JPS58110402A - Recovering method for iodine - Google Patents
Recovering method for iodineInfo
- Publication number
- JPS58110402A JPS58110402A JP56205144A JP20514481A JPS58110402A JP S58110402 A JPS58110402 A JP S58110402A JP 56205144 A JP56205144 A JP 56205144A JP 20514481 A JP20514481 A JP 20514481A JP S58110402 A JPS58110402 A JP S58110402A
- Authority
- JP
- Japan
- Prior art keywords
- iodine
- fibers
- soln
- anion exchange
- basic anion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は繊維状イオン交換体を用いて沃素イオンを含も
水溶液から効率的に沃素を回収する方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently recovering iodine from an aqueous solution containing iodine ions using a fibrous ion exchanger.
従来、沃素イオンを含む天然ガス鍼水等から沃素を回収
する方法としては、活性炭吸着法等が公知で、近年は粒
状のアニオン交換樹脂を使用して、沃素の吸着溶離を効
果的に行う改良方法が例えば特公昭53−28038、
特公昭54−10357等で提案されている。 この場
合取扱い性の面で、50〜20Gメツシュ程度の籾径の
樹脂が多用されている。Conventionally, activated carbon adsorption methods have been known as methods for recovering iodine from natural gas acupuncture water containing iodine ions, etc., but in recent years improvements have been made to effectively adsorb and elute iodine using granular anion exchange resins. The method is, for example, Japanese Patent Publication No. 53-28038,
It has been proposed in Japanese Patent Publication No. 54-10357. In this case, from the viewpoint of ease of handling, a resin having a rice grain diameter of about 50 to 20 G mesh is often used.
本発明者らは表面積が大きく、袖々にモジュール化が可
能な繊維状イオン交換体を用いて、より効果的に沃素を
回収すべく研究をすすめてきた結果、特定の繊度の強塩
基性イオン交換繊維を使用することにより、その目的が
達成されることを見出し本発明を完成した。The present inventors have been conducting research to more effectively recover iodine using a fibrous ion exchanger that has a large surface area and can be modularized in many ways. The inventors discovered that the purpose could be achieved by using exchange fibers and completed the present invention.
即ち本発明は、イオン交換体として繊維の平均直径0.
1〜30μm好ましくFilOμm〜0.1μ諷の強塩
基性アニオン交換繊維を用いることにより、効率的に沃
素を回収する方法である。That is, in the present invention, the average diameter of fibers as an ion exchanger is 0.
This is a method for efficiently recovering iodine by using strongly basic anion exchange fibers with a thickness of 1 to 30 μm, preferably FilO μm to 0.1 μm.
本発明の方法によると沃素の吸着速度、吸着率並びに吸
着沃素の溶離速度が極め、て優れ工業的により有利に沃
素を回収することができる。According to the method of the present invention, the adsorption rate and adsorption rate of iodine and the elution rate of adsorbed iodine are extremely high, and iodine can be recovered industrially and more advantageously.
本発明に使用する強塩基性アニオン交換繊維は、その直
径が30μm以上になる。と、沃素の吸着率か低下し、
また直径が0.1μm以下の極細繊維では含水率が増大
し、機械的強度の低下、通液抵抗の増加が生じ、取扱い
が困難であり、本発明の目的を充分に達成し難ψものと
なる。The strongly basic anion exchange fiber used in the present invention has a diameter of 30 μm or more. , the iodine adsorption rate decreases,
In addition, ultrafine fibers with a diameter of 0.1 μm or less have an increased moisture content, resulting in a decrease in mechanical strength and an increase in liquid passage resistance, making them difficult to handle and making it difficult to fully achieve the purpose of the present invention. Become.
本発明に使用する強塩基性アニオン交換繊維はそのイオ
ン交換基を特に限定するものではないが、例えば4級ア
ミノ基を有する強塩基性アニオン交換繊維は本目的に適
う好結果をもたらすものである。The ion exchange groups of the strongly basic anion exchange fibers used in the present invention are not particularly limited, but for example, strongly basic anion exchange fibers having a quaternary amino group bring about favorable results suitable for this purpose. .
また、このイオン交換基の導入方法は通常用いられてい
る導入方法を採用することが可能である。Further, as the method for introducing this ion exchange group, it is possible to employ a commonly used method for introducing the ion exchange group.
