modification, the same effect as that of the third embodiment is obtained.

[4.第4実施形態]
次に、第4実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
[4. Fourth Embodiment]
Next, the fourth embodiment will be described, but the description thereof will be omitted or simplified for the same contents as those of the first embodiment. In addition, the same number is given to the structure which is the same as the 1st Embodiment.

図9に示すように、本第4実施形態のペリクル枠71は、凹部25の開口端の全体を覆うようにフィルタ5が貼り付けられている。 As shown in FIG. 9, the filter 5 is attached to the pellicle frame 71 of the fourth embodiment so as to cover the entire open end of the recess 25.

また、フィルタ5の外周面13側(図9Bの上方)には、2個の通気孔27の外周面13側の真上(図9Bの上方)に、通気を抑制するシート状の通気抑制部73が貼り付けられている。つまり、2個の通気孔27の開口27aに対向する対向領域の全体を覆うように、両開口27aより広い面積の一つの通気抑制部73が配置されている。 Further, on the outer peripheral surface 13 side (above FIG. 9B) of the filter 5, a sheet-shaped ventilation suppressing portion that suppresses ventilation is directly above the outer peripheral surface 13 side (above FIG. 9B) of the two ventilation holes 27. 73 is pasted. That is, one ventilation suppressing portion 73 having an area wider than both openings 27a is arranged so as to cover the entire facing region facing the openings 27a of the two ventilation holes 27.

なお、通気抑制部73は、各通気孔27毎にそれぞれ設けてもよい。 The ventilation suppression unit 73 may be provided for each ventilation hole 27.

この通気抑制部73は、例えばフィルタ5の上面に接着剤を塗布し、固化させることによって形成することができる。 The ventilation suppressing portion 73 can be formed, for example, by applying an adhesive to the upper surface of the filter 5 and solidifying it.

また、本第4実施形態のペリクル枠71は、第2実施形態と同様に凹部25及び通気孔27の表面(即ち内周面)の全体にわたって、空気中の塵等の異物を接着して捕集可能な粘着材層(図示せず)が形成されている。 Further, the pellicle frame 71 of the fourth embodiment adheres and catches foreign matter such as dust in the air over the entire surface (that is, the inner peripheral surface) of the recess 25 and the ventilation hole 27 as in the second embodiment. A collectable adhesive layer (not shown) is formed.

なお、ここでは、通気抑制部73は、通気を完全に禁止するが、フィルタ5よりも通気を規制する能力が高い通気可能な部材を用いてもよい。 Although the ventilation suppression unit 73 completely prohibits ventilation here, a breathable member having a higher ability to regulate ventilation than the filter 5 may be used.

本第4実施形態は、第1実施形態と同様な効果を奏する。また、本第4実施形態では、通気抑制部73を備えているので、外部から凹部25に導入される空気は、通気抑制部73に邪魔されて、フィルタ5から直進して(即ちフィルタ5に対して垂直に流れて)そのまま通気孔27に導入されることがない。つまり、外部から凹部25に導入される空気は、通気抑制部73にて流路を曲げられて進むので、凹部25内における流路が長くなり、第2実施形態よりも異物の捕集能力が優れているという利点がある。 The fourth embodiment has the same effect as that of the first embodiment. Further, in the fourth embodiment, since the ventilation suppressing portion 73 is provided, the air introduced into the recess 25 from the outside is obstructed by the ventilation suppressing portion 73 and goes straight from the filter 5 (that is, to the filter 5). It will not be introduced into the ventilation hole 27 as it is (flowing vertically to the air). That is, since the air introduced into the recess 25 from the outside travels by bending the flow path at the ventilation suppressing portion 73, the flow path in the recess 25 becomes longer, and the ability to collect foreign matter is higher than that in the second embodiment. It has the advantage of being excellent.

[5.第5実施形態]
次に、第5実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
[5. Fifth Embodiment]
Next, the fifth embodiment will be described, but the description thereof will be omitted or simplified with respect to the same contents as those of the first embodiment. In addition, the same number is given to the structure which is the same as the 1st Embodiment.

