JPWO2020007865A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020007865A5
JPWO2020007865A5 JP2020573475A JP2020573475A JPWO2020007865A5 JP WO2020007865 A5 JPWO2020007865 A5 JP WO2020007865A5 JP 2020573475 A JP2020573475 A JP 2020573475A JP 2020573475 A JP2020573475 A JP 2020573475A JP WO2020007865 A5 JPWO2020007865 A5 JP WO2020007865A5
Authority
JP
Japan
Prior art keywords
shaft
perforator
distal end
distal
cannula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020573475A
Other languages
Japanese (ja)
Other versions
JP2021529066A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2019/067749 external-priority patent/WO2020007865A1/en
Publication of JP2021529066A publication Critical patent/JP2021529066A/en
Publication of JPWO2020007865A5 publication Critical patent/JPWO2020007865A5/ja
Pending legal-status Critical Current

Links

Description

図24は、本発明に係る装置を用いて高密度の骨層1の内側から高密度の骨層の反対の外側に血液、生細胞および/または酸素を搬送可能にすることを目的として高密度の骨層を穿孔する2つの異なる方法を示す。図24Aでは、使用装置はいくつかの微細孔を導入する。孔は、たとえば、矩形、楕円形、または不規則形状などのさまざまな断面を有することができる。断面は円形であることが好ましく、直径は1~2mmであってもよい。この方法で使用する穿孔器は、中実の遠位端を有してもよく、高密度の骨材料を骨の骨梁部に押し込み、骨梁部はそれによって圧縮される。あるいは、図24Bに示すように、使用される装置は、中空穿孔器または当該穿孔器の少なくとも中空切断管を備え、骨芯は除去されない。図2Bは、高密度の骨層の内側から高密度の骨層の反対の外側に血液、生細胞および/または酸素を搬送可能にすることを目的として高密度の骨層を穿孔する方法の結果を示しており、上記方法は、 本発明に係る装置を提供することを備え、上記装置は、振動発生器と、主シャフト軸を規定するシャフトと、主穿孔器軸を規定する中空の実質的に円筒状の穿孔器を有する遠位端片とを備え、上記方法はさらに、主穿孔器軸が高密度の骨層に対して実質的に垂直に向けられ、かつ穿孔器の遠位端が高密度の骨層に対して位置決めされるように、上記装置を位置決めすることと、高密度の骨層を貫通するようにまたは少なくとも高密度の骨層の中に実質的に円筒状の開口を作成するのに十分な時間にわたって、振動発生器を作動させて穿孔器を高密度の骨層に対して保持することと、穿孔器を開口から取り出すこととを備え、これにより、実質的に円筒状の開口の断面は実質的に環状である。つまり、骨芯は実質的に円筒状の開口内に残される。この骨構造は、下部の骨梁に、および任意に高密度の骨のより深い部分にも接触するが、処置した骨の完全な(元の)厚みを有する中央に、高密度の骨の中に閉じた外形を有する、かつ骨構造を有する切り口がある。円筒開口の環状断面の直径は0.1~0.75mmであってもよく、0.25~0.5mmであることが好ましい。 FIG. 24 shows high density for the purpose of allowing blood, living cells and / or oxygen to be transported from the inside of the high density bone layer 1 to the opposite outside of the high density bone layer using the apparatus according to the present invention. Two different methods of perforating the bone layer of the bone are shown. In FIG. 24A, the device used introduces some micropores. The holes can have various cross sections, such as rectangular, elliptical, or irregular shapes. The cross section is preferably circular and may have a diameter of 1 to 2 mm. The perforator used in this method may have a solid distal end, pushing dense bone material into the trabecular section of the bone, thereby compressing the trabecular section. Alternatively, as shown in FIG. 24B, the device used comprises a hollow perforator or at least a hollow cutting tube of the perforator and the bone core is not removed. FIG. 2 4B shows a method of perforating a dense bone layer for the purpose of transporting blood, living cells and / or oxygen from the inside of the dense bone layer to the opposite outside of the dense bone layer. The above method comprises providing the apparatus according to the present invention, wherein the apparatus is a vibration generator, a shaft defining a main shaft shaft, and a hollow hollow defining a main punch shaft. Featuring a distal end piece with a substantially cylindrical perforator, the method further comprises a main perforator axis oriented substantially perpendicular to the dense bone layer and distal to the perforator. Positioning the device so that the edges are positioned relative to the dense bone layer and substantially cylindrical to penetrate the dense bone layer or at least into the dense bone layer. It comprises activating the vibration generator to hold the perforator against the dense bone layer and removing the perforator from the opening for a sufficient period of time to create the opening, thereby substantially. The cross section of the cylindrical opening is substantially annular. That is, the bone core is left in a substantially cylindrical opening. This bone structure contacts the lower trabecular bone and optionally deeper parts of the dense bone, but in the central, dense bone with the full (original) thickness of the treated bone. There is a cut with a closed outer shape and a bone structure. The diameter of the annular cross section of the cylindrical opening may be 0.1 to 0.75 mm, preferably 0.25 to 0.5 mm.

