JPWO2019211885A1 - Ignition system for internal combustion engine - Google Patents

Ignition system for internal combustion engine Download PDF

Info

Publication number
JPWO2019211885A1
JPWO2019211885A1 JP2020516979A JP2020516979A JPWO2019211885A1 JP WO2019211885 A1 JPWO2019211885 A1 JP WO2019211885A1 JP 2020516979 A JP2020516979 A JP 2020516979A JP 2020516979 A JP2020516979 A JP 2020516979A JP WO2019211885 A1 JPWO2019211885 A1 JP WO2019211885A1
Authority
JP
Japan
Prior art keywords
current value
ignition
secondary current
superimposition
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020516979A
Other languages
Japanese (ja)
Other versions
JP6992170B2 (en
Inventor
義文 内勢
義文 内勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Hanshin Ltd
Original Assignee
Hitachi Automotive Systems Hanshin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Hanshin Ltd filed Critical Hitachi Automotive Systems Hanshin Ltd
Publication of JPWO2019211885A1 publication Critical patent/JPWO2019211885A1/en
Application granted granted Critical
Publication of JP6992170B2 publication Critical patent/JP6992170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Abstract

点火プラグに発生した火花放電による着火性を向上させ、しかも、点火のための消費電力を適切化して燃費の悪化も低減できる内燃機関用点火装置を提供する。内燃機関用点火装置1の重畳制御手段31は、点火コイル11Aの一次電流を遮断する点火タイミング以降に重畳制御開始条件が成立することで、二次電流重ね手段50より二次側に電流を重畳して二次電流を設定二次電流値に保つ。その後、重畳制御見直しタイミングになったとき、設定二次電流値が第1電流値で一次コイル電圧の状況が二次電流加算条件を満たしていれば、第1電流値よりも大きな第2電流値を設定二次電流値に変更する重畳増加制御を行い、設定二次電流値が第2電流値で一次コイル電圧の状況が二次電流低減条件を満たしていれば、第1電流値を設定二次電流値に変更する重畳低減制御を行うことで、点火プラグ20の火花放電を大きく膨らませ、着火性を向上させる。Provided is an ignition device for an internal combustion engine capable of improving ignitability due to spark discharge generated in a spark plug, optimizing power consumption for ignition, and reducing deterioration of fuel efficiency. The superimposition control means 31 of the ignition device 1 for an internal combustion engine superimposes a current on the secondary side of the secondary current superimposition means 50 by satisfying the superimposition control start condition after the ignition timing for cutting off the primary current of the ignition coil 11A. And keep the secondary current at the set secondary current value. After that, when the superimposition control review timing comes, if the set secondary current value is the first current value and the condition of the primary coil voltage satisfies the secondary current addition condition, the second current value is larger than the first current value. If the setting secondary current value is the second current value and the condition of the primary coil voltage satisfies the secondary current reduction condition, the first current value is set. By performing the superimposition reduction control for changing to the next current value, the spark discharge of the ignition plug 20 is greatly expanded and the ignitability is improved.

Description

本発明は、自動車両に搭載される内燃機関用の点火装置に関し、点火コイルの二次側に放電エネルギを重畳して、良好な放電特性を得るものである。 The present invention relates to an ignition device for an internal combustion engine mounted on an automatic vehicle, and obtains good discharge characteristics by superimposing discharge energy on the secondary side of an ignition coil.

車両搭載の内燃機関として、燃費改善のために直噴エンジンや高EGRエンジンが採用されているが、これらのエンジンは着火性があまり良くないため、点火装置には高エネルギ型のものが必要になる。そこで、古典的な電流遮断原理により発生する点火コイル二次側出力に、さらにもう一つの点火コイルの出力を加算的に重畳する位相放電型の点火装置が提案されている(例えば、特許文献1を参照)。 Direct-injection engines and high-EGR engines are used as vehicle-mounted internal combustion engines to improve fuel efficiency, but these engines do not have very good ignitability, so a high-energy type ignition device is required. Become. Therefore, a phase discharge type ignition device has been proposed in which the output of another ignition coil is additively superimposed on the secondary side output of the ignition coil generated by the classical current cutoff principle (for example, Patent Document 1). See).

この特許文献1に記載の点火装置によれば、主点火コイルの一次電流を遮断することでその二次側に発生する数kVの高電圧により、点火プラグの放電間隙に絶縁破壊を起こして点火コイルの二次側から放電電流を流し始めた後に、主点火コイルと並列に接続された副点火コイルの一次電流を遮断し、その二次側に発生する数kVの直流電圧を加算的に重畳することで、比較的長い時間に亙って点火プラグに大きな放電エネルギを与えることができるため、燃料への着火性が向上し、延いては燃費も向上する。 According to the ignition device described in Patent Document 1, a high voltage of several kV generated on the secondary side of the primary ignition coil by interrupting the primary current causes insulation destruction in the discharge gap of the spark plug to ignite. After starting to flow the discharge current from the secondary side of the coil, the primary current of the sub-ignition coil connected in parallel with the main ignition coil is cut off, and the DC voltage of several kV generated on the secondary side is additionally superimposed. By doing so, it is possible to give a large amount of discharge energy to the spark plug over a relatively long time, so that the ignitability of the fuel is improved, and the fuel efficiency is also improved.

特開2012−140924号公報Japanese Unexamined Patent Publication No. 2012-140924

しかしながら、特許文献1に記載された点火装置のような方式では、点火プラグの放電電流は各コイルから出力される三角波電流の組み合わせであるため、高電流期間を拡大するためには、2つの点火コイルの点火位相を大きくしたうえで、2つの点火コイルに十分なエネルギを蓄積する時間を長くしなければ、高電流期間を拡大することができない。 However, in a system such as the ignition device described in Patent Document 1, since the discharge current of the ignition plug is a combination of triangular wave currents output from each coil, two ignitions are used to extend the high current period. The high current period cannot be extended unless the ignition phase of the coils is increased and the time for accumulating sufficient energy in the two ignition coils is lengthened.

また、点火コイルの外部あるいは内部で電源電圧を昇圧してコイルの二次側に直接的に高電圧を印加することで、一次コイルへの通電時間を長くすることなく、二次側の放電エネルギを高め、安定した燃焼を維持する方法も考えられる。しかしながら、このような方法では、電源電圧を数kVまで昇圧させる昇圧回路が必要となるため、搭載する回路の高耐圧化および高電圧での接続耐性が必要となり、相当なコストアップとなってしまう。加えて、昇圧回路の使用により点火のための消費電力も増大するため、燃費を悪化させる要因となってしまう。 In addition, by boosting the power supply voltage outside or inside the ignition coil and applying a high voltage directly to the secondary side of the coil, the discharge energy on the secondary side does not increase the energization time of the primary coil. It is also conceivable to increase the voltage and maintain stable combustion. However, in such a method, since a booster circuit for boosting the power supply voltage to several kV is required, it is necessary to increase the withstand voltage of the mounted circuit and to withstand the connection at a high voltage, resulting in a considerable cost increase. .. In addition, the use of the booster circuit also increases the power consumption for ignition, which causes deterioration of fuel efficiency.

加えて、直噴エンジンや高EGRエンジンでの着火性を向上させるためには、高電流期間を長くするだけでは十分とは言えず、点火プラグの放電電流によって大きな火炎を形成することも重要である。通常のエンジンでは、シリンダ内に生じるタンブル流の流速が3〜5〔m/s〕程度なのに対して、超希薄リーン燃焼(A/F=29)やEGR=35%で燃焼させようとするエンジンでは、シリンダ内に生じるタンブル流の流速が20〔m/s〕程度に増大することで、点火プラグに発生した火花放電はタンブル流に流されて膨らみ、放電経路が伸びる。点火プラグに発生した火花放電の放電経路が伸びると、それだけ大きな火炎核が形成されて火炎伝搬も良好となり、着火性を向上させることができる。しかしながら、点火プラグに発生した火花放電の放電経路が伸びても、十分な放電電流が流れないと、その放電経路を維持できず、点火プラグの電極間を短経路で結ぶ新たな放電経路が生じるリストライク(放電吹き消え)を起こしてしまい、十分な大きさの火炎核を形成できない。よって、直噴エンジンや高EGRエンジンでの着火性を向上させるためには、点火プラグに発生した火花放電のリストライクを防止することも重要である。また、シリンダ内に生じるタンブル流は一定ではなく、点火プラグに発生した火花放電の放電経路を膨らませるほどの流速に達しない場合もある。そのような場合にも、火花放電の放電経路が伸びるように調整できれば、一層、着火性を向上させることができる。 In addition, in order to improve the ignitability of direct injection engines and high EGR engines, it is not enough to extend the high current period, and it is also important to form a large flame by the discharge current of the spark plug. is there. In a normal engine, the flow velocity of the tumble flow generated in the cylinder is about 3 to 5 [m / s], whereas an engine that tries to burn with ultra-lean lean combustion (A / F = 29) or EGR = 35%. Then, when the flow velocity of the tumble flow generated in the cylinder increases to about 20 [m / s], the spark discharge generated in the spark plug is swept by the tumble flow and swells, and the discharge path is extended. When the discharge path of the spark discharge generated in the spark plug is extended, a larger flame nucleus is formed, the flame propagation is improved, and the ignitability can be improved. However, even if the discharge path of the spark discharge generated in the spark plug is extended, if a sufficient discharge current does not flow, the discharge path cannot be maintained, and a new discharge path is created that connects the electrodes of the spark plug with a short path. It causes wrist-like (discharge blowout) and cannot form a flame nucleus of sufficient size. Therefore, in order to improve the ignitability in a direct injection engine or a high EGR engine, it is also important to prevent the recirculation of spark discharge generated in the spark plug. Further, the tumble flow generated in the cylinder is not constant, and may not reach a flow velocity sufficient to expand the discharge path of the spark discharge generated in the spark plug. Even in such a case, if the discharge path of the spark discharge can be adjusted so as to extend, the ignitability can be further improved.

そこで、本発明は、シリンダ内に生じるタンブル流に応じた点火制御により、点火プラグに発生した火花放電による着火性を向上させ、しかも、点火のための消費電力を適切化して燃費の悪化も低減できる内燃機関用点火装置の提供を目的とする。 Therefore, the present invention improves the ignitability due to the spark discharge generated in the spark plug by the ignition control according to the tumble flow generated in the cylinder, and further optimizes the power consumption for ignition and reduces the deterioration of fuel efficiency. An object of the present invention is to provide an ignition device for an internal combustion engine.

上記課題を解決するために、請求項1に係る内燃機関用点火装置は、点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルの二次側を流れる二次電流へ重畳的に電流を加算することで、予め指示された二次電流値を保つ二次電流重ね手段と、点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される一次コイルの電圧を検出する一次コイル電圧検出手段と、を備え、前記点火制御手段は、予め定めた重畳制御開始条件を満たすと前記二次電流重ね手段へ予め設定された設定二次電流値を指示することで、二次電流重ね手段により設定二次電流値の二次電流を点火コイル二次側に流す重畳制御を行い、予め定めた重畳制御見直しタイミングになると、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の膨らんだ放電経路を維持し難い状態として定めた二次電流加算条件を満たす場合に、現在の設定二次電流値よりも高い電流値を新たな設定二次電流値に設定し、新たな設定二次電流値を二次電流重ね手段に指示することで、二次電流重ね手段から点火コイルの二次側へより高い電流値の二次電流を流させる重畳増加制御、および/または、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の放電経路を膨らませ難い状態として定めた二次電流低減条件を満たす場合に、現在の設定二次電流値よりも低い電流値を新たな設定二次電流値に設定し、新たな設定二次電流値を二次電流重ね手段に指示することで、二次電流重ね手段から点火コイルの二次側へより低い電流値の二次電流を流させる重畳低減制御、を行うようにしたことを特徴とする。 In order to solve the above problem, the ignition device for an internal combustion engine according to claim 1 applies discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by the ignition control means, and supplies the ignition plug to the ignition plug. In an ignition device for an internal combustion engine that causes a spark discharge, a secondary current overlapping means for maintaining a secondary current value instructed in advance by superimposing a current on the secondary current flowing on the secondary side of the ignition coil. The ignition control means includes a primary coil voltage detecting means for detecting the voltage of the primary coil reflecting the voltage generated in the secondary coil after the ignition timing in the ignition cycle, and the ignition control means starts a predetermined superposition control. When the condition is satisfied, a preset secondary current value is instructed to the secondary current stacking means, so that the secondary current of the set secondary current value is passed to the secondary side of the ignition coil by the secondary current stacking means. When the control is performed and the predetermined superimposition control review timing is reached, the change in the primary coil voltage detected by the primary coil voltage detecting means is determined as a state in which it is difficult to maintain the swollen discharge path of the spark discharge generated in the ignition plug. When the secondary current addition condition is satisfied, a current value higher than the currently set secondary current value is set as the new set secondary current value, and the newly set secondary current value is instructed to the secondary current stacking means. By doing so, superimposition increase control for causing a secondary current having a higher current value to flow from the secondary current stacking means to the secondary side of the ignition coil, and / or the primary coil voltage detected by the primary coil voltage detecting means. When the change satisfies the secondary current reduction condition defined as the state in which the discharge path of the spark discharge generated in the ignition plug is difficult to expand, a current value lower than the currently set secondary current value is newly set as the secondary current value. By setting to and instructing the secondary current stacking means to set a new setting secondary current value, superimposition reduction control that causes a secondary current with a lower current value to flow from the secondary current stacking means to the secondary side of the ignition coil. , Is characterized by doing.

また、請求項2に係る発明は、前記請求項1に記載の内燃機関用点火装置において、前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまでに、火花放電の吹き消えが生じたと想定される一次コイル電圧の変化である吹き消え状態が予め定めた所定回数以上発生したことを二次電流加算条件として用いることを特徴とする。 The invention according to claim 2 is the ignition device for an internal combustion engine according to claim 1, wherein the ignition control means spark discharges from the start of superimposition control in one ignition cycle to the superimposition control review timing. It is characterized in that the blowout state, which is a change in the primary coil voltage presumed to have caused the blowout, occurs more than a predetermined number of times as a secondary current addition condition.

また、請求項3に係る発明は、前記請求項1に記載の内燃機関用点火装置において、前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまで、火花放電の放電経路が膨らまずに短経路が保持されていると想定される一次コイル電圧の変化である短経路保持状態が継続していたことを二次電流低減条件として用いることを特徴とする。 The invention according to claim 3 is the ignition device for an internal combustion engine according to claim 1, wherein the ignition control means generates a spark discharge from the start of superimposition control in one ignition cycle to the superimposition control review timing. It is characterized in that the short path holding state, which is a change in the primary coil voltage assumed that the short path is held without expanding the discharge path, is used as the secondary current reduction condition.

また、請求項4に係る発明は、前記請求項1〜請求項3の何れか1項に記載の内燃機関用点火装置において、前記二次電流重ね手段は、所定の第1電流値と、該第1電流値よりも高い第2電流値とに、二次電流値を保つことが可能であり、前記点火制御手段は、設定二次電流値が第1電流値であるときにのみ重畳増加制御を行い、設定二次電流値が第2電流値であるときにのみ重畳低減制御を行うことを特徴とする。 Further, the invention according to claim 4 is the ignition device for an internal combustion engine according to any one of claims 1 to 3, wherein the secondary current overlapping means has a predetermined first current value and the same. It is possible to maintain the secondary current value at the second current value higher than the first current value, and the ignition control means superimposes and increases control only when the set secondary current value is the first current value. Is performed, and the superimposition reduction control is performed only when the set secondary current value is the second current value.

上記課題を解決するために、請求項5に係る発明は、点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、前記点火コイルは、主一次電流の通電により順方向の磁束量が増加し、主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルの通電遮断以降における任意のタイミングで副一次電流を通電することにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギが与えられる二次コイルと、を有するものとし、点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される主一次コイルの電圧を検出する主一次コイル電圧検出手段と、前記点火コイルの二次側を流れる二次電流を検出する二次電流検出手段と、前記副一次コイルへの通電・遮断を切り替えることで発生させた遮断方向の重畳磁束を二次コイルに作用させることで、点火コイルの二次側に放電エネルギを重畳するエネルギ重畳手段と、を備え、前記点火制御手段は、予め定めた重畳制御開始条件を満たすと前記二次電流検出手段により検出された二次電流値に基づいて前記エネルギ重畳手段により発生させる重畳磁束を調整することで、予め設定された設定二次電流値の二次電流を点火コイル二次側に流す重畳制御を行い、予め定めた重畳制御見直しタイミングになると、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の膨らんだ放電経路を維持し難い状態として定めた二次電流加算条件を満たす場合に、現在の設定二次電流値よりも高い電流値を新たな設定二次電流値に設定し、前記エネルギ重畳手段により発生させる重畳磁束を調整することで、点火コイルの二次側へより高い電流値の二次電流を流させる重畳増加制御、および/または、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の放電経路を膨らませ難い状態として定めた二次電流低減条件を満たす場合に、現在の設定二次電流値よりも低い二次電流値を新たな設定二次電流値に設定し、前記エネルギ重畳手段により発生させる重畳磁束を調整することで、点火コイルの二次側へより低い電流値の二次電流を流させる重畳低減制御、を行うようにしたことを特徴とする。 In order to solve the above problem, the invention according to claim 5 applies discharge energy to the secondary side of the ignition coil by controlling the energization of the ignition coil by the ignition control means to cause a spark discharge in the ignition plug. In the ignition device for an internal combustion engine, the ignition coil includes a main primary coil in which the amount of forward magnetic flux is increased by energization of the main primary current and the amount of forward magnetic flux is decreased by shutting off the main primary current. The secondary primary coil that generates magnetic flux in the direction opposite to the forward cutoff direction by energizing the secondary primary current at an arbitrary timing after the main primary coil is cut off, and one end side is connected to the ignition plug, and the main primary coil is connected. The voltage of the main primary coil reflects the voltage generated in the secondary coil after the ignition timing in the ignition cycle. The main primary coil voltage detecting means for detecting the above, the secondary current detecting means for detecting the secondary current flowing on the secondary side of the ignition coil, and the interruption generated by switching the energization / interruption of the secondary primary coil. An energy superimposing means for superimposing discharge energy on the secondary side of the ignition coil by applying a superimposing current in the direction to the secondary coil is provided, and the ignition control means satisfies a predetermined superimposition control start condition. By adjusting the superimposition magnetic flux generated by the energy superimposing means based on the secondary current value detected by the secondary current detection means, the secondary current of the preset secondary current value is generated as the secondary current of the ignition coil. When the superimposition control is performed to flow to the side and the predetermined superimposition control review timing is reached, the change in the primary coil voltage detected by the primary coil voltage detecting means maintains the swelling discharge path of the spark discharge generated in the ignition plug. When the secondary current addition condition determined as a difficult state is satisfied, a current value higher than the currently set secondary current value is set as a new set secondary current value, and the superimposed magnetic flux generated by the energy superimposing means is adjusted. By doing so, the superimposition increase control that causes a secondary current having a higher current value to flow to the secondary side of the ignition coil, and / or the change in the primary coil voltage detected by the primary coil voltage detecting means is applied to the ignition plug. When the secondary current reduction condition specified as the state in which the discharge path of the generated spark discharge is difficult to expand is satisfied, a secondary current value lower than the currently set secondary current value is set as the new set secondary current value. By adjusting the superposed current generated by the energy superimposing means, it can be moved to the secondary side of the ignition coil. It is characterized in that superimposition reduction control, in which a secondary current having a low current value is passed, is performed.