図10に示すように、本第5実施形態のペリクル枠81は、凹部25の開口端の全体を覆うようにフィルタ(第1フィルタ)5が貼り付けられている。 As shown in FIG. 10, a filter (first filter) 5 is attached to the pellicle frame 81 of the fifth embodiment so as to cover the entire open end of the recess 25.

また、凹部25の内部には、第1フィルタ5より通気性が高い2個の第2フィルタ83が配置されている。この2個の第2フィルタ83は、2個の通気孔27の各開口27aの全面を覆うように、各開口27a毎にそれぞれ配置されている。 Further, inside the recess 25, two second filters 83 having higher air permeability than the first filter 5 are arranged. The two second filters 83 are arranged for each opening 27a so as to cover the entire surface of each opening 27a of the two ventilation holes 27.

この第2フィルタ83は、上記実施形態では、2個の通気孔27の各開口27aを個別に覆うように2個配置されているが、これに限らず、一つの第2フィルタ83により、2個の通気孔27の各開口27aを覆うように設けてもよい。なお、第2フィルタ83としては、焼結金属もしくはセラミックからなる多孔体を用いることができる。 In the above embodiment, two second filters 83 are arranged so as to individually cover each opening 27a of the two ventilation holes 27, but the present invention is not limited to this, and the second filter 83 can be used for 2 steps. It may be provided so as to cover each opening 27a of the ventilation holes 27. As the second filter 83, a porous body made of sintered metal or ceramic can be used.

さらに、第2フィルタ83は自身の気体流路の周囲に、前記粘着材層33(図10には示せず)を有している。なお、この粘着材層33としては、上述のようなシリコーン粘着剤を使用できる。なお、粘着材層33は流路を構成する壁面(例えばメッシュの場合には網を構成する線材の表面)に形成されているので、第2フィルタ83を介して空気の出入りは可能である。 Further, the second filter 83 has the pressure-sensitive adhesive layer 33 (not shown in FIG. 10) around its own gas flow path. As the pressure-sensitive adhesive layer 33, the above-mentioned silicone pressure-sensitive adhesive can be used. Since the adhesive layer 33 is formed on the wall surface forming the flow path (for example, in the case of a mesh, the surface of the wire rod forming the net), air can enter and exit through the second filter 83.

本第5実施形態は、第1実施形態と同様な効果を奏する。また、本第5実施形態では、粘着材層33を備えた第2フィルタ83を備えているので、第1実施形態よりも異物の捕集能力が優れているという利点がある。 The fifth embodiment has the same effect as that of the first embodiment. Further, in the fifth embodiment, since the second filter 83 provided with the adhesive layer 33 is provided, there is an advantage that the foreign matter collecting ability is superior to that of the first embodiment.

[6.第6実施形態]
次に、第6実施形態について説明するが、第1実施形態と同様な内容については、その説明は省略又は簡略化する。なお、第1実施形態と同様な構成については、同様な番号を付す。
[6. 6th Embodiment]
Next, the sixth embodiment will be described, but the description thereof will be omitted or simplified for the same contents as those of the first embodiment. In addition, the same number is given to the structure which is the same as the 1st Embodiment.

図11に示すように、本第6実施形態のペリクル枠91では、凹部25の内側の表面(内周面)の角部(即ち平面が垂直に交わる部分)は、R面取りされている。つまり、凹部25の内側の角部、即ち底部25cの外周部分の角部や、4つの側面25a、25b、25e、25fのうち隣接する側面25a、25b、25e、25fが交わる角部には、R面取り部93が形成されているので、角部は滑らかに湾曲している。 As shown in FIG. 11, in the pellicle frame 91 of the sixth embodiment, the corner portion (that is, the portion where the planes intersect vertically) on the inner surface (inner peripheral surface) of the recess 25 is chamfered. That is, the inner corner of the recess 25, that is, the corner of the outer peripheral portion of the bottom 25c, and the corner of the four side surfaces 25a, 25b, 25e, 25f where the adjacent side surfaces 25a, 25b, 25e, 25f intersect. Since the R chamfered portion 93 is formed, the corner portion is smoothly curved.