該繊維のイオン交換容量は、このイオン交換基の導入量
に左右されるが、イオン交換樹脂と同等かむしろ若干少
なめの交換容量程度であれば十分であり、伺んら過度の
イオン交換容量を必要としない。The ion exchange capacity of the fiber depends on the amount of ion exchange groups introduced, but an exchange capacity equivalent to or slightly lower than that of the ion exchange resin is sufficient, and excessive ion exchange capacity should not be avoided. do not need.
本発明に使用する強塩基性アニオン交換繊維は輪状、織
布状勢任意の形状に加工できるので、形状の選択により
通液抵抗の減少をはかることが可能であり、充填床カラ
五方式以外の回収装置への適用も可能である。The strong basic anion exchange fiber used in the present invention can be processed into any shape, such as a ring or a woven fabric, so it is possible to reduce the resistance to liquid flow by selecting the shape, and it is possible to recover using methods other than the packed bed method. Application to devices is also possible.
以下、本発明の作用効果を実験例、実施例を上げ詳細に
説明して明らかにする。Hereinafter, the effects of the present invention will be explained in detail through experimental examples and examples.
実験例:
繊維の平均直径の種々異なるポリビニルアルコール(以
下PVAと略記)系合成繊維を4級ア之ノ化処理、並び
に疎水化処理して得た強塩基性アニオン交換繊維(0,
5%カット繊維)と市販の強塩基性アニオン交換樹脂(
比較暉料)をそれぞれ強攪拌下の沃素12.71//1
.沃素カリ16.6#7t、濃度の溶液に投入しく浴比
1:100)、一定時間毎に試料を取り出し、吸着沃素
−を測定した結果は第1図のようであった。また沃素を
飽和吸着させた場合の吸着沃素量は第1表の通りであっ
た。Experimental example: Strongly basic anion exchange fibers (0, 0,
5% cut fiber) and commercially available strong basic anion exchange resin (
12.71//1 of iodine under strong stirring
.. The sample was put into a solution with a concentration of 16.6 #7 tons of potassium iodine (bath ratio 1:100), samples were taken out at regular intervals, and the adsorbed iodine was measured. The results are shown in Figure 1. Further, the amount of adsorbed iodine when iodine was saturated adsorbed was as shown in Table 1.
第1図及び第1表結果から本発明のイオン交換繊維は稀
薄な沃素水浴液から極めて速く沃素を吸着し、また飽和
吸盾−もイオン交換谷−の2倍以上と驚異的に多いこと
が分る。The results in Figure 1 and Table 1 show that the ion-exchange fiber of the present invention adsorbs iodine extremely quickly from a dilute iodine bath solution, and the saturated adsorption capacity is surprisingly more than twice the ion-exchange trough. I understand.
吸漬量が多いのは、イオン交換反応と物理的吸着による
ことを確認している。It has been confirmed that the large amount of absorption is due to ion exchange reactions and physical adsorption.
沃素を飽和吸着させたイオン交換繊維(第1表のNQ5
試料)とイオン交換樹脂(第1表のNQ7試料)をそれ
ぞれ攪拌下の2N−NaOH水溶液に投入して(浴比1
:100)、沃素を溶離させる場合の溶離時間と溶離率
の関係を観察した結果を第2図に示した。また同飽和吸
看試料各10.9をそれぞれ内径25九のカラムに充填
し、12011j/分の流速で2N−NaOH水浴液を
下向流で通液して溶離した際の溶離液中の沃素量を一定
時間毎に測定した。Ion exchange fiber with saturated adsorption of iodine (NQ5 in Table 1)
Sample) and ion exchange resin (NQ7 sample in Table 1) were each put into a 2N-NaOH aqueous solution under stirring (bath ratio 1).
Figure 2 shows the results of observing the relationship between elution time and elution rate when iodine was eluted. In addition, iodine in the eluent was obtained by filling a column with an inner diameter of 259 mm with 10.9 g of each of the same saturated absorption samples and eluting it by passing a 2N-NaOH water bath solution in a downward flow at a flow rate of 12011 j/min. The amount was measured at regular intervals.
結果を第3図に示した。The results are shown in Figure 3.
