JPWO2019220513A1 - 光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサ - Google Patents

光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサ Download PDF

Info

Publication number
JPWO2019220513A1
JPWO2019220513A1 JP2018525790A JP2018525790A JPWO2019220513A1 JP WO2019220513 A1 JPWO2019220513 A1 JP WO2019220513A1 JP 2018525790 A JP2018525790 A JP 2018525790A JP 2018525790 A JP2018525790 A JP 2018525790A JP WO2019220513 A1 JPWO2019220513 A1 JP WO2019220513A1
Authority
JP
Japan
Prior art keywords
optical
waveguide
light
integrated circuit
element portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018525790A
Other languages
English (en)
Other versions
JP6513885B1 (ja
Inventor
成君 金
成君 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI TECHNOLOGY CO., LTD.
Original Assignee
TAISEI TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI TECHNOLOGY CO., LTD. filed Critical TAISEI TECHNOLOGY CO., LTD.
Application granted granted Critical
Publication of JP6513885B1 publication Critical patent/JP6513885B1/ja
Publication of JPWO2019220513A1 publication Critical patent/JPWO2019220513A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/295Analog deflection from or in an optical waveguide structure]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

複数のチャネルに光位相シフトを与える光集積回路であって、位相制御の複雑化を招くことなく隣接チャネル間の位相差の波長依存性及び温度依存性が低減された光集積回路を提供する。この光集積回路は、基板上に形成された光導波路により構成され、入力光が伝搬するバス導波路と、バス導波路上に配された当該バス導波路を伝搬する光の一部をそれぞれ抽出する複数の光カプラと、複数の光カプラが抽出した光をそれぞれ伝搬する複数の導波ラインと、バス導波路に沿って隣接する光カプラの間の当該バス導波路上にそれぞれ設けられた位相シフタと、を備え、バス導波路の光入力端から各導波ラインの光出力端までの光路長が互いに等しくなるように構成されている。