Claims (28)

高密度の骨層(1)を穿孔するための装置であって、前記装置は、機械的振動を発生させるための振動発生器と、シャフト(12)と穿孔器(13)を含む遠位端片とを有する器具とを備え、前記シャフト(12)は、遠位端と、近位端と、前記近位端と前記遠位端との間に延びる主シャフト軸(A)とを有し、前記遠位端片は前記シャフト(12)の前記遠位端に配置され、前記シャフトの前記近位端は前記振動発生器に接続されるかまたは接続可能であり、前記穿孔器(13)は、主穿孔器軸(B)を規定する中実または中空の円筒または角柱を備え、前記振動発生器、前記シャフト(12)、および前記遠位端片は、前記シャフト(12)が、作動された前記振動発生器に接続されると、前記振動発生器から前記遠位端片に機械的振動を伝達して前記主穿孔器軸(B)に平行な方向に前記穿孔器(13)を振動させるように、互いに適合される、装置。 A device for perforating a dense bone layer (1), said device including a vibration generator for generating mechanical vibrations and a distal end including a shaft (12) and a perforator (13). The shaft (12) has a distal end, a proximal end, and a main shaft shaft (A) extending between the proximal end and the distal end. , The distal end piece is located at the distal end of the shaft (12), the proximal end of the shaft is connected to or connectable to the vibration generator, said perforator (13). Has a solid or hollow cylinder or square column defining a main perforator shaft (B), the vibration generator, the shaft (12), and the distal end piece, the shaft (12) actuating. When connected to the vibration generator, mechanical vibration is transmitted from the vibration generator to the distal end piece to move the punch (13) in a direction parallel to the main punch shaft (B). Devices that are adapted to each other to vibrate. 前記シャフト(12)と、前記穿孔器(13)を有する前記遠位端片とは、一体化して作られて、または互いに剛性結合されて、ともに1つの振動要素を形成する、請求項1に記載の装置。 2. The shaft (12) and the distal end piece having the perforator (13) are made integrally or rigidly coupled to each other to form one vibrating element. The device described. 前記穿孔器13は切断管(40)を備える、請求項1または2に記載の装置。 The device according to claim 1 or 2, wherein the perforator 13 includes a cutting tube (40). 前記穿孔器(13)または前記シャフト(12)は、取り出された骨片(42)の保管に適した開口(41)を備える、請求項1~3のいずれか1項に記載の装置。 The device according to any one of claims 1 to 3, wherein the perforator (13) or the shaft (12) has an opening (41) suitable for storing the removed bone fragment (42). 前記シャフト(12)または前記穿孔器(13)は、前記開口(41)への液体供給に適した、または前記開口(41)に真空を印加するのに適した管路(43)を備える、請求項4に記載の装置。 The shaft (12) or the perforator (13) comprises a conduit (43) suitable for supplying liquid to the opening (41) or for applying a vacuum to the opening (41). The device according to claim 4. 前記主シャフト軸(A)および前記主穿孔器軸(B)は、>90°および<180°の角度を形成する、請求項1~3のいずれか1項に記載の装置。 The device according to any one of claims 1 to 3, wherein the main shaft shaft (A) and the main punch shaft (B) form an angle of> 90 ° and <180 °. 前記シャフト(12)は主に横モードもしくは曲げモードで振動するように設計され、または、
前記シャフト(12)は主に縦モードで振動するように設計され、前記穿孔器(13)を有する前記遠位端片は、縦振動している前記シャフトを前記主穿孔器軸(B)の方向における縦振動に偏向するように設計される、請求項6に記載の装置。
The shaft (12) is designed or designed to vibrate primarily in transverse or bending mode.
The shaft (12) is designed to vibrate primarily in longitudinal mode, with the distal end piece having the perforator (13) having the shaft vibrating longitudinally on the main perforator shaft (B). The device of claim 6, which is designed to deflect longitudinal vibrations in a direction.
