JPWO2020007761A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020007761A5
JPWO2020007761A5 JP2020572880A JP2020572880A JPWO2020007761A5 JP WO2020007761 A5 JPWO2020007761 A5 JP WO2020007761A5 JP 2020572880 A JP2020572880 A JP 2020572880A JP 2020572880 A JP2020572880 A JP 2020572880A JP WO2020007761 A5 JPWO2020007761 A5 JP WO2020007761A5
Authority
JP
Japan
Prior art keywords
acoustic
hologram
optical deflector
light beam
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020572880A
Other languages
Japanese (ja)
Other versions
JP2021529349A (en
JP7390732B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2019/067517 external-priority patent/WO2020007761A1/en
Publication of JP2021529349A publication Critical patent/JP2021529349A/en
Publication of JPWO2020007761A5 publication Critical patent/JPWO2020007761A5/ja
Priority to JP2023191982A priority Critical patent/JP2024016219A/en
Application granted granted Critical
Publication of JP7390732B2 publication Critical patent/JP7390732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

光源(1、2)と、該光源からの光ビームを変調する空間光変調器とを備え、該変調された光ビームは、前記顕微鏡の対物レンズ(21)の下に配置されたサンプルを横切って走査することを意図し、該サンプルはフルオロフォアを備える、光学顕微鏡用のプログラム可能な多点照明器であって、
前記空間光変調器が第1の音響光学偏向器(8)および第2の音響光学偏向器(9)を備え、該第1の音響光学偏向器が第1の変調面(81)を有し、該第2の音響光学偏向器が第2の変調面(91)を有し、前記2つの音響光学偏向器は、異なる方向にそれぞれの偏向を提供するためにカスケードに配置されることを特徴とし、前記空間光変調器は、前記サンプルを横切って2つの次元に走査することができ、前記空間光変調器が、前記第1の変調面を前記第2の変調面と共役させるための望遠鏡リレー(10)をさらに備え、前記照明器が、ホログラムを合成するように構成されており、かつ前記空間光変調器が前記ホログラムに応答して光ビームを変調するために、同時にそのような第1のホログラムを前記第1の音響光学偏向器内に注入し、そのような第2のホログラムを前記第2の音響光学偏向器内に注入するように配置されている任意波形発生器(13)をさらに備える、照明器。
It comprises a light source (1, 2) and a spatial light modulator that modulates the light beam from the light source, the modulated light beam traversing a sample placed under the objective lens (21) of the microscope. Intended to be scanned, the sample is a programmable multipoint illuminator for an optical microscope with a fluorophore.
The spatial light modulator comprises a first acoustic optical deflector (8) and a second acoustic optical deflector (9), and the first acoustic optical deflector has a first modulation plane (81). The second acoustic-optical deflector has a second modulation plane (91), wherein the two acoustic-optical deflectors are arranged in a cascade to provide their respective deflections in different directions. The spatial light modulator can be scanned in two dimensions across the sample, and the spatial light modulator is a telescope for coupling the first modulation plane to the second modulation plane. Further comprising a relay (10), the illuminator is configured to synthesize optics, and the spatial light modulator simultaneously modulates the light beam in response to the hologram. Arbitrary waveform generator (13) arranged to inject a hologram of 1 into the first acoustic-optical deflector and such a second hologram into the second acoustic-optical deflector. Further equipped with optics.
前記任意波形発生器(13)が多チャンネル発生器であり、少なくとも1つのチャンネルが前記第1の音響光学偏向器(8)にホログラムを注入し、少なくとも別のチャンネルがホログラムを前記第2の音響光学偏向器(9)に注入するように配置され、前記任意波形発生器(13)は、音響光学セルの音響経路の相違について補償し、前記第1の音響光学偏向器に対する前記ホログラムを前記第2の音響光学偏向器に対する前記ホログラムと位置合わせするために、一方のチャンネルのホログラムシーケンスを他方のチャンネルのホログラムシーケンスに対して前進または遅延させる手段を備える、請求項1に記載の照明器。 The arbitrary waveform generator (13) is a multi-channel generator, at least one channel injects the hologram into the first acoustic optical deflector (8), and at least another channel injects the hologram into the second acoustic. Arranged to inject into the optical deflector (9), the arbitrary waveform generator (13) compensates for differences in the acoustic path of the acoustic optical cell and the hologram for the first acoustic optical deflector is the first. The illuminator according to claim 1, further comprising means for advancing or delaying the hologram sequence of one channel with respect to the hologram sequence of the other channel in order to align with the hologram for the acoustic-optical deflector of 2. 