Description

本発明は、一般に、光集積回路に関し、特に、光位相制御に用いられる波長非依存型の光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサに関する。
LiDAR(Light Detection and Ranging)センサは、リモートセンシング及び測距の用途に用いられ、例えば、自動運転システム等においてリアルタイムの三次元マッピング及び物体の検出、追跡、特定等を行うのに用いられる。
LiDARセンサは、レーザビームを観察空間内でスキャンして当該空間内の物体に照射し、当該照射したビームが物体の表面で散乱し反射されることで発生する反射戻り光を受光センサにより受信する。そして、レーザビームの照射から反射戻り光を受信するまでの光の飛行時間(TOF、Time of Flight)と、当該反射戻り光の到来方向と、を測定することにより、当該物体の位置と距離を測定する。
このようなLiDARセンサとして、機械式の回転部品を用いてレーザビームのスキャンニングを行うものが知られている。しかしながら、先進運転者支援システム(ADAS)や自律運転システムのような一部のシステムでは、様々な利点を持ち得るソリッドステート型のビームスキャナを用いることが望ましい。そのような利点には、センサ信頼度がより高いこと、センサ寿命がより長いこと、センササイズがより小さいこと、センサ重量がより軽いこと、及びセンサコストがより手頃であることが含まれるが、これらに限定されない。
そのようなソリッドステート型のビームスキャナの一つとして光フェーズドアレイ(OPA、Optical Phased Array)がある。LiDARセンサは、光フェーズドアレイを適用することで、機械式ビームスキャンニングを用いる従来のLiDARに比べてより高速でより適応性のあるものとなり、より有用なものとなる。
一般に、光フェーズドアレイにおいて光を空間へ出力するアンテナアレイは、所定の間隔をもって配列された複数のアンテナエレメントで構成される。ここで、アンテナエレメントのそれぞれは、例えば光導波路で構成される。そして、各アンテナエレメントから出力される光の位相は、次式で示す線形則に従う必要がある。
Figure 2019220513
ここで、mは、配列されたアンテナエレメントに対し端から順に付される番号である。また、Pはアンテナエレメントの配列間隔、λはアンテナエレメントへの入力光の波長、θはアンテナエレメントの光出射端が構成する平面の法線に対する回折光の主極大ビーム(メインビーム、又はメインローブ)の偏向角である。式(1)より明らかなように、隣接するアンテナエレメントのペアのそれぞれは、当該隣接するアンテナエレメントから出力される光の位相差が、互いに同じである必要がある。また、アンテナエレメントから出力される光に与えるべき位相の変化量、すなわち位相シフト量は、必要な偏向角θの値及び番号mの大きさに依存して、2πを超えるものとなり得る。
従来、光フェーズドアレイに関連性のある技術として、高周波フェーズドアレイアンテナ用の高周波位相シフタにおいて、複数の受光器を備えるジグザグ型光導波路を用いることが知られている(特許文献1)。この高周波位相シフタは、高周波信号により変調された光を上記ジグザグ型光導波路に伝搬させ、光導波路に沿って異なる位置に配された複数の受光器により各位置の光を受信し検波して、それぞれ異なる位相シフトが与えられた複数の高周波信号を抽出する。そして、抽出した複数の高周波信号のうちから所望の位相シフトが与えられた高周波信号を選択的に出力させる。しかしながら、この高周波位相シフタは、単に高周波信号に位相シフトを与える手段として光導波路を用いるものであって、光自体の位相シフトを目的とするものではない。したがって、この技術を光フェーズドアレイに用いることはできない。
仮に、この高周波位相シフタのジグザグ型光導波路を光フェーズドアレイに転用し、受信器が配されているそれぞれの位置に光カプラを設けて光を抽出したとしても、以下のような問題が生ずる。
上記従来技術に示されたジグザグ型光導波路は、高周波信号の位相シフトを目的とするため、隣接する受信器間をつなぐそれぞれの光導波路の経路長は、例えば高周波信号波長の1/10から1/100程度の精度で互いに等しいものであればよい。これに対し、光位相シフトを目的とする場合には、隣接する光カプラ間をつなぐそれぞれの光導波路の経路長は、光の波長の1/10から1/100程度の精度を必要とする。このため、上記従来技術に示されたジグザグ型光導波路は、光位相シフトの観点から見た場合には、隣接する受信器間をつなぐそれぞれの光導波路の経路長が必ずしも互いに同じではない。
このため、受信器が配されているそれぞれの位置に光カプラを設けて光を抽出し、当該抽出した光をアンテナエレメントにそれぞれ入力したとしても、隣接する光カプラから抽出される光の位相差は、隣接する光カプラのペア毎に互いに異なるものとなるため、アンテナエレメントから出力される光は、式(1)が示す線形則を満たさない。
また、隣接する光カプラ間をつなぐ光導波路の経路長が同じでないことに起因して生ずる、一の隣接する光カプラのペアにおける光の位相差と他の隣接する光カプラのペアにおける位相差との差は、入力光の波長又は周波数に依存する。その結果、光フェーズドアレイとしてのビームステアリング動作を行う際には、上記位相差の差を入力光の波長の変化に応じて補償する必要が生じ、制御が複雑なものとなる。
他の関連性のある従来技術として、光位相シフタ等を構成する光導波路を含んだ、モノリシック集積半導体構造の光信号処理装置が知られている(特許文献2、特許文献3)。この光信号処理装置では、多段に接続された2分岐導波路により、入力光が複数の光に分岐される。そして、分岐光のそれぞれを出力する出力導波路に設けられた位相シフタにより、それぞれの分岐光に個別の位相シフトが与えられる。しかしながら、この光信号処理装置を、光フェーズドアレイのための光位相制御を行う光集積回路として用いる場合には、以下のような問題が生ずる。
上述したように、各アンテナエレメントから出力される光の位相は、式(1)が示す線形則に従う必要があり、アンテナエレメントから出力される光に与えるべき位相シフト量は、2πを超えるものとなり得る。
しかしながら、上記光信号処理装置では、それぞれの出力導波路から出力される光の位相は、それぞれの出力導波路に設けられた位相シフタによってのみ決定され、且つ、それぞれの出力導波路の位相シフタは互いに独立に制御される。このため、2πを超える位相シフトの目標値を正しく発見するための処理が複雑となる。その結果、上記光信号処理装置の構成を光フェーズドアレイとして機能させるための制御動作は、かなり複雑なものとなる。
本発明に最も関連性のある従来技術として、光集積回路(PIC、photonic integrated circuit)をベースとするデバイスとして構成されたLiDARが知られている(非特許文献1)。このデバイスは、バス導波路と、縦続接続(カスケード接続)された熱位相シフタ(thermal phase shifters)と、バス導波路を伝搬する光の一部を抽出する複数のエバネセントカプラ(evanescent couplers)と、を有する。そして、これらのエバネセントカプラにより抽出された光は、それぞれグレーティングベースのアンテナエレメントに入力される。
これにより、グレーティングベースのアンテナエレメントが形成された基板の表面から当該アンテナエレメントの長さに沿って分布した線状の光が出力される。ここで、基板の面に平行であって且つアンテナエレメントの延在する方向に平行な方向をX方向、当該基板の面に平行であってX方向に直交する方向をY方向、当該基板の面の法線方向をZ方向とすると、各アンテナエレメントはX方向に延在する線状光源として作用し、各アンテナエレメントから出力される光が互いに干渉することにより、X方向に広がった主極大ビームが当該基板の表面から出力されることとなる。
そして、このデバイスでは、隣接するエバネセントカプラをつなぐバス導波路での光の位相増分を熱位相シフタにより制御することで、上記主極大ビームの、X方向から見たZ方向に対する偏向角(すなわち、X方向に広がる主極大ビームが形成する平面とYZ平面との交差線がZ方向に対してなす角度)が制御されて、ビームステアリングの機能が提供される。以下、このビームステアリングを、「YZ平面におけるビームステアリング」という。
しかしながら、このデバイスは、次のような欠点を有する。すなわち、エバネセントカプラとアンテナエレメントとの間に挿入された光導波路の光路長(OPL(Optical Path Length))が等しくない。このため、熱位相シフタが無通電状態にある場合、OPLの差(OPL差、光路差)により好ましくない位相をもったチャネル(すなわち、アンテナエレメントと当該アンテナエレメントにつながる光伝送路で構成される光経路)が生じ、各アンテナエレメントから出力される光の位相は、式(1)に示す線形則に従わないものとなり得る。このため、熱位相シフタのそれぞれにオフセット電圧を含ませる必要が生ずる。
また、仮に、上記OPL差が、結果として上記線形則を満たすようなOPL差であったとしても、当該OPL差により発生する位相シフトは、伝搬する光の波長が異なれば異なるものとなるので、隣接アンテナエレメント間の光位相差は、入力光の波長又は周波数に依存することとなる。
このような、隣接アンテナエレメント間の光位相差の波長依存性は、YZ平面における主極大ビームの偏向角に波長依存性を生じさせる。このため、例えば、動作温度によって光源の波長が変動する場合には、その時々の光源の波長に応じて偏向角のオフセット量を調整する校正処理が必要となり、光フェーズドアレイの動作制御が複雑化する。
また、光源として波長可変光源を用い、入力光の波長を制御することによりグレーティングベースのアンテナエレメントから出射されるビームの出射角を制御して、主極大ビームの方向を2つの直交平面(YZ平面及びXZ平面)において制御しようとする場合には、上記位相シフトの波長依存性は、光フェーズドアレイの動作制御をさらに複雑なものとする。
すなわち、グレーティングベースのアンテナエレメントは、当該アンテナエレメントの延在方向であるX方向と基板法線方向であるZ方向とで規定されるXZ平面に沿って出力光を出射する。そして、XZ平面における当該出力光の出射角(当該出力光の出射方向がZ方向に対してなす角度)は、アンテナエレメントに設けられたグレーティングのピッチと、入力光の波長とで定まる。したがって、光源として波長可変光源を用いて入力光の波長を変化させれば、各アンテナエレメントの出力光の出射角を変化させて、主極大ビームの出射角(X方向に広がる主極大ビームが規定する平面とYZ平面との交差線に対して、主極大ビームの出射方向が成す角度)を変化させることができる。以下、アンテナエレメントの出力光の出射角を変化させることで主極大ビームの出射角を変化させて行うビームステアリングを、「XZ平面におけるビームステアリング」という。
しかしながら、上記のようにYZ平面における主極大ビームの偏向角を決定する隣接アンテナエレメント間の光位相差に波長依存性があれば、波長を変化させてXZ平面におけるビームステアリングを行おうとすると、YZ平面における偏向角にズレを生じさせることとなり、XZ平面におけるビームステアリングとYZ平面におけるビームステアリングとを独立に行うことはできない。このため、波長を変更することに応じて隣接アンテナエレメント間の光位相差に補正を加える必要が生じ、かなり複雑な動作制御が必要となる。
このデバイスの更なる問題は、周囲温度が変化した場合に、チャネル間に付加的な位相差を生ずることである。すなわち、チャネルを構成する光導波路の実効屈折率(nE)は、周囲温度が変化することにより、基板屈折率の温度依存性に応じた変化(ΔnE)を生ずる。これにより、各チャネルには、それぞれの経路長(L)に応じた光路長の変化(L×ΔnE)が生ずることとなる。そして、各チャネルの経路長に差(ΔL)があれば、各チャネルに発生する光路長変化に差(ΔL×ΔnE)を生ずることとなり、チャネル間に付加的な位相差が生ずることとなり得る。その結果、このデバイスでは、温度センサを設けて何らかのフィードバック制御を行うことが必要となり、デバイス及び又は制御装置が、より複雑且つ高価なものとなり得る。
また、このデバイスでは、複数のチャネルが3つのグループに分けられ、3つのグループのそれぞれにおいて、同一グループ内のチャネルに設けられた熱位相シフタに同じ電圧が印加される。すなわち、このデバイスでは、個々のチャネルの位相シフト量を個別に制御することができない。このため、上記のような入力光の波長変化や周囲温度の変化に起因した付加的な位相シフトが同一グループ内の複数のチャネルにおいて互いに異なる量をもって生じた場合には、これらの全てをそれぞれ正確に補償することは不可能である。
米国特許第5,222,162号明細書 米国特許第5,770,472号明細書 米国特許第5,930,031号明細書
Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan Raval, Diedrik Vermeulen, Michael R. Watts, Coherent solid−state LIDAR with silicon photonic optical phased arrays, Optics Letters, Vol. 42, No. 20 / October 15, 2017.
本発明の目的は、入力光を分岐して構成される複数のチャネルについての位相制御の複雑化を招くことなく、隣接チャネル間の位相差についての波長依存性及び温度依存性のない光集積回路を実現することである。
本発明の一の態様は、基板上に形成された光導波路により構成される光集積回路であって、入力光が伝搬するバス導波路と、前記バス導波路上に配された、当該バス導波路を伝搬する光の一部をそれぞれ抽出する複数の光カプラと、前記複数の光カプラが抽出した光をそれぞれ伝搬する複数の導波ラインと、前記バス導波路に沿って隣接する前記光カプラの間の当該バス導波路上にそれぞれ設けられた位相シフタと、を備え、バス導波路の光入力端から各導波ラインの光出力端までの光路長が互いに等しくなるように構成されている。
本発明の他の態様によると、前記バス導波路は、複数の第1要素部分が縦続に接続されて構成され、前記導波ラインは、第2要素部分を一つ含むか、又は複数の前記第2要素部分が縦続に接続されて構成されており、前記第1要素部分は、それぞれ、前記基板の平面に沿った第1の方向(X方向)に伝搬する光を受ける当該第1要素部分の光入力部と、前記第1の方向(X方向)へ光を出力する当該第1要素部分の光出力部とが、前記第1の方向に第1所定距離LAを隔て、且つ前記第1の方向に直交する前記基板の平面に沿った第2の方向(Y方向)に第2所定距離dを隔てて配置されており、前記第2要素部分は、それぞれ、光の伝搬方向に沿って上流の第1端部と光の伝搬に沿って下流の第2端部とが、前記第1の方向(X方向)に第1所定距離LAを隔て、且つ前記第2の方向(Y方向)に第3所定距離qを隔てて配置されており、前記第1要素部分の光入力部に前記光カプラが設けられている。