第2図及び第3図に示した実験結果のように、本発明の
イオン交換繊維に吸勉した沃素は溶離速度が極めて速く
、1少電の溶離液で殆んど完全に溶離されるので、この
面でも工業的利点の太き−ことが分る。As shown in the experimental results shown in Figures 2 and 3, the iodine adsorbed into the ion-exchange fiber of the present invention has an extremely fast elution rate, and is almost completely eluted with an eluent of 1 less charge. , it can be seen that there are great industrial advantages in this aspect as well.
第4図にイオン交換繊維(第1表記載の試料)の平均直
径と通水性並びに吸水率の関係の測定結果を示した。FIG. 4 shows the measurement results of the relationship between the average diameter, water permeability, and water absorption rate of ion exchange fibers (samples listed in Table 1).
通水性は直径zs%のカラムに試料を311宛充填して
(充填密度0.32N/WLt)、0,3kp/cyy
+の加圧下で通水した際の1分間当りの通水量で示した
。吸水率は水中浸漬試料を300Gの遠心脱水機で2分
間脱水した際の(脱水後重量÷乾燥型1i)X100/
乾燥重量で示した。Water permeability was determined by filling a column with a diameter of zs% with 311 samples (packing density 0.32N/WLt) and 0.3kp/cyy.
It is expressed as the amount of water passed per minute when water is passed under + pressure. The water absorption rate is (weight after dehydration ÷ dry type 1i) x 100/
Expressed as dry weight.
第4図を果より、イオン交換繊維の平均直径が小さくな
ると、繊維の吸水率は大となり、通水性は低下して取扱
い難くなることが分る。From FIG. 4, it can be seen that as the average diameter of the ion exchange fibers decreases, the water absorption rate of the fibers increases, the water permeability decreases, and it becomes difficult to handle.
以上結果のように、繊維の平均直径が10μm税度以下
特に好ましくll11μmW0.2μm 程度のイオン
交換繊維が沃素の回収に適し、て―るので、その成型性
と相俟って工業的利用価値の高いことが分る。As shown in the above results, ion-exchange fibers with an average fiber diameter of 10 μm or less, particularly preferably about 11 μm and 0.2 μm, are suitable for recovering iodine, and together with their moldability, they have high industrial utility value. I know it's expensive.
実施例 1゜
平均重合度1200のPVA45部と平均分子jl13
0万のポリエチレンオキシド(PEO)55部を混合し
て加熱溶解し、濃度35饅の紡糸原液を画表した。 ′
これを常法で乾式紡糸して、繊度150 d/30 f
、水中軟化点88℃の糸条とした。 この糸条を20
0 T/M加熱住、紐状として水洗し、・PEO成分を
溶解除去した処、糸条はフィブリル化し悼#lPVA系
繊維となった。Example 1 45 parts of PVA with an average degree of polymerization of 1200 and an average molecular weight of jl13
55 parts of polyethylene oxide (PEO) with a concentration of 35% was mixed and dissolved by heating to form a spinning stock solution with a concentration of 35%. ′
This was dry spun using a conventional method to obtain a fineness of 150 d/30 f.
, the yarn had a softening point in water of 88°C. 20 pieces of this thread
0 T/M heating, washing in string form with water, and dissolving and removing the PEO component, the threads became fibrillated and became PVA-based fibers.
この極細繊維をクロルアセトアルデヒドでアセタール化
後、エチレンジアミン架槁処理、次いでトリメチルア、
ミン処理して中性塩交換′6it 2.2meq/i
、水中軟化点114℃、49℃での吸水率180 %、
平均繊度05μmの強塩基アニオン交換繊維とした。After acetalizing this ultrafine fiber with chloroacetaldehyde, it was cross-treated with ethylenediamine, and then trimethyla,
Min treatment and neutral salt exchange'6it 2.2meq/i
, Softening point in water: 114℃, Water absorption rate at 49℃: 180%,
A strong base anion exchange fiber with an average fineness of 05 μm was used.
この繊維を0.7−長にカットしたもの5・Ogを直径
59−のカラムに充填した。 この場合の充填体積は
20σ1であった。 これに沃素イオン 。This fiber was cut into 0.7-length pieces and 5.0 g was packed into a column with a diameter of 59-mm. The filling volume in this case was 20σ1. This includes iodine ions.