なお、凹部25には、3個の通気孔27が設けられている。 The recess 25 is provided with three ventilation holes 27.

本第6実施形態は、第1実施形態と同様な効果を奏する。また、本第6実施形態では、凹部25の内側にR面取り部93を備えているので、空気の流れが凹部25の内周面に沿った流れとなり、第1実施形態よりも異物の捕集能力が優れているという利点がある。また、R面取り部93によって、ペリクル枠1が破損し難いという利点がある。 The sixth embodiment has the same effect as that of the first embodiment. Further, in the sixth embodiment, since the R chamfered portion 93 is provided inside the recess 25, the air flow is along the inner peripheral surface of the recess 25, and foreign matter is collected as compared with the first embodiment. It has the advantage of excellent ability. Further, the R chamfered portion 93 has an advantage that the pellicle frame 1 is not easily damaged.

[7.実験例]
次に、演算等による実験例について説明する。
[7. Experimental example]
Next, an experimental example by calculation or the like will be described.

<実験例1>
本実験例1は、ペリクル枠の各部の寸法を規定して、開口面積比(S/V)を求めたものである。なお、凹部が複数ある場合には、全ての凹部の開口面積の合計を全開口面積Smaxと記すこともある。
<Experimental example 1>
In Experimental Example 1, the dimensions of each part of the pellicle frame are specified, and the opening area ratio (S / V) is obtained. When there are a plurality of recesses, the total opening area of all the recesses may be referred to as the total opening area Smax.

ここでは、ペリクル枠の外形寸法を、縦149mm×横115mm、厚さW1を1.8mm、幅D1を2mmとする。また、ペリクル枠の内径寸法を、縦145mm×横111mm×厚さ1.8mmとする。 Here, the external dimensions of the pellicle frame are 149 mm in length × 115 mm in width, 1.8 mm in thickness W1, and 2 mm in width D1. The inner diameter of the pellicle frame is 145 mm in length × 111 mm in width × 1.8 mm in thickness.

また、溝(即ち凹部)については、溝長さL1、溝幅W2、溝深さD2とすると、溝1個当たりの開口面積Sは、S=L1×W2である。 As for the groove (that is, the recess), assuming that the groove length L1, the groove width W2, and the groove depth D2, the opening area S per groove is S = L1 × W2.

なお、L1=辺部の長さー10mm、W2=W1−0.4mmとする。 It should be noted that L1 = side length of -10 mm and W2 = W1-0.4 mm.

従って、全ての溝の開口面積の合計である全開口面積Smaxは、下記式(1)により算出できる(数値の単位はmm)。 Therefore, the total opening area Smax, which is the total of the opening areas of all the grooves, can be calculated by the following formula (1) (the unit of the numerical value is mm).

Smax={(149-10)×2+(115-10)×2}×(1.8-0.4)=683mm ・・・(1)
一方、対向する2辺には、φ1.5mmの有底孔をそれぞれ2箇所に設けるので、有底孔の近傍の2mmは溝形成ができない。よって、この有底孔のロス分を、2×(1.8-0.4)×4(箇所)=11mmとする(「箇所」以外の数値の単位はmm)。
Smax = {(149-10) x 2 + (115-10) x 2} x (1.8-0.4) = 683 mm 2 ... (1)
On the other hand, since bottomed holes having a diameter of 1.5 mm are provided at two locations on the two opposite sides, a groove cannot be formed in 2 mm in the vicinity of the bottomed holes. Therefore, the loss amount of this bottomed hole is set to 2 × (1.8-0.4) × 4 (location) = 11 mm 2 (the unit of the numerical value other than “location” is mm).

従って、ロス分を考慮した正確な全開口面積(Smax[mm])は、683mm−11mm=672mmとなる。Therefore, the exact total open area in consideration of the loss in (Smax [mm 2]) is a 683mm 2 -11mm 2 = 672mm 2.