本発明の他の態様によると、前記光カプラは、エバネセントカプラであり、前記第1要素部分の光入力部を含む当該第1要素部分の一部と、一の前記導波ラインの端部を含む当該導波ラインの一部とが、前記第2の方向に第4所定距離gを隔てて配されることにより構成される。
本発明の他の態様によると、前記バス導波路の光入力端から、複数の前記導波ラインの光出力端に至るそれぞれの光経路に含まれる、前記第1要素部分の数と前記第2要素部分の数の合計は、それぞれの前記光経路において互いに同じである。
本発明の他の態様によると、前記導波ラインのそれぞれは一つ又は複数の前記第2要素部分に加えて一つ又は複数の付加的な導波路を含み、前記導波ラインのそれぞれが含む前記付加的な導波路の、光路長の合計及び前記第1の方向に沿った距離の合計は、複数の前記導波ラインにおいてそれぞれ互いに同じである。
本発明の他の態様によると、前記第1要素部分と前記第2要素部分とは、同じ光路長を持つ。
本発明の他の態様によると、前記第1要素部分は、それぞれ光の伝搬方向に所定の角度の変化を与える2つの曲がり導波路と、前記第1の方向に対し当該所定の角度をもって延在して当該2つの曲がり導波路を接続する斜め導波路と、を含み、前記第2要素部分は、光の伝搬方向を90°変換する2つの曲がり導波路と、前記第1の方向に延在する直線導波路と、を含む。
本発明の他の態様によると、縦続接続された複数の前記第1要素部分のうち最後の前記第1要素部分には、当該最後の前記第1要素部分の光出力部につなげて設けられた前記光カプラを介して、一つの前記第2要素部分で構成される前記導波ラインが接続される。
本発明の他の態様によると、一つの前記第1要素部分と、一つの前記導波ラインの端部を含む前記第2要素部分と、をそれぞれ含む複数の第3要素部分を含み、前記複数の第3要素部分に含まれるそれぞれの前記第1要素部分が互いに縦続接続され、前記複数の第3要素部分に含まれるそれぞれの前記第2要素部分に一つ又は複数の他の前記第2要素部分が縦続接続されている。
本発明の他の態様によると、前記位相シフタは、それぞれ、前記バス導波路の一部に設けられたヒータにより構成され、前記ヒータは、同じ電流を通電したときに互いに同じ温度となるように、長さ、幅、及び厚さを含むサイズ、並びに形状が、互いに同じとなるように構成されている。
本発明の他の態様によると、前記基板は、Si34、Si、SiON、LiNbO3、LiTaO3、及びSiCのいずれかで構成される。
本発明の他の態様は、上記いずれかの光集積回路を備える光フェーズドアレイである。
本発明の他の態様によると、前記光フェーズドアレイは、基板上に設けられた、それぞれがその長さ方向に沿ってその幅又は厚さが周期的に変化する複数の摂動導波路により構成され、前記光集積回路が出力する光のそれぞれを当該基板の表面から空間へ出力するアンテナアレイを備える。
本発明の他の態様によると、上記いずれかの光フェーズドアレイを備えるLiDARセンサである。
本発明によれば、入力光を分岐して構成される複数のチャネルについての位相制御の複雑化を招くことなく、隣接チャネル間の位相差についての波長依存性及び温度依存性のない光集積回路を実現することである。
図1は、本発明の一実施形態に係る光集積回路を用いた光フェーズドアレイを備えるLiDARセンサの構成を示す図である。 図2は、本発明の一実施形態に係る光集積回路の構成を示す図である。 図3は、図1に示す光フェーズドアレイを構成するアンテナアレイの構成を示す図である。 図4は、図3に示すアンテナアレイから出力される光を模式的に示した図である。 図5は、図3に示すアンテナアレイから出力される主極大ビームを模式的に示した図である。 図6は、図2に示す光集積回路を構成する第1要素部分及び第2要素部分の構成を示す図である。 図7は、図6に示す第1要素部分を構成する斜め導波路の長さと各部の寸法との関係を示す図である。 図8は、図2に示す光集積回路に接続された図3に示すアンテナアレイから出力される光の遠視野像の一例を示す図である。 図9は、図3に示すアンテナアレイに代えて用いることのできる他のアンテナアレイの構成を示す図である。
以下、図面を参照して本発明の実施形態について説明する。以下に示す実施形態は、本発明に係る光集積回路を用いて構成された光フェーズドアレイを備えるLiDARセンサである。ただし、光フェーズドアレイ及びLiDARセンサは一例であって、本発明の光集積回路の適用分野はこれには限られない。例えば、監視装置等のセキュリティ用途、ドローン等の飛行ナビゲーション用途、及び、その他の三次元情報を必要とする任意の用途に、本発明の光集積回路を用いることができる。
図1は、本発明の一実施形態に係る光集積回路を用いた光フェーズドアレイを備えるLiDARセンサの構成を示す図である。このLiDARセンサ100は、光源102と、光フェーズドアレイ(OPA)104と、受光センサ106と、処理装置108と、を備える。
光源102は、例えば半導体レーザを備え、処理装置108からの信号に基づいて、変調された変調光を出力する。この変調は、例えば半導体レーザへの通電電流を処理装置108からの信号により変調することにより行われる。これに代えて、光源102が更に光変調器を備えるものとし、処理装置108からの信号により当該光変調器を動作させて、半導体レーザからの光を当該光変調器により変調して出力するものとすることができる。光源102から出力されるこの変調光は、OPA104の入力光となる。
OPA104は、本発明に係る光集積回路110と、アンテナアレイ112と、光集積回路110の出力光をアンテナアレイ112へ導く光伝送路114と、を備える。光伝送路114は、例えば互いに光路長の等しい複数の光ファイバで構成される。
光集積回路110は、光源102からの入力光から、それぞれに所定の位相シフトが与えられた複数の光を生成して、アンテナアレイ112へ出力する。アンテナアレイ112は、アンテナエレメントである光導波路を所定のピッチで配置して構成されており、光集積回路110から出力された上記複数の光を、それぞれのアンテナエレメントから空間へ出力する。
光集積回路110は、位相シフタを含み、アンテナアレイ112のそれぞれ隣接するアンテナエレメント間における位相差が等しく且つ所定の値となるように、アンテナアレイ112に出力する上記複数の光に位相シフトを与える。これにより、アンテナアレイ112は、アンテナエレメントから空間へ出力される光のそれぞれが回折して互いに干渉することにより生成される主極大ビーム(メインビーム、又はメインローブ)を照射光として出力すると共に、当該照射光の出射方向を変化させてビームステアリングを行う。ここで、光集積回路110及びアンテナアレイ112は、共に基板上に形成された光導波路により構成されている。これにより、OPA104は、ソリッドステートタイプのOPAとして構成される。光集積回路110及びアンテナアレイ112の具体的構成については後述する。
受光センサ106は、例えば集光レンズとCCD等の受光素子アレイにより構成される。受光センサ106は、OPA104が出力する照射光が物体にあたって反射され又は散乱されて戻ってくる光(反射戻り光)を検出する。
処理装置108は、光源102に変調光を出力させると共に、OPA104を構成する光集積回路110が備える位相シフタを制御して、上記照射光についてのビームステアリングを行う。さらに、処理装置108は、上記照射光がOPA104から出力されて、物体により反射又は散乱された後、反射戻り光となって受光センサ106により受信されるまでの、上記ビームの飛行時間(Time Of Flight)を算出する。また、処理装置108は、受光センサ106に到来する上記反射戻り光の到来方向を特定する。これにより、処理装置108は、空間における上記物体の形状や位置等を示す空間マッピング情報を出力する。処理装置108は、例えばデジタルシグナルプロセッサ(DSP、Digital Signal Processor)などのプロセッサやコンピュータにより構成されるものとすることができる。
図2は、OPA104を構成する本発明の一実施形態に係る光集積回路110の構成を示す図である。光集積回路110は、基板200上に形成された光導波路により構成されている。本実施形態では、基板200はSiO2を主成分とする酸化したシリコンあるいは石英ガラスであり、例えばSiO2中に埋め込まれたSi34により単一モードの光導波路が形成されている。ただし、この構成は一例であって、基板200は、Si34、Si、SiON、LiNbO3、LiTaO3、又はSiC等の材料を用いて構成されるものとすることができる。
光集積回路110は、基板200上に形成された光導波路として、光源102からの入力光を伝搬するバス導波路202と、4つの導波ライン204a、204b、204c、204dと、これらの導波ライン204a等にそれぞれ接続された直線導波路206a、206b、206c、206dと、を備える。なお、これらの光導波路は、全て同じ基板200上に形成されるので、以下において、光導波路についての「経路長が等しい」というときは、「光路長が等しい」という意味をも含むものとし、「光路長が等しい」というときは、「経路長が等しい」という意味をも含むものとする。
また、光集積回路110は、バス導波路202上に配された、バス導波路202を伝搬する光の一部を抽出する複数の光カプラ220a、220b、220c、220dを備える。また、バス導波路202に沿って互いに隣接する光カプラ220aと220bとの間、220bと220cとの間、220cと220dとの間のバス導波路202の部分に、それぞれ、位相シフタ222a、222b、及び222cが設けられている。ここで、位相シフタ222a、222b、222cは、それぞれ、バス導波路202の一部に設けられたヒータ224a、224b、224cにより構成されている。これらのヒータ224a等は、例えば、バス導波路202上に形成された下地層であるチタン(Ti)の上に金(Au)を含む層を形成して構成される薄膜ヒータである。
光カプラ220a、220b、220c、220dは、本実施形態では、それぞれ、所定距離を隔てて近接する2つの光導波路間のエバネセント波を介した光の結合を利用するエバネセントカプラである。具体的には、光カプラ220a、220b、220c、220dは、それぞれ、バス導波路202の一部である4つの部分のそれぞれと、導波ライン204a、204b、204c、204dのそれぞれの端部を含む一部分と、が距離gのギャップを挟んで近接して配されることにより構成されている。
これにより、光カプラ220a、220b、220c、220dが抽出した光は、それぞれ、導波ライン204a、204b、204c、204d内を伝搬し、導波ライン204a、204b、204c、204dの光出力端210a、210b、210c、210dにそれぞれ接続された、それぞれ同じ光路長を持つ直線導波路206a、206b、206c、206dを介して、光出力端212a、212b、212c、212dから基板200の外へ出力される。そして、出力されたこれらの光は、光伝送路114を介して、アンテナアレイ112に入力される。
図3は、アンテナアレイ112の構成を示す図である。図示左側の図は、アンテナアレイ112の平面図、図示右側の図は、当該平面図に示すラインE−E部分の断面を示すEE断面矢視図である。
アンテナアレイ112は、基板300に設けられた図示x方向に延在する、アンテナエレメントである4つの光導波路302a、302b、302c、302dで構成される。基板300及び光導波路302a等は、上述した基板200及び基板200上の光導波路と同様の材料を用いて構成されるものとすることができる。また、光導波路302a、302b、302c、302dは、x方向に直交するy方向に沿って所定の間隔Pで並走するように配されている。ここで、x方向は、基板300の表面に沿った、光導波路302a等が延在する方向であり、y方向は、当該基板300の表面に沿ってx方向に直交する方向である。また、基板300の面の法線方向をz方向というものとする。
光集積回路110の光出力端212a、212b、212c、212dから出力された光は、それぞれ、光導波路302a、302b、302c、302dに入力される。本実施形態におけるアンテナアレイ112は、グレーティングベースのアンテナアレイであり、光導波路302a、302b、302c、302dのそれぞれは、その長さ方向(x方向)に沿ってその厚さが周期pgで変化する摂動導波路で構成されている。
これにより、光導波路302a、302b、302c、302dに入力された各光は、図示右側の図において矢印で模式的に示すように、それぞれの光導波路302a等の長さ方向(x方向)に沿って分布して出力され、結果として基板300の表面からx方向に延在する線状の光として出力される。そして、光導波路302a、302b、302c、302dから出射した光は、回折して互いに干渉し、回折光の主極大ビームを生成する。
図4は、アンテナアレイ112の光導波路302a等から出力される光を模式的に示した図である。図4には、一例として、光導波路302cから出力される出力光400を示している。光導波路302c内を伝搬する光は、ブラッググレーティングとして機能する当該光導波路302cの厚さ方向の周期的摂動に起因して、光導波路302cの長さ方向(x方向)と基板300の法線方向(z方向)とで規定されるxz平面である平面402に沿って当該長さ方向に分布して出力されることで、出力光400(平面402に沿って描かれた図示複数の平行な矢印)となる。このとき、光導波路302cの各部から出射される出力光400の出射角ψ(当該出力光の出射方向がz方向に対して成す角)は、出力光の波長と上記摂動の周期pgとで定まる。そして、図4に示す出射光と同様の光が他の光導波路302a、302b、302dから出力されることにより、これらの光の回折及び干渉により、回折光の主極大ビームが生成される。
図5は、アンテナアレイ112から出力される主極大ビームを模式的に示した図である。主極大ビーム500は、図4に一例を示した光導波路302cからの出射ビームと同様に、x方向に延在する仮想的な線状光源からの、x方向に広がる平面502を構成するビームとして形成される。そして、主極大ビーム500が構成する平面502の偏向角、すなわち、当該平面がz方向に対して成すθは、アンテナエレメントである光導波路302a、302b、302c、302dの間隔Pと、隣接する光導波路302a等の間の光の位相差φと、当該光の波長λと、で定まる(式(1)参照)。
図4、図5、及びこれらの図についての上記説明から明らかなように、本実施形態では、光源102から入力されてアンテナアレイ112から出力される光の波長を変化させることにより、主極大ビーム500についてのXZ平面におけるビームステアリングを行うことができると共に、光導波路302a、302b、302c、302dから隣接して出力される光の位相差を光集積回路110により変化させることにより、主極大ビーム500についてのYZ平面におけるビームステアリングを行うことができる。
