JPS59166245A - Method for ion exchange or ion adsorption - Google Patents

Method for ion exchange or ion adsorption

Info

Publication number
JPS59166245A
JPS59166245A JP58039754A JP3975483A JPS59166245A JP S59166245 A JPS59166245 A JP S59166245A JP 58039754 A JP58039754 A JP 58039754A JP 3975483 A JP3975483 A JP 3975483A JP S59166245 A JPS59166245 A JP S59166245A
Authority
JP
Japan
Prior art keywords
ion exchange
ion
water
liquid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58039754A
Other languages
Japanese (ja)
Other versions
JPH0153118B2 (en
Inventor
Toshio Yoshioka
敏雄 吉岡
Seiichi Yoshikawa
吉川 精一
Seiji Shimamura
島村 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58039754A priority Critical patent/JPS59166245A/en
Publication of JPS59166245A publication Critical patent/JPS59166245A/en
Publication of JPH0153118B2 publication Critical patent/JPH0153118B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To subject useless and useful substances in a liquid to be treated to ion exchange and ion adsorption for a short time and to enlarge remarkably the treating capacity, by treating said liquid with an ion exchange resin and further with an ion exchange fiber. CONSTITUTION:In order to subject useless and useful substances in a liquid to be treated to ion exchange and ion adsorption with an ion exchange material, the liquid to be treated is worked up with the ion exchange resin and further with the ion exchange fiber. The ratio of said fiber to said resin by the exchanging capacity to be used is usually 0.01-50%, however, 0.1-20% ratio is especially preferable. This method is applied in fields where conventional ion exchange resins are used such as softening of water, desalting of sea water, purified water manufacturing, removal of harmful metals such as copper, mercury, cadmium at the condensing system and the water purification system in a nuclear power station and a thermal power station, separation and recovery of useful heavy metals such as uranium and rare earth metals in sea water, and purification and separation of antibiotics and several drugs.

Description

【発明の詳細な説明】 本発明は、イオン交換まだは吸着方法および純水の製造
方法に関する。さらに詳しくは被処理液中の不用物や有
用物をイオン交換または吸着する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion exchange or adsorption method and a method for producing pure water. More specifically, the present invention relates to a method for ion exchange or adsorption of unnecessary substances and useful substances in a liquid to be treated.

従来から、イオン交換や吸着を必要とする分野において
は被処理液をイオン交換樹脂で処理する方法が広範囲に
利用されている。しかし、この方法はイオン交換樹脂の
交換基が樹脂粒子の表面に比較して網目構造の内部に極
めて多く存在しているだめ9反応速度が遅く、処理に長
い時間がががシ、また高度にイオン交換や吸着を行なう
ことが難しい欠点がある。一方、イオン交換樹脂を粉末
化もしくは微粒子化すると取り扱いが難しくなり。
BACKGROUND ART Conventionally, methods of treating a liquid to be treated with an ion exchange resin have been widely used in fields requiring ion exchange or adsorption. However, this method suffers from the fact that the exchange groups of the ion exchange resin are much more present inside the network structure than on the surface of the resin particles.9 The reaction rate is slow, the processing time is long, and the The disadvantage is that it is difficult to perform ion exchange and adsorption. On the other hand, if the ion exchange resin is turned into powder or fine particles, it becomes difficult to handle.

また通液抵抗が非常に大きくなる欠点がある。近年2反
応速度が大きくかつ使用形態の自由度が増すことから表
面積の大きいイオン交換繊維で処理する方法が提案され
ている。しかし、この方法は繊維がかさ高いため処理容
量が小さいという致命的な欠点がある。
Another disadvantage is that the resistance to liquid passage becomes extremely large. In recent years, a method of processing using ion exchange fibers with a large surface area has been proposed because the reaction rate is high and the degree of freedom in usage is increased. However, this method has a fatal drawback in that the processing capacity is small because the fibers are bulky.

本発明者らは、これらの欠点を改良すべく鋭意検討した
結果9本発明に到達したものである。
The inventors of the present invention have arrived at the present invention as a result of intensive studies aimed at improving these drawbacks.

すなわち本発明は。That is, the present invention.

(1)被処理液中の不用物や有用物をイオン交換体でイ
オン交換や吸着する方法において、被処理液をイオン交
換樹脂で処理した後、イオン交換繊維で処理することを
特徴とするイオン交換まだは吸着方法に関する。
(1) A method of ion-exchanging or adsorbing unnecessary or useful substances in a liquid to be treated with an ion exchanger, which is characterized in that the liquid to be treated is treated with an ion-exchange resin and then treated with an ion-exchange fiber. Replacement still concerns the adsorption method.

本発明は、被処理液をイオン交換樹脂で処理した後、イ
オン交換繊維で処理することによって。
In the present invention, the liquid to be treated is treated with an ion exchange resin and then treated with an ion exchange fiber.