また、請求項6に係る発明は、前記請求項5に記載の内燃機関用点火装置において、前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまでに、火花放電の吹き消えが生じたと想定される一次コイル電圧の変化である吹き消え状態が予め定めた所定回数以上発生したことを二次電流加算条件として用いることを特徴とする。 The invention according to claim 6 is the ignition device for an internal combustion engine according to claim 5, wherein the ignition control means spark discharges from the start of superimposition control in one ignition cycle to the superimposition control review timing. It is characterized in that the blowout state, which is a change in the primary coil voltage presumed to have caused the blowout, occurs more than a predetermined number of times as a secondary current addition condition.

また、請求項7に係る発明は、前記請求項5に記載の内燃機関用点火装置において、前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまで、火花放電の放電経路が膨らまずに短経路が保持されていると想定される一次コイル電圧の変化である短経路保持状態が継続していたことを二次電流低減条件として用いることを特徴とする。 Further, the invention according to claim 7 is the ignition device for an internal combustion engine according to claim 5, wherein the ignition control means generates a spark discharge from the start of superimposition control in one ignition cycle to the superimposition control review timing. It is characterized in that the short path holding state, which is a change in the primary coil voltage assumed that the short path is held without expanding the discharge path, is used as the secondary current reduction condition.

また、請求項8に係る発明は、前記請求項5〜請求項7の何れか1項に記載の内燃機関用点火装置において、前記エネルギ重畳手段は、副一次コイルに供給する電源パルスのデューティ比を変化させることで、副一次コイルに発生させる重畳磁束を調整可能であり、前記点火制御手段は、前記エネルギ重畳手段へ通電のオン・オフを指示するPWM制御によって、二次電流を増減させるようにしたことを特徴とする。 The invention according to claim 8 is the ignition device for an internal combustion engine according to any one of claims 5 to 7, wherein the energy superimposing means has a duty ratio of a power supply pulse supplied to a secondary primary coil. The superimposed magnetic flux generated in the secondary primary coil can be adjusted by changing the above, and the ignition control means increases or decreases the secondary current by PWM control instructing the energy superimposing means to turn on / off the energization. It is characterized by having made it.

また、請求項9に係る発明は、前記請求項8に記載の内燃機関用点火装置において、前記点火制御手段は、所定の第1電流値と、該第1電流値よりも高い所定の第2電流値とを設定二次電流値とすることが可能で、設定二次電流値が第1電流値であるときにのみ重畳増加制御を行い、設定二次電流値が第2電流値であるときにのみ重畳低減制御を行うことを特徴とする。 The invention according to claim 9 is the ignition device for an internal combustion engine according to claim 8, wherein the ignition control means has a predetermined first current value and a predetermined second current value higher than the first current value. The current value can be set as the set secondary current value, and the superimposition increase control is performed only when the set secondary current value is the first current value, and when the set secondary current value is the second current value. It is characterized in that superimposition reduction control is performed only on the current.

本発明に係る内燃機関用点火装置によれば、点火タイミング以降に、重畳制御開始条件を満たすことで設定二次電流値の二次電流を点火コイル二次側に流す重畳制御を行い、その後、重畳制御見直しタイミングになると、二次電流加算条件もしくは二次電流低減条件を満たすかを点火制御手段が判定し、点火プラグに発生した火花放電の膨らんだ放電経路を維持し難い状態である二次電流加算条件を満たす場合には、現在の設定二次電流値よりも高い電流値を新たな設定二次電流値に設定する重畳増加制御を行うことで、シリンダ内の強いタンブル流でもリストライクを起こさずに火花放電の放電経路を膨らませるようにし、また、点火プラグに発生した火花放電の放電経路を膨らませ難い状態である二次電流低減条件を満たす場合には、現在の設定二次電流値よりも低い電流値を新たな設定二次電流値に設定する重畳低減制御を行うことで、シリンダ内の弱いタンブル流でも火花放電の放電経路を膨らませるようにする。これにより、点火プラグの放電電極間に生じた火花放電を大きく膨らませて、気筒内に大きな火炎核を形成でき、着火性を向上させることができる。しかも、点火制御手段による重畳制御は、シリンダ内に生じたタンブル流の強弱に応じた二次電流値を実現するように行うので、重畳制御のための電力消費を適切化することができ、重畳制御を行う事による燃費の悪化も低減できる。 According to the ignition device for an internal combustion engine according to the present invention, after the ignition timing, superimposition control is performed in which a secondary current of a set secondary current value is passed to the secondary side of the ignition coil by satisfying the superposition control start condition, and then When the superimposition control review timing comes, the ignition control means determines whether the secondary current addition condition or the secondary current reduction condition is satisfied, and it is difficult to maintain the bulging discharge path of the spark discharge generated in the ignition plug. When the current addition condition is satisfied, a superposition increase control that sets a current value higher than the currently set secondary current value to the newly set secondary current value is performed to restore even a strong tumble flow in the cylinder. If the discharge path of the spark discharge is expanded without causing it, and if the secondary current reduction condition, which is a state in which it is difficult to expand the discharge path of the spark discharge generated in the ignition plug, is satisfied, the currently set secondary current value By performing superposition reduction control that sets a lower current value to a new setting secondary current value, the discharge path of spark discharge can be expanded even with a weak tumble flow in the cylinder. As a result, the spark discharge generated between the discharge electrodes of the spark plug can be greatly inflated to form a large flame nucleus in the cylinder, and the ignitability can be improved. Moreover, since the superimposition control by the ignition control means is performed so as to realize the secondary current value according to the strength of the tumble flow generated in the cylinder, the power consumption for the superimposition control can be optimized and the superimposition can be performed. Deterioration of fuel consumption due to control can also be reduced.

本発明に係る内燃機関用点火装置の第1実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the ignition device for an internal combustion engine which concerns on this invention. 第1実施形態に係る内燃機関用点火装置の内燃機関駆動制御装置に設ける重畳制御手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the superimposition control means provided in the internal combustion engine drive control device of the internal combustion engine ignition device which concerns on 1st Embodiment. 第1実施形態における重畳制御手段が行う重畳制御の要部波形を模式的に示した波形図であり、(a)は重畳制御見直しタイミングで第1電流値から第2電流値に変更する重畳増加制御を行う場合の波形図、(b)は重畳制御見直しタイミングで重畳低減制御を行わずに第2電流値を維持する場合の波形図である。It is a waveform diagram which shows typically the waveform of the main part of the superimposition control performed by the superimposition control means in 1st Embodiment, and (a) is superimposition increase which changes from a 1st current value to a 2nd current value at a superimposition control review timing. The waveform diagram in the case of performing the control, (b) is the waveform diagram in the case of maintaining the second current value without performing the superposition reduction control at the superimposition control review timing. 第1実施形態における重畳制御手段が行う重畳制御の要部波形を模式的に示した波形図であり、(a)は重畳制御見直しタイミングで第2電流値から第1電流値に変更する重畳低減制御を行う場合の波形図、(b)は重畳制御見直しタイミングで重畳増加制御を行わずに第1電流値を維持する場合の波形図である。It is a waveform diagram which shows typically the waveform of the main part of the superimposition control performed by the superimposition control means in 1st Embodiment, and (a) is superimposition reduction which changes from a 2nd current value to a 1st current value at a superimposition control review timing. The waveform diagram in the case of performing control, (b) is the waveform diagram in the case of maintaining the first current value without performing the superposition increase control at the superimposition control review timing. 本発明に係る内燃機関用点火装置の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows the 2nd Embodiment of the ignition device for an internal combustion engine which concerns on this invention. 第2実施形態に係る内燃機関用点火装置の内燃機関駆動制御装置に設ける重畳制御手段の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the superimposition control means provided in the internal combustion engine drive control device of the internal combustion engine ignition device which concerns on 2nd Embodiment. 第2実施形態における重畳制御手段が行う重畳制御の要部波形を模式的に示した波形図であり、(a)は重畳制御見直しタイミングで第1電流値から第2電流値に変更する重畳増加制御を行う場合の波形図、(b)は重畳制御見直しタイミングで重畳低減制御を行わずに第2電流値を維持する場合の波形図である。It is a waveform diagram which shows typically the waveform of the main part of superimposition control performed by superimposition control means in 2nd Embodiment, and (a) is superimposition increase which changes from a 1st current value to a 2nd current value at a superimposition control review timing. The waveform diagram in the case of performing the control, (b) is the waveform diagram in the case of maintaining the second current value without performing the superposition reduction control at the superimposition control review timing. 第2実施形態における重畳制御手段が行う重畳制御の要部波形を模式的に示した波形図であり、(a)は重畳制御見直しタイミングで第2電流値から第1電流値に変更する重畳低減制御を行う場合の波形図、(b)は重畳制御見直しタイミングで重畳増加制御を行わずに第1電流値を維持する場合の波形図である。It is a waveform diagram which shows typically the waveform of the main part of superimposition control performed by superimposition control means in 2nd Embodiment, and (a) is superimposition reduction which changes from a 2nd current value to a 1st current value at a superimposition control review timing. The waveform diagram in the case of performing control, (b) is the waveform diagram in the case of maintaining the first current value without performing the superposition increase control at the superimposition control review timing.

次に、本発明に係る内燃機関用点火装置の実施形態を、添付図面に基づいて詳細に説明する。 Next, an embodiment of the ignition device for an internal combustion engine according to the present invention will be described in detail with reference to the accompanying drawings.

図1に示すのは、本発明の第1実施形態に係る内燃機関用点火装置1であり、内燃機関の気筒毎に設けられる1つの点火プラグ20に火花放電を発生させる点火コイルユニット10Aと、この点火コイルユニット10Aの動作タイミングを指示する点火信号Si等を適宜なタイミングで出力する点火制御手段としての内燃機関駆動制御装置30A、車両バッテリ等の直流電源40、点火プラグ20に火花放電が生じることで点火コイルの二次側を流れる二次電流に、更に電流を重ねて流す二次電流重ね手段50等で構成される。この二次電流重ね手段50は、点火コイルユニット10Aが備える点火コイル11Aの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段として機能する。 FIG. 1 shows an ignition device 1 for an internal combustion engine according to the first embodiment of the present invention, which includes an ignition coil unit 10A for generating spark discharge in one spark plug 20 provided for each cylinder of the internal combustion engine. Spark discharge occurs in the internal combustion engine drive control device 30A as an ignition control means for outputting an ignition signal Si or the like indicating the operation timing of the ignition coil unit 10A at an appropriate timing, a DC power supply 40 such as a vehicle battery, and a spark plug 20. As a result, it is composed of a secondary current stacking means 50 or the like in which a current is further superposed on the secondary current flowing on the secondary side of the ignition coil. The secondary current stacking means 50 functions as an energy superimposing means capable of increasing the discharge energy by superimposing energy on the secondary side of the ignition coil 11A included in the ignition coil unit 10A.

なお、本実施形態に示す内燃機関用点火装置1においては、点火制御手段としての機能が、自動車の内燃機関を統括的に制御する内燃機関駆動制御装置30Aに含まれるものとしたが、これに限定されるものではない。例えば、ECUといった通常の内燃機関駆動制御装置30Aが有している点火信号生成機能によって生成された点火信号を受けて、適宜な制御信号を生成し、点火コイルユニット10Aや二次電流重ね手段50へ制御信号を出力する点火制御装置を別途設けるようにしても構わない。 In the internal combustion engine ignition device 1 shown in the present embodiment, the function as an ignition control means is included in the internal combustion engine drive control device 30A that comprehensively controls the internal combustion engine of an automobile. It is not limited. For example, it receives an ignition signal generated by an ignition signal generation function of a normal internal combustion engine drive control device 30A such as an ECU, generates an appropriate control signal, and generates an appropriate control signal to the ignition coil unit 10A and the secondary current stacking means 50. An ignition control device that outputs a control signal to the internal combustion engine may be provided separately.

上記点火コイルユニット10Aは、例えば、点火コイル11A、点火スイッチ12A、点火スイッチ12Aと並列に設けるバイパス線路13、このバイパス線路13に設ける整流手段14等を所要形状のケース15に収納して一体構造としたユニットである。このケース15の適所には、高圧端子151とコネクタ152を設けてあり、高圧端子151を介して点火プラグ20を接続すると共に、コネクタ152を介して内燃機関駆動制御装置30Aや直流電源40と接続する。 The ignition coil unit 10A has an integrated structure in which, for example, an ignition coil 11A, an ignition switch 12A, a bypass line 13 provided in parallel with the ignition switch 12A, a rectifying means 14 provided on the bypass line 13, and the like are housed in a case 15 having a required shape. It is a unit. A high-voltage terminal 151 and a connector 152 are provided at appropriate positions in the case 15, and the spark plug 20 is connected via the high-voltage terminal 151 and also connected to the internal combustion engine drive control device 30A and the DC power supply 40 via the connector 152. To do.

上記点火コイル11Aは、一次コイル111に生ずる磁束を二次コイル112に効率良く作用させるもので、例えば、センターコア113を取り巻くように一次コイル111を配置し、更にその外側に二次コイル112を配置した構造である。一次コイル111の一方端である第1端111−1は、コネクタ152を介して直流電源40と接続され、電源電圧VB+(例えば、12V)が印加される。一次コイル111の他方端である第2端111−2は点火スイッチ12Aのコレクタに接続され、点火スイッチ12Aのエミッタはコネクタ152を介して接地点GNDに接続される。 The ignition coil 11A efficiently causes the magnetic flux generated in the primary coil 111 to act on the secondary coil 112. For example, the primary coil 111 is arranged so as to surround the center core 113, and the secondary coil 112 is further outside the primary coil 111. It is an arranged structure. The first end 111-1, which is one end of the primary coil 111, is connected to the DC power supply 40 via the connector 152, and a power supply voltage VB + (for example, 12V) is applied. The second end 111-2, which is the other end of the primary coil 111, is connected to the collector of the ignition switch 12A, and the emitter of the ignition switch 12A is connected to the grounding point GND via the connector 152.

そして、放電サイクルの適宜なタイミングで内燃機関駆動制御装置30Aより出力される点火信号Siが点火スイッチ12Aのゲートに入力されると(例えば、点火信号Siの信号レベルがLからHに変わると)、点火スイッチ12Aがオンになって一次コイル111の第2端111−2が接地点GNDに接続され、一次コイル111には第1端111−1から第2端111−2に向かう一次電流I1が流れ始め、一次電流I1の流量は指数関数的に増加してゆく。この一次電流I1の流量に応じた磁束量が磁界のエネルギとして蓄積される。なお、点火コイル11Aの二次側には、二次コイル112や接続配線等の微少なコンデンサ成分により電気エネルギが蓄積される。 Then, when the ignition signal Si output from the internal combustion engine drive control device 30A is input to the gate of the ignition switch 12A at an appropriate timing of the discharge cycle (for example, when the signal level of the ignition signal Si changes from L to H). , The ignition switch 12A is turned on, the second end 111-2 of the primary coil 111 is connected to the grounding point GND, and the primary coil 111 has a primary current I1 from the first end 111-1 to the second end 111-2. Starts to flow, and the flow rate of the primary current I1 increases exponentially. The amount of magnetic flux corresponding to the flow rate of the primary current I1 is stored as the energy of the magnetic field. On the secondary side of the ignition coil 11A, electric energy is accumulated by a minute capacitor component such as the secondary coil 112 and the connection wiring.

上記のようにエネルギが蓄積された後、一次コイル111への通電が所定の点火タイミングで遮断されると、高圧の起電力が二次コイル112に生じて点火プラグ20の放電ギャップ間に火花放電が発生し、気筒燃焼室内の混合気に着火する。このとき、一次コイル111には、通常の一次電流I1とは逆向きの電流を流そうとする逆方向の電圧が生ずるので、この逆起電力が点火スイッチ12Aのコレクタ−エミッタ間に印加されることとなり、点火スイッチ12Aが故障したり、点火スイッチ12Aの劣化を早めたりする危険性がある。そこで、点火スイッチ12Aと並列にバイパス線路13を設けると共に、このバイパス線路13の接地点側から点火コイル11A側に向かって順方向となる整流手段14(例えば、点火スイッチ12Aのコレクタ側にカソードを、点火スイッチ12Aのエミッタ側にアノードをそれぞれ接続したダイオード)を設けたのである。 After the energy is accumulated as described above, when the energization of the primary coil 111 is cut off at a predetermined ignition timing, a high-voltage electromotive force is generated in the secondary coil 112 and spark discharge is performed between the discharge gaps of the spark plug 20. Occurs and ignites the air-fuel mixture in the cylinder combustion chamber. At this time, since a voltage in the opposite direction is generated in the primary coil 111 to allow a current to flow in the direction opposite to that of the normal primary current I1, and this counter electromotive force is applied between the collector and the emitter of the ignition switch 12A. Therefore, there is a risk that the ignition switch 12A may break down or the ignition switch 12A may be deteriorated earlier. Therefore, a bypass line 13 is provided in parallel with the ignition switch 12A, and a rectifying means 14 (for example, a cathode is provided on the collector side of the ignition switch 12A) in the forward direction from the grounding point side of the bypass line 13 toward the ignition coil 11A side. , A diode in which an anode is connected to each of the emitters of the ignition switch 12A) is provided.