図2に戻り、特に、本実施形態の光集積回路110では、バス導波路202の光入力端230から導波ライン204a、204b、204c、204dのそれぞれの光出力端210a、210b、210c、210dまでの光の経路長又は光路長が互いに等しくなるように(すなわち、当該経路長又は光路長に差がない状態となるように)構成される。
このため、光集積回路110では、光入力端230からの入力光の波長が変化した場合にも、光出力端210a、210b、210c、210dから出力される光の間には、上記波長の変化に起因する付加的な位相差は生じない。また、上記経路長又は光路長に差がないことから、環境温度の変動等により基板200の実効屈折率nEが変化したときの、光入力端230から光出力端210a、210b、210c、210dまでのそれぞれの光経路の経路長又は光路長の変動量は、当該経路長の全てについて実効屈折率nEの変化量ΔnEで定まる同じ量となる。したがって、光出力端210a、210b、210c、210dから出力される光の間においては、当該実効屈折率nEの変化に起因する付加的な位相差も生じない。すなわち、光集積回路110では、光出力端210a等の出力光の間の、入力光の波長変化及び環境温度の変動に起因する付加的な位相差は、原理的にゼロである。
そして、光出力端210a、210b、210c、210dに接続された直線導波路206a、206b、206c、206d及び光伝送路114を構成する複数の光ファイバも、それぞれ互いに同じ経路長又は光路長を有しているので、アンテナアレイ112を構成する光導波路302a、302b、302c、302dから空間へ出力される光の間も、入力光波長の変化や環境温度の変動等に起因する位相差は発生しない。
また、位相シフタ222a等を動作させた場合、光カプラ220a等から導波ライン204a等に向けて出力されるそれぞれの光の位相シフト量は、バス導波路202に沿って光入力端230に最も近い光カプラ220a等から順に、複数の位相シフタ222a等により生ずる位相シフトが順次累積された位相シフト量となる。このため、光集積回路110では、位相シフタ222a等のそれぞれにより比較的小さな位相シフトを与えるだけで、したがってより小さな電圧を与えるだけで、2πを超える累積位相シフトを精度よく生じさせて、主極大ビーム500の偏向角を変化させることができる。
すなわち、光集積回路110では、位相制御の複雑化を招くことなく、隣接チャネル間の位相差の波長依存性及び温度依存性を低減することができる。また、その結果として、位相制御による主極大ビーム500のYZ平面におけるビームステアリングと、入力光波長の制御によるXZ平面におけるビームステアリングと、を独立に実行することができ、動作制御が簡単化され得る。
なお、位相シフタ222a等を動作させて主極大ビーム500の偏向角θを変化させる場合、隣接する光カプラ220a等から抽出される光の位相差の増分が、全ての互いに隣接する光カプラ220a等の間において同じとなるようにすればよい。したがって、隣接する光カプラ220a等の間に設けられる位相シフタ222a等は、それぞれ、同じ量の位相シフトを発生するよう動作すればよい。
このため、位相シフタ222a等のヒータ224a等をそれぞれ互いに同じデザインで構成すれば、位相シフタ222a等のそれぞれに実質的に同じ大きさの電流を与えることで、それぞれ隣接する光カプラ220a等から抽出される光の間に同じ位相差を生じさせて、主極大ビーム236の偏向角θを変化させることができる。これにより、光集積回路110をより簡単に動作させることが可能となる。具体的には、位相シフタ222a等を構成するヒータ224a等を、それぞれ同じ電流を通電したときに互いに同じ温度となるように、それらの長さ、幅、及び厚さを含むサイズ、並びに形状が、互いに同じとなるように構成するものとすることができる。この場合、さらに、ヒータ224a等を互いに直列に接続し、例えば基板200上に設けられた2つの電極パッド(不図示)から、直列接続された全てのヒータ224a等へ通電するものとすれば、全てのヒータ224a等に同じ電流を流して同じ位相シフトを発生させることができるので、光集積回路110を更に簡単に動作させることが可能となる。
図2に戻り、光集積回路110は、詳細には以下のように構成されている。まず、バス導波路202は、複数の第1要素部分202a、202b、202cが縦続接続されて構成されている。図2には、バス導波路202を構成するそれぞれの第1要素部分が識別し易いように、第1要素部分202a及び202cがクロスハッチングで示され、第1要素部分202bが縦線ハッチングで示されている。
また、光集積回路110では、導波ライン204a、204b、204c、204dは、一つの第2要素部分を含むか、又は複数の第2要素部分が縦続に接続されて構成されている。具体的には、導波ライン204aは、縦続に接続された複数の第2要素部分204a−1、204a−2、204a−3、204a−4を含み、導波ライン204bは、縦続に接続された第2要素部分204b−1、204b−2、204b−3を含む。また、導波ライン204cは、縦続に接続された第2要素部分204c−1、204c−2を含み、導波ライン204dは、一つの第2要素部分204d−1を含む。なお、以下において、「第2要素部分204a−1等」とは、第2要素部分204a−1、204a−2、204a−3、204a−4、204b−1、204b−2、204b−3、204c−1、204c−2、及び204d−1を意味するものとする。また、図2においては、第2要素部分204a−1等を、それぞれ斜線ハッチングにより示している。
第1要素部分202a等は、互いに同じ構成を有する。第1要素部分202a等は、それぞれ、基板200の平面に沿った第1の方向である図示X方向に伝搬する光を受ける当該第1要素部分202a等の光入力部と、X方向へ光を出力する当該第1要素部分202a等の光出力部とが、X方向に第1所定距離LAを隔て、且つX方向に直交する基板200の平面に沿った第2の方向であるY方向に第2所定距離dを隔てて配置されている。
また、第2要素部分204a−1等は、互いに同じ構成を有する。第2要素部分204a−1等は、それぞれ、光の伝搬方向に沿って上流の第1端部と光の伝搬に沿って下流の第2端部とが、第1の方向であるX方向に第1所定距離LAを隔て、且つ第2の方向であるY方向に第3所定距離qを隔てて配置されている。
また、光集積回路110は、縦続に接続された第1要素部分202a、202b、及び202cのそれぞれの光入力部に、光カプラ220a、220b、及び220cが設けられている。本実施形態では、さらに、縦続に接続された最後の第1要素部分202cの光出力部につなげて光カプラ220dが設けられている。
これにより、導波ライン204a、204b、204c、204dのそれぞれの光出力端210a、210b、210c、210dのY方向の間隔が、第2所定距離dから第3所定距離qを差し引いた間隔pとなる。すなわち、次式の関係を有する。
p=d−q (2)
なお、本実施形態では、光カプラ220a等は、上述したようにエバネセントカプラであり、第1要素部分202a等の光入力部を含む当該第1要素部分202a等の一部と、一の導波ライン204a等の端部を含む当該導波ライン204a等の一部とが、Y方向に第4所定距離gを隔てて配されることにより構成されている。
また、光集積回路110では、バス導波路202の光入力端230から、導波ライン204a等の光出力端210a等に至るそれぞれの光経路に含まれる、第1要素部分202a等の数と第2要素部分204a−1等の数の合計が、それぞれの上記光経路において互いに同じとなっている。
これにより、光集積回路110では、縦続接続された最初の第1要素部分202aの光入力部(図2におけるX方向の位置A1)から導波ライン204a等のそれぞれの光出力端210a等までのX方向に沿ったそれぞれの距離を互いに同じとすることができ、光出力端210a等をY方向に平行なライン232に沿って並べることができる。
さらに、光集積回路110では、導波ライン204a等のそれぞれは、一つ又は複数の前記第2要素部分204a−1等に加えて、一つ又は複数の付加的な、X方向に延在する直線状の光導波路240a−1等を含む。そして、導波ライン204a等のそれぞれが含む上記付加的な光導波路240a−1等の、光路長の合計及び前記X方向に沿った距離の合計は、導波ライン204a等においてそれぞれ互いに同じ値となっている。
これにより、光集積回路110では、バス導波路202及び導波ライン204a等のそれぞれが互いに交差することなく、X方向位置A1から光出力端210a等までのX方向に沿ったそれぞれの距離を互いに同じとして、光出力端210a等をY方向に平行なライン232に沿って並べることができる。
具体的には、縦続接続された最初の第1要素部分202aの光入力部に設けられた光カプラ220aから始まる導波ライン204aは、隣接する第2要素部分204a−1と204a−2との間、204a−2と204a−3との間、204a−3と204a−4との間に、それぞれ、長さtをもってX方向に延在する直線状の光導波路240a−1、240a−2、240a−3を含む。これにより、最初の第1要素部分202aの光入力部であるX方向位置A1から導波ライン204aの光出力端210aまでのX方向に沿った距離は、3LA+3tとなる。
また、縦続接続された2番目の第1要素部分202bの光入力部に設けられた光カプラ220bから始まる導波ライン204bは、隣接する第2要素部分204b−1と204b−2との間、204b−2と204b−3との間、及び第2要素部分204b−3と光出力端210bとの間に、それぞれ、長さtをもつ直線状の光導波路240b−1、240b−2、240b−3を含む。これにより、X方向位置A1から導波ライン204bの光出力端210bまでのX方向に沿った距離も、3LA+3tとなる。
また、縦続接続された最後の第1要素部分202cの光入力部に設けられた光カプラ220cから始まる導波ライン204cは、隣接する第2要素部分204c−1と204c−2との間、及び第2要素部分204c−2と光出力端210cとの間に、それぞれ、長さtをもつ光導波路240c−1及び長さ2tをもつ光導波路240c−2を含む。これにより、X方向位置A1から導波ライン204cの光出力端210cまでのX方向に沿った距離も、3LA+3tとなる。
さらに、縦続接続された最後の第1要素部分202cの光出力部につなげて設けられた光カプラ220dから始まる導波ライン204dは、第2要素部分204d−1と光出力端210dとの間に、長さ3tをもつ光導波路240d−1を含んでいる。これにより、X方向位置A1から導波ライン204dの光出力端210dまでのX方向に沿った距離も、3LA+3tとなる。その結果、光出力端210a、210b、210c、210dは、X方向の位置が同じとなり、Y方向に平行なライン232に沿って配列されることとなる。
なお、本実施形態では、光導波路240a−1等をX方向に延在する直線状の導波路であるものとしたが、これには限られない。例えば、X方向に所定の距離を持つ共に、光をY方向に所定の距離移動させるような、任意の形状の導波路として光導波路240a−1等を構成してもよい。この場合には、導波ライン204a等のそれぞれが含む光導波路240a−1等のY方向に沿った距離の合計も、導波ライン204a等においてそれぞれ互いに同じ値となっている必要がある。
さらに、本実施形態の光集積回路110では、第1要素部分202a等と第2要素部分204a−1等とが、同じ光路長を持つ。これにより、光集積回路110は、光入力端230から光出力端210a等に至るそれぞれの光経路の光路長が互いに同じになるように構成されることとなる。
すなわち、上述の如く光入力端230から光出力端210a等に至るそれぞれの光経路に含まれる第1要素部分202a等の数と第2要素部分204a−1等の数の合計は、それぞれの光経路において互いに同じである。したがって、第1要素部分202a等と第2要素部分204a−1等の光路長が同じであれば、上記光経路のそれぞれに含まれる第1要素部分202a等と第2要素部分204a−1等の光路長の総和は、光経路のそれぞれにおいて互いに等しくなる。
そして、上述の如く、それぞれの導波ライン204a等に含まれる付加的な光導波路240a−1等の光路長の合計は、各導波ライン204a等において互いに同じであるので、結果として、光入力端230から光出力端210a等に至るそれぞれの光経路の全体の光路長は、互いに等しく構成されることとなる。
上述したように、第1要素部分202a等は互いに同じ構成を有し、第2要素部分204a−1等は互いに同じ構成を有するので、以下では、第1要素部分202aと第2要素部分204a−1とを例にとり、それらの構成についてより詳細に説明する。
図6は、第1要素部分202a及び第2要素部分204a−1の構成を示す図である。なお、図6においては、図を簡略化して理解を容易にするため、位相シフタ222aの記載を省略している。
第2要素部分204a−1は、光の伝搬方向に沿って上流である第1端部600がX方向位置A1に配されており、光の伝搬方向に沿って下流である第2端部602がX方向位置A2に配されている。ここで、X方向位置A1とA2との間の距離は、LAである。
上述したように、第2要素部分204a−1は、上流の第1端部600と下流の第2端部602とが、X方向に第1所定距離LAを隔て、且つY方向に第3所定距離qを隔てて配置されている。そして、第2要素部分204a−1は、同じ曲率半径rを持って光の伝搬方向を90°変換する2つの曲がり導波路604、606と、長さaに亘りX方向に延在して第1端部600と曲がり導波路604とをつなぐ直線導波路608と、を含む。また、第2要素部分204a−1は、長さcを持ってy方向に延在して曲がり導波路604と606とを接続する直線導波路610を含み、曲がり導波路606の端部が第2端部602を構成する。したがって、以下の各式が成り立つ。
A=a+2r (3)
q=2r+c (4)
そして、第2要素部分204a−1の経路長SLは、次式で与えられる。
L=a+c+πr (5)
一方、第1要素部分202aは、光入力部612と光出力部614とが、それぞれX方向位置A1及びA2に配されている。上述したように、第1要素部分202aは、光入力部612と光出力部614とが、X方向に第1所定距離LAを隔て、且つY方向に第2所定距離dを隔てて配置されている。そして、第1要素部分202aは、光入力部612及び光出力部614のそれぞれを一端として含む部分である直線導波路616、618を含む。直線導波路616、618は、それぞれ長さe及びhをもってX方向に延在する。
また、第1要素部分202aは、直線導波路616、618につながる2つの曲がり導波路620、622を含む。曲がり導波路620、622は、同じ曲率半径rをもって光の伝搬方向に所定の角度α(rad)の変化を与える。したがって、曲がり導波路620、622の経路長fは、次式で与えられる。
f=rα (6)
さらに、第1要素部分202aは、X方向に対し所定の角度αをもって延在して2つの曲がり導波路620、622を接続する斜め導波路624を含む。この斜め導波路624の長さをDとすると、第1要素部分202aの経路長SBは、次式で与えられる。