前記穿孔器(13)は中実円筒であり、遠位外縁(18)を有する凹状の遠位面(14′)を備える、請求項1~7のいずれか1項に記載の装置。 The apparatus according to any one of claims 1 to 7, wherein the perforator (13) is a solid cylinder and has a concave distal surface (14') having a distal outer edge (18). 前記穿孔器(13)またはその切断管(40)は中空円筒であり、遠位縁(18)を備える、請求項1~7のいずれか1項に記載の装置。 The device according to any one of claims 1 to 7, wherein the perforator (13) or a cutting tube ( 40) thereof is a hollow cylinder and includes a distal edge (18). 前記遠位縁(18)は円筒壁の内側および/または外側の先細りを終端させる、請求項9に記載の装置。 The device of claim 9, wherein the distal edge (18) terminates the taper inside and / or outside the cylindrical wall. 前記遠位縁(18)は溝(52)および/または溝(53)を備える、請求項10に記載の装置。 10. The device of claim 10, wherein the distal edge (18) comprises a groove (52) and / or a groove (53). 前記遠位縁(18)は、中空の前記穿孔器(13)または中空の前記切断管(40)の前記開口の中にクランプ留めされたリング(54)を備える、請求項9または10に記載の装置。 19. The distal edge (18) of claim 9 or 10, wherein the distal edge (18) comprises a ring (54) clamped into the opening of the hollow perforator (13) or the hollow cutting tube (40). Equipment. 前記遠位縁(18)は、前記穿孔器(13)または前記切断管(40)に溶接されたリング(55)によって形成される、請求項9に記載の装置。 9. The device of claim 9, wherein the distal edge (18) is formed by a ring (55) welded to the perforator (13) or the cutting tube (40). 前記遠位縁(18)は、外側および内側に交互に折り曲げられている前記切断管(40)または前記穿孔器(13)の部分(57、58)によって形成される、請求項9に記載の装置。 19. The distal edge (18) is formed by a portion (57, 58) of the cutting tube (40 ) or the perforator (13) that is alternately bent outward and inward, claim 9. Equipment. 前記遠位縁(18)は鋭利であるかまたは鋸歯形状であり、前記鋸歯形状は可視範囲または可視範囲以下のサイズを有する、請求項9~13のいずれか1項に記載の装置。 The apparatus according to any one of claims 9 to 13, wherein the distal edge (18) is sharp or serrated, and the serrated shape has a visible range or a size below the visible range. 前記シャフト(12)または前記穿孔器(13)の遠位端は深さ制限要素を備える、請求項1~15のいずれか1項に記載の装置。 The device according to any one of claims 1 to 15, wherein the distal end of the shaft (12) or the perforator (13) comprises a depth limiting element. カニューレ(30)をさらに備え、前記シャフト(12)は前記カニューレ(30)の縦溝の中に延びる、請求項1~15のいずれか1項に記載の装置。 The device according to any one of claims 1 to 15, further comprising a cannula (30), wherein the shaft (12) extends into a flute of the cannula (30). 前記カニューレ(30)の遠位縁は、鋭利なもしくは鋸歯形状の縁であるか、または前記カニューレ(30)から延びるピン形状の突起を備える、請求項17に記載の装置。 17. The apparatus of claim 17, wherein the distal edge of the cannula (30) is a sharp or serrated edge or has a pin-shaped protrusion extending from the cannula (30). 前記穿孔器(13)を有する前記遠位端片は、前記カニューレ(30)の遠位端の中に引き込み可能である、請求項17~18のいずれか1項に記載の装置。 The device of any one of claims 17-18, wherein the distal end piece having the perforator (13) is retractable into the distal end of the cannula (30). 前記器具(12)および/または前記カニューレ(30)は、より大きな断面の少なくとも1つの部分(18)を備える、請求項17~19のいずれか1項に記載の装置。 The device of any one of claims 17-19, wherein the instrument (12) and / or the cannula (30) comprises at least one portion (18) of a larger cross section. 前記カニューレ(30)は、修復部位におよび/または修復部位から流体を搬送するための少なくとも1本の導管をさらに備える、請求項17~20のいずれか1項に記載の装置。 The device of any one of claims 17-20, wherein the cannula (30) further comprises at least one conduit for transporting fluid to and / or from the repair site. 前記穿孔器(13)または前記切断管(40)は、切断した骨にねじり力を作用させるのに適したリブなどの突出要素(50)を内面に備える、請求項1~21のいずれか1項に記載の装置。 