上記点火プラグ20の放電電極間に火花放電が生じて二次側に流れる二次電流I2は、気筒内の燃焼状況を知るための情報として有用であるから、二次電流I2を検出するための二次電流検知手段を設けても良い。この二次電流検出手段は、例えば、二次電流重ね手段50と接地点GNDとの間の二次電流経路に介挿した適宜な抵抗値の電流検出用抵抗61と、この電流検出用抵抗61による電圧変化を二次電流の検出情報(二次電流検出信号)として取得する二次電流検出ライン62とで構成できる。そして、二次電流検出ライン62より得られる二次電流検出信号は、内燃機関駆動制御装置30Aへ供給され、この二次電流検出信号に基づいて内燃機関駆動制御装置30Aは二次コイル112に流れる電流値を知ることができる。 Since the secondary current I2 in which spark discharge occurs between the discharge electrodes of the spark plug 20 and flows to the secondary side is useful as information for knowing the combustion state in the cylinder, it is for detecting the secondary current I2. A secondary current detecting means may be provided. The secondary current detecting means includes, for example, a current detecting resistor 61 having an appropriate resistance value inserted in the secondary current path between the secondary current overlapping means 50 and the grounding point GND, and the current detecting resistor 61. It can be configured with a secondary current detection line 62 that acquires the voltage change due to the above as secondary current detection information (secondary current detection signal). Then, the secondary current detection signal obtained from the secondary current detection line 62 is supplied to the internal combustion engine drive control device 30A, and the internal combustion engine drive control device 30A flows to the secondary coil 112 based on the secondary current detection signal. You can know the current value.

また、点火プラグ20に高電圧を印加する二次コイル112に発生している電圧(以下、二次コイル電圧という)も、燃焼状況を知るための情報として有用であるから、例えば、高圧端子151と二次コイル112との間に設定した検知点Pspにて二次コイル電圧情報を取得すれば良いのであるが、二次コイル電圧は数kV〜数十kVに及ぶ高電圧であるために、分圧抵抗を設けることに依るリークの発生といった諸問題に配慮が必要であり、検知点Pspで二次コイル電圧の監視を行うことは現実的ではない。 Further, the voltage generated in the secondary coil 112 that applies a high voltage to the ignition plug 20 (hereinafter referred to as the secondary coil voltage) is also useful as information for knowing the combustion state. Therefore, for example, the high voltage terminal 151 It is sufficient to acquire the secondary coil voltage information at the detection point Psp set between the secondary coil 112 and the secondary coil 112, but since the secondary coil voltage is a high voltage ranging from several kV to several tens of kV, It is necessary to consider various problems such as the occurrence of leakage due to the provision of the voltage dividing resistor, and it is not realistic to monitor the secondary coil voltage at the detection point Psp.

しかしながら、点火プラグ20の放電時には、一次コイル111と二次コイル112との巻数比に応じた電圧が一次コイル111にも発生しており、一次コイル111に発生している電圧(以下、一次コイル電圧という)であれば、比較的低い電圧値であることから、監視のための難易度が低い。ただし、一次コイル電圧と二次コイル電圧は、電圧値のスケールが異なると共に、互いに逆極性となる。この相違点を踏まえておけば、一次コイル電圧を二次コイル電圧の相関情報として扱うことができる。 However, when the spark plug 20 is discharged, a voltage corresponding to the turns ratio between the primary coil 111 and the secondary coil 112 is also generated in the primary coil 111, and the voltage generated in the primary coil 111 (hereinafter referred to as the primary coil). If it is (called voltage), it is a relatively low voltage value, so the difficulty level for monitoring is low. However, the primary coil voltage and the secondary coil voltage have different scales of voltage values and have opposite polarities to each other. Based on this difference, the primary coil voltage can be treated as the correlation information of the secondary coil voltage.

そこで、本実施形態に係る内燃機関用点火装置1の点火コイルユニット10Aにおいては、一次コイル低圧側の電圧を検出する一次コイル電圧検出手段として、一次コイル111の第2端111−2とバイパス線路13の分岐点との間から一次コイル電圧検出ライン16を引き出し、コネクタ152を介して内燃機関駆動制御装置30Aへ一次コイル電圧信号を入力するものとした。 Therefore, in the ignition coil unit 10A of the ignition device 1 for an internal combustion engine according to the present embodiment, the second end 111-2 of the primary coil 111 and the bypass line are used as the primary coil voltage detecting means for detecting the voltage on the low voltage side of the primary coil. The primary coil voltage detection line 16 is pulled out from between the branch points of 13 and the primary coil voltage signal is input to the internal combustion engine drive control device 30A via the connector 152.

内燃機関駆動制御装置30Aでは、一次コイル電圧信号に基づいて二次コイル電圧を推定することにより、点火プラグ20への印加電圧の変化を知ることが可能となるので、内燃機関駆動制御装置30Aが二次電流重ね手段50による二次電流の重畳制御を行うことで、着火性を向上させることが可能となる。この二次電流重ね手段50を用いた重畳制御は、例えば、内燃機関駆動制御装置30Aに設けた重畳制御手段31の機能によって実行する。また、二次電流重ね手段50の電流源としては、車両バッテリ等の直流電源40を用いることができる。 In the internal combustion engine drive control device 30A, since it is possible to know the change in the voltage applied to the spark plug 20 by estimating the secondary coil voltage based on the primary coil voltage signal, the internal combustion engine drive control device 30A can be used. By controlling the superposition of the secondary current by the secondary current stacking means 50, the ignitability can be improved. The superimposition control using the secondary current superimposition means 50 is executed by, for example, the function of the superimposition control means 31 provided in the internal combustion engine drive control device 30A. Further, as the current source of the secondary current stacking means 50, a DC power source 40 such as a vehicle battery can be used.

重畳制御手段31の一例を図2に示す。重畳制御手段31には、重畳制御の開始や終了のタイミングを判定する重畳制御タイミング判定手段301と、この重畳制御タイミング判定手段301が重畳制御開始タイミングを判定するための情報として用いる重畳制御開始条件(後に詳述)を記憶している重畳制御開始条件記憶手段302と、重畳制御開始に伴って二次電流重ね手段50を動作制御するための二次電流重ね制御信号Spを生成して出力する二次電流重ね制御信号生成手段303と、点火コイル二次側に流す二次電流の目標値として設定された設定二次電流値を記憶しておく設定二次電流値記憶手段304と、二次電流重ね手段50が重畳電流を調整することで保持できる二次電流値の種類(例えば、第1電流値と第2電流値の2種類)を記憶しておく変更可能二次電流値記憶手段305と、重畳制御開始条件が成立して重畳制御を開始した後に重畳制御が適正化否かを見直す重畳制御見直しタイミングを記憶しておく重畳制御見直しタイミング記憶手段306と、を設ける。 An example of the superimposition control means 31 is shown in FIG. The superimposition control means 31 includes a superimposition control timing determination means 301 that determines the start and end timings of the superimposition control, and a superimposition control start condition that the superimposition control timing determination means 301 uses as information for determining the superimposition control start timing. Generates and outputs the superimposition control start condition storage means 302 that stores (detailed later) and the secondary current superimposition control signal Sp for operating and controlling the secondary current superimposition means 50 when the superimposition control is started. The secondary current overlap control signal generation means 303, the setting secondary current value storage means 304 for storing the set secondary current value set as the target value of the secondary current flowing to the secondary side of the ignition coil, and the secondary current value storage means 304. Changeable secondary current value storage means 305 that stores the types of secondary current values that the current stacking means 50 can hold by adjusting the superposed current (for example, two types, the first current value and the second current value). The superimposition control review timing storage means 306 for storing the superimposition control review timing for reviewing whether or not the superimposition control is optimized after the superimposition control start condition is satisfied and the superimposition control is started is provided.

重畳制御タイミング判定手段301には、点火信号Siと一次コイル電圧信号と重畳制御開始条件記憶手段302からの重畳制御開始条件が供給されており、点火信号SiがONからOFFとなる点火タイミングIG以降に、重畳制御開始条件を満たす重畳制御開始タイミングα1の成立を判定する。例えば、図3(a)の波形図に示すように、一次電流遮断による点火タイミングIGで容量放電エネルギ(二次側に蓄積された電気エネルギ)が消費されて一次電圧が急激に高く(図3(a)の一次コイル電圧波形においては負極に大きく)なり、短時間で低下して(図3(a)の一次コイル電圧波形においては正極側へ戻って)行き、予め定めた指標値電圧に達したタイミングを重畳制御開始タイミングα1と判定する。なお、重畳制御のために一次コイル電圧の変化に着目する場合、基準電位に対する極性を考慮する必要が無いので、波形電圧の絶対値を電圧値として値の増減を判定するものとし、併せて、重畳制御開始条件も正の値として設定しておけば良い。 The superimposition control timing determination means 301 is supplied with the ignition signal Si, the primary coil voltage signal, and the superimposition control start condition storage means 302, and after the ignition timing IG from which the ignition signal Si is turned from ON to OFF. In addition, it is determined that the superimposition control start timing α1 that satisfies the superimposition control start condition is satisfied. For example, as shown in the waveform diagram of FIG. 3A, the capacitance discharge energy (electrical energy stored on the secondary side) is consumed by the ignition timing IG due to the primary current cutoff, and the primary voltage rises sharply (FIG. 3). In the primary coil voltage waveform of (a), it becomes large at the negative electrode), decreases in a short time (returns to the positive electrode side in the primary coil voltage waveform of FIG. 3 (a)), and reaches a predetermined index value voltage. The reached timing is determined as the superimposition control start timing α1. When paying attention to the change in the primary coil voltage for superimposition control, it is not necessary to consider the polarity with respect to the reference potential. Therefore, the absolute value of the waveform voltage is used as the voltage value to determine the increase or decrease of the value. The superimposition control start condition may also be set as a positive value.

また、重畳制御開始条件は任意に設定して良く、例えば、容量放電と看做し得る所定期間(例えば、数十μs)が経過して誘導放電へ移行したと看做し得る状態になったことを重畳制御開始条件とする場合には、放電タイミングIGから所定期間の経過を重畳制御開始条件記憶手段302に記憶させておくことで、重畳制御タイミング判定手段301は重畳制御開始条件記憶手段302から取得した重畳制御開始条件を用いた重畳制御開始タイミングの判定を行い、二次電流重ね制御信号生成手段303へ二次電流重ね制御信号の生成開始を指示することができる。なお、重畳制御開始条件記憶手段302に記憶させる重畳制御開始条件は、外部から重畳制御開始条件設定信号を入力することで任意に変更できるようにしておくと、内燃機関の特性に応じて柔軟に重畳制御開始条件を設定できるので、利便性を高めることができる。 Further, the superimposition control start condition may be set arbitrarily, and for example, it can be considered that a predetermined period (for example, several tens of μs) that can be regarded as a capacitance discharge has elapsed and the state has shifted to an induced discharge. When this is set as the superimposition control start condition, the superimposition control timing determination means 301 stores the superimposition control start condition storage means 302 by storing the passage of a predetermined period from the discharge timing IG in the superimposition control start condition storage means 302. It is possible to determine the superimposition control start timing using the superimposition control start condition obtained from the above and instruct the secondary current superimposition control signal generation means 303 to start generating the secondary current superimposition control signal. The superimposition control start condition to be stored in the superimposition control start condition storage means 302 can be arbitrarily changed by inputting a superimposition control start condition setting signal from the outside, so that the superimposition control start condition can be flexibly changed according to the characteristics of the internal combustion engine. Since the superimposition control start condition can be set, convenience can be improved.

重畳制御タイミング判定手段301が重畳制御開始タイミングα1と判定し、二次電流重ね制御信号生成手段303に二次電流重ね開始指示を出すと、二次電流重ね制御信号生成手段303は二次電流重ね制御信号Spを生成して二次電流重ね手段50へ出力し、二次電流重ね手段50によって二次電流が重畳される(図3(a)の二次電流波形中、網掛けで示す領域を参照)。 When the superimposition control timing determination means 301 determines that the superimposition control start timing α1 and issues a secondary current superimposition start instruction to the secondary current superimposition control signal generation means 303, the secondary current superimposition control signal generation means 303 performs secondary current superimposition. A control signal Sp is generated and output to the secondary current superimposing means 50, and the secondary current is superposed by the secondary current superimposing means 50 (in the secondary current waveform of FIG. 3A, the shaded area is shown. reference).

ここで、二次電流重ね信号Spは、設定二次電流値記憶手段304に記憶されている設定二次電流値を二次電流重ね手段50へ指示するために、例えば、2つの信号レベルをとる。設定二次電流値記憶手段304に記憶されている設定二次電流値が第1電流値であった場合、二次電流重ね信号生成手段303が生成する二次電流重ね制御信号Spの電位をLev1とすることで、これを受けた二次電流重ね手段50は二次電流重ね制御信号Spの電位レベルから目標とする二次電流値が第1電流値であると分かり、点火コイル二次側を流れる二次電流が第1電流値を保持するように、二次電流重ね手段50による二次電流の重ね動作が行われる。 Here, the secondary current superimposition signal Sp takes, for example, two signal levels in order to instruct the secondary current superimposition means 50 of the set secondary current value stored in the set secondary current value storage means 304. .. When the set secondary current value stored in the set secondary current value storage means 304 is the first current value, the potential of the secondary current overlap control signal Sp generated by the secondary current overlap signal generation means 303 is set to Lev1. Then, the secondary current stacking means 50 that receives this shows that the target secondary current value is the first current value from the potential level of the secondary current stacking control signal Sp, and the secondary side of the ignition coil is set. The secondary current stacking operation is performed by the secondary current stacking means 50 so that the flowing secondary current holds the first current value.

同様に、設定二次電流値記憶手段304に記憶されている設定二次電流値が第2電流値であった場合、二次電流重ね信号生成手段303が生成する二次電流重ね制御信号Spの電位をLev2とすることで、これを受けた二次電流重ね手段50は二次電流重ね制御信号Spの電位レベルから目標とする二次電流値が第2電流値であると分かり、点火コイル二次側を流れる二次電流が第2電流値を保持するように、二次電流重ね手段50による二次電流の重ね動作が行われる。 Similarly, when the set secondary current value stored in the set secondary current value storage means 304 is the second current value, the secondary current overlap control signal Sp generated by the secondary current overlap signal generation means 303 By setting the potential to Lev2, the secondary current stacking means 50 that receives this shows that the target secondary current value is the second current value from the potential level of the secondary current stacking control signal Sp, and the ignition coil 2 The secondary current stacking operation is performed by the secondary current stacking means 50 so that the secondary current flowing on the secondary side holds the secondary current value.

なお、変更可能二次電流値記憶手段305に記憶されている電流値が3種類以上あった場合には、それぞれの電流値に応じた電位レベルで二次電流重ね制御信号Spを生成するようにしても良いし、内燃機関駆動制御装置30Aから二次電流重ね手段50へ至る信号線を物理的に分けておき、二次電流重ね制御信号Spを出力した信号線に応じて目標とする電流値を二次電流重ね手段50へ指示するようにしても良い。 When there are three or more types of current values stored in the changeable secondary current value storage means 305, the secondary current overlap control signal Sp is generated at the potential level corresponding to each current value. Alternatively, the signal line from the internal combustion engine drive control device 30A to the secondary current stacking means 50 may be physically separated, and the target current value may be set according to the signal line that outputs the secondary current stacking control signal Sp. May be instructed to the secondary current stacking means 50.

上記のようにして重畳制御が開始された後、重畳制御タイミング判定手段301は、重畳制御見直しタイミング記憶手段306に記憶されている重畳制御見直しタイミングα2の成否を判定する。重畳制御見直しタイミングは、例えば、重畳制御開始タイミングα1から所定時間幅の点火状況監視期間txが経過したタイミングとし、点火コイル20の放電電極間に生じた火花放電の放電経路がシリンダ内のタンブル流によって膨らんでいると推測されるか否かを見極めるタイミングとして用いる。なお、適切な時間幅の点火状況監視期間txは、内燃機関の特性や動作環境によって変化するので、例えば、外部からの重畳制御見直しタイミング設定信号によって重畳制御見直しタイミング記憶手段306の記憶内容を任意に変更できるようにしておけば、利便性が高い。 After the superimposition control is started as described above, the superimposition control timing determination means 301 determines the success or failure of the superimposition control review timing α2 stored in the superimposition control review timing storage means 306. The superimposition control review timing is, for example, the timing at which the ignition status monitoring period tx of a predetermined time width elapses from the superimposition control start timing α1, and the discharge path of the spark discharge generated between the discharge electrodes of the ignition coil 20 is the tumble flow in the cylinder. It is used as a timing to determine whether or not it is presumed to be inflated by. Since the ignition status monitoring period tx having an appropriate time width changes depending on the characteristics of the internal combustion engine and the operating environment, for example, the stored contents of the superimposition control review timing storage means 306 can be arbitrarily set by an external superimposition control review timing setting signal. If you can change it to, it will be very convenient.

重畳制御タイミング判定手段306は、重畳制御見直しタイミングα2が成立するまで(点火状況監視期間txが経過するまで)の期間、一次コイル電圧検出手段により検出された一次コイル電圧の変化を監視し、点火プラグ20に発生した火花放電の膨らんだ放電経路を維持し難い状態として定めた二次電流加算条件、または、点火プラグ20に発生した火花放電の放電経路を膨らませ難い状態として定めた二次電流低減条件の成否を判定する。そして、二次電流加算条件が成立していた場合、重畳制御タイミング判定手段301は二次電流重ね制御信号生成手段303へ重畳増加制御を指示する。二次電流低減条件が成立していた場合、重畳制御タイミング判定手段301は二次電流重ね制御信号生成手段303へ重畳低減制御を指示する。なお、二次電流加算条件および二次電流低減条件の何れも成立していなかった場合には、重畳制御タイミング判定手段301から二次電流重ね制御信号生成手段303への指示は行わない。 The superimposition control timing determination means 306 monitors the change in the primary coil voltage detected by the primary coil voltage detection means and ignites until the superimposition control review timing α2 is established (until the ignition status monitoring period tx elapses). The secondary current addition condition defined as a state in which it is difficult to maintain the expanded discharge path of the spark discharge generated in the plug 20, or the secondary current reduction defined as a state in which the discharge path of the spark discharge generated in the spark plug 20 is difficult to expand. Judge the success or failure of the condition. Then, when the secondary current addition condition is satisfied, the superimposition control timing determination means 301 instructs the secondary current superimposition control signal generation means 303 to perform superimposition increase control. When the secondary current reduction condition is satisfied, the superimposition control timing determination means 301 instructs the secondary current superimposition control signal generation means 303 to perform superimposition reduction control. If neither the secondary current addition condition nor the secondary current reduction condition is satisfied, the superimposition control timing determination means 301 does not give an instruction to the secondary current superposition control signal generation means 303.