B=e+h+2rα+D (7)
また、直線導波路616と曲がり導波路620との接続部から、曲がり導波路622と直線導波路618との接続部までのX方向の距離LBは、次式で与えられる。
B=LA−e−h (8)
図7は、斜め導波路624の長さDと、各部の寸法との関係を示す図である。円弧700、702は、それぞれ曲がり導波路620、622に対応し、直線704は斜め導波路624に対応する。図7より、次式の関係があることがわかる。
Figure 2019220513
dΔ=d−2Δ=d−2r(1−cosα) (10)
Δ=r(1−cosα) (11)
u=LB−2u=LB−2r・sinα (12)
u=r・sinα (13)
角度αに関して式(9)を解くと、解の一つとして次式を得る。
Figure 2019220513
そして、斜め導波路624の長さDとして、次式が得られる。
Figure 2019220513
さらに、式(2)、式(3)、式(4)、式(8)より、
B(LB,d,r)=2rα(LB,d,r)
+D(LB,d,r)+e+h (16)
L(LB,d,r)=a+πr+c
=L+e+h+d−p−(4−π)r (17)
となる。
そして、
B(LB,d,r)=SL(LB,d,r) (18)
とするには、
2rα(LB,d,r)+D(LB,d,r)
=LB+d−p−(4−π)r (19)
であればよいことがわかる。
直線導波路616、618の長さe及びhは、式(18)(19)には含まれていないため、任意に選択することができる。直線導波路616は光カプラ220aを構成する部分であり、その長さeは、例えばエバネセントカプラである光カプラ220aの結合係数に関する要求条件から選択され得る。直線導波路618の長さhは、その他の設計要求条件から適宜選択され得る。
式(19)を解くことにより、距離LBを得ることができる。その後、式(14)、(15)、及び(16)においてLBを代入することにより、角度α、斜め導波路624の長さD、及び直線導波路608の長さaを算出することができる。
一例として、上述の各式を用いることにより、上述したサイズに関するパラメータの値を、以下のように決定することができる。
与えられるパラメータ:
光出力端210a等の配列間隔P=2μm;
曲がり導波路604等の曲率半径r=20μm;
光カプラを構成する直線導波路616の長さe(光カプラ220aの結合距離)=2μm;
光カプラ220aにおける導波路間の間隔(結合ギャップ)g=0.4μm;
直線導波路618の長さh=10μm;
直線導波路610の長さc=0;
算出したパラメータ:
Y方向距離d=42μm;
X方向距離LB=42.458μm;
角度α=72.9°;
斜め導波路624の長さD=14.376μm;
直線導波路608の長さa=14.458μm。
なお、本実施形態の光集積回路110は、見方を変えれば、一つの第1要素部分202a等と、一つの導波ライン204a等の端部を含む第2要素部分204a−1等と、をそれぞれに含む複数の第3要素部分を含み、当該複数の第3要素部分に含まれる第1要素部分202a等が互いに縦続接続され、且つ当該複数の第3要素部分に含まれる第2要素部分204a−1等に一つ又は複数の他の第2要素部分204a−1等が縦続接続されて構成されている、ということもできる。
具体的には、本実施形態の光集積回路110では、複数の第3要素部分250a、250b、250c(それぞれ図示点線で囲った部分)が縦続接続されている。第3要素部分250aは、一つの第1要素部分202aと、一つの導波ライン204aの端部を含む第2要素部分204a−1と、を含み、第3要素部分250bは、一つの第1要素部分202bと、一つの導波ライン204bの端部を含む第2要素部分204b−1と、を含む。また、第3要素部分250cは、一つの第1要素部分202cと、一つの導波ライン204cの端部を含む第2要素部分204c−1と、を含む。
そして、複数の第3要素部分250a、250b、250cにそれぞれ含まれる第1要素部分202a、202b、202cが縦続接続されることにより、第3要素部分250a、250b、250cが互いに縦続接続されている。また、第3要素部分250aに含まれる第2要素部分204a−1に、3つの第2要素部分204a−2、204a−3、204a−4が縦続接続されている。また、第3要素部分250bに含まれる第2要素部分204b−1に、2つの第2要素部分204b−2、204b−3が縦続接続され、第3要素部分250cに含まれる第2要素部分204c−1に、1つの第2要素部分204c−2が縦続接続されている。
光集積回路110をこのように見た場合、より多くの数のチャネルを備える光集積回路を構成しようとする場合には、縦続接続する第3要素部分250a等の数を増やすと共に、それぞれの導波ライン204a等を構成する第2要素部分204a−1等の数を適宜増やせば良いことが判る。すなわち、本実施形態の光集積回路110の構成は、チャネル数のより多い構成にも容易に拡張することができる。
上述した光集積回路110は、以下のように動作する。
この光集積回路110は、バス導波路202の光入力端230から導波ライン204a、204b、204c、204dのそれぞれの光出力端210a、210b、210c、210dまでの光の経路長又は光路長が互いに等しくなるように構成されている。したがって、位相シフタ222a等が無通電状態である場合、光出力端210a、210b、210c、210dにおける隣接チャネル間の位相差は、ゼロである。
位相シフタ222a等のいずれか(例えば位相シフタ222a)に通電すると、当該位相シフタ222a等の下のバス導波路202の部分の実効屈折率nEが変化し、隣接する光出力端210a等の間に次式で表される位相差φが発生する。
Figure 2019220513
ここに、λ0は真空中における光源の波長、LCは位相シフタ222a等において加熱される導波路部分の長さ、ΔnEは実効屈折率nEの変化量である。実効屈折率の変化量ΔnEは、一般に、温度の単調関数であり、温度は電流の単調関数である。したがって、式(20)で表される位相差φは、一般に、対応する位相シフタ222a等に印加する電圧についての単調増加関数となる。これにより、位相シフタ222a等への通電電圧を制御して、隣接する光出力端210a等の間の位相差を制御することにより、光出力端210a等につながった光導波路302a等により構成されるアンテナアレイ112から出射される回折光の主極大ビームの出射方向を制御することができる。
図8は、アンテナアレイ112から出力される光の遠視野像の一例を示す図である。図8には、位相シフタ222a等により種々の量の位相シフトを発生させた場合の、4つの遠視野像が示されている。これら4つの遠視野像の横軸は全て偏向角θの正弦値(sinθ)であり、縦軸は、それぞれのsinθの値に対する光強度I(sinθ)である。すなわち、図示において光強度I(sinθ)のピークは、アンテナアレイ112の光導波路302a等からの出力光により生成される回折光の主極大ビームを表し、横軸に沿った当該ピークの位置の移動は、当該主極大ビームの偏向角(すなわち、出射方向)の変化を表している。なお、4つの遠視野像において、横軸は同じスケールを用いており、2つの破線に挟まれた領域が、主極大ビームの動作領域を示している。
図8の最上段の(a)に示す遠視野像は、位相シフタ222a等の全てが無通電状態であるときの遠視野像を示す。この状態においては、隣接する光出力端210a等から出力される光の位相差はゼロである。したがって、アンテナアレイ112において、隣接する光導波路302a等から出力される光の位相差もゼロとなり、光導波路302a等からの出力光により生成される回折光の主極大ビーム(図示斜線ハッチング部分)はsinθ=0の位置にある。すなわち、当該主極大ビームはθ=0の方向へ出射される。
図8の(b)に示す遠視野像は、位相シフタ222a等の全てに通電して、隣接する光出力端210a等の間の光の位相差φをπ/2に設定したときの遠視野像を示す。アンテナアレイ112から出力される回折光の主極大ビームは、その強度を減少させつつ、図示右方向へ移動する。
図8の(c)に示す遠視野像は、位相シフタ222a等への通電電圧を増加させ、隣接する光出力端210a等の間の光の位相差φをπに設定したときの遠視野像を示す。アンテナアレイ112から出力される回折光の主極大ビームは、その強度を更に減少させつつ、図示右方向へ更に移動し、動作領域の右端に達している。また、動作領域の左端には、動作領域の右端に達した主極大ビームと同じ大きさに成長した新たな主極大ビームが出現する。
図8の(d)に示す遠視野像は、位相シフタ222a等への通電電圧を更に増加させ、隣接する光出力端210a等の間の光の位相差φを3π/2に設定したときの遠視野像を示す。図8(c)において動作領域の左端に出現した主極大ビームが、その強度を増加させつつ図示右方向へ移動している。
位相シフタ222a等への通電電圧を更に増加させ、隣接する光出力端210a等の間の光の位相差φを2πに設定すると、図8(d)に示す主極大ビームは更に図示右方向へ移動して、遠視野像は、図8の(a)に示す遠視野像と同じとなる。
上記のように、位相シフタ222a等への通電電圧を変化させて隣接する光出力端210a等の間の光の位相差を変化させることにより、アンテナアレイ112から出力される回折光の主極大ビームの出射方向を変化させて、ビームステアリングを実行することができる。
なお、本実施形態では、アンテナアレイ112として、アンテナエレメントである光導波路302a等が、その長さ方向(x方向)に沿ってその厚さが周期pgで変化する摂動導波路で構成されるものとしたが、これには限られない。例えば、図9に示すように、基板900上に形成されたアンテナエレメントである光導波路902a、902b、903c、904dが、その長さ方向(x方向)に沿ってその幅が周期的に変化する摂動導波路で構成されているアンテナアレイ912を、アンテナアレイ112に代えて用いるものとすることもできる。なお、図9の図示左側の図はアンテナアレイ912の平面図、図9の図示右側の図は、当該平面図に示すラインF−F部分の断面を示すFF断面矢視図である。
以上、説明したように、本発明の光集積回路110は、基板200上に形成された光導波路により構成される。光集積回路110は、上記光導波路として、入力光が伝搬するバス導波路202と、バス導波路202上に配された、当該バス導波路202を伝搬する光の一部をそれぞれ抽出する複数の光カプラ220a等と、を備える。また、光集積回路110は、複数の光カプラ220a等が抽出した光をそれぞれ伝搬する複数の導波ライン204a等と、バス導波路202に沿って隣接する光カプラ220a等の間の当該バス導波路202上にそれぞれ設けられた位相シフタ222a等と、を備える。そして、バス導波路202の光入力端230から各導波ライン204a等の光出力端210a等までの光路長が互いに等しくなるように構成されている。
この構成によれば、バス導波路202の光入力端230から各導波ライン204a等の光出力端210a等までの光路長が互いに等しくなるように構成されているので、入力光波長の変化や環境温度変動に起因する基板屈折率の変化があっても、隣接する光出力端210a等の間(すなわち、隣接するチャネル間)の光位相差は変化しない。
また、バス導波路202に、各チャネルにそれぞれ光を抽出する複数の光カプラ220a等が配され、隣接する光カプラ220a等の間に位相シフタ222a等が設けられているので、それぞれの位相シフタ222a等に比較的小さな位相シフトを発生させるだけで、したがってより小さな電圧を与えるだけで、2πを超える累積位相シフトを精度よく生じさせて、アンテナアレイ112から出射する主極大ビーム500の出射方向を変化させることができる。さらに、位相シフタ222a等を個別に調整することで、隣接するチャネルペアの位相差をそれぞれ個別に調整することができる。
すなわち、この構成によれば、入力光を分岐して構成される複数のチャネルについての位相制御の複雑化を招くことなく、隣接チャネル間の位相差についての波長依存性及び温度依存性のない光集積回路を実現することができる。したがって、位相制御による主極大ビーム500のYZ平面におけるビームステアリングと、入力光波長の制御によるXZ平面におけるビームステアリングと、を独立に実行することができ、動作制御が簡単化され得る。また、温度センサ及び温度フィードバックを用いることなく、且つデバイスの温度を安定化することなく、広い温度範囲で動作させることができる。
また、光集積回路110では、バス導波路202は、複数の第1要素部分202a等が縦続に接続されて構成され、導波ライン204a等は、第2要素部分204a−1等を一つ含むか、又は複数の第2要素部分204a−1等が縦続に接続されて構成されている。そして、第1要素部分202a等は、それぞれ、基板200の平面に沿った第1の方向であるX方向に伝搬する光を受ける当該第1要素部分202a等の光入力部と、X方向へ光を出力する当該第1要素部分202a等の光出力部とが、X方向に第1所定距離LAを隔て、且つX方向に直交するY方向に第2所定距離dを隔てて配置されている。また、第2要素部分204a−1等は、それぞれ、光の伝搬方向に沿って上流の第1端部と光の伝搬に沿って下流の第2端部とが、X方向に第1所定距離LAを隔て、且つY方向に第3所定距離qを隔てて配置されている。さらに、第1要素部分202a等の光入力部に光カプラ220a等が設けられている。
この構成によれば、導波ライン204a等のそれぞれの光出力端210a等のY方向の間隔を、第1要素部分202a等及び第2要素部分204a−1等の設計パラメータから定めることができる。
また、光集積回路110では、光カプラ220a等は、エバネセントカプラであり、第1要素部分202a等の光入力部を含む当該第1要素部分202a等の一部と、一の導波ライン204a等の端部を含む当該導波ライン204a等の一部とが、Y方向に第4所定距離gを隔てて配されることにより構成されている。
この構成によれば、バス導波路202と導波ライン204a等とを幾何学的に分離することができるので、それぞれの導波路の経路長から、それぞれのチャネルの光路長を正確に定めることができる。
また、光集積回路110では、バス導波路202の光入力端230から、複数の導波ライン204a等の光出力端210a等に至るそれぞれの光経路に含まれる、第1要素部分202a等の数と第2要素部分204a−1等の数の合計は、それぞれの上記光経路において互いに同じである。
この構成によれば、縦続接続された最初の第1要素部分202aの光入力部(図2におけるX方向の位置A1)から導波ライン204a等のそれぞれの光出力端210a等までのX方向に沿ったそれぞれの距離を互いに同じとすることができ、光出力端210a等をY方向に平行なライン232に沿って並べることができる。
また、光集積回路110では、導波ライン204a等のそれぞれは一つ又は複数の第2要素部分204a−1等に加えて一つ又は複数の付加的な光導波路240a−1等を含む。そして、導波ライン204a等のそれぞれが含む付加的な光導波路240a−1等の光路長の合計及びX方向に沿った距離の合計は、複数の導波ライン204a等においてそれぞれ互いに同じである。