驚くべきととに被処理液中の不用物や有用物が短時間に
高度にイオン交換や吸着されるうえ、処理容量が非常に
大きくなることを見い出したものであり、各種分野に対
して従来法に比べてはるかに優れたイオン交換ならびに
吸着法を提供するものである。本発明の別の目的は、原
水から不用物を短時間にイオン交換や吸着を行ない高純
度の水を大量に得ることのできる純水の製造法を提供す
るにある。
Surprisingly, we discovered that unnecessary and useful substances in the liquid to be treated can be highly ion-exchanged and adsorbed in a short time, and that the processing capacity is extremely large. This method provides an ion exchange and adsorption method that is far superior to conventional methods. Another object of the present invention is to provide a method for producing pure water that can perform ion exchange and adsorption of waste materials from raw water in a short time to obtain a large amount of highly purified water.

本発明を構成するイオン交換樹脂とは通常直径が100
〜i oooμの公知ならびに市販のイオン交換樹脂を
意味する。具体的には耐薬品性、耐熱性に優れたスチレ
ン−ジビニルベンゼン共重合体にイオン交換基を導入し
たゲル型ならびにMR型イオン交換樹脂などを挙げるこ
とができる。イオン交換樹脂の種類としては、スルホン
酸基、ホスホン酸基、カルボン酸基などのカチオン交換
基を有するカチオン交換樹脂、1〜6級のアミン基。
The ion exchange resin constituting the present invention usually has a diameter of 100 mm.
~i oooμ is meant to refer to known and commercially available ion exchange resins. Specific examples include gel type and MR type ion exchange resins in which ion exchange groups are introduced into a styrene-divinylbenzene copolymer that has excellent chemical resistance and heat resistance. Types of ion exchange resins include cation exchange resins having cation exchange groups such as sulfonic acid groups, phosphonic acid groups, and carboxylic acid groups, and 1- to 6-class amine groups.

4級アンモニウム基などのアニオン交換基を有するアニ
オン交換樹脂およびアミノカルボン酸基。
Anion exchange resins having anion exchange groups such as quaternary ammonium groups and aminocarboxylic acid groups.

アミドキシム基、アミンリン酸基、ポリアミン基。Amidoxime group, amine phosphate group, polyamine group.

ピリジン基、ジチオカルノくミン酸基などのキレート基
を有するキレート樹脂を挙げることができる。
Examples include chelate resins having chelate groups such as pyridine groups and dithiocarnocumic acid groups.

本発明゛を構成するイオン交換繊維とは通常直径が0.
1〜100μ、好ましくは1〜100μの公知のイオン
交換繊維を意味する。その具体flJとしテハ、ポリス
チレン系、ポリフェノール系、ホ1ノビニルアルコール
系、ポリアクリル系、ポリアミド系などの合成有機質ポ
リマ(イオン交換用ポ1)マ)にイオン交換基を導入し
た不溶性合成有機質イオン交換繊維を挙げることができ
る。そのな力・でもイオン交換用ポリマと補強用ボリマ
カ・らなる繊維、好ましくはイオン交換用ポリマを鞘成
分の主成分に、補強用ポリマを芯成分にした多芯型混合
および複合繊維を基材としたイオン交換繊維カニ操作上
の十分な機械的強度ならびに形態保持性を有しているの
でよい。補強用列fリマの割合は通常10〜90裂でお
るが、あま9少なすぎると機械的強度が弱くなり、逆に
あl)多すぎるとイオン交換量や吸着量が低下するので
、20〜80%の範囲が好ましい。イオン交換用ポリマ
としてはポリ(モノビニル芳香族化合物)特にポ1ノス
チレン系化合物が耐薬品性、耐熱性に優れてお9.操作
を長期にわたって何回も繰シ返してできるので好ましい
。また補強用ポリマとしてはポ1ノーα−オレフィンが
耐薬品性に優れているので好゛ましい。
The ion exchange fibers constituting the present invention usually have a diameter of 0.
It means a known ion-exchange fiber having a diameter of 1 to 100 microns, preferably 1 to 100 microns. Specifically, flJ is an insoluble synthetic organic ion in which an ion exchange group is introduced into a synthetic organic polymer (ion exchange polymer) such as polystyrene, polyphenol, polyvinyl alcohol, polyacrylic, or polyamide. Mention may be made of exchange fibers. The base material is a fiber consisting of an ion exchange polymer and a reinforcing polymer, preferably a multifilamentary mixed or composite fiber with an ion exchange polymer as the main component of the sheath component and a reinforcing polymer as the core component. The ion-exchange fiber is good because it has sufficient mechanical strength and shape retention for operation. The ratio of reinforcing row f lima is usually 10 to 90 cracks, but if it is too low, the mechanical strength will be weakened, and if it is too high, the amount of ion exchange and adsorption will decrease, so the ratio is 20 to 90. A range of 80% is preferred. As ion exchange polymers, poly(monovinyl aromatic compounds), especially poly-1-nostyrene compounds, have excellent chemical resistance and heat resistance9. This is preferable because the operation can be repeated many times over a long period of time. Furthermore, as the reinforcing polymer, poly-α-olefin is preferable because it has excellent chemical resistance.