ここで、ペリクル枠の内周面で囲まれた内側空間の体積(内容積:V[mm])は、145mm×111mm×1.8mm=28971mmである。Here, the volume of the inner space surrounded by the inner peripheral surface of the pellicle frame (internal volume: V [mm 3 ]) is 145 mm × 111 mm × 1.8 mm = 28971 mm 3 .

従って、前記全開口面積Smax[mm]と前記ペリクル枠の内容積V[mm]との比(開口面積比:Smax/V)は、672mm÷28971mm=約0.023mm−1となる。Therefore, the ratio of the total opening area Smax [mm 2 ] to the internal volume V [mm 3 ] of the pellicle frame (opening area ratio: Smax / V) is 672 mm 2 ÷ 28971 mm 3 = about 0.023 mm -1 . Become.

つまり、上述した条件では、開口面積比(Smax/V)の最大は、0.023mm−1となる。That is, under the above-mentioned conditions, the maximum opening area ratio (Smax / V) is 0.023 mm -1 .

<実験例2>
本実験例2は、ペリクル枠の各部の寸法等を規定して、真空引きや大気解放に要する時間を求めたものである。
<Experimental example 2>
In Experimental Example 2, the dimensions and the like of each part of the pellicle frame are specified, and the time required for evacuation and release to the atmosphere is obtained.

フィルター(第1フィルタ)としては、ULPA規格を満足するものを用いる。 As the filter (first filter), a filter that satisfies the ULPA standard is used.

このULPA規格とは、定格風量で粒径が、0.15μmの粒子に対して99.9995%以上の粒子捕集率をもち、且つ、初期圧力損失が、245Pa以下の性能を有するフィルタである。 This ULPA standard is a filter having a particle collection rate of 99.9995% or more with respect to particles having a rated air volume and a particle size of 0.15 μm, and an initial pressure loss of 245 Pa or less. ..

試験方法としては、JIS B 9927 クリーンルーム用エアフィルタ性能試験方法の規定(試験風速=5.3[cm/sec])を基準とし、下記式(2)により、ペリクル枠の定格風量を求めることができる。なお、ここでは、全開口面積を単に開口面積Sとしている。 As a test method, the rated air volume of the pellicle frame can be calculated by the following formula (2) based on the JIS B 9927 clean room air filter performance test method specification (test wind speed = 5.3 [cm / sec]). can. Here, the total opening area is simply referred to as the opening area S.

ペリクル枠の定格風量=風速(53[mm/sec])×開口面積(S[mm])
=53S[mm/sec] ・・(2)
また、1気圧(100000[Pa])の気圧差を、真空引きまたは大気解放する時間Tは、下記式(3)から求めることができる。
Rated air volume of pellicle frame = wind speed (53 [mm / sec]) x opening area (S [mm 2 ])
= 53S [mm 3 / sec] ・ ・ (2)
Further, the time T for evacuating or releasing the pressure difference of 1 atm (100000 [Pa]) to the atmosphere can be obtained from the following formula (3).

T=(ペリクル枠の内容積÷定格風量)×(100000[Pa]÷許容圧力差)・・(3)
ここで、ペリクル膜が変形・破損しない許容圧力差を245[Pa]とすると、下記式(4)から時間Tを求めることができる。なお、上記許容圧力差は、便宜的に245[Pa]であるものとして計算を行う。
T = (Internal volume of pellicle frame ÷ Rated air volume) × (100000 [Pa] ÷ Allowable pressure difference) ・ ・ (3)
Here, assuming that the allowable pressure difference at which the pellicle film is not deformed or damaged is 245 [Pa], the time T can be obtained from the following equation (4). The allowable pressure difference is calculated assuming that it is 245 [Pa] for convenience.

T={(145*111*1.8)/(53*S)}*(100000/245)≒223000/S [sec]・・(4)
さらに、下記の手順で、凹部(溝)の開口面積の最小値を求めることができる。
T = {(145 * 111 * 1.8) / (53 * S)} * (100000/245) ≒ 223000 / S [sec] ・ ・ (4)
Further, the minimum value of the opening area of the recess (groove) can be obtained by the following procedure.