まず、一次コイル電圧の変化が二次電流加算条件を満たしていると重畳制御タイミング判定手段306が判定した場合について説明する。 First, a case where the superimposition control timing determination means 306 determines that the change in the primary coil voltage satisfies the secondary current addition condition will be described.

二次電流加算条件の一例は、一次コイル電圧の絶対値が指標電圧値を超えて上昇したにもかかわらず、再び指標電圧値を下回るほど低下した状態と考えられる吹き消え波形が、点火状況監視期間tx中に所定回数(例えば、1回)以上生じていることである。この吹き消え波形が示すのは、点火プラグ20の放電電極間に生じた火花放電がタンブル流によって伸ばされ、膨らんでゆく過程で放電電流を維持するために生じた電圧上昇から、タンブル流の流速に対して膨らんだ放電経路を維持できずに、放電電極間を短経路で流れる放電経路に変わったために電極間電圧が低下した状態である。すなわち、点火状況監視期間tx中に吹き消え波形が検出されたと言うことは、シリンダ内で点火プラグ20の電極間に作用しているタンブル流の流速が放電電流(二次電流)に対して強すぎると考えられる。したがって、このときに生じているタンブル流で吹き消えが生じないように二次電流を増大させることが安定燃焼の実現に有効であるから、点火状況監視期間tx中に吹き消え波形が所定回数以上あることを二次電流加算条件とするのである。 As an example of the secondary current addition condition, the blowout waveform, which is considered to be in a state where the absolute value of the primary coil voltage rises above the index voltage value but falls below the index voltage value again, is monitored for ignition status. It occurs more than a predetermined number of times (for example, once) during the period tx. This blowout waveform shows the flow velocity of the tumble flow due to the voltage rise generated to maintain the discharge current in the process of expanding the spark discharge generated between the discharge electrodes of the ignition plug 20 by the tumble flow. In contrast, the bulging discharge path could not be maintained, and the discharge path changed to a short path flowing between the discharge electrodes, so that the voltage between the electrodes dropped. That is, the fact that the blowout waveform was detected during the ignition status monitoring period tx means that the flow velocity of the tumble flow acting between the electrodes of the spark plug 20 in the cylinder is stronger than the discharge current (secondary current). It is considered too much. Therefore, increasing the secondary current so that the tumble flow generated at this time does not cause blowout is effective in realizing stable combustion. Therefore, the blowout waveform is generated a predetermined number of times or more during the ignition status monitoring period tx. That is the condition for adding the secondary current.

なお、上述した二次電流加算条件は、あくまでも一例であり、内燃機関の特性等に応じて、適宜に設定すれば良い。例えば、点火状況監視期間txの初期に吹き消え波形が検出されていても、重畳制御見直しタイミングα2においては、指標電圧値を大きく超える高電圧に上昇していた場合、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんでいる状態と推定できるので、このような場合にまで二次電流を増加させる必要は無いことから、これを二次電流加算条件から除外するようにしても良い。 The above-mentioned secondary current addition condition is merely an example, and may be appropriately set according to the characteristics of the internal combustion engine and the like. For example, even if a blowout waveform is detected at the initial stage of the ignition status monitoring period tx, if the voltage rises to a high voltage that greatly exceeds the index voltage value at the superimposition control review timing α2, between the electrodes of the spark plug 20. Since it can be estimated that the generated spark discharge is in a state of being greatly inflated without being blown out, it is not necessary to increase the secondary current even in such a case, so this should be excluded from the secondary current addition condition. You can do it.

重畳制御タイミング判定手段301が二次電流加算条件の成否を判定するために一次コイル電圧の変化を監視している点火状況監視期間tx中は、重畳制御判定タイミング判定手段301より重畳制御開始の指示を受けた二次電流重ね制御信号生成手段303が、設定二次電流値記憶手段304に記憶されている設定二次電流値で二次電流重ね手段50を動作させるための二次電流重ね制御信号Spを生成して、二次電流重ね手段50へ出力する。例えば、設定二次電流値記憶手段304に記憶されている設定二次電流値が第1電流値であれば、二次電流重ね制御信号生成手段303は、信号の電位レベルをLev1とした二次電流重ね制御信号Spを二次電流重ね手段50へ出力することで、二次電流を第1電流値に保持する重畳制御が行われる。 During the ignition status monitoring period tx in which the superimposition control timing determination means 301 monitors the change in the primary coil voltage to determine the success or failure of the secondary current addition condition, the superimposition control determination timing determination means 301 instructs the superimposition control timing determination means 301 to start the superimposition control. The secondary current stacking control signal generation means 303 receives the secondary current stacking control signal for operating the secondary current stacking means 50 with the set secondary current value stored in the set secondary current value storage means 304. Sp is generated and output to the secondary current stacking means 50. For example, if the set secondary current value stored in the set secondary current value storage means 304 is the first current value, the secondary current superposition control signal generation means 303 sets the potential level of the signal to Lev1. By outputting the current superposition control signal Sp to the secondary current superposition means 50, superimposition control for holding the secondary current at the first current value is performed.

上記のように、二次電流重ね手段50によって二次電流が第1電流値に保持されている状態で重畳制御見直しタイミングα2となり、重畳制御タイミング判定手段301が二次電流加算条件の成立を判定すると、二次電流重ね制御信号生成手段303に対して重畳増加制御を指示する。これにより、二次電流重ね制御信号生成手段303は、変更可能二次電流値記憶手段305から読み出した変更可能二次電流値のうち、設定二次電流値記憶手段304に記憶されている設定二次電流値(第1電流値)よりも高い二次電流値(第2電流値)を新たな設定二次電流値として設定二次電流値記憶手段304に上書きすると共に、信号の電位レベルをLev2とした二次電流重ね制御信号Spを二次電流重ね手段50へ出力することで、二次電流を第1電流値よりも高い第2電流値に保持する重畳制御が行われるようになる。 As described above, the superimposition control review timing α2 is set in the state where the secondary current is held at the first current value by the secondary current superposition means 50, and the superimposition control timing determination means 301 determines that the secondary current addition condition is satisfied. Then, the secondary current superposition control signal generation means 303 is instructed to perform superimposition increase control. As a result, the secondary current superposition control signal generation means 303 is stored in the set secondary current value storage means 304 among the changeable secondary current values read from the changeable secondary current value storage means 305. A secondary current value (second current value) higher than the secondary current value (first current value) is set as a new set secondary current value. The secondary current value storage means 304 is overwritten and the potential level of the signal is set to Lev2. By outputting the secondary current superposition control signal Sp to the secondary current superposition means 50, superimposition control for holding the secondary current at a second current value higher than the first current value is performed.

すなわち、重畳増加制御を行うことによって、点火状況監視期間tx中に指標としていた第1電流値よりも高い第2電流値に変更し、二次電流を第2電流値に保持する重畳制御が行われるようになると、シリンダ内に生じている強いタンブル流でも吹き消えが生じ難い程度に大きな放電電流が流れることとなる。よって、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らみ、シリンダ内で大きな火炎核を形成できるので、好適な燃焼を実現できる。 That is, by performing the superimposition increase control, the superimposition control is performed in which the secondary current value is changed to a higher second current value than the first current value used as an index during the ignition status monitoring period tx, and the secondary current is held at the second current value. When this happens, a large discharge current will flow so that it will not easily be blown out even with a strong tumble flow generated in the cylinder. Therefore, the spark discharge generated between the electrodes of the spark plug 20 swells greatly without being blown out, and a large flame nucleus can be formed in the cylinder, so that suitable combustion can be realized.

なお、重畳制御において設定二次電流値として用いる第1電流値は、制御対象である内燃機関の標準的な稼働時に生ずる平均的なタンブル流によって吹き消えが生じないで、放電経路が十分に膨らむときの二次電流値を指標として定めれば良い。また、第2電流値は、制御対象である内燃機関の過負荷時等に生ずる強いタンブル流によって吹き消えが生じないで、放電経路が十分に膨らむときの二次電流値を指標として定めれば良い。 The first current value used as the set secondary current value in the superimposition control is not blown out by the average tumble current generated during the standard operation of the internal combustion engine to be controlled, and the discharge path is sufficiently expanded. The secondary current value at that time may be set as an index. Further, the second current value can be determined by using the secondary current value when the discharge path is sufficiently expanded without being blown out by the strong tumble flow generated when the internal combustion engine to be controlled is overloaded. good.

一方、上記のように設定二次電流値記憶手段304の設定二次電流値が第1電流値から第2電流値に変更された後に行われる点火サイクルにおいて、図3(b)の波形図に示すように、点火状況監視期間tx中に吹き消え波形が現れることなく、重畳制御見直しタイミングα2において、一次コイル電圧が指標電圧値を大きく超える高電圧に上昇していた場合、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんでいると考えられるので、二次電流加算条件は成立せず、重畳制御タイミング判定手段301から二次電流重ね制御信号生成手段303に対して重畳増加制御が指示されることは無いので、設定二次電流値記憶手段304に記憶されている第2電流値がそのまま維持され、二次電流重ね手段50によって二次電流を第2電流値に保持する重畳制御が引き続き行われる。 On the other hand, in the ignition cycle performed after the set secondary current value of the set secondary current value storage means 304 is changed from the first current value to the second current value as described above, the waveform diagram of FIG. 3 (b) is shown. As shown, when the primary coil voltage rises to a high voltage that greatly exceeds the index voltage value at the superimposition control review timing α2 without the blowout waveform appearing during the ignition status monitoring period tx, the electrode of the ignition plug 20 Since it is considered that the spark discharge generated between them swells greatly without being blown out, the secondary current addition condition is not satisfied, and the superimposition control timing determination means 301 to the secondary current superimposition control signal generation means 303. Since the superimposition increase control is not instructed, the second current value stored in the set secondary current value storage means 304 is maintained as it is, and the secondary current is set to the second current value by the secondary current stacking means 50. The superimposition control held in is continued.

なお、重畳制御手段31により行う重畳制御の終了タイミングは任意である。例えば、一次コイル電圧が予め定めた重畳停止基準電圧値にまで下がったタイミングを重畳制御終了タイミングβとし、この重畳制御終了タイミングβになると、重畳制御タイミング判定手段301が二次電流重ね制御信号生成手段303への重畳制御指示を停止(或いは、重畳制御終了指示を出力)することで、二次電流重ね制御信号生成手段303から二次電流重ね手段50へ二次電流重ね制御信号Spを出力させなくして、二次電流重ね手段50による二次電流重畳機能を停止させることができる。また、点火タイミングIGから計時した経過時間が、安定した燃焼維持に必要十分な高電流期間として定めた高電流保持時間に達したときを重畳制御終了タイミングβに設定し、重畳制御を終了するようにしても良い。 The end timing of the superimposition control performed by the superimposition control means 31 is arbitrary. For example, the timing at which the primary coil voltage drops to a predetermined superimposition stop reference voltage value is set as the superimposition control end timing β, and when this superimposition control end timing β is reached, the superimposition control timing determination means 301 generates a secondary current overlap control signal. By stopping the superimposition control instruction to the means 303 (or outputting the superimposition control end instruction), the secondary current superimposition control signal generation means 303 outputs the secondary current superimposition control signal Sp to the secondary current superimposition means 50. Without it, the secondary current superimposition function by the secondary current stacking means 50 can be stopped. Further, when the elapsed time measured from the ignition timing IG reaches the high current holding time defined as the high current period necessary and sufficient for maintaining stable combustion, the superimposition control end timing β is set and the superimposition control is terminated. You can do it.

次いで、一次コイル電圧の変化が二次電流低減条件を満たしていると重畳制御タイミング判定手段306が判定した場合について説明する。 Next, a case where the superimposition control timing determination means 306 determines that the change in the primary coil voltage satisfies the secondary current reduction condition will be described.

二次電流低減条件の一例は、図4(a)に示すように、点火状況監視期間tx中に一度も指標電圧値を超える電圧上昇が認められない短経路保持波形になっていることである。この短経路保持波形が示すのは、点火プラグ20の放電電極間に生じた火花放電がタンブル流によって伸ばされず、短経路の放電電流が保持されているために電圧上昇が生じていない状態である。すなわち、点火状況監視期間txが短経路保持波形になっていると言うことは、シリンダ内で点火プラグ20の電極間に作用しているタンブル流の流速に対して放電電流(二次電流)が強すぎると考えられる。したがって、このときに生じているタンブル流で火花放電の経路が良く伸びるように二次電流を低減させることが安定燃焼の実現に有効であるから、点火状況監視期間tx中に、短経路保持波形が維持されていることを二次電流低減条件とするのである。 As an example of the secondary current reduction condition, as shown in FIG. 4A, the short path holding waveform is such that no voltage rise exceeding the index voltage value is observed even once during the ignition status monitoring period tx. .. This short-path holding waveform shows a state in which the spark discharge generated between the discharge electrodes of the spark plug 20 is not extended by the tumble flow, and the voltage rise does not occur because the short-path discharge current is held. .. That is, the fact that the ignition status monitoring period tx has a short path holding waveform means that the discharge current (secondary current) is the flow velocity of the tumble flow acting between the electrodes of the spark plug 20 in the cylinder. It is considered too strong. Therefore, reducing the secondary current so that the spark discharge path is well extended by the tumble flow generated at this time is effective for realizing stable combustion. Therefore, the short path holding waveform during the ignition status monitoring period tx. Is maintained as a secondary current reduction condition.

重畳制御タイミング判定手段301が二次電流低減条件の成否を判定するために一次コイル電圧の変化を監視している点火状況監視期間tx中は、重畳制御判定タイミング判定手段301より重畳制御開始の指示を受けた二次電流重ね制御信号生成手段303が、設定二次電流値記憶手段304に記憶されている設定二次電流値で二次電流重ね手段50を動作させるための二次電流重ね制御信号Spを生成して、二次電流重ね手段50へ出力する。例えば、設定二次電流値記憶手段304に記憶されている設定二次電流値が第2電流値であれば、二次電流重ね制御信号生成手段303は、信号の電位レベルをLev2とした二次電流重ね制御信号Spを二次電流重ね手段50へ出力することで、二次電流を第2電流値に保持する重畳制御が行われる。 During the ignition status monitoring period tx in which the superimposition control timing determination means 301 monitors changes in the primary coil voltage to determine the success or failure of the secondary current reduction condition, the superimposition control determination timing determination means 301 instructs the superimposition control timing determination means 301 to start superimposition control. The secondary current stacking control signal generation means 303 receives the secondary current stacking control signal for operating the secondary current stacking means 50 with the set secondary current value stored in the set secondary current value storage means 304. Sp is generated and output to the secondary current stacking means 50. For example, if the set secondary current value stored in the set secondary current value storage means 304 is the second current value, the secondary current overlap control signal generation means 303 sets the potential level of the signal to Lev2. By outputting the current superposition control signal Sp to the secondary current superposition means 50, superimposition control for holding the secondary current at the second current value is performed.

上記のように、二次電流重ね手段50によって二次電流が第2電流値に保持されている状態で重畳制御見直しタイミングα2となり、重畳制御タイミング判定手段301が二次電流低減条件の成立を判定すると、二次電流重ね制御信号生成手段303に対して重畳低減制御を指示する。これにより、二次電流重ね制御信号生成手段303は、変更可能二次電流値記憶手段305から読み出した変更可能二次電流値のうち、設定二次電流値記憶手段304に記憶されている設定二次電流値(第2電流値)よりも低い二次電流値(第1電流値)を新たな設定二次電流値として設定二次電流値記憶手段304に上書きすると共に、信号の電位レベルをLev1とした二次電流重ね制御信号Spを二次電流重ね手段50へ出力することで、二次電流を第2電流値よりも低い第1電流値に保持する重畳制御が行われるようになる。 As described above, the superimposition control review timing α2 is set in the state where the secondary current is held at the second current value by the secondary current superposition means 50, and the superimposition control timing determination means 301 determines that the secondary current reduction condition is satisfied. Then, the secondary current overlap control signal generation means 303 is instructed to perform superimposition reduction control. As a result, the secondary current superposition control signal generation means 303 is stored in the set secondary current value storage means 304 among the changeable secondary current values read from the changeable secondary current value storage means 305. A secondary current value (first current value) lower than the secondary current value (second current value) is set as a new set secondary current value. The secondary current value storage means 304 is overwritten, and the potential level of the signal is set to Lev1. By outputting the secondary current superposition control signal Sp to the secondary current superposition means 50, superimposition control for holding the secondary current at a first current value lower than the second current value is performed.

すなわち、重畳低減制御を行うことによって、点火状況監視期間tx中に指標としていた第2電流値よりも低い第1電流値に変更し、二次電流を第1電流値に保持する重畳制御が行われるようになると、シリンダ内に生じている弱いタンブル流でも放電経路が大きく膨らみ、かつ吹き消えが生じない程度の放電電流が流れることとなる。よって、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らみ、シリンダ内で大きな火炎核を形成できるので、好適な燃焼を実現できる。 That is, by performing the superimposition reduction control, the superimposition control is performed in which the primary current value is changed to a lower current value than the second current value used as an index during the ignition status monitoring period tx, and the secondary current is held at the first current value. When this happens, the discharge path swells greatly even with a weak tumble flow generated in the cylinder, and a discharge current that does not blow out will flow. Therefore, the spark discharge generated between the electrodes of the spark plug 20 swells greatly without being blown out, and a large flame nucleus can be formed in the cylinder, so that suitable combustion can be realized.