本発明における繊維の含水塵は通常05〜10であるが
、あまシ小さすぎると高度にイオン交換や吸着を行なう
のが難しくなり、逆にあまシ大きすぎると通液抵抗が大
きくなるので、1〜5の範囲が好ましい。ここで含水塵
とはNa型(cl型)のカチオン(アニオン)交換繊維
を蒸留水に浸した後、家庭用の遠心脱水機で5分間遠I
B脱水して表面の水分を除去し、ただちに重量(W)を
濱11定し、さらに絶乾して重さを測、!1)(WO)
、  次式より求めた値である。
The moisture content of the fibers in the present invention is usually 05 to 10, but if the thickness is too small, it will be difficult to perform ion exchange or adsorption to a high degree, and if the thickness is too large, the resistance to liquid will increase. The range of 5 to 5 is preferable. Here, water-containing dust refers to Na-type (Cl-type) cation (anion) exchange fibers that are soaked in distilled water and then centrifuged for 5 minutes in a household centrifugal dehydrator.
B. Dehydrate to remove surface moisture, immediately determine the weight (W), dry thoroughly, and measure the weight! 1) (WO)
, is the value obtained from the following formula.

W −W。W -W.

含水塵− WO イオン交換繊維の種類としては前述したカチオン交換基
、アニオン交換基、キレート基を有するカチオン交換繊
維、アニオン交換繊維、キレート繊維を挙げることがで
きる。繊維の形態としては。
Water-containing dust - WO Examples of the ion exchange fibers include the aforementioned cation exchange fibers, anion exchange fibers, and chelate fibers having cation exchange groups, anion exchange groups, and chelate groups. As for the form of fiber.

短繊維、フィラメント糸、フェルト、織物、不織布1編
物)繊維束、ひも状物2紙などの公知の任意の形態、集
合体もしくはそれらの裁断物を挙げることができる。そ
のなかでも特に01〜6皿。
Examples include short fibers, filament yarns, felt, woven fabrics, non-woven fabrics (1) knitted fabrics) fiber bundles, strings (2) paper, any known forms, aggregates, or cut products thereof. Among them, dishes 01-6 in particular.

望ましくは05〜2mの短繊維が充填しやすく。Desirably, short fibers of 0.5 to 2 m are easy to fill.

また異種繊維同志の混合が容易なので好ましく用いられ
る。
In addition, it is preferable to use it because it is easy to mix different types of fibers together.

本発明はバッチ法でも実施できるが、特に被処理液をイ
オン交換樹脂の層を通した後、イオン交換繊維の層を通
してイオン交換や吸着を行なう固定床式法が操作が容易
でかつ高度にイオン交換や吸1着が行なえるので好まし
い。本発明方法は通常少なくとも一種類のイオン交換樹
月旨で処理した後。
Although the present invention can be carried out by a batch method, a fixed bed method in which the liquid to be treated passes through a layer of ion exchange resin and then ion exchange and adsorption through a layer of ion exchange fibers is easy to operate and has a high degree of ionization. This is preferable because it can be replaced and adsorbed. The method of the present invention is usually carried out after treatment with at least one ion exchange agent.

同種類のイオン交換繊維で処理することによって被処理
液中の不用物や有用物を短時間力・つ大量に高度にイオ
ン交換ならびに吸着することカニできる。
By treating with the same type of ion-exchange fiber, it is possible to highly ion-exchange and adsorb waste and useful substances in the liquid to be treated in a short time and in large quantities.

本発明におけるイオン交換樹脂に対するイオン交換繊維
の使用交換容量の割合は通常0.01〜50俸であるが
、あまり小さすざるを短時間に高度にイオン交換や吸着
を行なうことが難しくなり、また逆にあまシ大きすぎる
と固定床容量当りの処理容量が低下するので好ましくは
0.05〜60係。
In the present invention, the exchange capacity ratio of the ion exchange fiber to the ion exchange resin is usually 0.01 to 50, but it is difficult to perform ion exchange or adsorption to a high degree in a short time using a too small colander. On the other hand, if it is too large, the processing capacity per fixed bed capacity will decrease, so it is preferably 0.05 to 60.

特に好ましくは01〜20チがよい。また使用するイオ
ン交換樹脂の種類ならびに組み合わせ(複合、混合)に
ついては、被処理液中の不用物や有用物の種類に応じて
適宜選択される。
Particularly preferred is 01 to 20 inches. Further, the type and combination (composite, mixed) of ion exchange resins to be used are appropriately selected depending on the types of waste materials and useful materials in the liquid to be treated.

本発明方法は、水の軟化、水、非水溶液(有機溶媒)お
よび海水などの脱塩、純水の製造、原子力発電所や火力
発電所における復水系統や純水系統、銅、水銀、カドミ
ウムなど有害金属の除去。
The method of the present invention is applicable to water softening, desalination of water, nonaqueous solutions (organic solvents), seawater, etc., production of pure water, condensate systems and pure water systems in nuclear power plants and thermal power plants, copper, mercury, cadmium, etc. Removal of harmful metals such as.