即ち、真空引きの時間T=1時間(3600[sec])以内と仮定すると、S=223000/3600≒62[mm]以上の開口面積が必要となる。つまり、凹部(溝)の開口面積の最小値は、62[mm]である。That is, assuming that the evacuation time T = 1 hour (3600 [sec]) or less, an opening area of S = 223000/3600 ≈ 62 [mm 2] or more is required. That is, the minimum value of the opening area of the recess (groove) is 62 [mm 2 ].

また、開口面積比(S/V)の必要最小値は、下記式(5)から求めることができる。 Further, the required minimum value of the opening area ratio (S / V) can be obtained from the following equation (5).

開口面積比[mm−1]=62[mm]÷内容積V(28971[mm])=0.002[mm−1] ・・(5)
また、溝面積を最大にとった場合(即ちS=672[mm]の場合)には、真空引き時間は、下記式(6)から、約332[sec](約5.5分)となる。
Aperture area ratio [mm -1 ] = 62 [mm 2 ] ÷ internal volume V (28971 [mm 3 ]) = 0.002 [mm -1 ] ・ ・ (5)
When the groove area is maximized (that is, when S = 672 [mm 2 ]), the evacuation time is about 332 [sec] (about 5.5 minutes) from the following equation (6). Become.

T=223000/672=約332[sec] ・・(6)
一方、開口面積比(S/V)の最大値は、前記実験例1から0.023mm−1とされている。
T = 223000/672 = approx. 332 [sec] ・ ・ (6)
On the other hand, the maximum value of the opening area ratio (S / V) is 0.023 mm -1 from Experimental Example 1.

従って、開口面積比(S/V)の範囲は、上述した条件では、0.002mm−1以上0.023mm−1以下と考えられる。Accordingly, the scope of the opening area ratio (S / V), in the conditions described above is considered to 0.002 mm -1 or 0.023 mm -1 or less.

なお、第1フィルタとして、例えば特開2013-52320号公報に記載の濾材を用いる場合には、圧力損失は190[Pa]以下と小さく、真空引き時間を短縮できる。なお、カバー層<10[Pa]、プレ捕集層<80[Pa]、主捕集層<100[Pa]である。 When, for example, the filter medium described in Japanese Patent Application Laid-Open No. 2013-52320 is used as the first filter, the pressure loss is as small as 190 [Pa] or less, and the vacuuming time can be shortened. The cover layer <10 [Pa], the pre-collection layer <80 [Pa], and the main collection layer <100 [Pa].

また、主捕集層<100[Pa]のみを用いれば、さらに圧損が半減し、真空引き時間の短時間化が可能である。 Further, if only the main collection layer <100 [Pa] is used, the pressure loss is further halved, and the evacuation time can be shortened.

[8.その他の実施形態]
尚、本開示は、前記実施形態等に何ら限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
[8. Other embodiments]
It is needless to say that the present disclosure is not limited to the above-described embodiment or the like, and various forms can be adopted as long as it belongs to the technical scope of the present disclosure.

(1)例えば、ペリクル枠の枠体を構成する材料としては、例えば下記表1に記載の導電性セラミックスなどを採用できる。また、例えば下記表2に記載の非導電性セラミックスを採用できる。 (1) For example, as the material constituting the frame body of the pellicle frame, for example, the conductive ceramics shown in Table 1 below can be adopted. Further, for example, the non-conductive ceramics shown in Table 2 below can be adopted.

Figure 2020009169
Figure 2020009169

Figure 2020009169
Figure 2020009169

また、導電性セラミックスの組成(配合組成)としては、下記表3の組成を採用できる。また、セラミックス以外の導電性材料の組成としては、下記表4の組成を採用できる。さらに、非導電性セラミックスの組成としては、下記表5の組成を採用できる。 Further, as the composition (blending composition) of the conductive ceramics, the compositions shown in Table 3 below can be adopted. Further, as the composition of the conductive material other than ceramics, the composition shown in Table 4 below can be adopted. Further, as the composition of the non-conductive ceramics, the compositions shown in Table 5 below can be adopted.