One of claims 1 to 21, wherein the perforator (13) or the cutting tube (40) is provided with a protruding element (50) such as a rib suitable for applying a torsional force to the cut bone on the inner surface. The device described in the section. 前記穿孔器(13)または前記切断管(40)は、骨を切刻むのに適したスライス要素(51)を内部空間に備える、請求項1~21のいずれか1項に記載の装置。 The device according to any one of claims 1 to 21, wherein the perforator (13) or the cutting tube (40) is provided with a slice element (51) suitable for chopping bone in an internal space. 請求項1~23のいずれか1項に記載の装置に適した器具であって、前記器具は、シャフト(12)と、中実または中空の実質的に円筒状の穿孔器(13)を有する遠位端片とを備える、器具。 An instrument suitable for the apparatus of any one of claims 1-23, wherein the instrument has a shaft (12) and a solid or hollow substantially cylindrical perforator (13). An instrument with a distal end piece. カニューレ(30)をさらに備える、請求項24に記載の器具。 24. The device of claim 24, further comprising a cannula (30). 高密度の骨層(1)の内側から前記高密度の骨層の反対の外側に血液、生体細胞および/または酸素を搬送可能にすることを目的として前記高密度の骨層を穿孔する方法であって、前記方法は、
請求項1に記載の装置(10)を提供することを備え、前記装置は、振動発生器と、主シャフト軸(A)を規定するシャフト(12)と、主穿孔器軸(B)を規定する中実または中空の実質的に円筒状の穿孔器(13)を有する遠位端片とを備え、前記方法はさらに、
前記主穿孔器軸(B)が前記高密度の骨層(1)に対して非平行に、好ましくは実質的に垂直に向けられ、前記穿孔器(13)の遠位端が前記高密度の骨層(1)に対して位置決めされるように、前記装置(10)を位置決めすることと、
前記高密度の骨層(1)を貫通するようにまたは少なくとも前記高密度の骨層(1)の中に実質的に円筒状の開口(20)を作成するのに十分な時間にわたって、前記振動発生器を作動させて前記穿孔器(13)を前記高密度の骨層(1)に対して保持することと、
前記穿孔器(13)を前記開口(20)から取り出すこととを備える、方法。
By a method of perforating the high density bone layer for the purpose of transporting blood, living cells and / or oxygen from the inside of the high density bone layer (1) to the opposite outside of the high density bone layer. So, the above method is
The apparatus (10) according to claim 1 is provided, wherein the apparatus defines a vibration generator, a shaft (12) defining a main shaft shaft (A), and a main punch shaft (B). The method further comprises a distal end piece having a solid or hollow substantially cylindrical perforator (13).
The main perforator axis (B) is oriented non-parallel to the dense bone layer (1), preferably substantially perpendicular, and the distal end of the perforator (13) is said dense. Positioning the device (10) so that it is positioned with respect to the bone layer (1),
The vibrations so as to penetrate the dense bone layer (1) or at least for a time sufficient to create a substantially cylindrical opening (20) in the dense bone layer (1). Activating the generator to hold the perforator (13) against the dense bone layer (1).
A method comprising removing the perforator (13) from the opening (20).
切開手術または低侵襲手術において実行される、請求項26に記載の方法。 26. The method of claim 26, performed in open surgery or minimally invasive surgery. 前記高密度の骨層(1)は、ヒトもしくは動物患者の関節の軟骨下骨板、またはヒトもしくは動物患者の椎骨体の皮質骨板である、請求項26または27に記載の方法。 The method of claim 26 or 27, wherein the dense bone layer (1) is the subchondral bone plate of a human or animal patient's joint, or the cortical bone plate of the vertebral body of a human or animal patient.
JP2020573475A 2018-07-03 2019-07-02 A device for drilling dense bone layers Pending JP2021529066A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH00834/18 2018-07-03
CH8342018 2018-07-03
PCT/EP2019/067749 WO2020007865A1 (en) 2018-07-03 2019-07-02 Device for perforating a dense bone layer