前記任意波形発生器(13)が任意の複雑さのホログラムを合成するように構成されている、請求項2に記載の照明器。 The illuminator according to claim 2 , wherein the arbitrary waveform generator (13) is configured to synthesize a hologram of arbitrary complexity. 各音響光学偏向器(8、9)用の先端傾斜型オプトメカニカルマウントをさらに備える、請求項1に記載の照明器。 The illuminator according to claim 1 , further comprising a tip-tilted optomechanical mount for each acoustic-optical deflector (8, 9). 前記光源がパルスレーザ(1、2)を備え、前記照明器は、音響光学偏向器(8、9)内部の大規模な速度分散を回避または低減するための分散補償器(3)をさらに備える、請求項1に記載の照明器。 The light source comprises a pulsed laser (1, 2), and the illuminator further comprises a dispersion compensator (3) for avoiding or reducing large velocity dispersion within the acoustic-optical deflector (8, 9). , The illuminator according to claim 1 . 所望の照明パターンの再構成を中間像面(18)に投影するために、空間光変調器の後に配置された走査レンズ(17)をさらに備え、該走査レンズが、前記顕微鏡のチューブレンズ(19)と一緒に、音響光学偏向器(8、9)の変調面(81、91)を顕微鏡対物レンズ(21)の入力瞳孔(20)と共役させる4f光学システムを形成する、請求項1に記載の照明器。 Further equipped with a scanning lens (17) placed after the spatial optical modulator to project the reconstruction of the desired illumination pattern onto the intermediate image plane (18), the scanning lens is the tube lens (19) of the microscope. 1 ), wherein the 4f optical system in which the modulation plane (81, 91) of the acoustic-optical deflector (8, 9) is coupled to the input pupil (20) of the microscope objective lens (21) is formed. Illuminator. 前記サンプル内の任意の励起された蛍光位置の画像の周りに1つのデジタルピンホールの実時間実施を可能にするように構成された電子マルチピクセル検出器を備える画像センサ(26)を備え、前記サンプルによって放出された前記蛍光を前記画像センサ上に集束させるためのリレーシステム(25)をさらに備える、請求項1に記載の照明器を有する光学顕微鏡用の共焦点フィルタ。 The image sensor (26) comprising an electronic multipixel detector configured to allow real-time implementation of one digital pinhole around an image of any excited fluorescence position in the sample. The cofocal filter for an optical microscope having the illuminator according to claim 1 , further comprising a relay system (25) for focusing the fluorescence emitted by the sample on the image sensor. 請求項1から6のいずれか一項に記載の照明器と、共焦点発光画像を正しく構成するために、前記任意波形発生器(13)を前記画像センサ(26)と同期させる手段(16)を備える、請求項7に記載の共焦点フィルタと、を備える、共焦点顕微鏡。 A means (16) for synchronizing the arbitrary waveform generator (13) with the image sensor (26) in order to correctly configure a confocal emission image with the illuminator according to any one of claims 1 to 6. A confocal microscope comprising the confocal filter according to claim 7. 請求項8に記載の共焦点顕微鏡を操作する方法であって、
前記光源(1、2)に特定の直径(D)の第1の光ビームを放出させるステップと、
該第1の光ビームを所定の直径(D)を有する第2の光ビームに拡張して、前記第1の音響光学偏向器(8)上に照明ウィンドウを画定するステップと、
前記第2の光ビームを変調し、それを第3の光ビームに変換するために、第1のホログラムを前記第1の音響光学偏向器に注入するステップと、
前記第2の変調面(91)上で該第3の光ビームを画像化するステップと、
前記第3の光ビームの前記直径(D)が第2の光ビームの直径であり、前記第2の音響光学偏向器(9)上に照明ウィンドウを画定するように、ゼロ変調で前記第3の光ビームをコリメートするステップと、
前記第3の光ビームを変調し、それを第4の光ビームに変換するために、第2のホログラムを前記第2の音響光学偏向器に注入するステップと、
前記顕微鏡対物レンズ(21)の前記入力瞳孔(20)に該第4の光ビームを画像化するステップと、
前記サンプルと交差する再構成平面(22)上に前記第4の光ビームを集束させるステップと、
前記サンプルから放出された蛍光を収集し、前記光を前記画像センサ(26)上に集束させるステップと、
を含む方法。
The method for operating the confocal microscope according to claim 8.
A step of causing the light source (1, 2) to emit a first light beam having a specific diameter (D 1 ).
A step of extending the first light beam to a second light beam having a predetermined diameter (D 2 ) and defining an illumination window on the first acoustic-optical deflector (8).
A step of injecting a first hologram into the first acoustic-optical deflector to modulate the second light beam and convert it into a third light beam.
The step of imaging the third light beam on the second modulation plane (91),