Figure 2020009169
Figure 2020009169

Figure 2020009169
Figure 2020009169

Figure 2020009169
Figure 2020009169

なお、表1のNo.1〜3と表3のNo.10〜12は同じ材料である。表1のNo.4〜6と表4のNo.13〜15は同じ材料である。表2のNo.7〜9と表5のNo.16〜18は同じ材料である。 Nos. 1 to 3 in Table 1 and Nos. 10 to 12 in Table 3 are the same material. Nos. 4 to 6 in Table 1 and Nos. 13 to 15 in Table 4 are the same material. Nos. 7 to 9 in Table 2 and Nos. 16 to 18 in Table 5 are the same material.

(2)また、ペリクル枠を形成するセラミックス材料としては、例えば特開2016−122091号公報に開示されているような、窒化ケイ素、ジルコニア、アルミナと炭化チタンの複合セラミックス等、各種の材料を採用できる。 (2) Further, as the ceramic material for forming the pellicle frame, various materials such as silicon nitride, zirconia, and composite ceramics of alumina and titanium carbide as disclosed in Japanese Patent Application Laid-Open No. 2016-122091 are adopted. can.

(3)さらに、4つの辺部のうち、少なくとも1つの辺部に、1又は複数の凹部が設けられていてもよい。 (3) Further, one or a plurality of recesses may be provided on at least one of the four side portions.

(4)なお、上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を、省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
(4) The function of one component in each of the above embodiments may be shared by a plurality of components, or the function of the plurality of components may be exerted by one component. Further, a part of the configuration of each of the above embodiments may be omitted. Further, at least a part of the configuration of each of the above embodiments may be added or replaced with respect to the configuration of another embodiment. It should be noted that all aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.

Claims (14)