75 ppm を含む鍼−水に塩素ガスを50 pp
m注入したものを50j/Hの流速で1,240/*下
した。 流出液中には日−ドは積用されなかった。Acupuncture containing 75 ppm - 50 ppm chlorine gas in water
The injection rate was 1,240/* at a flow rate of 50j/H. No date was accumulated in the effluent.
次いで50℃(010%NaOH水溶液2001を1分
間で流下し、更に50℃の1091NaC/水溶液40
01L6を2分間で流下した。流下液中には沃素イオン
がそれぞれ71.211/2001u と12、51
/ 4 G 01+4含まれていた。Next, 50°C (010% NaOH aqueous solution 2001 was poured down for 1 minute, and then 1091NaC/aqueous solution 40% at 50°C was poured down.
01L6 was flowed down in 2 minutes. Iodine ions in the flowing liquid are 71.211/2001u and 12 and 51, respectively.
/ 4 G 01+4 was included.
実施例′2゜
実施例1で乾式紡糸した繊度150 d/30fの糸条
を谷径4吋、針数200本のメリヤス細根で編立てて筒
状のメリヤスとし、水洗して糸条中のPEO成分を溶解
除去して極細PVA系絨維とした。Example '2゜ The yarn with a fineness of 150 d/30 f, which was dry spun in Example 1, was knitted into a cylindrical knitted fabric with a valley diameter of 4 inches and 200 needles, and washed with water to remove the fineness in the yarn. The PEO component was dissolved and removed to obtain ultrafine PVA fibers.
これをエピクロルヒドリンでエーテル化後、ホルム°ア
ルデヒドでアセタール化し、次いでトリメチルア壽ンで
7ミノ化して、中性塩交換容量1.8meq/G、
水中軟化点ito℃、40℃での吸水率220 %、平
均繊度1μmの強アニオン交換繊維とした。This was etherified with epichlorohydrin, then acetalized with formaldehyde, and then 7minated with trimethylamine, resulting in a neutral salt exchange capacity of 1.8 meq/G,
It was made into a strong anion exchange fiber with a softening point in water of ITO°C, a water absorption rate of 220% at 40°C, and an average fineness of 1 μm.
このメリヤス状交換絨維10JIを、沃素イオン75
ppm を含trll[水に塩素ガスを50 ppm
添加したもの20j中に3時間浸漬した。この操作
を12回繰り返したが11回までの残渣中の沃素イオン
濃度は10 ppm 以下であったが12回目II′
i40 ppmであった。This knitted exchange fiber 10JI was mixed with 75 iodine ions.
Contains ppm [50 ppm of chlorine gas in water]
It was immersed in the added material 20j for 3 hours. This operation was repeated 12 times, but the iodide ion concentration in the residue up to the 11th time was less than 10 ppm, but the 12th time II'
i40 ppm.
次いで、50℃の10%NaOH水浴液200 ml中
にこのメリヤスを05時間浸漬し、更に10%NaC1
水溶液200 ru甲に0.5時間浸漬し遠心脱液する
操作を2回繰り返し、l&盾沃素を溶離した。 繊維g
当りの沃素同収量は1.55#であった。Next, this stockinette was immersed in 200 ml of a 10% NaOH water bath solution at 50°C for 05 hours, and further soaked in 10% NaCl.
The procedure of immersion in an aqueous solution of 200 ru for 0.5 hours and centrifugal dehydration was repeated twice to elute l&shield iodine. fiber g
The yield of iodine per unit was 1.55#.
第1図はイオン交換体の吸矯沃素−と時間との関係を示
すグラフ、第2図は沃素を溶離させる場合の、溶離時1
11と溶離率の関係を示すグラフ、第3図は溶離液中の
沃素電と時間との関係を示すグラフ、第4図はイオン交
換繊維の平均直径と通水性並びに吸水率の関係を示すグ
ラフである。
特許用1人 株式会社二チピ
代理人 弁理土木村芳劉Figure 1 is a graph showing the relationship between iodine adsorbed by an ion exchanger and time, and Figure 2 is a graph showing the relationship between iodine absorption and time.