The diameter (D 2 ) of the third light beam is the diameter of the second light beam, and the second light beam is zero-modulated so as to define an illumination window on the second acoustic-optical deflector (9). Steps to collimate the light beam of 3 and
A step of injecting a second hologram into the second acoustic-optical deflector to modulate the third light beam and convert it into a fourth light beam.
A step of imaging the fourth light beam in the input pupil (20) of the microscope objective lens (21).
A step of focusing the fourth light beam on the reconstruction plane (22) intersecting the sample.
A step of collecting the fluorescence emitted from the sample and focusing the light on the image sensor (26).
How to include.
前記第1の合成無線周波数信号を第1のデジタルホログラフィアルゴリズムで計算し、前記第2の合成無線周波数信号を第2のデジタルホログラフィアルゴリズムで計算するステップと、
前記任意波形発生器(13)を使用して、前記第1の計算された信号から前記第1の音響光学偏向器(8)内に注入される前記第1のホログラムと、前記第2の計算された信号から前記第2の音響光学偏向器(9)内に注入される前記第2のホログラムとを合成するステップと、をさらに含む、請求項9に記載の方法。
A step of calculating the first synthetic radio frequency signal by the first digital holography algorithm and calculating the second synthetic radio frequency signal by the second digital holography algorithm.
Using the arbitrary waveform generator (13), the first hologram injected into the first acoustic optical deflector (8) from the first calculated signal and the second calculation. 9. The method of claim 9, further comprising synthesizing the second hologram injected into the second acoustic-optical deflector (9) from the resulting signal.
前記第1または前記第2のホログラムを合成する前記任意波形発生器(13)のチャンネル内のホログラムシーケンスを、前記他方のホログラムを合成する前記任意波形発生器の別のチャンネル内のホログラムシーケンスに関して、前進または遅延させるステップをさらに含む、請求項10に記載の方法。 With respect to the hologram sequence in the channel of the arbitrary waveform generator (13) that synthesizes the first or second hologram, and the hologram sequence in another channel of the arbitrary waveform generator that synthesizes the other hologram. 10. The method of claim 10, further comprising a step of advancing or delaying. 各ホログラムを連続して数サイクル繰り返すステップと、別のホログラムに切り替える前に空白期間を導入するステップとをさらに含む、請求項10に記載の方法。 The method of claim 10, further comprising a step of repeating each hologram for several cycles in succession and a step of introducing a blank period before switching to another hologram. 前記ホログラムを分離可能な構成要素に分解するステップをさらに含む、請求項10に記載の方法。 10. The method of claim 10, further comprising decomposing the hologram into separable components. 共焦点画像を正しく構成するために、前記任意波形発生器(13)を前記画像センサ(26)と同期させるステップをさらに含む、請求項10に記載の方法。 10. The method of claim 10, further comprising synchronizing the arbitrary waveform generator (13) with the image sensor (26) in order to correctly configure a confocal image. 数学的に分離可能な照明パターンによって励起されたいくつかの処理された発光画像の合計として共焦点画像を構成するステップをさらに含む、請求項13または14に記載の方法。 13. The method of claim 13 or 14, further comprising constructing a confocal image as the sum of several processed emission images excited by a mathematically separable illumination pattern.
JP2020572880A 2018-07-02 2019-07-01 Programmable multipoint illuminators, confocal filters, confocal microscopes, and how to operate confocal microscopes Active JP7390732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023191982A JP2024016219A (en) 2018-07-02 2023-11-10 Programmable multiple-point illuminator, confocal filter, confocal microscope, and method to operate said confocal microscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18382491.1 2018-07-02
EP18382491 2018-07-02
PCT/EP2019/067517 WO2020007761A1 (en) 2018-07-02 2019-07-01 Programmable multiple-point illuminator, confocal filter, confocal microscope and method to operate said confocal microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023191982A Division JP2024016219A (en) 2018-07-02 2023-11-10 Programmable multiple-point illuminator, confocal filter, confocal microscope, and method to operate said confocal microscope