海水中のウランや希土類などの有用重金属の分離回収、
クロム酸の除去2種々の糖液の脱色、脱塩。
Separation and recovery of useful heavy metals such as uranium and rare earths in seawater,
Removal of chromic acid 2 Decolorization and desalting of various sugar solutions.

ストレプトマイシン、ペニシリンなどの抗生物質および
各種医薬品の精製分離、リジン、グルタミン酸などのア
ミノ酸の精製分離、ブドウ糖と果糖などの異性化体や光
学活性体の分離、各種有機酸や有機塩基の吸着、界面活
性剤の吸着、ヨウ素の精製、ホルマリンの精製、染料な
どの色素物質の吸着、水分の除去などの通常のイオン交
換樹脂で行なわれている・分野に適用することができる
Purification and separation of antibiotics and various pharmaceuticals such as streptomycin and penicillin, purification and separation of amino acids such as lysine and glutamic acid, separation of isomerized forms and optically active forms of glucose and fructose, adsorption of various organic acids and organic bases, and surface activity. It can be applied to fields that are performed using ordinary ion exchange resins, such as adsorption of agents, purification of iodine, purification of formalin, adsorption of pigment substances such as dyes, and removal of water.

さらに、タンパク質、ペプチド、酵素、核酸。Additionally, proteins, peptides, enzymes, and nucleic acids.

ホルモン、ヌクレオチド、アルカロイド、脂質。Hormones, nucleotides, alkaloids, lipids.

ステロイド、ウィルス、菌体などの細胞、コロイド物質
、および硫化水素、ノ・ロゲンイヒ水素、亜硫酸ガスな
どの酸性ガスやアンモニア、アミン類などの塩基性ガス
の吸着・除去、血液や血漿の浄化などにも適用すること
ができる。
For adsorption and removal of cells such as steroids, viruses, and bacteria, colloidal substances, acidic gases such as hydrogen sulfide, hydrogen sulfide, and sulfur dioxide gas, and basic gases such as ammonia and amines, and purification of blood and plasma. can also be applied.

本発明方法は、特に不用物をイオン交換や吸着して被処
理液を精製する分野に好ましく用いられる。そのなかで
も、原水をカチオン交換体とアニオン交換体で処理して
純水を製造する方法に最も好ましく用いられる。
The method of the present invention is particularly preferably used in the field of purifying a liquid to be treated by ion exchange or adsorption of waste materials. Among these, it is most preferably used in a method of producing pure water by treating raw water with a cation exchanger and an anion exchanger.

以下純水の製□造方法について詳細に説明する。The method for producing pure water will be described in detail below.

通常カチオン交換基好ましくはスルホン酸基を有するカ
チオン交換体は酸で活性化し、アニオン交換基好ましく
は4級アンモニウム基を有するアニオン交換体はアルカ
リで活性化して用いられる。
Usually, a cation exchanger having a cation exchange group, preferably a sulfonic acid group, is activated with an acid, and an anion exchanger having an anion exchange group, preferably a quaternary ammonium group, is activated with an alkali.

原水としては7通常工業用水、市水、井水、水道水、地
下水、RO膜透過水、蒸留水、原子力発電所や火力発電
所の復水、などが好ましく用いられる。通常、少なくと
も一種類イオン交換樹脂で処理した後、同種類のイオン
交換繊維で処理する工程を含むのがよい。
As the raw water, 7 normal industrial water, city water, well water, tap water, ground water, RO membrane permeated water, distilled water, condensate from a nuclear power plant or a thermal power plant, etc. are preferably used. Usually, it is preferable to include a step of treating with at least one kind of ion exchange resin and then treating with the same kind of ion exchange fiber.

処理する順序の具体例としては KR−+ K、→AR
2KR−+AR−+KF、KR−+にア→A□→A、、
K。
A specific example of the processing order is KR-+ K, →AR
2KR-+AR-+KF, KR-+ a→A□→A,,
K.

→AR−+ KF−+ Aア、KR→AR→にアAF 
I  KRA、 −)K、AF、KR−+AR−+KR
AR−+KFA1.  などを挙げることができるがこ
れに限定されるものではない。
→AR-+ KF-+ Aa, KR→AR→NiaAF
I KRA, -) K, AF, KR-+AR-+KR
AR-+KFA1. Examples include, but are not limited to, the following.

ここで、KR2ARはそれぞれカチオン交換樹脂。Here, KR2AR is a cation exchange resin.

アニオン交換樹脂、 KF、 AFはそれぞれカチオン
交換繊維、アニオン交換繊維、KRARは カチオンお
よびアニオン交換樹脂の混合体、  KFA、はカチオ
ンおよびアニオン交換繊維の混合体を意味する。
Anion exchange resin, KF, AF means cation exchange fiber, anion exchange fiber, KRAR means a mixture of cation and anion exchange resin, KFA means a mixture of cation and anion exchange fiber.