この構成によれば、バス導波路202及び導波ライン204a等のそれぞれが互いに交差することなく、X方向位置A1から光出力端210a等までのX方向に沿ったそれぞれの距離を互いに同じとして、光出力端210a等をY方向に平行なライン232に沿って並べることができる。
また、光集積回路110では、第1要素部分202a等と第2要素部分204a−1等とは、同じ光路長を持つ。
この構成によれば、第1要素部分202a等と第2要素部分204a−1等との組み合わせで構成される光入力端230から光出力端210a等に至るそれぞれの光経路の光路長を、互いに同じになるように構成することができる。
また、光集積回路110では、第1要素部分202a等は、それぞれ光の伝搬方向に所定の角度αの変化を与える2つの曲がり導波路620、622と、Xの方向に対し当該所定の角度αをもって延在して当該2つの曲がり導波路620、622を接続する斜め導波路624と、を含む。そして、第2要素部分204a−1等は、光の伝搬方向を90°変換する2つの曲がり導波路604、606と、X方向に延在する直線導波路608と、を含む。
この構成によれば、互いに同じ光路長をもつような第1要素部分202a等と第2要素部分204a−1等とを、単純な幾何学的形状で設計することができる。
また、光集積回路110では、縦続接続された複数の第1要素部分202a等のうち最後の第1要素部分202cには、当該最後の第1要素部分202cの光出力部につなげて設けられた光カプラ220dを介して、一つの第2要素部分204d−1で構成される導波ライン204dが接続されている。
この構成によれば、入力光の伝搬方向に沿って最も下流に配置されるチャネルについても、他のチャネルと同様に設計することができる。
また、光集積回路110では、一つの第1要素部分202a等と、一つの導波ライン204a等の端部を含む第2要素部分204a−1等と、をそれぞれ含む複数の第3要素部分250a等を含む。そして、複数の第3要素部分250a等に含まれるそれぞれの第1要素部分202a等が互いに縦続接続され、複数の第3要素部分250a等に含まれるそれぞれの第2要素部分204a−1等に一つ又は複数の他の第2要素部分204a−1等が縦続接続されている。
この構成によれば、第3要素部分250a等の数と第2要素部分204a−1等の数を適宜増やすことで、光集積回路110の構成をチャネル数のより多い構成に容易に拡張することができる。
また、光集積回路110では、位相シフタ222a等は、バス導波路202の一部に設けられたヒータ224aにより構成される。そして、ヒータ224a等は、同じ電流を通電したときに互いに同じ温度となるように、長さ、幅、及び厚さを含むサイズ、並びに形状が、互いに同じとなるように構成されている。この構成によれば、バス導波路202上に金属薄膜等を設けるだけの簡易な構成で、バス導波路202を伝搬する光に位相シフトを与えることができる。また、ヒータ224a等に同じ電流を流すだけで、隣接する光カプラ220a等から導波ライン204a等へ出射する各光の間に同じ位相シフトを生じさせることができる。さらに、この構成によれば、ヒータ224a等を互いに直列に接続し、例えば基板200上に設けられた2つの電極パッド(不図示)から、直列接続された全てのヒータ224a等へ通電するものとすれば、全てのヒータ224a等に同じ電流を流して同じ位相シフトを発生させることができるので、光集積回路110を更に簡単に動作させることが可能となる。
また、本発明は、光集積回路110を備える光フェーズドアレイ104である。この構成によれば、入力光波長に変化があっても安定なYZ平面でのビームステアリングを提供することのできる、又はYZ平面とXZ平面でのビームステアリングを独立に制御することのできる光フェーズドアレイを実現することができる。
また、光フェーズドアレイ104は、基板300又は900の上に設けられた、それぞれがその長さ方向に沿ってその幅又は厚さが周期的に変化する複数の摂動導波路である光導波路302a等又は902a等により構成されたアンテナアレイ112又は912を備える。そして、アンテナアレイ112又は912は、光集積回路110が出力する光のそれぞれを、基板300又は900の表面から空間へ出力する。
この構成によれば、本発明の光集積回路110と共に種々の構成のアンテナアレイを用いて光フェーズドアレイが実現され得る。
また、本発明は、光集積回路110を有する光フェーズドアレイ104を備えたLiDARセンサ100である。
この構成によれば、安定なYZ平面でのビームステアリングを提供することのできる、又は互いに独立したYZ平面及びXZ平面でのビームステアリングが実行されるLiDARセンサを実現することができる。
なお、本発明は上記実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
例えば、上記実施形態では、光集積回路110は、導波ライン204a等を4つ備えて4つのチャネルを構成しているが、これには限られない。例えば、光集積回路110は、より多くの又はより少ない数の導波ライン204a等を備えて、より多い又はより少ない数のチャネルを有するものとすることができる。
また、上記実施形態では、アンテナアレイ112が、光集積回路110の基板200とは別の基板300を用いて構成されるものとしたが、これには限られない。例えば、アンテナアレイ112を構成する光導波路302a等を、基板200上において、直線導波路206a等につなげて設けることができる。この場合には、光出力端210a等の配列間隔pが、アンテナエレメントである光導波路302a等の配列間隔Pとなるように、第1要素部分202a等及び第2要素部分204a−1等を設計するものとすることができる。
また、本実施形態では、光カプラ220a等がエバネセントカプラであるものとしたが、これには限られない。例えば、光カプラ220a等をY字型の導波路を用いた分岐カプラで構成することもできる。
また、本実施形態では、位相シフタ222a等としてヒータ224a等を用いた熱位相シフタを用いたが、これには限られない。例えば、基板200が電気光学効果を有するLiNbO3等で構成される場合には、位相シフタ222a等を、当該基板に印加する電界を制御することで基板屈折率を部分的に変化させる位相シフタとして構成するものとすることができる。また、例えば、基板200が半導体材料である場合には、光導波路中にPN接合部を形成して位相シフタ222a等として用い、当該PN接合部に通電することで基板屈折率を変化させて光の位相をシフトさせるものとしてもよい。
100…LiDARセンサ、102…光源、104…光フェーズドアレイ(OPA)、106…受光センサ、108…処理装置、110…光集積回路、112、912…アンテナアレイ、114…光伝送路、200、300、900…基板、202…バス導波路、202a、202b、202c、202d…第1要素部分、204a、204b、204c、204d…導波ライン、204a−1、204a−2、204a−3、204a−4、204b−1、204b−2、204b−3、204c−1、204c−2、204d−1…第2要素部分、206a、206b、206c、206d、608、610、616、618…直線導波路、210a、210b、210c、210d、212a、212b、212c、212d…光出力端、220a、220b、220c、220d…光カプラ、222a、222b、222c…位相シフタ、224a、224b、224c…ヒータ、230…光入力端、232…ライン、234…エッジ、240a−1、240a−2、240a−3、240b−1、240b−2、240b−3、240c−1.240c−2、240d−1、302a、302b、302c、302d、902a、902b、902c、902d…光導波路、250a、250b、250c…第3要素部分、400…出力光、402、502…平面、600…第1端部、602…第2端部、604、606、620、622…曲がり導波路、612…光入力部、614…光出力部、624…斜め導波路、700、702…円弧、704…直線。
本発明の一の態様は、基板上に形成された光導波路により構成される光集積回路であって、入力光が伝搬するバス導波路と、前記バス導波路上に配された、当該バス導波路を伝搬する光の一部をそれぞれ抽出する複数の光カプラと、前記複数の光カプラが抽出した光をそれぞれ伝搬する複数の導波ラインと、前記バス導波路に沿って隣接する前記光カプラの間の当該バス導波路上にそれぞれ設けられた位相シフタと、を備え、前記複数の光カプラは、前記バス導波路に沿って縦続接続されており、且つ、同一の前記基板上において、前記バス導波路の光入力端から前記光カプラのそれぞれを介して前記導波ラインのそれぞれの光出力端に至るまでの光路長が、前記位相シフタのいずれにも通電しない状態において互いに等しくなるように構成されており、前記位相シフタは、隣接する前記光カプラを接続する直線状の前記バス導波路の部分に形成されている。
本発明の他の態様によると、前記バス導波路及び前記複数の導波ラインは、互いに同一の構成を有する複数の要素部分が縦続接続されて構成される部分を含み、前記要素部分のそれぞれは、前記バス導波路の一部と、前記バス導波路の前記一部に設けられた前記位相シフタと、前記バス導波路の前記一部に設けられて前記バス導波路の前記一部を伝搬する光の一部を抽出する前記光カプラの一つと、前記光カプラの当該一つが抽出した光を伝搬する前記導波ラインの一部と、を含み、前記要素部分のそれぞれにおいて、当該要素部分に含まれる前記バス導波路の前記一部と前記導波ラインの前記一部とは、当該要素部分に含まれる前記位相シフタに通電しない状態において互いに同じ光路長を有し、且つ、前記要素部分のそれぞれが備える前記バス導波路の前記一部どうしが接続されることにより前記複数の前記要素部分が縦続接続されており、前記位相シフタは、隣接する前記光カプラを接続する直線状の前記バス導波路の部分に形成されている。
本発明の他の態様によると、前記バス導波路は、複数の第1要素部分を含み、前記導波ラインは、一つ又は複数の第2要素部分を含み、前記第1要素部分は、それぞれ、前記基板の平面に沿った第1の方向(X方向)に伝搬する光を受ける当該第1要素部分の光入力部と、前記第1の方向(X方向)へ光を出力する当該第1要素部分の光出力部とが、前記第1の方向に第1所定距離LAを隔て、且つ前記第1の方向に直交する前記基板の平面に沿った第2の方向(Y方向)に第2所定距離dを隔てて配置されており、且つ前記第1要素部分の光入力部に前記光カプラが設けられており、前記第2要素部分は、それぞれ、光の伝搬方向に沿って上流の第1端部と光の伝搬に沿って下流の第2端部とが、前記第1の方向(X方向)に第1所定距離LAを隔て、且つ前記第2の方向(Y方向)に第3所定距離qを隔てて配置されており、前記バス導波路は、複数の前記第1要素部分が縦続接続されて構成され、前記導波ラインは、一つの前記第2要素部分で構成されるか、又は複数の前記第2要素部分が縦続接続されて構成されている
本発明の他の態様によると、前記光カプラは、エバネセントカプラであり、前記第1要素部分の光入力部を含む当該第1要素部分の一部と、一の前記導波ラインの端部を含む当該導波ラインの一部とが、前記第2の方向に第4所定距離gを隔てて配されることにより構成される。
本発明の他の態様によると、前記バス導波路の光入力端から、複数の前記導波ラインの光出力端に至るそれぞれの光経路に含まれる、前記第1要素部分の数と前記第2要素部分の数の合計は、それぞれの前記光経路において互いに同じである。
本発明の他の態様によると、前記導波ラインのそれぞれは一つ又は複数の前記第2要素部分に加えて一つ又は複数の付加的な導波路を含み、前記導波ラインのそれぞれが含む前記付加的な導波路の、光路長の合計及び前記第1の方向に沿った距離の合計は、複数の前記導波ラインにおいてそれぞれ互いに同じである。
本発明の他の態様によると、前記第1要素部分と前記第2要素部分とは、同じ光路長を持つ。
本発明の他の態様によると、前記第1要素部分は、それぞれ光の伝搬方向に所定の角度の変化を与える2つの曲がり導波路と、前記第1の方向に対し当該所定の角度をもって延在して当該2つの曲がり導波路を接続する斜め導波路と、を含み、前記第2要素部分は、光の伝搬方向を90°変換する2つの曲がり導波路と、前記第1の方向に延在する直線導波路と、を含む。
本発明の他の態様によると、縦続接続された複数の前記第1要素部分のうち最後の前記第1要素部分には、当該最後の前記第1要素部分の光出力部につなげて設けられた前記光カプラを介して、一つの前記第2要素部分で構成される前記導波ラインが接続される。
本発明の他の態様によると、一つの前記第1要素部分と、一つの前記導波ラインの端部を含む前記第2要素部分と、をそれぞれ含む複数の第3要素部分を含み、複数の前記第3要素部分に含まれるそれぞれの前記第1要素部分が互いに縦続接続されることにより複数の前記第3要素部分が縦続接続され且つ、前記複数の第3要素部分に含まれるそれぞれの前記第2要素部分に一つ又は複数の他の前記第2要素部分が縦続接続されている。
本発明の他の態様によると、前記位相シフタは、それぞれ、前記バス導波路の一部に設けられたヒータにより構成され、前記ヒータは、同じ電流を通電したときに互いに同じ温度となるように、長さ、幅、及び厚さを含むサイズ、並びに形状が、互いに同じとなるように構成されている。
本発明の他の態様によると、前記基板は、Si3N4、Si、SiON、LiNbO3、LiTaO3、及びSiCのいずれかで構成される。
本発明の他の態様は、上記いずれかの光集積回路を備える光フェーズドアレイである。
本発明の他の態様によると、前記光フェーズドアレイは、基板上に設けられた、それぞれがその長さ方向に沿ってその幅又は厚さが周期的に変化する複数の摂動導波路により構成され、前記光集積回路が出力する光のそれぞれを当該基板の表面から空間へ出力するアンテナアレイを備える。
本発明の他の態様によると、上記いずれかの光フェーズドアレイを備えるLiDARセンサである。
本発明の他の態様は、入力光を分岐して構成される所定の数の光チャネルを備える、光集積回路の設計方法である。前記設計方法は、前記光集積回路の要素部分を構成するステップを含む。前記要素部分を構成する前記ステップでは、前記要素部分を、入力光が伝搬するバス導波路の一部と、前記バス導波路の前記一部に設けられて前記バス導波路の前記一部を伝搬する光の一部を抽出する光カプラと、前記バス導波路の前記一部に設けられた位相シフタであって、隣接する前記光カプラを接続する直線状の前記バス導波路の部分に形成された位相シフタと、前記光カプラが抽出した光を伝搬する導波ラインの一部と、を含み、且つ、前記バス導波路の前記一部と前記導波ラインの前記一部とが、前記位相シフタに通電しない状態において互いに同じ光路長を有する、よう構成する。また、前記設計方法は、前記要素部分のそれぞれが備える前記バス導波路の前記一部どうしを接続して前記所定の数に応じた数の前記要素部分を縦続接続することにより、前記所定の数の前記光チャネルを構成するステップを含む。