Publications (3)

Publication Number Publication Date
JP2021529349A JP2021529349A (en) 2021-10-28
JPWO2020007761A5 true JPWO2020007761A5 (en) 2022-06-23
JP7390732B2 JP7390732B2 (en) 2023-12-04

Family

ID=62874824

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020572880A Active JP7390732B2 (en) 2018-07-02 2019-07-01 Programmable multipoint illuminators, confocal filters, confocal microscopes, and how to operate confocal microscopes
JP2023191982A Pending JP2024016219A (en) 2018-07-02 2023-11-10 Programmable multiple-point illuminator, confocal filter, confocal microscope, and method to operate said confocal microscope

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023191982A Pending JP2024016219A (en) 2018-07-02 2023-11-10 Programmable multiple-point illuminator, confocal filter, confocal microscope, and method to operate said confocal microscope

Country Status (5)

Country Link
US (2) US11860349B2 (en)
EP (1) EP3818406A1 (en)
JP (2) JP7390732B2 (en)
CN (2) CN112368625B (en)
WO (1) WO2020007761A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102655822B1 (en) * 2021-04-22 2024-04-09 주식회사 큐빅셀 Flying-over beam pattern scanning hologram microscopy using spatial modulation scanner and translation stage
CN114708264B (en) * 2022-06-06 2022-08-12 广东工业大学 Light spot quality judging method, device, equipment and storage medium
CN115268242A (en) * 2022-08-01 2022-11-01 南昌航空大学 Large-visual-angle holographic three-dimensional display system