カチオンおよびアニオン交換繊維の混合体のかわシにカ
チオン交換繊維と粉末アニオン交換繊維の混合体もしく
はアニオン交換繊維と粉末カチオン交換樹脂の混合体を
用いてもよい。
A mixture of cation exchange fibers and powdered anion exchange fibers or a mixture of anion exchange fibers and powdered cation exchange resin may be used to replace the mixture of cation and anion exchange fibers.

高純度水を製造するにはイオン交換樹脂で処理した後、
少なくともカチオンおよびアニオン交換繊維の混合体で
処理するのが好ましく、処理する順序の具体例としては
前記したKR’+ AR−+ K、A、 。
To produce high purity water, after treatment with ion exchange resin,
It is preferable to treat with a mixture of at least cation and anion exchange fibers, and a specific example of the treatment order is KR'+ AR-+ K, A, as described above.

KRAR−+ I(、A、 、 KR−+ AR−+ 
K、A、→に、Aアなどを挙げることができる。ここで
カチオン交換体とアニオン交換体、特に繊維の混合(当
量)比率としては9通常5:1〜1:5であるが好まし
くは6:1〜1:6がよい。
KRAR-+ I(, A, , KR-+ AR-+
K, A, →, Aa, etc. can be mentioned. Here, the mixing (equivalent) ratio of cation exchanger and anion exchanger, especially fiber, is usually 5:1 to 1:5, but preferably 6:1 to 1:6.

さらに、前処理−RO膜→イオン交換→紫外線殺菌−M
F、UFもしくはRO膜などからなる公知の超純水シス
テムのイオン交換に本発明を適用することによって、従
来法よりも電気比抵抗。
Furthermore, pretreatment - RO membrane → ion exchange → ultraviolet sterilization - M
By applying the present invention to ion exchange of known ultrapure water systems consisting of F, UF or RO membranes, electrical resistivity can be improved compared to conventional methods.

T Oc−(有機物)、微粒子数、生菌数の点において
、はるかに優れた超純水を容易にかつ経済的に製造する
ことができる。
Ultrapure water that is far superior in terms of T Oc- (organic matter), number of fine particles, and number of viable bacteria can be easily and economically produced.

本発明方法は上記のごとく第1にイオン交換や吸着処理
が短時間で行なえること、第2に高度にイオン交換や吸
着が行なえること、第6にイオン交換や吸着の処理容量
が大きいこと、第4に短時間に高純水を大量に製造する
ことができること。
As mentioned above, the method of the present invention has the following advantages: first, ion exchange and adsorption can be performed in a short time; second, ion exchange and adsorption can be performed to a high degree; and sixth, the processing capacity for ion exchange and adsorption is large. Fourthly, high purity water can be produced in large quantities in a short period of time.

などの特徴を有している。It has the following characteristics.

以下に実施例を示すが、これに限定されるものではない
Examples are shown below, but the invention is not limited thereto.

実施・例1 市販のカチオン交換樹脂アンバーライトIR−120B
40m、/(76ミリ当量)をカラム(1,7aTIφ
x 18 am )に充填し酸で活性化した(カラムK
R)。 1mcoカットファイバー状のカチオン交換繊
維40mJ(13ミリ当量)を カラム(17鉗φX 
17 am 、)に充填し酸で活性化した(カラムKF
)。市販のアニオン交換樹脂ダイヤイオンS A 20
 A P  80 mJ (108ミリ当量)をカラム
(1,7cmφx 36 c!m)に充填しアルカリで
活性化した(カラムAR)。水道水を3.J/hrの流
速でカラムKR→カラムKF→カラムARの順序で通液
し、流出液の電気比抵抗を測定することによってカチオ
ン成分の除去性能を調べると同時に純水製造を行なった
。通液量と電気比抵抗の関係を表1に示す。
Implementation/Example 1 Commercially available cation exchange resin Amberlite IR-120B
40m, / (76 meq) column (1,7aTIφ
x 18 am) and activated with acid (column K
R). A column (17 mm φ
17 am,) and activated with acid (column KF
). Commercially available anion exchange resin Diaion S A 20
A P 80 mJ (108 meq.) was packed into a column (1.7 cmφ x 36 c!m) and activated with alkali (column AR). 3. Tap water. A liquid was passed in the order of Column KR, Column KF, and Column AR at a flow rate of J/hr, and the electrical resistivity of the effluent was measured to examine the ability to remove cationic components and simultaneously produce pure water. Table 1 shows the relationship between the amount of liquid passed and the electrical resistivity.

比較例1 実施例1に準じてカラムKR→カラムARとカラムに、
−力ラムARについて流出液の電気比抵抗を測定した。
Comparative Example 1 According to Example 1, from column KR to column AR,
- The electrical resistivity of the effluent was measured for the force ram AR.

通液量と電気比抵抗の関係を表1に示す。Table 1 shows the relationship between the amount of liquid passed and the electrical resistivity.