一方、上記のように設定二次電流値記憶手段304の設定二次電流値が第2電流値から第2電流値に変更された後に行われる点火サイクルにおいて、図4(b)の波形図に示すように、点火状況監視期間tx中に吹き消え波形も短経路保持波形も現れることなく、重畳制御見直しタイミングα2において、一次コイル電圧が指標電圧値を大きく超える高電圧に上昇していた場合、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんでいると考えられるので、二次電流低減条件も二次電流増加条件も成立せず、重畳制御タイミング判定手段301から二次電流重ね制御信号生成手段303に対して重畳低減制御および重畳増加制御が指示されることは無いので、設定二次電流値記憶手段304に記憶されている第1電流値がそのまま維持され、二次電流重ね手段50によって二次電流を第1電流値に保持する重畳制御が引き続き行われる。そして、重畳制御終了タイミングβになると、二次電流を第1電流値に保持する重畳制御が終了する。 On the other hand, in the ignition cycle performed after the set secondary current value of the set secondary current value storage means 304 is changed from the second current value to the second current value as described above, the waveform diagram of FIG. 4 (b) is shown. As shown, when the primary coil voltage rises to a high voltage that greatly exceeds the index voltage value at the superimposition control review timing α2 without the blowout waveform or short path holding waveform appearing during the ignition status monitoring period tx. Since it is considered that the spark discharge generated between the electrodes of the ignition plug 20 is greatly expanded without being blown out, neither the secondary current reduction condition nor the secondary current increase condition is satisfied, and the superimposition control timing determination means 301 Since the superimposition reduction control and superimposition increase control are not instructed to the secondary current overlap control signal generation means 303, the first current value stored in the set secondary current value storage means 304 is maintained as it is. Superimposition control for holding the secondary current at the first current value is continuously performed by the secondary current overlapping means 50. Then, when the superimposition control end timing β is reached, the superimposition control for holding the secondary current at the first current value ends.

上述したように、第1実施形態に係る内燃機関用点火装置1における重畳制御手段31では、重畳制御を開始した後、重畳制御見直しタイミングα2において、二次電流増加条件と二次電流低減条件の成否に基づき、重畳増加制御あるいは重畳低減制御が必要か否かの判断を行い、必要に応じて重畳増加制御あるいは重畳低減制御を実行することで、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんで、シリンダ内で大きな火炎核を形成できるようにし、好適な燃焼を実現するのである。 As described above, in the superimposition control means 31 in the ignition device 1 for an internal combustion engine according to the first embodiment, after the superimposition control is started, at the superimposition control review timing α2, the secondary current increase condition and the secondary current decrease condition are satisfied. Based on the success or failure, it is determined whether or not superimposition increase control or superimposition reduction control is necessary, and by executing superimposition increase control or superimposition reduction control as necessary, spark discharge generated between the electrodes of the spark plug 20 can be generated. It swells greatly without being blown out, allowing the formation of large flame nuclei in the cylinder and achieving suitable combustion.

ただし、本実施形態の内燃機関用点火装置1においては、変更可能二次電流値記憶手段305に第1電流値と第2電流値の2種類のみ記憶させてあるので、設定二次電流値記憶手段304に記憶されている設定二次電流値が第2電流値であった場合には、たとえ二次電流増加条件が成立しても重畳増加制御を行う事はできず、同様に、設定二次電流値記憶手段304に記憶されている設定二次電流値が第1電流値であった場合には、二次電流低減条件が成立しても重畳低減制御を行う事はできない。すなわち、本実施形態に係る内燃機関用点火装置1では、設定二次電流値に応じて、重畳増加制御または重畳低減制御の何れか一方の制御を行う事しかできない。 However, in the ignition device 1 for the internal combustion engine of the present embodiment, since the changeable secondary current value storage means 305 stores only two types, the first current value and the second current value, the set secondary current value is stored. When the set secondary current value stored in the means 304 is the second current value, the superimposition increase control cannot be performed even if the secondary current increase condition is satisfied. Similarly, the setting 2 When the set secondary current value stored in the secondary current value storage means 304 is the first current value, the superimposition reduction control cannot be performed even if the secondary current reduction condition is satisfied. That is, the internal combustion engine ignition device 1 according to the present embodiment can only control either the superimposition increase control or the superimposition decrease control according to the set secondary current value.

しかしながら、変更可能二次電流値記憶手段305に3種類以上(例えば、第1電流値、第2電流値、第3電流値の3種類で、第1電流値<第2電流値<第3電流値)を記憶させておけば、より細かく重畳増加制御と重畳低減制御を行う事ができる上に、設定二次電流値記憶手段304に記憶されている設定二次電流値が上限電流値(第3電流値)でも下限電流値(第1電流値)でもない中間電流値(第2電流値)であれば、二次電流増加条件が成立すると重畳増加制御を行う事ができ、二次電流低減条件が成立すると重畳低減制御を行う事ができる。すなわち、変更可能二次電流値記憶手段305に3種類以上を記憶させ、二次電流重ね手段50が3種類以上の電流値に二次電流を保持できる構成とすれば、成立条件に応じて、重畳増加制御および重畳低減制御のどちらの制御でも行える場合がある。 However, there are three or more types of changeable secondary current value storage means 305 (for example, a first current value, a second current value, and a third current value, and the first current value <second current value <third current. If the value) is stored, the superimposition increase control and the superimposition reduction control can be performed more finely, and the set secondary current value stored in the set secondary current value storage means 304 is the upper limit current value (the first). If the intermediate current value (second current value) is neither the third current value) nor the lower limit current value (first current value), the superimposition increase control can be performed when the secondary current increase condition is satisfied, and the secondary current reduction can be performed. When the condition is satisfied, the superimposition reduction control can be performed. That is, if the changeable secondary current value storage means 305 stores three or more types and the secondary current stacking means 50 can hold the secondary current at three or more types of current values, depending on the conditions for establishment. In some cases, both superimposition increase control and superimposition reduction control can be performed.

また、上述した第1実施形態の内燃機関用点火装置1のように、二次電流増加条件と二次電流低減条件の成否を点火サイクル内で判断し、同じサイクル内で補正するために重畳増加制御あるいは重畳低減制御を行えば、点火サイクル毎のバラツキを無くして、安定した燃焼を実現できるのであるが、必ずしも同一サイクル内で二次電流増加条件と二次電流低減条件の成否を判断する必要は無い。例えば、気筒内の燃焼に支障が出るほどではないものの吹き消えの発生傾向が認められる点火サイクルが所定回数続いた場合には、二次電流増加条件が成立したものとして重畳増加制御を行い、気筒内の燃焼に支障が出るほどではないものの短経路保持傾向が認められる点火サイクルが所定回数続いた場合には、二次電流低減条件が成立したものとして重畳低減制御を行うようにしても良い。 Further, as in the ignition device 1 for an internal combustion engine of the first embodiment described above, the success or failure of the secondary current increase condition and the secondary current decrease condition is determined within the ignition cycle, and the superposition increase is performed in order to correct within the same cycle. If control or superimposition reduction control is performed, it is possible to eliminate the variation in each ignition cycle and realize stable combustion, but it is not always necessary to judge the success or failure of the secondary current increase condition and the secondary current reduction condition within the same cycle. There is no. For example, if the ignition cycle continues for a predetermined number of times, although the combustion in the cylinder is not hindered, but the tendency of blowout is observed, the superposition increase control is performed assuming that the secondary current increase condition is satisfied, and the cylinder is operated. When the ignition cycle in which the short path holding tendency is observed continues for a predetermined number of times, although it does not hinder the combustion inside, the superimposition reduction control may be performed assuming that the secondary current reduction condition is satisfied.

上述した第1実施形態に係る内燃機関用点火装置1では、点火コイル11Aの二次側を流れる二次電流を直接コントロールできる二次電流重ね手段50をエネルギ重畳手段として用いるものとしたが、エネルギ重畳手段はこれに限定されるものではない。例えば、図5に示す第2実施形態に係る内燃機関用点火装置2のように、点火タイミングIG以降に点火コイルの一次側から二次側へ誘導性の放電エネルギを重畳することで、点火プラグ20に発生した火花放電による着火性を向上させる構成とすることもできる。 In the ignition device 1 for an internal combustion engine according to the first embodiment described above, the secondary current overlapping means 50 capable of directly controlling the secondary current flowing on the secondary side of the ignition coil 11A is used as the energy superimposing means. The superimposing means is not limited to this. For example, as in the ignition device 2 for an internal combustion engine according to the second embodiment shown in FIG. 5, an ignition plug is obtained by superimposing inductive discharge energy from the primary side to the secondary side of the ignition coil after the ignition timing IG. It is also possible to improve the ignitability due to the spark discharge generated in No. 20.

図5に示す内燃機関用点火装置2は、第1実施形態に係る内燃機関用点火装置1と異なり、点火コイル11Bを設けた点火コイルユニット10Bと、この点火コイルユニット10Bに対応した駆動制御機能を有する内燃機関駆動制御装置30B、点火コイル11Bの点火制御を行うための副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72を有する。また、内燃機関駆動制御装置30Bは、点火コイル11Bを制御することで二次側へ放電エネルギを重畳する重畳制御手段32を備える。なお、前述した第1実施形態に係る内燃機関用点火装置1と同一の構成については、同一符号を付して説明を省略する。 The ignition device 2 for an internal combustion engine shown in FIG. 5 is different from the ignition device 1 for an internal combustion engine according to the first embodiment, and has an ignition coil unit 10B provided with an ignition coil 11B and a drive control function corresponding to the ignition coil unit 10B. It has an internal combustion engine drive control device 30B, a sub-primary coil energization permission switch 71 for performing ignition control of the ignition coil 11B, and a sub-primary coil energization switch 72. Further, the internal combustion engine drive control device 30B includes a superimposition control means 32 that superimposes discharge energy on the secondary side by controlling the ignition coil 11B. The same configuration as that of the ignition device 1 for an internal combustion engine according to the first embodiment described above will be designated by the same reference numerals and description thereof will be omitted.

上記点火コイルユニット10Bの点火コイル11Bは、主一次コイル111a(例えば、90ターン)と副一次コイル111b(例えば、60ターン)に生ずる磁束を二次コイル112(例えば、9000ターン)に効率良く作用させるもので、例えば、センターコア113を取り巻くように主一次コイル111aおよび副一次コイル111bを配置し、更にその外側に二次コイル112を配置した構造である。 The ignition coil 11B of the ignition coil unit 10B efficiently acts the magnetic flux generated in the main primary coil 111a (for example, 90 turns) and the secondary primary coil 111b (for example, 60 turns) on the secondary coil 112 (for example, 9000 turns). For example, the main primary coil 111a and the secondary primary coil 111b are arranged so as to surround the center core 113, and the secondary coil 112 is further arranged outside the main primary coil 111a.

まず、主一次コイル111aは、その一方端である第1端111a−1がコネクタ152を介して直流電源40と接続され、電源電圧VB+(例えば、12V)が印加される。また、主一次コイル111aの他方端である第2端111a−2は、主点火スイッチ12Bのコレクタに接続され、さらに、この主点火スイッチ12Bのエミッタはコネクタ152を介して接地点GNDに接続される。すなわち、内燃機関駆動制御装置30Bより出力される主一次コイル点火信号Saが主点火スイッチ12Bのゲートに入力されると(例えば、主一次コイル点火信号Saの信号レベルがLからHに変わると)、主点火スイッチ12Bがオンになって主一次コイル111aの第2端111a−2が接地点GNDに接続され、主一次コイル111aには第1端111a−1から第2端111a−2に向かう主一次電流I1aが流れて、順方向の磁束(通電磁束)が発生する。 First, the first end 111a-1, which is one end of the main primary coil 111a, is connected to the DC power supply 40 via the connector 152, and a power supply voltage VB + (for example, 12V) is applied. The second end 111a-2, which is the other end of the main primary coil 111a, is connected to the collector of the main ignition switch 12B, and the emitter of the main ignition switch 12B is connected to the grounding point GND via the connector 152. To. That is, when the main primary coil ignition signal Sa output from the internal combustion engine drive control device 30B is input to the gate of the main ignition switch 12B (for example, when the signal level of the main primary coil ignition signal Sa changes from L to H). , The main ignition switch 12B is turned on, the second end 111a-2 of the main primary coil 111a is connected to the grounding point GND, and the main primary coil 111a goes from the first end 111a-1 to the second end 111a-2. The main primary current I1a flows, and a forward magnetic flux (energized magnetic flux) is generated.

そして、内燃機関駆動制御装置30Bより出力される主一次コイル点火信号SaがOFFになると(例えば、主一次コイル点火信号Saの信号レベルがHからLに変わると)、主点火スイッチ12Bがオフになって、主一次コイル111aへの通電が遮断される。これにより、容量成分による放電エネルギが二次コイル112に与えられて、点火プラグ20の放電電極間に火花放電が生じると共に、センターコア113を介して二次コイル112にも作用している通電磁束が急激に消失してゆく。この通電磁束の減衰は、見かけ上、通電磁束と逆向きの磁束(以下、遮断磁束という)が生じて通電磁束を減じてゆくものと捉えられる。すなわち、主点火コイル111aへの通電遮断により生じた遮断磁束で通電磁束の磁束量が減ぜられ、その磁束量の変化が一次側と二次側の巻線比に応じた高圧の起電力を二次コイル112に生じさせるので、点火コイル11Bの二次側に誘導成分による放電エネルギが与えられる。 Then, when the main primary coil ignition signal Sa output from the internal combustion engine drive control device 30B is turned off (for example, when the signal level of the main primary coil ignition signal Sa changes from H to L), the main ignition switch 12B is turned off. As a result, the energization of the main primary coil 111a is cut off. As a result, the discharge energy due to the capacitive component is given to the secondary coil 112, spark discharge occurs between the discharge electrodes of the spark plug 20, and the energizing magnetic flux acting on the secondary coil 112 via the center core 113. Disappears rapidly. This attenuation of the current-carrying magnetic flux is apparently regarded as a magnetic flux in the opposite direction to the current-carrying magnetic flux (hereinafter referred to as a breaking magnetic flux) that reduces the current-carrying magnetic flux. That is, the magnetic flux amount of the energizing magnetic flux is reduced by the breaking magnetic flux generated by the energizing cutoff of the main ignition coil 111a, and the change in the magnetic flux amount causes a high-pressure electromotive force according to the winding ratio of the primary side and the secondary side. Since it is generated in the secondary coil 112, the discharge energy due to the inductive component is given to the secondary side of the ignition coil 11B.

一方、上記主一次コイル111aと同様に、鉄心113を介して二次コイル112に磁界を作用させることが可能な副一次コイル111bは、その一方端である第1端111b−1がコネクタ152を介して副一次コイル通電スイッチ72と接続され、他方端である第2端111b−2がコネクタ152を介して副一次コイル通電許可スイッチ71と接続される。そして、内燃機関駆動制御装置30Bにより副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72のオン・オフが制御されて、副一次コイル111bの第1端111b−1側が直流電源40に、第2端111b−2側が接地点GNDにそれぞれ接続されると、副一次コイル111bには第1端111b−1から第2端111b−2に向かう重畳電流I1bが流れる。 On the other hand, similarly to the main primary coil 111a, the secondary primary coil 111b capable of applying a magnetic field to the secondary coil 112 via the iron core 113 has a connector 152 at the first end 111b-1, which is one end thereof. It is connected to the sub-primary coil energization switch 72 via the connector 152, and the second end 111b-2, which is the other end, is connected to the sub-primary coil energization permission switch 71 via the connector 152. Then, the internal combustion engine drive control device 30B controls the on / off of the sub-primary coil energization permission switch 71 and the sub-primary coil energization switch 72, and the first end 111b-1 side of the sub-primary coil 111b is connected to the DC power supply 40. When the two-end 111b-2 side is connected to the grounding point GND, a superimposed current I1b flowing from the first end 111b-1 to the second end 111b-2 flows through the secondary primary coil 111b.

副一次コイル111bに重畳電流I1bが流れると、直流電源40から主一次コイル111aへ通電したときに発生する通電磁束とは逆方向(主一次コイル111aへの通電遮断時に仮想的に生じる遮断磁束と同方向)の重畳磁束が発生する。すなわち、主一次コイル111aへの通電遮断タイミング以降に、重畳電流I1bを副一次コイル111bに流すと、遮断磁束に重畳磁束が加わることで、通電磁束の減衰が加速されることとなり、二次コイル112に誘起される誘導放電エネルギを重畳的に増加させることができる。従って、点火コイル11Bを用いる第2実施形態の内燃機関用点火装置2においては、副一次コイル111bと、この副一次コイル111bへの通電・遮断制御を行う副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72が、点火コイル11Bの二次側へ重畳的にエネルギを加算して放電エネルギを増大させることが可能なエネルギ重畳手段として機能するのである。 When the superimposed current I1b flows through the secondary primary coil 111b, the magnetic flux generated when the DC power supply 40 energizes the main primary coil 111a is in the opposite direction (the magnetic flux that is virtually generated when the main primary coil 111a is de-energized). Superimposed magnetic flux (in the same direction) is generated. That is, if the superimposed current I1b is passed through the secondary primary coil 111b after the energization cutoff timing of the main primary coil 111a, the superimposition magnetic flux is added to the breaking magnetic flux, so that the attenuation of the energization magnetic flux is accelerated, and the secondary coil The induced discharge energy induced in 112 can be increased in a superimposed manner. Therefore, in the ignition device 2 for an internal combustion engine of the second embodiment using the ignition coil 11B, the sub-primary coil 111b and the sub-primary coil energization permission switch 71 and the sub-primary that control energization / disconnection of the sub-primary coil 111b are performed. The coil energization switch 72 functions as an energy superimposing means capable of increasing the discharge energy by superimposing energy on the secondary side of the ignition coil 11B.