平面視で矩形形状であり、当該矩形形状の各辺に対応する4つの辺部を備えるとともに、厚み方向の両側に設けられた第1面及び第2面と、前記第1面及び前記第2面に連接された内周面及び外周面と、を備えるペリクル枠において、
前記外周面には、1又は複数の凹部を備えるとともに、当該1又は複数の凹部は、前記4つの辺部のうち、1又は複数の辺部に設けられており、
前記1又は複数の凹部は、当該凹部が設けられた前記辺部を貫通して当該凹部の内側と前記内周面とに開口する貫通孔を備え、
前記1又は複数の凹部のうち、少なくとも一つの凹部は、前記貫通孔を複数備え、
前記貫通孔が少なくとも一つ設けられた前記凹部では、当該凹部の前記外周面側の開口端の面積である通気面積(S1)が、前記貫通孔のなす気体流路の最小の断面積である最小断面積(S2)より大である、
ペリクル枠。
It has a rectangular shape in a plan view, has four side portions corresponding to each side of the rectangular shape, and has first and second surfaces provided on both sides in the thickness direction, and the first surface and the second surface. In a pellicle frame including an inner peripheral surface and an outer peripheral surface connected to a surface,
The outer peripheral surface is provided with one or a plurality of recesses, and the one or a plurality of recesses are provided on one or a plurality of the four side portions.
The one or a plurality of recesses are provided with through holes that penetrate the side portion provided with the recess and open to the inside of the recess and the inner peripheral surface.
Of the one or a plurality of recesses, at least one recess is provided with a plurality of the through holes.
In the recess provided with at least one through hole, the ventilation area (S1), which is the area of the opening end on the outer peripheral surface side of the recess, is the minimum cross-sectional area of the gas flow path formed by the through hole. Larger than the minimum cross-sectional area (S2),
Pellicle frame.
前記最小断面積(S2)は、前記貫通孔が1つの場合には当該貫通孔のなす気体流路の最小の断面積であり、また、前記貫通孔が複数の場合には当該各貫通孔のなす各気体流路の各最小の断面積の合計である、
請求項1に記載のペリクル枠。
The minimum cross-sectional area (S2) is the minimum cross-sectional area of the gas flow path formed by the through-holes when there is one through-hole, and when there are a plurality of through-holes, the minimum cross-sectional area of each of the through-holes. The sum of the minimum cross-sectional areas of each gas flow path.
The pellicle frame according to claim 1.
全ての前記凹部の前記開口端の総面積(Smm)と前記ペリクル枠の前記内周面で囲まれた内側空間の体積(Vmm)との比(S/V)は、0.002mm−1〜0.025mm−1である、
請求項1又は2に記載のペリクル枠。
The ratio (S / V) of the total area (Smm 2 ) of the open ends of all the recesses to the volume (Vmm 3 ) of the inner space surrounded by the inner peripheral surface of the pellicle frame is 0.002 mm −. 1 to 0.025 mm -1 ,
The pellicle frame according to claim 1 or 2.
前記凹部の前記外周面側の前記開口端を覆う第1フィルタを備えた、
請求項1〜3のいずれか1項に記載のペリクル枠。
A first filter covering the open end on the outer peripheral surface side of the recess is provided.
The pellicle frame according to any one of claims 1 to 3.
前記凹部の内側の表面及び前記貫通孔の内側の表面の少なくとも一方に、粘着材層を備えた、
請求項4に記載のペリクル枠。
An adhesive layer is provided on at least one of the inner surface of the recess and the inner surface of the through hole.
The pellicle frame according to claim 4.
前記凹部の内側の表面は、凹凸を備えた、
請求項4又は5に記載のペリクル枠。
The inner surface of the recess has irregularities.
The pellicle frame according to claim 4 or 5.
前記第1フィルタにおいて、前記貫通孔の開口に対向する対向領域に、前記第1フィルタの通気を抑制する通気抑制部を備えた、
請求項4〜6のいずれか1項に記載のペリクル枠。
In the first filter, a ventilation suppressing portion for suppressing the ventilation of the first filter is provided in a region facing the opening of the through hole.
The pellicle frame according to any one of claims 4 to 6.
前記凹部の内部に、前記第1フィルタより通気性が高く前記貫通孔の開口を覆う第2フィルタを備えるとともに、該第2フィルタは自身の気体流路の周囲に粘着材層を備えた、
請求項4〜7のいずれか1項に記載のペリクル枠。
Inside the recess, a second filter that is more breathable than the first filter and covers the opening of the through hole is provided, and the second filter is provided with an adhesive layer around its own gas flow path.
The pellicle frame according to any one of claims 4 to 7.
前記凹部の内側の表面の角部は、R面取りされている、
請求項1〜8のいずれか1項に記載のペリクル枠。
The corners of the inner surface of the recess are R-chamfered.
The pellicle frame according to any one of claims 1 to 8.
前記ペリクル枠は、導電性を有するセラミック焼結体からなる、
請求項1〜9のいずれか1項に記載のペリクル枠。
The pellicle frame is made of a conductive ceramic sintered body.
The pellicle frame according to any one of claims 1 to 9.
前記ペリクル枠は、ヤング率が300GPa以上、強度が500MPa以上であるセラミック焼結体からなる、
請求項1〜10のいずれか1項に記載のペリクル枠。
The pellicle frame is made of a ceramic sintered body having a Young's modulus of 300 GPa or more and a strength of 500 MPa or more.
The pellicle frame according to any one of claims 1 to 10.
前記ペリクル枠は、熱伝導率が15W/mK以上のセラミック焼結体からなる、
請求項1〜11のいずれか1項に記載のペリクル枠。
The pellicle frame is made of a ceramic sintered body having a thermal conductivity of 15 W / mK or more.
The pellicle frame according to any one of claims 1 to 11.
前記ペリクル枠は、熱膨張率が10ppm/℃以下であるセラミック焼結体からなる、
請求項1〜12のいずれか1項に記載のペリクル枠。
The pellicle frame is made of a ceramic sintered body having a coefficient of thermal expansion of 10 ppm / ° C. or less.
The pellicle frame according to any one of claims 1 to 12.
前記ペリクル枠は、以下の関係式を満たす、
請求項1〜13のいずれか1項に記載のペリクル枠。
50×最小断面積(S2)≦通気面積(S1)
The pellicle frame satisfies the following relational expression.
The pellicle frame according to any one of claims 1 to 13.
50 x minimum cross-sectional area (S2) ≤ ventilation area (S1)
JP2020529041A 2018-07-04 2019-07-03 Pellicle frame Pending JPWO2020009169A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018127636 2018-07-04
JP2018127636 2018-07-04
PCT/JP2019/026529 WO2020009169A1 (en) 2018-07-04 2019-07-03 Pellicle frame