表1から2本発明ではろ73 / hrの流速において
も1MΩ・(3)以上の処理水が78t!であり、比較
例ではそれぞれ42z、9iで両者を合計しても51t
!にすぎず2本発明法は処理容量が非常に大きいことが
わかる。まだ本発明では電気比抵抗が高く、被処理液中
のカチオン成分が高度にイオン交換や吸着されておシ、
純度の高い純水が大量に得られることがわかる。
Tables 1 to 2 With the present invention, even at a flow rate of 73/hr, 78 tons of treated water with a resistance of 1 MΩ・(3) or more can be produced! In the comparative example, even if they are 42z and 9i, the total is 51t.
! 2, it can be seen that the method of the present invention has a very large processing capacity. However, in the present invention, the electrical resistivity is high, and the cationic components in the liquid to be treated are highly ion-exchanged and adsorbed.
It can be seen that a large amount of highly purified water can be obtained.

実施例2 市販の混合樹脂アンバーライ)MB−1ろ0m1(カチ
オン29怜り嶺量、アニオン21ミリ轟量)が下層部に
、MB−290mJ(カチオン57ミリ当量、アニオン
81ミリ当量)が上層部になるようにカラム(1,7c
fnφx 54 am )に充填した(カラムKRAR
)。 1皿カットファイバー状の繊維混合体120 m
7 (カチオン15ミリ当量。
Example 2 Commercially available mixed resin Amberly) MB-1 0ml (cation weight: 29 millimeters, anion weight: 21 millimeters) was used as the lower layer, and MB-290 mJ (cation: 57 milliequivalents, anion: 81 milliequivalents) was used as the upper layer. Column (1,7c
fnφx 54 am) (column KRAR
). 120 m of fiber mixture cut into one dish
7 (15 milliequivalents of cation.

アニオン10ミリ当量)をカラム(1,71!mφX5
4aT+)に充填した(カラムに、A、 )。 水道水
ヲろIg/hrの流速でカラムKRAR→カラムKFA
、の順序で通液し純水を製造した。通液量と電気比抵抗
の関係を表1に示す。
10 meq. of anions) to a column (1,71! mφX5
4aT+) (column, A, ). Column KRAR → Column KFA at a flow rate of tap water Ig/hr
, to produce pure water. Table 1 shows the relationship between the amount of liquid passed and the electrical resistivity.

比較例2 実施例2に準じてカラムKRARとカラムKFAFヲ用
いて、それぞれ別々に純水製造を行なった。通液量と電
気比抵抗の関係を表2に示す。
Comparative Example 2 Purified water was produced separately according to Example 2 using the column KRAR and the column KFAF. Table 2 shows the relationship between the amount of liquid passed and the electrical resistivity.

表2から1本発明では3J/hrの流速においても1 
’D MΩ・−以上の処理水が47zであり、比較例で
はそれぞれ25.7?、7Jで両者を合計しても321
!にすぎず2本発明法は処理容量が非常に大きいことが
わかる。まだ本発明では電気比抵抗が高く、被処理液中
の不純物が高度にイオン交換や吸着されておシ、高純度
水が大量に得られることがわかる。
From Table 2, 1 In the present invention, even at a flow rate of 3 J/hr,
'D MΩ・- or higher treated water is 47z, and in the comparative example, each is 25.7? , 7J and the sum of both is 321
! 2, it can be seen that the method of the present invention has a very large processing capacity. It can be seen that in the present invention, the electrical resistivity is still high, impurities in the liquid to be treated are highly ion-exchanged and adsorbed, and a large amount of high-purity water can be obtained.

実施例ろ 1mmカットファイバー状の繊維混合体50 mJ(カ
チオン3.8ミリ当量、アニオン2.5ミリ当量)が下
層部に、市販の混合樹脂アンバーライ)MB−29,0
mJ(男チオン57.ミリ尚量、アニオン81ミリ当量
)が上層部に′なるようにカラム(1,7−φx 54
 an )に充填した(カラムKRAR9’ OmJ 
−+ KPAF30 ml )。 水道水を31!/h
rの流速で上部よりカラムに通液して純水を製造した。
Example 50 mJ (3.8 meq. of cations, 2.5 meq. of anions) of a fiber mixture in the form of 1 mm cut fibers was added to the lower layer, and a commercially available mixed resin (Amberly) MB-29.0 was added to the lower layer.
Column (1,7-φx 54 mm
(column KRAR9' OmJ)
-+ KPAF30 ml). 31 for tap water! /h
Pure water was produced by passing the liquid through the column from the top at a flow rate of r.

通液量と電気比抵抗の関係を表6に示す。Table 6 shows the relationship between the amount of liquid passed and the electrical resistivity.

実施例4 1mカットファイバー状の繊維混合体10mJ(カチオ
ン1.3ミリ当量、アニオン0.85ミリ当量)が下層
部に、市販の混合樹脂アンバーライトMB−2110m
j’  (カチオン70ミリ当量、・アニオン99ミリ
当量)が上層部になるようにカラム(1,7C!mφ×
54(2))に充填した(カラムKRAR110ml 
−+ K、A、 10 ml ’)。実施例乙に準じて
純水を製造したときの通液量と電気比抵抗の関係を表6
に示す。
Example 4 10 mJ of 1 m cut fiber mixture (1.3 meq. of cation, 0.85 meq. of anion) was added to the lower layer of commercially available mixed resin Amberlite MB-2110m.
Column (1,7C!mφ×
54(2)) (column KRAR 110ml
-+ K, A, 10 ml'). Table 6 shows the relationship between the amount of liquid passed and the electrical resistivity when pure water was produced according to Example B.
Shown below.