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110402A (en) 1981-12-21 1983-07-01 Nichibi:Kk Recovering method for iodine
JPS6019027A (en) 1983-07-11 1985-01-31 Nippon Steel Corp Method for dissolving hardly soluble powder
JPS6019027U (en) * 1983-07-15 1985-02-08 松下電器産業株式会社 Optical information processing device
FR2596877B1 (en) 1986-04-02 1988-07-08 Centre Nat Rech Scient MULTI-FREQUENCY ACOUSTO-OPTIC MODULATION METHOD AND DEVICE
US4827125A (en) * 1987-04-29 1989-05-02 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Confocal scanning laser microscope having no moving parts
JP2743373B2 (en) 1988-04-26 1998-04-22 ソニー株式会社 Acousto-optic deflector
JP2845919B2 (en) 1989-02-07 1999-01-13 住友大阪セメント株式会社 Coherent optical scanning optical microscope
JPH04175713A (en) 1990-11-09 1992-06-23 Olympus Optical Co Ltd Scanning type optical microscope
JPH0694432A (en) 1992-09-09 1994-04-05 Kowa Co Non-contact type shape inspection device
US6038067A (en) 1996-05-23 2000-03-14 The Regents Of The University Of California Scanning computed confocal imager
US7339148B2 (en) 2002-12-16 2008-03-04 Olympus America Inc. Confocal microscope
US7227127B2 (en) 2004-10-06 2007-06-05 Peter Saggau High speed microscope with three-dimensional laser beam scanning including acousto-optic deflector for controlling the lateral position and collimation of the light beam
CA2621001C (en) 2005-08-31 2012-10-16 Heidelberg Instruments Mikrotechnik Gmbh Device for the optical splitting and modulation of electromagnetic radiation
JP5153171B2 (en) 2007-03-16 2013-02-27 オリンパス株式会社 Microscope device and control method thereof
JP5259154B2 (en) 2007-10-24 2013-08-07 オリンパス株式会社 Scanning laser microscope
WO2009063670A1 (en) 2007-11-14 2009-05-22 Hamamatsu Photonics K.K. Laser machining device and laser machining method
CN101482683B (en) * 2009-02-10 2011-02-02 华中科技大学 Three-dimensional photo-stimulation system
US8681412B2 (en) 2010-06-09 2014-03-25 Leica Microsystems Cms Gmbh Acousto-optical system, microscope and method of use of the acousto-optical system
CN104115062B (en) * 2011-12-28 2016-12-14 菲托尼克斯公司 Compensate compensator system and the method for angle dispersion
JP5592457B2 (en) 2012-10-30 2014-09-17 浜松ホトニクス株式会社 Laser processing apparatus, laser processing method, laser irradiation apparatus and laser irradiation method
US9395340B2 (en) 2013-03-15 2016-07-19 Kla-Tencor Corporation Interleaved acousto-optical device scanning for suppression of optical crosstalk
DE102013227104B4 (en) * 2013-09-03 2018-05-30 Leica Microsystems Cms Gmbh Scanning microscope and acousto-optic main beam splitter for a scanning microscope
GB201406150D0 (en) 2014-04-04 2014-05-21 Univ Leicester Improvements in or relating to structured illumination microscopy utilising acousto-optic deflectors
US10191268B2 (en) * 2014-10-15 2019-01-29 Inserm (Institute National De La Sante Et De La Recherche Medicale) Method for analyzing a sample with a non-linear microscopy technique and non-linear microscope associated
CN105784662A (en) * 2016-04-27 2016-07-20 武汉大学 Liquid-phase suspension biochip based on multi-optical trap encoding bead array and two-photon fluorescence detection

Similar Documents

Publication Publication Date Title
US7339148B2 (en) Confocal microscope
JP7415063B2 (en) single plane illumination microscope
US9158100B2 (en) Laser microscope using phase-modulation type spatial light modulator
CN111562665B (en) Adaptive optical aberration correction system and method in STED super-resolution technology
CN102455501B (en) SPIM Microscope with a sequential light sheet
US10394010B2 (en) Optical system for shaping the wavefront of the electric field of an input light beam
WO2005096058A1 (en) Scanning microscope and method for examining a sample by using scanning microscopy
US8730582B2 (en) Microscope apparatus
CN103616330A (en) Super-resolution STED (Simulated Emission Depletion) micro-imaging system based on excitation of broadband laser light source with supercontinuum generation
US20240126059A1 (en) Programmable multiple-point illuminator, confocal filter, confocal microscope and method to operate said confocal microscope
WO2023221400A1 (en) Super-resolution single-objective light-sheet optical microscopy system and imaging system comprising same
JPWO2020007761A5 (en)
US20220382031A1 (en) Random access projection microscopy
CN115327757A (en) Method and device for realizing ultra-high-speed structured light illumination microscopic imaging
KR20060033830A (en) Confocal laser--line scanning microscope with acousto-optic deflector and line scan camera
KR200385702Y1 (en) Confocal LASER Line Scanning Microscope with Acousto-optic Deflector and Line scan camera
JP2011027981A (en) Optical scanning apparatus and endoscope device with the same, and method of optical scanning
JP4939855B2 (en) Illumination device and laser scanning microscope
KR102599457B1 (en) Microscopy apparatus for generating structured illumination and operating method thereof
JP7330960B2 (en) Method and apparatus for scanning a sample
JP5988676B2 (en) Microscope equipment
CN116754550A (en) Ultrafast super-resolution imaging method and device
JP2020020929A (en) Microscope, observation method, and control program