Publications (1)

Publication Number Publication Date
JPWO2020009169A1 true JPWO2020009169A1 (en) 2021-08-02

Family

ID=69060837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529041A Pending JPWO2020009169A1 (en) 2018-07-04 2019-07-03 Pellicle frame

Country Status (2)

Country Link
JP (1) JPWO2020009169A1 (en)
WO (1) WO2020009169A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445685B2 (en) * 1994-08-11 2003-09-08 三井化学株式会社 Mask protection device
JP2005250188A (en) * 2004-03-05 2005-09-15 Asahi Glass Co Ltd Pellicle
JP4870788B2 (en) * 2009-01-27 2012-02-08 信越化学工業株式会社 Pellicle for lithography
JP5142297B2 (en) * 2009-06-19 2013-02-13 信越化学工業株式会社 Pellicle
JP5047232B2 (en) * 2009-06-26 2012-10-10 信越化学工業株式会社 Pellicle
JP5479868B2 (en) * 2009-12-02 2014-04-23 旭化成イーマテリアルズ株式会社 Pellicle and its mounting method
JP5314631B2 (en) * 2010-04-20 2013-10-16 信越化学工業株式会社 Method of applying an adhesive to the inner wall of the vent hole of the pellicle frame
JP2012037800A (en) * 2010-08-10 2012-02-23 Renesas Electronics Corp Manufacturing method of photomask, pellicle frame and semiconductor device
WO2016043292A1 (en) * 2014-09-19 2016-03-24 三井化学株式会社 Pellicle, production method thereof, exposure method
JP2017083791A (en) * 2015-10-30 2017-05-18 三井化学株式会社 Pellicle, method for producing pellicle and exposure method using the pellicle
JP6526588B2 (en) * 2016-03-10 2019-06-05 日本特殊陶業株式会社 Method of manufacturing pellicle frame and pellicle frame

Also Published As

Publication number Publication date
WO2020009169A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6708460B2 (en) Method for manufacturing joined body
JP6592188B2 (en) Adsorption member
EP3075719B1 (en) Porous material and heat insulating film
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
US10597336B2 (en) Porous ceramic structure
JP7111566B2 (en) Pellicle frame and pellicle
TWI720323B (en) Substrate holding member
KR101166430B1 (en) A porous chuck of fixing semiconductor wafer with vacuum suction
JPWO2020009169A1 (en) Pellicle frame
KR101282839B1 (en) A porous chuck of improved vacuum suction power
JP2004283936A (en) Vacuum sucking device
JP5388700B2 (en) Vacuum suction member and method of manufacturing vacuum suction member
JP2009107880A (en) Joined body, adsorption member, adsorption device, and working apparatus
JP2018200380A (en) Pellicle frame and method for manufacturing the same
JP5340755B2 (en) Ceramic porous body and method for producing the same
JP7096063B2 (en) Manufacturing method of pellicle frame
JP2000021959A (en) Vacuum chuck disk
JP7439239B2 (en) Channel member and its manufacturing method
JP7307578B2 (en) Firing jig
JP2022086147A (en) Method for manufacturing suction member, and suction member
JPS62238639A (en) Sucking plate
JP2018194742A (en) Pellicle frame
JP6126765B1 (en) Porous ceramic particles
JP2022069786A (en) Chuck device
JP2019075507A (en) Heat dissipation member, heat dissipation structure, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240123