このように、副一次コイル111bによって重畳磁束を発生させて二次側の誘導放電エネルギを調整すれば、二次電流の電流値をコントロールすることができるので、高めれば、点火プラグ20に生じた火花放電の放電経路がタンブル流によって吹き消されることなく大きく膨らみ、大きな火炎核を形成して、好適な燃焼を実現できる。なお、通電磁束と重畳磁束の向きを逆にする(重畳磁束を遮断磁束と同じ向きにする)ためには、主一次コイル111aと副一次コイル111bの巻回方向を逆向きにするか、主一次コイル111aへの給電方向と副一次コイル111bへの給電方向を逆向きにしておけば良い。 In this way, if the superposed magnetic flux is generated by the secondary primary coil 111b and the induced discharge energy on the secondary side is adjusted, the current value of the secondary current can be controlled. The discharge path of the spark discharge swells greatly without being blown out by the tumble current, forming a large flame nucleus, and suitable combustion can be realized. In order to reverse the directions of the energizing magnetic flux and the superposed magnetic flux (to make the superposed magnetic flux the same direction as the breaking magnetic flux), the winding directions of the main primary coil 111a and the secondary primary coil 111b should be reversed, or the main The feeding direction to the primary coil 111a and the feeding direction to the secondary primary coil 111b may be reversed.

上述した点火コイル11Bの通電制御に用いる副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72は、それぞれ別々に設けるようにしても良いし、点火コイルユニット10Bとは別体として設ける副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72を同一のケースに収納したユニット構造としても良い。また、耐電圧および耐ノイズ性の高い半導体デバイスを副一次コイル通電許可スイッチ71および副一次コイル通電スイッチ72として用いるなら、点火コイルユニット10Bのケース15内に設けるようにしても良い。 The sub-primary coil energization permission switch 71 and the sub-primary coil energization switch 72 used for energization control of the ignition coil 11B described above may be provided separately, or the sub-primary coil provided separately from the ignition coil unit 10B. The unit structure may be such that the energization permission switch 71 and the sub-primary coil energization switch 72 are housed in the same case. Further, if a semiconductor device having high withstand voltage and noise resistance is used as the sub-primary coil energization permission switch 71 and the sub-primary coil energization switch 72, it may be provided in the case 15 of the ignition coil unit 10B.

副一次コイル通電許可スイッチ71は、高速スイッチング特性を備えるパワーMOS−FETで構成でき、副一次コイル通電許可スイッチ71のソースが副一次コイル111bの第2端111b−2側に、副一次コイル通電許可スイッチ71のドレインが接地点GND側に接続され、副一次コイル通電許可スイッチ71のゲートには、内燃機関駆動制御装置30Bの重畳制御手段32より副一次コイル通電許可信号Sb1が入力される。したがって、副一次コイル通電許可信号Sb1がオン(例えば、信号レベルがLからH)になると、副一次コイル通電許可スイッチ71がオンになり、副一次コイル111bの第2端111b−2が接地点GNDに接続されることとなる。 The sub-primary coil energization permission switch 71 can be configured by a power MOS-FET having high-speed switching characteristics, and the source of the sub-primary coil energization permission switch 71 is on the second end 111b-2 side of the sub-primary coil 111b to energize the sub-primary coil. The drain of the permission switch 71 is connected to the grounding point GND side, and the sub-primary coil energization permission signal Sb1 is input to the gate of the sub-primary coil energization permission switch 71 from the superimposition control means 32 of the internal combustion engine drive control device 30B. Therefore, when the sub-primary coil energization permission signal Sb1 is turned on (for example, the signal level is from L to H), the sub-primary coil energization permission switch 71 is turned on, and the second end 111b-2 of the sub-primary coil 111b is the grounding point. It will be connected to GND.

なお、上記副一次コイル通電許可スイッチ71のドレインと接地点GNDの間の副一次電流経路には、適宜な抵抗値の電流検出用抵抗81を介挿してあり、この電流検出用抵抗81による電圧変化を検知する副一次電圧検出ライン82と電流検出用抵抗81とによって、副一次電流検出手段を構成する。副一次電圧検出ライン82より得られる副一次電流検出信号は、内燃機関駆動制御装置30Bへ供給され、この副一次電流検出信号に基づいて重畳制御手段32は副一次コイル111bに流れる副一次電流を知ることができる。 A current detection resistor 81 having an appropriate resistance value is inserted in the secondary primary current path between the drain of the secondary primary coil energization permission switch 71 and the grounding point GND, and the voltage due to the current detection resistor 81 is inserted. The sub-primary voltage detection line 82 for detecting the change and the current detection resistor 81 constitute the sub-primary current detection means. The secondary primary current detection signal obtained from the secondary primary voltage detection line 82 is supplied to the internal combustion engine drive control device 30B, and the superimposition control means 32 transfers the secondary primary current flowing through the secondary primary coil 111b based on the secondary primary current detection signal. You can know.

また、副一次コイル通電スイッチ72もパワーMOS−FETで構成でき、副一次コイル通電スイッチ72のドレインが直流電源40側に、副一次コイル通電スイッチ72のソースが副一次コイル111bの第1端111b−1側に接続され、副一次コイル通電スイッチ72のゲートには、重畳制御手段32より副一次コイル通電信号Sb2が入力される。したがって、副一次コイル通電信号Sb2がオン(例えば、信号レベルがLからH)になると、副一次コイル通電スイッチ72がオンになり、副一次コイル111bの第1端111b−1に直流電源40から電源電圧VB+が印加されることとなる。なお、昇圧電源回路73(図5中、二点鎖線で示す)を設け、直流電源40からの電源電圧VB+を昇圧して副一次コイル111bへ供給できるようにしても良い。斯くすれば、副一次コイル111bに印加する電圧を高くして、副一次コイル111bに流す重畳電流I1bを大きくできるので、副一次コイル111bから二次コイル112へ、より大きなエネルギを重畳することが可能となる。 Further, the sub-primary coil energizing switch 72 can also be configured by a power MOS-FET, the drain of the sub-primary coil energizing switch 72 is on the DC power supply 40 side, and the source of the sub-primary coil energizing switch 72 is the first end 111b of the sub-primary coil 111b. The sub-primary coil energization signal Sb2 is input from the superimposition control means 32 to the gate of the sub-primary coil energization switch 72 connected to the -1 side. Therefore, when the sub-primary coil energization signal Sb2 is turned on (for example, the signal level is from L to H), the sub-primary coil energizing switch 72 is turned on, and the DC power supply 40 is connected to the first end 111b-1 of the sub-primary coil 111b. The power supply voltage VB + will be applied. A boost power supply circuit 73 (indicated by a two-dot chain line in FIG. 5) may be provided so that the power supply voltage VB + from the DC power supply 40 can be boosted and supplied to the secondary primary coil 111b. By doing so, the voltage applied to the secondary primary coil 111b can be increased to increase the superimposed current I1b flowing through the secondary primary coil 111b, so that a larger energy can be superimposed from the secondary primary coil 111b to the secondary coil 112. It will be possible.

重畳制御手段32によって副一次コイル111bへの通電制御を行うに際し、二次コイル電圧の相関情報として、主一次コイル111aに生ずる電圧(以下、主一次コイル電圧という)を用いる。そのため、本実施形態に係る内燃機関用点火装置2の点火コイルユニット10Bにおいては、主一次コイル低圧側の電圧を検出する主一次コイル電圧検出手段として、主一次コイル111aの第2端111a−2とバイパス線路13の分岐点との間から主一次コイル電圧検出ライン17を引き出し、コネクタ152を介して内燃機関駆動制御装置30Bの重畳制御手段32へ主一次コイル電圧信号を入力するものとした。 When the superimposition control means 32 controls the energization of the secondary primary coil 111b, the voltage generated in the main primary coil 111a (hereinafter referred to as the main primary coil voltage) is used as the correlation information of the secondary coil voltage. Therefore, in the ignition coil unit 10B of the ignition device 2 for an internal combustion engine according to the present embodiment, the second end 111a-2 of the main primary coil 111a is used as the main primary coil voltage detecting means for detecting the voltage on the low voltage side of the main primary coil. The main primary coil voltage detection line 17 is pulled out from between the branch point of the bypass line 13 and the branch point of the bypass line 13, and the main primary coil voltage signal is input to the superimposition control means 32 of the internal combustion engine drive control device 30B via the connector 152.

重畳制御手段32の一例を図6に示す。重畳制御手段32には、重畳の開始・更新や終了の制御タイミングを判定する重畳制御タイミング判定手段301と、この重畳制御タイミング判定手段301が重畳制御開始の制御タイミングを判定するための情報として用いる重畳制御開始条件を記憶している重畳制御開始条件記憶手段302と、重畳制御タイミング判定手段301が重畳制御見直しのタイミングを判定するための情報として用いる重畳制御見直しタイミングを記憶している重畳制御見直しタイミング記憶手段306と、重畳制御開始に伴って副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72を動作させるための副一次コイル通電許可信号Sb1と副一次コイル通電信号Sb2を生成して出力する副一次コイル制御手段307と、点火コイル二次側に流す二次電流の目標値として設定された設定二次電流値を記憶しておく設定二次電流値記憶手段304と、副一次コイル111bへの通電制御によって保持できる二次電流値の種類(例えば、第1電流値と第2電流値の2種類)を記憶しておく変更可能二次電流値記憶手段305と、を設ける。 An example of the superimposition control means 32 is shown in FIG. The superimposition control means 32 uses a superimposition control timing determination means 301 for determining the control timing of the start / update and end of superimposition and information for determining the superimposition control start control timing by the superimposition control timing determination means 301. The superimposition control start condition storage means 302 that stores the superimposition control start condition and the superimposition control timing determination means 301 that store the superimposition control review timing that is used as information for determining the superimposition control review timing. Generates and outputs the timing storage means 306, the sub-primary coil energization permission signal Sb1 and the sub-primary coil energization signal Sb2 for operating the sub-primary coil energization permission switch 71 and the sub-primary coil energization switch 72 when the superimposition control is started. The secondary primary coil control means 307, the set secondary current value storage means 304 for storing the set secondary current value set as the target value of the secondary current flowing to the secondary side of the ignition coil, and the secondary primary coil 111b. A changeable secondary current value storage means 305 for storing the types of secondary current values (for example, two types of the first current value and the second current value) that can be held by the energization control of the coil is provided.

重畳制御タイミング判定手段301には、点火信号Siと、主一次コイル電圧信号と、重畳制御開始条件記憶手段302からの重畳制御開始条件と、重畳制御見直しタイミング記憶手段306からの重畳制御見直しタイミングが供給されており、点火信号SiがONからOFFとなる点火タイミングIG以降に、重畳制御開始条件を満たす重畳制御開始タイミングの成立を判定する。例えば、図7(a)の波形図に示すように、一次電流遮断による点火タイミングIGで容量放電エネルギ(二次側に蓄積された電気エネルギ)が消費されて一次電圧が急激に高くなった後、短時間で低下して行き、指標電圧値に達したタイミングを重畳制御開始タイミングα1と判定する。無論、容量放電と看做し得る所定期間(例えば、数十μs)が経過して誘導放電へ移行したと看做し得る状態になったことを重畳制御開始条件としても良い。 The superimposition control timing determination means 301 includes an ignition signal Si, a main primary coil voltage signal, a superimposition control start condition from the superimposition control start condition storage means 302, and a superimposition control review timing from the superimposition control review timing storage means 306. After the ignition timing IG, which is supplied and the ignition signal Si is turned from ON to OFF, the establishment of the superimposition control start timing satisfying the superimposition control start condition is determined. For example, as shown in the waveform diagram of FIG. 7A, after the capacitance discharge energy (electrical energy stored on the secondary side) is consumed by the ignition timing IG due to the primary current cutoff and the primary voltage rises sharply. , The timing at which the voltage decreases in a short time and reaches the index voltage value is determined as the superimposition control start timing α1. Of course, the superimposition control start condition may be set to a state in which it can be considered that a predetermined period (for example, several tens of μs) that can be regarded as a capacitance discharge has elapsed and the discharge has shifted to an induced discharge.

重畳制御タイミング判定手段301が重畳制御開始タイミングα1と判定し、副一次コイル制御手段307に重畳制御開始指示を出すと、副一次コイル制御手段301は副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2を生成して、副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72へそれぞれ出力する。エネルギ重畳手段として機能する副一次コイル通電許可スイッチ71と副一次コイル通電スイッチ72によって副一次コイル111bへの通電制御が実行され、通電量に応じた重畳磁束が二次コイル112に作用し、二次電流が重畳される(図7(a)の二次電流波形中、網掛けで示す領域を参照)。 When the superimposition control timing determination means 301 determines that the superimposition control start timing α1 and issues a superimposition control start instruction to the subprimary coil control means 307, the subprimary coil control means 301 energizes the subprimary coil energization signal Sb1 and the subprimary coil. The signal Sb2 is generated and output to the sub-primary coil energization permission switch 71 and the sub-primary coil energization switch 72, respectively. The sub-primary coil energization permission switch 71 and the sub-primary coil energization switch 72, which function as energy superimposition means, execute energization control on the sub-primary coil 111b, and the superimposition magnetic flux according to the energization amount acts on the secondary coil 112, and the secondary coil 112 is secondary. The secondary current is superimposed (see the shaded area in the secondary current waveform of FIG. 7A).

このとき、副一次コイル制御手段307は、二次電流検出信号から得られる二次電流の値を、設定二次電流値記憶手段304に記憶された設定二次電流値に近づけるように、副一次コイル通電信号Sb2のパルス幅を多段階(例えば、256段階)で調整するPWM制御を行う。例えば、設定二次電流値記憶手段304に設定二次電流値として第1電流値が記憶されていた場合には、副一次コイル111bに生じさせる重畳磁束で二次電流が第1電流値に保持される通電パルスを副一次コイル111bへ供給するように、副一次コイル通電スイッチ72のスイッチング動作を制御する第1PWM制御を副一次コイル制御手段307が行うのである。同様に、設定二次電流値記憶手段304に設定二次電流値として第2電流値が記憶されていた場合には、副一次コイル111bに生じさせる重畳磁束で二次電流が第2電流値に保持される通電パルスを副一次コイル111bへ供給するように、副一次コイル通電スイッチ72のスイッチング動作を制御する第2PWM制御を副一次コイル制御手段307が行うのである。 At this time, the secondary primary coil control means 307 brings the value of the secondary current obtained from the secondary current detection signal close to the set secondary current value stored in the set secondary current value storage means 304. PWM control is performed to adjust the pulse width of the coil energization signal Sb2 in multiple stages (for example, 256 stages). For example, when the first current value is stored as the set secondary current value in the set secondary current value storage means 304, the secondary current is held at the first current value by the superimposed magnetic flux generated in the secondary primary coil 111b. The sub-primary coil control means 307 performs the first PWM control for controlling the switching operation of the sub-primary coil energization switch 72 so as to supply the energization pulse to be supplied to the sub-primary coil 111b. Similarly, when the second current value is stored as the set secondary current value in the set secondary current value storage means 304, the secondary current becomes the second current value due to the superimposed magnetic flux generated in the secondary primary coil 111b. The sub-primary coil control means 307 performs the second PWM control for controlling the switching operation of the sub-primary coil energization switch 72 so as to supply the held energization pulse to the sub-primary coil 111b.

なお、変更可能二次電流値記憶手段305に記憶されている電流値が3種類以上あった場合には、それぞれの電流値に応じた適切な重畳磁束を副一次コイル111bに生じさせるように、3種類以上のPWM制御を副一次コイル制御手段301が行えるようにすれば良い。 When there are three or more types of current values stored in the changeable secondary current value storage means 305, an appropriate superimposed magnetic flux corresponding to each current value is generated in the secondary primary coil 111b. The sub-primary coil control means 301 may be able to perform three or more types of PWM control.

上記のようにして重畳制御が開始された後、重畳制御タイミング判定手段301は、重畳制御見直しタイミング記憶手段306に記憶されている重畳制御見直しタイミングα2の成否を判定する。重畳制御見直しタイミングは、例えば、重畳制御開始タイミングα1から所定時間幅の点火状況監視期間txが経過したタイミングとし、点火コイル20の放電電極間に生じた火花放電の放電経路がシリンダ内のタンブル流によって膨らんでいると推測されるか否かを見極めるタイミングとして用いる。なお、適切な時間幅の点火状況監視期間txは、内燃機関の特性や動作環境によって変化するので、例えば、外部からの重畳制御見直しタイミング設定信号によって重畳制御見直しタイミング記憶手段306の記憶内容を任意に変更できるようにしておけば、利便性が高い。 After the superimposition control is started as described above, the superimposition control timing determination means 301 determines the success or failure of the superimposition control review timing α2 stored in the superimposition control review timing storage means 306. The superimposition control review timing is, for example, the timing at which the ignition status monitoring period tx of a predetermined time width elapses from the superimposition control start timing α1, and the discharge path of the spark discharge generated between the discharge electrodes of the ignition coil 20 is the tumble flow in the cylinder. It is used as a timing to determine whether or not it is presumed to be inflated by. Since the ignition status monitoring period tx having an appropriate time width changes depending on the characteristics of the internal combustion engine and the operating environment, for example, the stored contents of the superimposition control review timing storage means 306 can be arbitrarily set by an external superimposition control review timing setting signal. If you can change it to, it will be very convenient.

重畳制御タイミング判定手段306は、重畳制御見直しタイミングα2が成立するまで(点火状況監視期間txが経過するまで)の期間、主一次コイル電圧検出手段により検出された主一次コイル電圧の変化を監視し、点火プラグ20に発生した火花放電の膨らんだ放電経路を維持し難い状態として定めた二次電流加算条件、または、点火プラグ20に発生した火花放電の放電経路を膨らませ難い状態として定めた二次電流低減条件の成否を判定する。そして、二次電流加算条件が成立していた場合、重畳制御タイミング判定手段301は副一次コイル制御手段307へ重畳増加制御を指示する。二次電流低減条件が成立していた場合、重畳制御タイミング判定手段301は副一次コイル制御手段307へ重畳低減制御を指示する。なお、二次電流加算条件および二次電流低減条件の何れも成立していなかった場合には、重畳制御タイミング判定手段301から副一次コイル制御手段307への指示は行わない。 The superimposition control timing determination means 306 monitors the change in the main primary coil voltage detected by the main primary coil voltage detection means until the superimposition control review timing α2 is established (until the ignition status monitoring period tx elapses). , The secondary current addition condition defined as a state in which it is difficult to maintain the expanded discharge path of the spark discharge generated in the spark plug 20, or the secondary specified as a state in which the discharge path of the spark discharge generated in the spark plug 20 is difficult to inflate. Judge the success or failure of the current reduction condition. Then, when the secondary current addition condition is satisfied, the superimposition control timing determination means 301 instructs the subprimary coil control means 307 to superimpose increase control. When the secondary current reduction condition is satisfied, the superimposition control timing determination means 301 instructs the subprimary coil control means 307 to superimpose reduction control. If neither the secondary current addition condition nor the secondary current reduction condition is satisfied, the superimposition control timing determination means 301 does not give an instruction to the secondary primary coil control means 307.