Publications (2)

Publication Number Publication Date
JP2021529066A JP2021529066A (en) 2021-10-28
JPWO2020007865A5 true JPWO2020007865A5 (en) 2022-07-04

Family

ID=63794241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020573475A Pending JP2021529066A (en) 2018-07-03 2019-07-02 A device for drilling dense bone layers

Country Status (10)

Country Link
US (1) US20210177438A1 (en)
EP (1) EP3817672A1 (en)
JP (1) JP2021529066A (en)
KR (1) KR20210030387A (en)
CN (1) CN112543620A (en)
AU (1) AU2019298584A1 (en)
BR (1) BR112020026963A2 (en)
CA (1) CA3104813A1 (en)
IL (1) IL279848A (en)
WO (1) WO2020007865A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH719484A1 (en) * 2022-03-08 2023-09-15 Swiss Medical Instr Ag Method for producing an inner tube for a surgical cutting instrument.

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3202193A1 (en) * 1982-01-25 1983-08-04 Merck Patent Gmbh, 6100 Darmstadt SURGICAL BONE GRINDING INSTRUMENT
US4571183A (en) * 1982-10-06 1986-02-18 Syntex (U.S.A.) Inc. Vibratory endodontic device
US4838853A (en) * 1987-02-05 1989-06-13 Interventional Technologies Inc. Apparatus for trimming meniscus
JPH0529696Y2 (en) * 1988-11-28 1993-07-29
US5938633A (en) * 1997-07-09 1999-08-17 Ethicon Endo-Surgery, Inc. Ultrasonic surgical devices
US6551337B1 (en) * 1999-10-05 2003-04-22 Omnisonics Medical Technologies, Inc. Ultrasonic medical device operating in a transverse mode
US6875220B2 (en) * 2002-12-30 2005-04-05 Cybersonics, Inc. Dual probe
DE102005010989A1 (en) 2005-03-03 2006-09-14 Karl Storz Gmbh & Co. Kg Medical instrument for introducing microfractures into bone
WO2007101362A2 (en) 2006-03-09 2007-09-13 Woodwelding Ag Diversion of mechanical oscillations
WO2008038307A1 (en) * 2006-09-25 2008-04-03 Piezosurgery S.R.L. Handpiece with surgical tool to perform holes in bone tissues.
US8226675B2 (en) * 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
EP2146660B1 (en) * 2007-04-19 2015-07-29 Mectron S.p.A. Ultrasound frequency resonant dipole for medical use
EP2095843B1 (en) * 2008-02-29 2010-12-01 Storz Medical Ag Device for treating biological body substances with mechanical pressure waves
US8409230B2 (en) 2008-05-08 2013-04-02 Pivot Medical, Inc. Method and apparatus for performing arthroscopic microfracture surgery
US8486074B2 (en) * 2008-06-02 2013-07-16 Musculoskeletal Transplant Foundation Surgical allograft bone plug cutting tool assembly and method of using same
EP2367498B1 (en) * 2008-10-28 2013-07-03 Jeder Gmbh Drilling apparatus for a bone bore
US8287485B2 (en) * 2009-01-28 2012-10-16 Olympus Medical Systems Corp. Treatment system for surgery and control method of treatment system for surgery
JP2012065839A (en) * 2010-09-23 2012-04-05 Kiuchi Seisakusho:Kk Bone drilling hollow drill
US8828002B2 (en) * 2012-01-20 2014-09-09 Otokinetics Inc. Fenestration burr
FR2993168B1 (en) * 2012-07-16 2014-08-22 Satelec Soc ULTRASONIC SURGICAL MICROMOTOR
US9072528B2 (en) 2012-12-05 2015-07-07 Depuy Mitek, Llc Instrument and method to enhance articular cartilage regeneration