Graph showing the relationship between 11 and elution rate, Figure 3 is a graph showing the relationship between iodine electrons in the eluent and time, and Figure 4 is a graph showing the relationship between the average diameter of ion exchange fibers and water permeability and water absorption rate. It is. 1 person for patents Nichipi Co., Ltd. agent Yoshiryu Dokimura, patent attorney
Claims (1)
強塩基性アニオン交換繊維を用いることを%做とする沃
素の回収方法。A method for recovering iodine, which comprises using strongly basic anion exchange fibers having an average diameter in the range of 0.1 to 30 μm as an ion exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56205144A JPS58110402A (en) | 1981-12-21 | 1981-12-21 | Recovering method for iodine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56205144A JPS58110402A (en) | 1981-12-21 | 1981-12-21 | Recovering method for iodine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58110402A true JPS58110402A (en) | 1983-07-01 |
JPS6126483B2 JPS6126483B2 (en) | 1986-06-20 |
Family
ID=16502145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56205144A Granted JPS58110402A (en) | 1981-12-21 | 1981-12-21 | Recovering method for iodine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58110402A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105670025A (en) * | 2016-03-02 | 2016-06-15 | 山西巴盾环境保护技术研究所 | Iodine fiber with fast iodine absorbing and stabilizing effects and sterilization function, and preparation method and use method of iodine fiber |
US11860349B2 (en) | 2018-07-02 | 2024-01-02 | Universitat De Barcelona | Programmable multiple-point illuminator, confocal filter, confocal microscope and method to operate said confocal microscope |
-
1981
- 1981-12-21 JP JP56205144A patent/JPS58110402A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105670025A (en) * | 2016-03-02 | 2016-06-15 | 山西巴盾环境保护技术研究所 | Iodine fiber with fast iodine absorbing and stabilizing effects and sterilization function, and preparation method and use method of iodine fiber |
US11860349B2 (en) | 2018-07-02 | 2024-01-02 | Universitat De Barcelona | Programmable multiple-point illuminator, confocal filter, confocal microscope and method to operate said confocal microscope |
Also Published As
Publication number | Publication date |
---|---|
JPS6126483B2 (en) | 1986-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Removal of copper in aqueous solution by apple wastes | |
Soldatov et al. | Chemically active textile materials as efficient means for water purification | |
KR101913118B1 (en) | Ion-exchange fibers and method for producing same, method for removing and adsorbing chemical substance in water, and device for removing and adsorbing chemical substance in water | |
US5096946A (en) | Polymer product for the selective absorption of dissolved ions | |
JP6328373B2 (en) | Molded lyocell articles for selectively binding monovalent heavy metal ions, especially thallium and cesium ions, and their radioisotopes | |
JP5999688B2 (en) | Radioactive strontium adsorbing material, method for producing the same, and method for removing radioactive substances using the same | |
US5002984A (en) | Product for the absorption of metal ions | |
WO2015122856A1 (en) | A process for preparation of composite sorbent for removal contaminants from water | |
JPS58110402A (en) | Recovering method for iodine | |
DK170018B1 (en) | Method of Removing Metal Pollutants from Solutions | |
CN103071456B (en) | Organic amine iodine ion adsorbent as well as preparation method and application thereof | |
JPH0478483A (en) | System for producing ultrapure water | |
US6200481B1 (en) | Chelate-forming fiber, process for preparing the same, and use thereof | |
RU2060231C1 (en) | Ion-exchange resin as polymer adsorbent and method for absorbing and removing of contaminants | |
JPS6344988A (en) | Method for making ultrapure water | |
CN104445520B (en) | A kind of processing method electroplating cyanide bearing waste solution | |
Novoselova et al. | Polyolefinic fibrous ion-exchange materials: Properties and applications | |
SU665932A1 (en) | Method of purifying gases from accompanying admixtures | |
Panturu et al. | Researches concerning the Purolite assimilation for use within the uranium separation-concentration Resin In Pulp process | |
Passounaud et al. | Water nitrate removal with ion-exchanger grafted textiles | |
JPS59166245A (en) | Method for ion exchange or ion adsorption | |
RU128126U1 (en) | FILTER MATERIAL | |
RU129412U1 (en) | FILTER MATERIAL | |
CN114007743B (en) | Ion exchange fiber and ion exchange filter containing the same | |
JPH0261497B2 (en) |