比較例6 市販の混合樹脂アンバーライト’MB−2120ml!
 (カチオン76ミリ当量、アニオン108ミリ当量)
をカラム(1,7釧φ×54(2))に充填した( K
RAR120ml )。実施例乙に準じて純水を製造し
たときの通液量と電気比抵抗の関係を表6に示す。
Comparative Example 6 Commercially available mixed resin Amberlite'MB-2120ml!
(Cation 76 milliequivalents, anion 108 milliequivalents)
(K
RAR120ml). Table 6 shows the relationship between the amount of liquid passed and the electrical resistivity when pure water was produced according to Example B.

表6から2本発明では3J/hrの流速においても10
MΩ・(2)以上の処理水がそれぞれろ5!!。
From Table 6, 2 In the present invention, even at a flow rate of 3 J/hr, 10
Treated water with MΩ・(2) or more is 5 each! ! .

4szであシ、比較例では60I!にすぎず9本発明法
は固定床容量当シの処理容量が大きいことがわかる。ま
た本発明では電気比抵抗が高く、被処理液中の不純物が
高度にイオン交換や吸着されておシ、高純度水が大量に
得られることを認めた。
It's 4sz, and the comparative example is 60I! It can be seen that the method of the present invention has a large processing capacity per fixed bed capacity. It has also been found that in the present invention, the electrical resistivity is high, impurities in the liquid to be treated are highly ion-exchanged and adsorbed, and a large amount of high-purity water can be obtained.

繊維の使用容量が大きくなると処理液の純度が高くなる
が処理容量が低下し、逆に小さすぎると処理容量は大き
くなるが処理液の純度が低下するこtがわかる。
It can be seen that when the usage capacity of the fibers increases, the purity of the treatment liquid increases, but the treatment capacity decreases, and conversely, when it is too small, the treatment capacity increases, but the purity of the treatment liquid decreases.

なお前記実施例および比較例で用いたカチオンならびに
アニオン交換繊維は次の方法で製造しとものである。
The cation and anion exchange fibers used in the Examples and Comparative Examples were manufactured by the following method.

多芯海島型複合繊維(未延伸糸)〔海成分(ポリスチレ
ンlポリプロピレン)/島成分(ポリプロピレン)、=
 (47//’4)/49 (高教16.繊維直径64
μ)〕を長さ1mmに切断してカットファイバーを得だ
。該カットファイバー1重量部を市販の1級硫酸Z5容
量部とバラホルムアルデヒド0.15重量部からなる架
橋・スルホン化液に加え80℃で4時間反応処理した後
、水洗した。次にアルカ)ノで処理してから水洗するこ
とによってスルホン酸基を有するカチオン交換繊維を得
た(交換容量2.8ミリ当量/ g= Na+ 含水炭
1.5)。
Multicore sea-island composite fiber (undrawn yarn) [sea component (polystyrene/polypropylene)/island component (polypropylene), =
(47//'4)/49 (High school 16. Fiber diameter 64
μ)] was cut to a length of 1 mm to obtain a cut fiber. 1 part by weight of the cut fibers was added to a crosslinking/sulfonation solution consisting of 5 parts by volume of commercially available primary sulfuric acid Z and 0.15 parts by weight of paraformaldehyde, reacted at 80° C. for 4 hours, and then washed with water. Next, a cation exchange fiber having a sulfonic acid group was obtained by treating with alkali) and washing with water (exchange capacity: 2.8 milliequivalents/g=Na+ hydrous carbon: 1.5).

上記カットファイバー1重量部を市販の1級硫酸5容量
部、水05容量部とパラホルム、アルデヒド02重量部
からなる架橋液に加え80℃で4時間架橋反応を行雇っ
た。次にクロルメチルエーテル85容量部と塩化第2ス
ズ1.5容量部からなる溶液に架橋系を加え、60℃で
1時間反応した。
1 part by weight of the above cut fiber was added to a crosslinking solution consisting of 5 parts by volume of commercially available primary sulfuric acid, 05 parts by volume of water, 02 parts by weight of paraform and aldehyde, and a crosslinking reaction was carried out at 80° C. for 4 hours. Next, the crosslinking system was added to a solution consisting of 85 parts by volume of chloromethyl ether and 1.5 parts by volume of stannic chloride, and the mixture was reacted at 60° C. for 1 hour.