US9237894B2 (en) 2013-01-31 2016-01-19 Depuy Mitek, Llc Methods and devices for forming holes in bone to stimulate bone growth
BR112015022177A2 (en) 2013-03-14 2017-07-18 Smith & Nephew Inc microfracture punch
JP5829359B2 (en) * 2013-09-27 2015-12-09 オリンパス株式会社 Probe unit, treatment tool, and treatment system
JP6860346B2 (en) * 2014-02-17 2021-04-21 アロー インターナショナル インコーポレイテッド Electric screwdrivers and related kits, components, and methods that are activated by force on the drive shaft
DE102014003721A1 (en) * 2014-03-18 2015-09-24 Karl Storz Gmbh & Co. Kg Tool and method for creating an undercut in a bone
WO2015179646A1 (en) 2014-05-21 2015-11-26 The Uab Research Foundation Hinged microfracture awls
US10231750B2 (en) * 2014-09-29 2019-03-19 Transmed7, Llc Excisional device distal working end actuation mechanism and method
WO2016057576A1 (en) 2014-10-06 2016-04-14 Smith & Nephew, Inc. Microfracturing instrument
US10299809B2 (en) * 2014-11-12 2019-05-28 Misonix, Incorporated Method for reducing biofilm formation
KR101825270B1 (en) 2015-10-26 2018-02-02 아주대학교산학협력단 Boring device for minute fracture surgery
US10226272B2 (en) * 2015-12-18 2019-03-12 Olympus Corporation Arthroscopic surgery method for osteochondritis dissecans of talus
US10098654B2 (en) * 2016-03-28 2018-10-16 Olympus Corporation Arthroendoscopical surgical method

Similar Documents

Publication Publication Date Title
JP6017759B2 (en) Cannula
JP5389678B2 (en) Ultrasonic surgical instrument, and cartilage and osteoplasty blade of ultrasonic surgical instrument
EP2967593B1 (en) Ultrasonic surgical drill
US6071260A (en) Ultrasonic liposuction device and a method of using the same
JP2008136845A (en) Probe for ultrasonic treatment device
EP1503679B1 (en) A working tool for accurate lateral resection of biological tissue
US20050234484A1 (en) Ultrasonic surgical blade having transverse and longitudinal vibration
JP2008538299A (en) Ultrasonic wound resection probe and method of use
JP2010000335A (en) Ultrasonic therapeutic devices
EP2119403A1 (en) Osteotomes for ultrasonic bone surgery, particularly maxillofacial, dental and orthopedic surgery
JP2002065688A (en) Ultrasonic incision/coagulation device and ultrasonic conductor
JP2014514030A (en) Multiple portal guide
KR20210150400A (en) device for punching bones
WO2018078829A1 (en) Ultrasonic surgical instrument
JP2019063582A (en) Microfracture pick
WO2013112308A1 (en) Microfracture pick
JP2004194731A (en) Ultrasonic trocar system
US8048095B2 (en) Ultrasound liquid blade scalpel device
JPWO2020007865A5 (en)
JP2007020630A (en) Puncture needle for sampling bone marrow and cancellous bone agitation needle used for the same
US20090306694A1 (en) Ultrasound Liquid Blade Scalpel Method
JP2021529066A (en) A device for drilling dense bone layers
KR101825270B1 (en) Boring device for minute fracture surgery
RU2598761C2 (en) Set of tools for implants
WO2020064768A3 (en) Device and method for perforating a dense bone layer