まず、主一次コイル電圧の変化が二次電流加算条件を満たしていると重畳制御タイミング判定手段306が判定した場合について説明する。 First, a case where the superimposition control timing determination means 306 determines that the change in the main primary coil voltage satisfies the secondary current addition condition will be described.

二次電流加算条件の一例は、前述したように、主一次コイル電圧の絶対値が指標電圧値を超えて上昇したにもかかわらず、再び指標電圧値を下回るほど低下した状態と考えられる吹き消え波形が、点火状況監視期間tx中に所定回数(例えば、1回)以上生じていることである。無論、第2実施形態の内燃機関用点火装置2においても、二次電流加算条件は本例に限定されず、内燃機関の特性等に応じて、適宜な二次電流加算条件を任意に設定して構わない。例えば、点火状況監視期間txの初期に吹き消え波形が検出されていても、重畳制御見直しタイミングα2においては、指標電圧値を大きく超える高電圧に上昇していた場合、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんでいる状態と推定できるので、このような場合にまで二次電流を増加させる必要は無いことから、これを二次電流加算条件から除外するようにしても良い。 As described above, an example of the secondary current addition condition is a state in which the absolute value of the main primary coil voltage rises above the index voltage value, but falls below the index voltage value again. The waveform is generated a predetermined number of times (for example, once) or more during the ignition status monitoring period tx. Of course, also in the ignition device 2 for the internal combustion engine of the second embodiment, the secondary current addition condition is not limited to this example, and an appropriate secondary current addition condition is arbitrarily set according to the characteristics of the internal combustion engine and the like. It doesn't matter. For example, even if a blowout waveform is detected at the initial stage of the ignition status monitoring period tx, if the voltage rises to a high voltage that greatly exceeds the index voltage value at the superimposition control review timing α2, between the electrodes of the spark plug 20. Since it can be estimated that the generated spark discharge is in a state of being greatly inflated without being blown out, it is not necessary to increase the secondary current even in such a case, so this should be excluded from the secondary current addition condition. You can do it.

重畳制御タイミング判定手段301が二次電流加算条件の成否を判定するために主一次コイル電圧の変化を監視している点火状況監視期間tx中は、重畳制御判定タイミング判定手段301より重畳制御開始の指示を受けた副一次コイル制御手段307が、設定二次電流値記憶手段304に記憶されている設定二次電流値の二次電流に保たれるように、副一次コイル通電信号Sb2のデューティ比を調節するPWM制御を行う。例えば、設定二次電流値記憶手段304に記憶されている設定二次電流値が第1電流値であれば、副一次コイル制御手段307は、二次電流検出手段からの二次電流検出信号より得られる実際の二次電流値を第1電流値に近づけるべく、副一次コイル111bに生じさせる重畳磁束を適切に増減させる通電パルスを副一次コイル111bへ供給するように、副一次コイル通電信号Sb2のデューティ比を調節する第1PWM制御が行われる。 During the ignition status monitoring period tx in which the superimposition control timing determination means 301 monitors changes in the main primary coil voltage to determine the success or failure of the secondary current addition condition, the superimposition control determination timing determination means 301 starts superimposition control. The duty ratio of the secondary primary coil energization signal Sb2 so that the secondary primary coil control means 307 that receives the instruction is maintained at the secondary current of the set secondary current value stored in the set secondary current value storage means 304. PWM control is performed to adjust. For example, if the set secondary current value stored in the set secondary current value storage means 304 is the first current value, the secondary primary coil control means 307 is based on the secondary current detection signal from the secondary current detection means. The sub-primary coil energization signal Sb2 so as to supply the sub-primary coil 111b with an energization pulse that appropriately increases or decreases the superimposed magnetic flux generated in the sub-primary coil 111b in order to bring the obtained actual secondary current value closer to the first current value. The first PWM control for adjusting the duty ratio of the above is performed.

上記のように、副一次コイル制御手段307が第1PWM制御を行うことによって二次電流が第1電流値に保持されている状態で重畳制御見直しタイミングα2となり、重畳制御タイミング判定手段301が二次電流加算条件の成立を判定すると、副一次コイル制御手段307に対して重畳増加制御を指示する。これにより、副一次コイル制御手段307は、変更可能二次電流値記憶手段305から読み出した変更可能二次電流値のうち、設定二次電流値記憶手段304に記憶されている設定二次電流値(第1電流値)よりも高い二次電流値(第2電流値)を新たな設定二次電流値として設定二次電流値記憶手段304に上書きすると共に、二次電流検出手段からの二次電流検出信号より得られる実際の二次電流値を第2電流値に近づけるべく、副一次コイル111bに生じさせる重畳磁束を適切に増減させる通電パルスを副一次コイル111bへ供給するように、副一次コイル通電信号Sb2のデューティ比を調節する第2PWM制御が行われるようになる。 As described above, when the secondary primary coil control means 307 performs the first PWM control, the superimposition control review timing α2 is set in a state where the secondary current is held at the first current value, and the superimposition control timing determination means 301 is secondary. When it is determined that the current addition condition is satisfied, the sub-primary coil control means 307 is instructed to perform superimposition increase control. As a result, the secondary primary coil control means 307 has the set secondary current value stored in the set secondary current value storage means 304 among the changeable secondary current values read from the changeable secondary current value storage means 305. A secondary current value (second current value) higher than (first current value) is set as a new set secondary current value. The secondary current value storage means 304 is overwritten, and the secondary current from the secondary current detecting means is overwritten. In order to bring the actual secondary current value obtained from the current detection signal closer to the second current value, the secondary primary coil 111b is supplied with an energizing pulse that appropriately increases or decreases the superimposed magnetic flux generated in the secondary primary coil 111b. The second PWM control for adjusting the duty ratio of the coil energization signal Sb2 comes to be performed.

すなわち、重畳増加制御を行うことによって、点火状況監視期間tx中に指標としていた第1電流値よりも高い第2電流値に変更し、二次電流を第2電流値に保持する重畳制御が行われるようになると、シリンダ内に生じている強いタンブル流でも吹き消えが生じ難い程度に大きな放電電流が流れることとなる。よって、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らみ、シリンダ内で大きな火炎核を形成できるので、好適な燃焼を実現できる。 That is, by performing the superimposition increase control, the superimposition control is performed in which the secondary current value is changed to a higher second current value than the first current value used as an index during the ignition status monitoring period tx, and the secondary current is held at the second current value. When this happens, a large discharge current will flow so that it will not easily be blown out even with a strong tumble flow generated in the cylinder. Therefore, the spark discharge generated between the electrodes of the spark plug 20 swells greatly without being blown out, and a large flame nucleus can be formed in the cylinder, so that suitable combustion can be realized.

なお、第2実施形態の内燃機関用点火装置2においても、重畳制御において設定二次電流値として用いる第1電流値は、制御対象である内燃機関の標準的な稼働時に生ずる平均的なタンブル流によって吹き消えが生じないで、放電経路が十分に膨らむときの二次電流値を指標として定めれば良い。また、第2電流値は、制御対象である内燃機関の過負荷時等に生ずる強いタンブル流によって吹き消えが生じないで、放電経路が十分に膨らむときの二次電流値を指標として定めれば良い。 Also in the internal combustion engine ignition device 2 of the second embodiment, the first current value used as the set secondary current value in the superimposition control is the average tumble flow generated during the standard operation of the internal combustion engine to be controlled. The secondary current value when the discharge path is sufficiently expanded without being blown out may be set as an index. Further, the second current value can be determined by using the secondary current value when the discharge path is sufficiently expanded without being blown out by the strong tumble flow generated when the internal combustion engine to be controlled is overloaded. good.

一方、上記のように設定二次電流値記憶手段304の設定二次電流値が第1電流値から第2電流値に変更された後に行われる点火サイクルにおいて、図7(b)の波形図に示すように、点火状況監視期間tx中に吹き消え波形が現れることなく、重畳制御見直しタイミングα2において、主一次コイル電圧が指標電圧値を大きく超える高電圧に上昇していた場合、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんでいると考えられるので、二次電流加算条件は成立せず、重畳制御タイミング判定手段301から副一次コイル制御手段307に対して重畳増加制御が指示されることは無いので、設定二次電流値記憶手段304に記憶されている第2電流値がそのまま維持され、副一次コイル制御手段307によって二次電流を第2電流値に保持する第2PWM制御が引き続き行われる。 On the other hand, in the ignition cycle performed after the set secondary current value of the set secondary current value storage means 304 is changed from the first current value to the second current value as described above, the waveform diagram of FIG. 7B shows. As shown, when the main primary coil voltage rises to a high voltage that greatly exceeds the index voltage value at the superimposition control review timing α2 without the blowout waveform appearing during the ignition status monitoring period tx, the ignition plug 20 Since it is considered that the spark discharge generated between the electrodes is greatly expanded without being blown out, the secondary current addition condition is not satisfied, and the superimposition control timing determination means 301 superimposes on the subprimary coil control means 307. Since the increase control is not instructed, the second current value stored in the set secondary current value storage means 304 is maintained as it is, and the secondary current is held at the second current value by the secondary primary coil control means 307. The second PWM control is continued.

また、本実施形態の内燃機関用点火装置2においても、重畳制御手段32により行う重畳制御の終了タイミングは任意である。例えば、主一次コイル電圧が予め定めた重畳停止基準電圧値にまで下がったタイミングを重畳制御終了タイミングβとし、この重畳制御終了タイミングβになると、重畳制御タイミング判定手段301が副一次コイル制御手段307への重畳制御指示を停止(或いは、重畳制御終了指示を出力)することで、副一次コイル制御手段307による副一次コイル通電許可信号Sb1および副一次コイル通電信号Sb2の出力を止め、副一次コイル111bによる重畳磁束が二次コイル112に作用させなくすることで二次電流重畳機能を停止させることができる。また、点火タイミングIGから計時した経過時間が、安定した燃焼維持に必要十分な高電流期間として定めた高電流保持時間に達したときを重畳制御終了タイミングβに設定し、重畳制御を終了するようにしても良い。 Further, also in the ignition device 2 for an internal combustion engine of the present embodiment, the end timing of the superimposition control performed by the superimposition control means 32 is arbitrary. For example, the timing at which the main primary coil voltage drops to a predetermined superimposition stop reference voltage value is set as the superimposition control end timing β, and when this superimposition control end timing β is reached, the superimposition control timing determination means 301 uses the subprimary coil control means 307. By stopping the superimposition control instruction to (or outputting the superimposition control end instruction), the output of the subprimary coil energization permission signal Sb1 and the subprimary coil energization signal Sb2 by the subprimary coil control means 307 is stopped, and the subprimary coil is stopped. The secondary current superimposition function can be stopped by preventing the superimposition magnetic voltage generated by the 111b from acting on the secondary coil 112. Further, when the elapsed time measured from the ignition timing IG reaches the high current holding time defined as the high current period necessary and sufficient for maintaining stable combustion, the superimposition control end timing β is set and the superimposition control is terminated. You can do it.

次いで、主一次コイル電圧の変化が二次電流低減条件を満たしていると重畳制御タイミング判定手段306が判定した場合について説明する。 Next, a case where the superimposition control timing determination means 306 determines that the change in the main primary coil voltage satisfies the secondary current reduction condition will be described.

二次電流低減条件の一例は、図8(a)に示すように、点火状況監視期間tx中に一度も指標電圧値を超える電圧上昇が認められない短経路保持波形になっていることであり、この二次電流低減条件の成否を判定するために、重畳制御タイミング判定手段301は、点火状況監視期間tx中、主一次コイル電圧の変化を監視している。また、重畳制御判定タイミング判定手段301より重畳制御開始の指示を受けた副一次コイル制御手段307は、設定二次電流値記憶手段304に記憶されている設定二次電流値が第2電流値であれば、二次電流検出手段からの二次電流検出信号より得られる実際の二次電流値を第2電流値に近づけるべく、副一次コイル111bに生じさせる重畳磁束を適切に増減させる通電パルスを副一次コイル111bへ供給するように、副一次コイル通電信号Sb2のデューティ比を調節する第2PWM制御が行われる。 As an example of the secondary current reduction condition, as shown in FIG. 8A, the short path holding waveform is such that no voltage rise exceeding the index voltage value is observed even once during the ignition status monitoring period tx. In order to determine the success or failure of this secondary current reduction condition, the superimposition control timing determination means 301 monitors the change in the main primary coil voltage during the ignition status monitoring period tx. Further, in the sub-primary coil control means 307 that has been instructed by the superimposition control determination timing determination means 301 to start the superimposition control, the set secondary current value stored in the set secondary current value storage means 304 is the second current value. If there is, an energization pulse that appropriately increases or decreases the superimposed magnetic flux generated in the sub-primary coil 111b is applied so that the actual secondary current value obtained from the secondary current detection signal from the secondary current detection means approaches the second current value. The second PWM control for adjusting the duty ratio of the secondary primary coil energization signal Sb2 is performed so as to supply the secondary primary coil 111b.

上記のように、副一次コイル制御手段307による第2PWM制御によって二次電流が第2電流値に保持されている状態で重畳制御見直しタイミングα2となり、重畳制御タイミング判定手段301が二次電流低減条件の成立を判定すると、副一次コイル制御手段307に対して重畳低減制御を指示する。これにより、副一次コイル制御手段307は、変更可能二次電流値記憶手段305から読み出した変更可能二次電流値のうち、設定二次電流値記憶手段304に記憶されている設定二次電流値(第2電流値)よりも低い二次電流値(第1電流値)を新たな設定二次電流値として設定二次電流値記憶手段304に上書きすると共に、二次電流検出手段からの二次電流検出信号より得られる実際の二次電流値を第1電流値に近づけるべく、副一次コイル111bに生じさせる重畳磁束を適切に増減させる通電パルスを副一次コイル111bへ供給するように、副一次コイル通電信号Sb2のデューティ比を調節する第1PWM制御が行われるようになる。 As described above, the superimposition control review timing α2 is set in the state where the secondary current is held at the second current value by the second PWM control by the secondary primary coil control means 307, and the superimposition control timing determination means 301 sets the secondary current reduction condition. When it is determined that the above is satisfied, the sub-primary coil control means 307 is instructed to perform superimposition reduction control. As a result, the secondary primary coil control means 307 has the set secondary current value stored in the set secondary current value storage means 304 among the changeable secondary current values read from the changeable secondary current value storage means 305. A secondary current value (first current value) lower than (second current value) is set as a new set secondary current value. The secondary current value storage means 304 is overwritten, and the secondary current value is overwritten by the secondary current detection means. In order to bring the actual secondary current value obtained from the current detection signal closer to the first current value, the secondary primary coil 111b is supplied with an energizing pulse that appropriately increases or decreases the superimposed magnetic flux generated in the secondary primary coil 111b. The first PWM control for adjusting the duty ratio of the coil energization signal Sb2 is performed.

すなわち、重畳低減制御を行うことによって、点火状況監視期間tx中に指標としていた第2電流値よりも低い第1電流値に変更し、二次電流を第1電流値に保持する重畳制御が行われるようになると、シリンダ内に生じている弱いタンブル流でも放電経路が大きく膨らみ、かつ吹き消えが生じない程度の放電電流が流れることとなる。よって、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らみ、シリンダ内で大きな火炎核を形成できるので、好適な燃焼を実現できる。 That is, by performing the superimposition reduction control, the superimposition control is performed in which the primary current value is changed to a lower current value than the second current value used as an index during the ignition status monitoring period tx, and the secondary current is held at the first current value. When this happens, the discharge path swells greatly even with a weak tumble flow generated in the cylinder, and a discharge current that does not blow out will flow. Therefore, the spark discharge generated between the electrodes of the spark plug 20 swells greatly without being blown out, and a large flame nucleus can be formed in the cylinder, so that suitable combustion can be realized.

一方、上記のように設定二次電流値記憶手段304の設定二次電流値が第2電流値から第2電流値に変更された後に行われる点火サイクルにおいて、図8(b)の波形図に示すように、点火状況監視期間tx中に吹き消え波形も短経路保持波形も現れることなく、重畳制御見直しタイミングα2において、主一次コイル電圧が指標電圧値を大きく超える高電圧に上昇していた場合、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんでいると考えられるので、二次電流低減条件も二次電流増加条件も成立せず、重畳制御タイミング判定手段301から副一次コイル制御手段307に対して重畳低減制御および重畳増加制御が指示されることは無いので、設定二次電流値記憶手段304に記憶されている第1電流値がそのまま維持され、副一次コイル制御手段301による第1PWM制御が引き続き行われる。そして、重畳制御終了タイミングβになると、二次電流を第1電流値に保持する重畳制御が終了する。 On the other hand, in the ignition cycle performed after the set secondary current value of the set secondary current value storage means 304 is changed from the second current value to the second current value as described above, the waveform diagram of FIG. 8B shows. As shown, when neither the blow-out waveform nor the short path holding waveform appears during the ignition status monitoring period tx, and the main primary coil voltage rises to a high voltage that greatly exceeds the index voltage value at the superimposition control review timing α2. Since it is considered that the spark discharge generated between the electrodes of the ignition plug 20 is greatly expanded without being blown out, neither the secondary current reduction condition nor the secondary current increase condition is satisfied, and the superimposition control timing determination means 301 Since the superimposition reduction control and superimposition increase control are not instructed to the subprimary coil control means 307, the primary current value stored in the set secondary current value storage means 304 is maintained as it is, and the subprimary current value is maintained as it is. The first PWM control by the coil control means 301 is continuously performed. Then, when the superimposition control end timing β is reached, the superimposition control for holding the secondary current at the first current value ends.