反応終了後、10チ塩酸、蒸留水、アセトンで洗浄した
。クロルメチル化系を30%トリメチルアミン水溶液1
0容量部に加え、60℃で1時間アミン化して水洗した
。さらに塩酸で処理してから水洗することによってトリ
メチルアンモニウムメチル基を有するアニオン交換繊維
を得た(交換容量2:4ミリ当量/g−at:、含水度
1,8)。
After the reaction was completed, it was washed with 10-dihydrochloric acid, distilled water, and acetone. Add chloromethylated system to 30% trimethylamine aqueous solution 1
0 parts by volume, aminated at 60° C. for 1 hour, and washed with water. Further, by treating with hydrochloric acid and washing with water, anion exchange fibers having trimethylammonium methyl groups were obtained (exchange capacity: 2:4 milliequivalents/g-at:, water content: 1.8).

繊維混合体はカチオン交換繊維およびアニオン交換繊維
をそれぞれ酸、′フルカリで活性化した後。
The fiber mixture was prepared by activating cation exchange fibers and anion exchange fibers with acid and 'flukali, respectively.

両者を所定の割合で攪拌混合したものを用いた。A stirred mixture of both at a predetermined ratio was used.

Claims (1)

【特許請求の範囲】[Claims] (1)被処理液中の不用物や有用物をイオン交換体でイ
オン交換や吸着する方法において、被処理液をイオン交
換樹脂で処理した後、イオン交換繊維で処理することを
特徴とするイオン交換捷たは吸着方法。
(1) A method of ion-exchanging or adsorbing unnecessary or useful substances in a liquid to be treated with an ion exchanger, which is characterized in that the liquid to be treated is treated with an ion-exchange resin and then treated with an ion-exchange fiber. Exchange method or adsorption method.
JP58039754A 1983-03-10 1983-03-10 Method for ion exchange or ion adsorption Granted JPS59166245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039754A JPS59166245A (en) 1983-03-10 1983-03-10 Method for ion exchange or ion adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039754A JPS59166245A (en) 1983-03-10 1983-03-10 Method for ion exchange or ion adsorption

Publications (2)

Publication Number Publication Date
JPS59166245A true JPS59166245A (en) 1984-09-19
JPH0153118B2 JPH0153118B2 (en) 1989-11-13

Family

ID=12561734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039754A Granted JPS59166245A (en) 1983-03-10 1983-03-10 Method for ion exchange or ion adsorption

Country Status (1)

Country Link
JP (1) JPS59166245A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211593A (en) * 1985-07-08 1987-01-20 Toray Ind Inc Production of ultrapure water
JPH02126990A (en) * 1988-07-05 1990-05-15 Toray Ind Inc Production of ultra pure water
JPH03185A (en) * 1989-05-24 1991-01-07 Toray Ind Inc Method for purifying water solution
JPH0550062A (en) * 1991-05-29 1993-03-02 Toray Ind Inc Purifying method for aqueous solution
JP2012240029A (en) * 2011-05-24 2012-12-10 Nippon Rensui Co Ltd Deionizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211593A (en) * 1985-07-08 1987-01-20 Toray Ind Inc Production of ultrapure water
JPH02126990A (en) * 1988-07-05 1990-05-15 Toray Ind Inc Production of ultra pure water
JPH03185A (en) * 1989-05-24 1991-01-07 Toray Ind Inc Method for purifying water solution
JPH0550062A (en) * 1991-05-29 1993-03-02 Toray Ind Inc Purifying method for aqueous solution
JP2012240029A (en) * 2011-05-24 2012-12-10 Nippon Rensui Co Ltd Deionizer

Also Published As

Publication number Publication date
JPH0153118B2 (en) 1989-11-13

Similar Documents

Publication Publication Date Title
US4693828A (en) Method of ion-exchanging and/or adsorption
JP4943378B2 (en) Condensate demineralization method and condensate demineralization apparatus
JPS59166245A (en) Method for ion exchange or ion adsorption
JPH11352283A (en) Condensate processing method and condensate demineralization device
JPH0478483A (en) System for producing ultrapure water
JPS63156591A (en) Production of ultra-pure water
JPS6344988A (en) Method for making ultrapure water
US4150205A (en) Composite ion exchange resins having low residual amounts of quaternary ammonium cation
JP3232466B2 (en) Ultrapure water production method
US2962438A (en) Ion exchange process for water purification
US3252897A (en) Process for purifying weak electrolytes and nonelectrolytes
JPH03151092A (en) Column for producing ultra-pure water
JPH02298395A (en) Production of ultrapure water using ion exchange resin composition
Boari et al. Selective renovation of eutrophic wastes—phosphate removal
JPS5923852B2 (en) Adsorption methods for ionic and polar substances
JPS6211593A (en) Production of ultrapure water
JPH0623282A (en) Tower packed with ion exchange fiber
JPS6219247A (en) Method for eliminating colloidal substance
JPH02228332A (en) Ion-exchange fiber and preparation thereof
JPH08224579A (en) Condensate demineralizing apparatus
JP3173836B2 (en) Manufacturing method of activated carbon adsorbent
JPH06126278A (en) Water purifying apparatus
KR960001419B1 (en) Anion exchanger and the method for treating fluid
JPH02289628A (en) Ultrafine ion-exchange fiber and production thereof
JPS59162954A (en) Separation of ion-exchange fiber