Claims (14)

  1. 基板上に形成された光導波路により構成される光集積回路であって、
    入力光が伝搬するバス導波路と、
    前記バス導波路上に配された、当該バス導波路を伝搬する光の一部をそれぞれ抽出する複数の光カプラと、
    前記複数の光カプラが抽出した光をそれぞれ伝搬する複数の導波ラインと、
    前記バス導波路に沿って隣接する前記光カプラの間の当該バス導波路上にそれぞれ設けられた位相シフタと、
    を備え、
    バス導波路の光入力端から各導波ラインの光出力端までの光路長が互いに等しくなるように構成されていることを特徴とする、
    光集積回路。
  2. 前記バス導波路は、複数の第1要素部分が縦続に接続されて構成され、
    前記導波ラインは、第2要素部分を一つ含むか、又は複数の前記第2要素部分が縦続に接続されて構成されており、
    前記第1要素部分は、それぞれ、前記基板の平面に沿った第1の方向に伝搬する光を受ける当該第1要素部分の光入力部と、前記第1の方向へ光を出力する当該第1要素部分の光出力部とが、前記第1の方向に第1所定距離を隔て、且つ前記第1の方向に直交する前記基板の平面に沿った第2の方向に第2所定距離を隔てて配置されており、
    前記第2要素部分は、それぞれ、光の伝搬方向に沿って上流の第1端部と光の伝搬に沿って下流の第2端部とが、前記第1の方向に第1所定距離を隔て、且つ前記第2の方向に第3所定距離を隔てて配置されており、
    前記第1要素部分の光入力部に前記光カプラが設けられている、
    請求項1に記載の光集積回路。
  3. 前記光カプラは、エバネセントカプラであり、前記第1要素部分の光入力部を含む当該第1要素部分の一部と、一の前記導波ラインの端部を含む当該導波ラインの一部とが、前記第2の方向に第4所定距離を隔てて配されることにより構成される、
    請求項2に記載の光集積回路。
  4. 前記バス導波路の光入力端から、複数の前記導波ラインの光出力端に至るそれぞれの光経路に含まれる、前記第1要素部分の数と前記第2要素部分の数の合計は、それぞれの前記光経路において互いに同じである、
    請求項2又は3に記載の光集積回路。
  5. 前記導波ラインのそれぞれは一つ又は複数の前記第2要素部分に加えて一つ又は複数の付加的な導波路を含み、
    前記導波ラインのそれぞれが含む前記付加的な導波路の、光路長の合計及び前記第1の方向に沿った距離の合計は、複数の前記導波ラインにおいてそれぞれ互いに同じである、
    請求項2ないし4のいずれか一項に記載の光集積回路。
  6. 前記第1要素部分と前記第2要素部分とは、同じ光路長を持つ、
    請求項2ないし5のいずれか一項に記載の光集積回路。
  7. 前記第1要素部分は、それぞれ光の伝搬方向に所定の角度の変化を与える2つの曲がり導波路と、前記第1の方向に対し当該所定の角度をもって延在して当該2つの曲がり導波路を接続する斜め導波路と、を含み、
    前記第2要素部分は、光の伝搬方向を90°変換する2つの曲がり導波路と、前記第1の方向に延在する直線導波路と、を含む、
    請求項2ないし6のいずれか一項に記載の光集積回路。
  8. 縦続接続された複数の前記第1要素部分のうち最後の前記第1要素部分には、当該最後の前記第1要素部分の光出力部につなげて設けられた前記光カプラを介して、一つの前記第2要素部分で構成される前記導波ラインが接続される、
    請求項2ないし7のいずれか一項に記載の光集積回路。
  9. 一つの前記第1要素部分と、一つの前記導波ラインの端部を含む前記第2要素部分と、をそれぞれ含む複数の第3要素部分を含み、
    前記複数の第3要素部分に含まれるそれぞれの前記第1要素部分が互いに縦続接続され、前記複数の第3要素部分に含まれるそれぞれの前記第2要素部分に一つ又は複数の他の前記第2要素部分が縦続接続されて構成されている、
    請求項2ないし8のいずれか一項に記載の光集積回路。
  10. 前記位相シフタは、それぞれ、前記バス導波路の一部に設けられたヒータにより構成され、
    前記ヒータは、同じ電流を通電したときに互いに同じ温度となるように、長さ、幅、及び厚さを含むサイズ、並びに形状が、互いに同じとなるように構成されている、
    請求項1ないし9のいずれか一項に記載の光集積回路。
  11. 前記基板は、Si34、Si、SiON、LiNbO3、LiTaO3、及びSiCのいずれかで構成される、
    請求項1ないし10のいずれか一項に記載の光集積回路。
  12. 請求項1ないし11のいずれか一項に記載の光集積回路を備える光フェーズドアレイ。
  13. 基板上に設けられた、それぞれがその長さ方向に沿ってその幅又は厚さが周期的に変化する複数の摂動導波路により構成され、前記光集積回路が出力する光のそれぞれを当該基板の表面から空間へ出力するアンテナアレイを備える、請求項12に記載の光フェーズドアレイ。
  14. 請求項12又は13に記載の光フェーズドアレイを備えるLiDARセンサ。
JP2018525790A 2018-05-14 2018-05-14 光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサ Active JP6513885B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018599 WO2019220513A1 (ja) 2018-05-14 2018-05-14 光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサ

Publications (2)

Publication Number Publication Date
JP6513885B1 JP6513885B1 (ja) 2019-05-15
JPWO2019220513A1 true JPWO2019220513A1 (ja) 2020-07-02

Family

ID=66530749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018525790A Active JP6513885B1 (ja) 2018-05-14 2018-05-14 光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサ

Country Status (3)

Country Link
JP (1) JP6513885B1 (ja)
CN (1) CN112204458B (ja)
WO (1) WO2019220513A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385406B2 (en) * 2019-10-29 2022-07-12 Waymo Llc Optical signal routing devices and systems
US11209529B2 (en) 2020-03-05 2021-12-28 Aurora Operations, Inc. Coherent signal combining with multiple-outputs for quasi-CW LIDAR operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9722685D0 (en) * 1997-10-28 1997-12-24 Secr Defence Electrically tuneable optical filter
US6219471B1 (en) * 1999-01-15 2001-04-17 Lucent Technologies Inc. Optical device having equal length waveguide paths
JP6701816B2 (ja) * 2016-03-07 2020-05-27 株式会社豊田中央研究所 屈折率制御素子、光位相シフタ、光スイッチ、及び屈折率制御素子の製造方法
JP2017187649A (ja) * 2016-04-06 2017-10-12 株式会社豊田中央研究所 光フェーズドアレイ、及び光アンテナ
JP2018010118A (ja) * 2016-07-13 2018-01-18 日本放送協会 光偏向装置

Also Published As

Publication number Publication date
WO2019220513A1 (ja) 2019-11-21
CN112204458B (zh) 2024-01-19
CN112204458A (zh) 2021-01-08
JP6513885B1 (ja) 2019-05-15

Similar Documents

Publication Publication Date Title
US20200088876A1 (en) Distance measurement sensor
CN107765363B (zh) 光学相控阵列(OPA)及包括其的光集成电路和LiDAR系统
JP6513884B1 (ja) 光フェーズドアレイ、及びこれを用いたlidarセンサ
EP3407128B1 (en) Light-deflecting device and lidar apparatus
KR102407142B1 (ko) 빔 스티어링 소자 및 이를 포함하는 전자 장치
JP2022504680A (ja) Lidarシステムにおける光スイッチング
JP6165074B2 (ja) 波長モニタ及び波長モニタリング方法
JP2022522711A (ja) Lidar出力信号の増幅
WO2019014596A1 (en) SEMICONDUCTOR LIGHT DETECTION AND TELEMETRY SYSTEM BASED ON OPTICAL PHASE CONTROL OPTICAL NETWORK COMPRISING OPTICAL POWER DISTRIBUTION NETWORK
JPWO2019220513A1 (ja) 光集積回路、並びにこれを用いた光フェーズドアレイ及びLiDARセンサ
WO2020139196A1 (en) LIGHT DETECTING AND RANGING (LiDAR) DEVICES AND THE LIKE
JP2022521459A (ja) スペックル感度が低減されたlidarシステム
JP2009036903A (ja) 光波長フィルタ
JP2020056658A (ja) 光ヘテロダイン検波器及び光ヘテロダイン検波器を用いたレーザレーダ装置。
WO2020121452A1 (ja) ライダー装置
JP2018173537A (ja) 光導波路素子及びレーザレーダ
CN115769447A (zh) 光频梳装置及计测装置
US20190243210A1 (en) Optical device including a monolithic body of optical material and related methods
CN115398296A (zh) 具有包括集成控制装置的相控阵天线的光电发射器
EP3786661A1 (en) A phase difference measurement device for optical phased arrays
US11982743B2 (en) Reducing size of LIDAR system control assemblies
US20220404470A1 (en) Scanning multiple lidar system output signals
EP3816658A1 (en) A phase difference measurement device for optical phased arrays
CN118131246A (zh) 光学相位阵列、激光雷达系统和用于处理光学相位阵列的方法
JP2024522157A (ja) 複数のlidarシステム出力信号の走査

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180517

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6513885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250