上述したように、第2実施形態に係る内燃機関用点火装置2における重畳制御手段32では、重畳制御を開始した後、重畳制御見直しタイミングα2において、二次電流増加条件と二次電流低減条件の成否に基づき、重畳増加制御あるいは重畳低減制御が必要か否かの判断を行い、必要に応じて重畳増加制御あるいは重畳低減制御を実行することで、点火プラグ20の電極間に生じた火花放電に吹き消えが生ずることなく大きく膨らんで、シリンダ内で大きな火炎核を形成できるようにし、好適な燃焼を実現するのである。 As described above, in the superimposition control means 32 in the ignition device 2 for the internal combustion engine according to the second embodiment, after the superimposition control is started, at the superimposition control review timing α2, the secondary current increase condition and the secondary current decrease condition are satisfied. Based on the success or failure, it is determined whether or not superimposition increase control or superimposition reduction control is necessary, and by executing superimposition increase control or superimposition reduction control as necessary, spark discharge generated between the electrodes of the spark plug 20 can be generated. It swells greatly without being blown out, allowing the formation of large flame nuclei in the cylinder and achieving suitable combustion.

ただし、本実施形態の内燃機関用点火装置2においては、変更可能二次電流値記憶手段305に第1電流値と第2電流値の2種類のみ記憶させてあるので、設定二次電流値記憶手段304に記憶されている設定二次電流値が第2電流値であった場合には、たとえ二次電流増加条件が成立しても重畳増加制御を行う事はできず、同様に、設定二次電流値記憶手段304に記憶されている設定二次電流値が第1電流値であった場合には、二次電流低減条件が成立しても重畳低減制御を行う事はできない。すなわち、本実施形態に係る内燃機関用点火装置2では、設定二次電流値に応じて、重畳増加制御または重畳低減制御の何れか一方の制御を行う事しかできない。 However, in the ignition device 2 for the internal combustion engine of the present embodiment, since the changeable secondary current value storage means 305 stores only two types, the first current value and the second current value, the set secondary current value is stored. When the set secondary current value stored in the means 304 is the second current value, the superimposition increase control cannot be performed even if the secondary current increase condition is satisfied. Similarly, the setting 2 When the set secondary current value stored in the secondary current value storage means 304 is the first current value, the superimposition reduction control cannot be performed even if the secondary current reduction condition is satisfied. That is, the internal combustion engine ignition device 2 according to the present embodiment can only control either the superimposition increase control or the superimposition decrease control according to the set secondary current value.

しかしながら、変更可能二次電流値記憶手段305に3種類以上(例えば、第1電流値、第2電流値、第3電流値の3種類で、第1電流値<第2電流値<第3電流値)を記憶させておけば、より細かく重畳増加制御と重畳低減制御を行う事ができる上に、設定二次電流値記憶手段304に記憶されている設定二次電流値が上限電流値(第3電流値)でも下限電流値(第1電流値)でもない中間電流値(第2電流値)であれば、二次電流増加条件が成立すると重畳増加制御を行う事ができ、二次電流低減条件が成立すると重畳低減制御を行う事ができる。すなわち、変更可能二次電流値記憶手段305に3種類以上を記憶させ、副一次コイル制御手段307が3種類以上の電流値に二次電流を保持できるPWM制御を行える構成とすれば、成立条件に応じて、重畳増加制御および重畳低減制御のどちらの制御でも行える場合がある。 However, there are three or more types of changeable secondary current value storage means 305 (for example, a first current value, a second current value, and a third current value, and the first current value <second current value <third current. If the value) is stored, the superimposition increase control and the superimposition reduction control can be performed more finely, and the set secondary current value stored in the set secondary current value storage means 304 is the upper limit current value (the first). If the intermediate current value (second current value) is neither the third current value) nor the lower limit current value (first current value), the superimposition increase control can be performed when the secondary current increase condition is satisfied, and the secondary current reduction can be performed. When the condition is satisfied, the superimposition reduction control can be performed. That is, if the changeable secondary current value storage means 305 stores three or more types and the sub-primary coil control means 307 can perform PWM control capable of holding the secondary current in three or more types of current values, the establishment condition is satisfied. Depending on the situation, either the superimposition increase control or the superimposition reduction control may be performed.

また、上述した第2実施形態の内燃機関用点火装置2のように、二次電流増加条件と二次電流低減条件の成否を点火サイクル内で判断し、同じサイクル内で補正するために重畳増加制御あるいは重畳低減制御を行えば、点火サイクル毎のバラツキを無くして、安定した燃焼を実現できるのであるが、必ずしも同一サイクル内で二次電流増加条件と二次電流低減条件の成否を判断する必要は無い。例えば、気筒内の燃焼に支障が出るほどではないものの吹き消えの発生傾向が認められる点火サイクルが所定回数続いた場合には、二次電流増加条件が成立したものとして重畳増加制御を行い、気筒内の燃焼に支障が出るほどではないものの短経路保持傾向が認められる点火サイクルが所定回数続いた場合には、二次電流低減条件が成立したものとして重畳低減制御を行うようにしても良い。 Further, as in the ignition device 2 for an internal combustion engine of the second embodiment described above, the success or failure of the secondary current increase condition and the secondary current decrease condition is determined within the ignition cycle, and the superposition increase is performed in order to correct within the same cycle. If control or superimposition reduction control is performed, it is possible to eliminate the variation in each ignition cycle and realize stable combustion, but it is not always necessary to judge the success or failure of the secondary current increase condition and the secondary current reduction condition within the same cycle. There is no. For example, if the ignition cycle continues for a predetermined number of times, although the combustion in the cylinder is not hindered, but the tendency of blowout is observed, the superposition increase control is performed assuming that the secondary current increase condition is satisfied, and the cylinder is operated. When the ignition cycle in which the short path holding tendency is observed continues for a predetermined number of times, although it does not hinder the combustion inside, the superimposition reduction control may be performed assuming that the secondary current reduction condition is satisfied.

以上、本発明に係る内燃機関用点火装置の実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態のみに限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。 Although the embodiments of the ignition device for an internal combustion engine according to the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to these embodiments, and the configurations described in the claims are provided. As long as it does not change, it may be carried out by diverting known and existing equivalent technical means.

1 内燃機関用点火装置(第1実施形態)
10A 点火コイルユニット
11A 点火コイル
111 一次コイル
112 二次コイル
12A 点火スイッチ
15 ケース
20 点火プラグ
30A 内燃機関駆動制御装置
31 重畳制御手段
40 直流電源
50 二次電流重ね手段
61 電流検出用抵抗
62 二次電流検出ライン
1 Ignition system for internal combustion engine (first embodiment)
10A Ignition coil unit 11A Ignition coil 111 Primary coil 112 Secondary coil 12A Ignition switch 15 Case 20 Spark plug 30A Internal engine drive control device 31 Superimposition control means 40 DC power supply 50 Secondary current stacking means 61 Current detection resistor 62 Secondary current Detection line

Claims (9)

点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
前記点火コイルの二次側を流れる二次電流へ重畳的に電流を加算することで、予め指示された二次電流値を保つ二次電流重ね手段と、
点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される一次コイルの電圧を検出する一次コイル電圧検出手段と、
を備え、
前記点火制御手段は、予め定めた重畳制御開始条件を満たすと前記二次電流重ね手段へ予め設定された設定二次電流値を指示することで、二次電流重ね手段により設定二次電流値の二次電流を点火コイル二次側に流す重畳制御を行い、予め定めた重畳制御見直しタイミングになると、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の膨らんだ放電経路を維持し難い状態として定めた二次電流加算条件を満たす場合に、現在の設定二次電流値よりも高い電流値を新たな設定二次電流値に設定し、新たな設定二次電流値を二次電流重ね手段に指示することで、二次電流重ね手段から点火コイルの二次側へより高い電流値の二次電流を流させる重畳増加制御、および/または、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の放電経路を膨らませ難い状態として定めた二次電流低減条件を満たす場合に、現在の設定二次電流値よりも低い電流値を新たな設定二次電流値に設定し、新たな設定二次電流値を二次電流重ね手段に指示することで、二次電流重ね手段から点火コイルの二次側へより低い電流値の二次電流を流させる重畳低減制御、を行うようにしたことを特徴とする内燃機関用点火装置。
In an ignition device for an internal combustion engine, which applies discharge energy to the secondary side of the ignition coil to cause spark discharge in the spark plug by controlling the energization of the ignition coil by the ignition control means.
A secondary current stacking means that maintains a pre-instructed secondary current value by superimposing a current on the secondary current flowing on the secondary side of the ignition coil.
A primary coil voltage detecting means for detecting the voltage of the primary coil, which reflects the voltage generated in the secondary coil after the ignition timing in the ignition cycle, and
With
When the ignition control means satisfies a predetermined superposition control start condition, the secondary current stacking means is instructed to set a preset secondary current value, so that the secondary current value is set by the secondary current stacking means. Superimposition control is performed to allow the secondary current to flow to the secondary side of the ignition coil, and when the predetermined superimposition control review timing is reached, the change in the primary coil voltage detected by the primary coil voltage detecting means causes a spark discharge generated in the ignition plug. When the secondary current addition condition specified as a state in which it is difficult to maintain the swollen discharge path is satisfied, a current value higher than the currently set secondary current value is set as the new set secondary current value, and a new setting is made. By instructing the secondary current stacking means to indicate the secondary current value, superimposition increase control for causing a secondary current having a higher current value to flow from the secondary current stacking means to the secondary side of the ignition coil, and / or the primary When the change in the primary coil voltage detected by the coil voltage detecting means satisfies the secondary current reduction condition defined as the state in which the discharge path of the spark discharge generated in the ignition plug is difficult to expand, the current set secondary current value is increased. By setting a new set secondary current value to a new set secondary current value and instructing the secondary current stacking means to set a new set secondary current value, the current value is lower from the secondary current stacking means to the secondary side of the ignition coil. An ignition device for an internal combustion engine, which is characterized by performing superimposition reduction control in which a secondary current of a current value is passed.
前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまでに、火花放電の吹き消えが生じたと想定される一次コイル電圧の変化である吹き消え状態が予め定めた所定回数以上発生したことを二次電流加算条件として用いることを特徴とする請求項1に記載の内燃機関用点火装置。 The ignition control means has a predetermined blow-out state, which is a change in the primary coil voltage that is assumed to have caused the spark discharge to blow out from the start of the superposition control to the review timing of the superposition control in one ignition cycle. The ignition device for an internal combustion engine according to claim 1, wherein the occurrence of a number of times or more is used as a secondary current addition condition. 前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまで、火花放電の放電経路が膨らまずに短経路が保持されていると想定される一次コイル電圧の変化である短経路保持状態が継続していたことを二次電流低減条件として用いることを特徴とする請求項1に記載の内燃機関用点火装置。 The ignition control means is a change in the primary coil voltage on which it is assumed that the short path is maintained without expanding the discharge path of the spark discharge from the start of the superimposition control to the timing of reviewing the superimposition control in one ignition cycle. The ignition device for an internal combustion engine according to claim 1, wherein the continuous short-path holding state is used as a secondary current reduction condition. 前記二次電流重ね手段は、所定の第1電流値と、該第1電流値よりも高い第2電流値とに、二次電流値を保つことが可能であり、
前記点火制御手段は、設定二次電流値が第1電流値であるときにのみ重畳増加制御を行い、設定二次電流値が第2電流値であるときにのみ重畳低減制御を行うことを特徴とする請求項1〜請求項3の何れか1項に記載の内燃機関用点火装置。
The secondary current stacking means can maintain a secondary current value at a predetermined first current value and a second current value higher than the first current value.
The ignition control means is characterized in that it performs superimposition increase control only when the set secondary current value is the first current value, and performs superimposition reduction control only when the set secondary current value is the second current value. The ignition device for an internal combustion engine according to any one of claims 1 to 3.
点火制御手段によって点火コイルへの通電制御を行うことで、点火コイルの二次側に放電エネルギを与えて点火プラグに火花放電を起こさせる内燃機関用点火装置において、
前記点火コイルは、主一次電流の通電により順方向の磁束量が増加し、主一次電流を遮断することにより順方向の磁束量が減少する主一次コイルと、該主一次コイルの通電遮断以降における任意のタイミングで副一次電流を通電することにより、順方向と逆の遮断方向に磁束を発生させる副一次コイルと、一端側が点火プラグと接続され、前記主一次コイルと副一次コイルの磁束変化が作用して放電エネルギが与えられる二次コイルと、を有するものとし、
点火サイクルにおける点火タイミング以降に、二次コイルに発生する電圧が反映される主一次コイルの電圧を検出する主一次コイル電圧検出手段と、
前記点火コイルの二次側を流れる二次電流を検出する二次電流検出手段と、
前記副一次コイルへの通電・遮断を切り替えることで発生させた遮断方向の重畳磁束を二次コイルに作用させることで、点火コイルの二次側に放電エネルギを重畳するエネルギ重畳手段と、
を備え、
前記点火制御手段は、予め定めた重畳制御開始条件を満たすと前記二次電流検出手段により検出された二次電流値に基づいて前記エネルギ重畳手段により発生させる重畳磁束を調整することで、予め設定された設定二次電流値の二次電流を点火コイル二次側に流す重畳制御を行い、予め定めた重畳制御見直しタイミングになると、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の膨らんだ放電経路を維持し難い状態として定めた二次電流加算条件を満たす場合に、現在の設定二次電流値よりも高い電流値を新たな設定二次電流値に設定し、前記エネルギ重畳手段により発生させる重畳磁束を調整することで、点火コイルの二次側へより高い電流値の二次電流を流させる重畳増加制御、および/または、前記一次コイル電圧検出手段により検出された一次コイル電圧の変化が、点火プラグに発生した火花放電の放電経路を膨らませ難い状態として定めた二次電流低減条件を満たす場合に、現在の設定二次電流値よりも低い二次電流値を新たな設定二次電流値に設定し、前記エネルギ重畳手段により発生させる重畳磁束を調整することで、点火コイルの二次側へより低い電流値の二次電流を流させる重畳低減制御、を行うようにしたことを特徴とする内燃機関用点火装置。
In an ignition device for an internal combustion engine, which applies discharge energy to the secondary side of the ignition coil to cause spark discharge in the spark plug by controlling the energization of the ignition coil by the ignition control means.
The ignition coil includes a main primary coil in which the amount of magnetic flux in the forward direction increases when the main primary current is energized and the amount of magnetic flux in the forward direction decreases when the main primary current is cut off, and after the main primary coil is de-energized. By energizing the secondary primary current at an arbitrary timing, the secondary primary coil that generates magnetic flux in the breaking direction opposite to the forward direction and one end side are connected to the ignition plug, and the magnetic flux changes of the main primary coil and the secondary primary coil Suppose it has a secondary coil that acts to give discharge energy.
The main primary coil voltage detecting means for detecting the voltage of the main primary coil, which reflects the voltage generated in the secondary coil after the ignition timing in the ignition cycle,
A secondary current detecting means for detecting the secondary current flowing on the secondary side of the ignition coil, and
Energy superimposition means for superimposing discharge energy on the secondary side of the ignition coil by applying the superimposition magnetic flux in the cutoff direction generated by switching the energization / cutoff of the sub-primary coil to the secondary coil.
With
The ignition control means is preset by adjusting the superimposition magnetic flux generated by the energy superimposition means based on the secondary current value detected by the secondary current detection means when a predetermined superimposition control start condition is satisfied. Superimposition control is performed to flow the secondary current of the set secondary current value to the secondary side of the ignition coil, and when the predetermined superimposition control review timing is reached, the change in the primary coil voltage detected by the primary coil voltage detecting means is changed. , When the secondary current addition condition specified as a state in which it is difficult to maintain the swollen discharge path of the spark discharge generated in the ignition plug is satisfied, a current value higher than the currently set secondary current value is newly set as the secondary current. By setting the value and adjusting the superimposition magnetic flux generated by the energy superimposing means, superimposition increase control for causing a secondary current having a higher current value to flow to the secondary side of the ignition coil, and / or the primary coil voltage The change in the primary coil voltage detected by the detection means is lower than the currently set secondary current value when the secondary current reduction condition defined as the state in which the discharge path of the spark discharge generated in the ignition plug is difficult to expand is satisfied. By setting the secondary current value to a new setting secondary current value and adjusting the superimposed magnetic flux generated by the energy superimposing means, superimposition in which a secondary current having a lower current value flows to the secondary side of the ignition coil. An ignition device for an internal combustion engine, which is characterized by performing reduction control.
前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまでに、火花放電の吹き消えが生じたと想定される一次コイル電圧の変化である吹き消え状態が予め定めた所定回数以上発生したことを二次電流加算条件として用いることを特徴とする請求項5に記載の内燃機関用点火装置。 The ignition control means has a predetermined blow-out state, which is a change in the primary coil voltage that is assumed to have caused the spark discharge to blow out from the start of the superposition control to the review timing of the superposition control in one ignition cycle. The ignition device for an internal combustion engine according to claim 5, wherein the occurrence of a number of times or more is used as a secondary current addition condition. 前記点火制御手段は、1回の点火サイクル内における重畳制御開始から重畳制御見直しタイミングまで、火花放電の放電経路が膨らまずに短経路が保持されていると想定される一次コイル電圧の変化である短経路保持状態が継続していたことを二次電流低減条件として用いることを特徴とする請求項5に記載の内燃機関用点火装置。 The ignition control means is a change in the primary coil voltage on which it is assumed that the short path is maintained without expanding the discharge path of the spark discharge from the start of the superimposition control to the timing of reviewing the superimposition control in one ignition cycle. The ignition device for an internal combustion engine according to claim 5, wherein the continuous short-path holding state is used as a secondary current reduction condition. 前記エネルギ重畳手段は、副一次コイルに供給する電源パルスのデューティ比を変化させることで、副一次コイルに発生させる重畳磁束を調整可能であり、
前記点火制御手段は、前記エネルギ重畳手段へ通電のオン・オフを指示するPWM制御によって、二次電流を増減させるようにしたことを特徴とする請求項5〜請求項7の何れか1項に記載の内燃機関用点火装置。
The energy superimposition means can adjust the superimposition magnetic flux generated in the sub-primary coil by changing the duty ratio of the power supply pulse supplied to the sub-primary coil.
The ignition control means according to any one of claims 5 to 7, wherein the secondary current is increased or decreased by PWM control for instructing the energy superimposing means to turn on / off the energization. The ignition device for an internal combustion engine described.
前記点火制御手段は、所定の第1電流値と、該第1電流値よりも高い所定の第2電流値とを設定二次電流値とすることが可能で、設定二次電流値が第1電流値であるときにのみ重畳増加制御を行い、設定二次電流値が第2電流値であるときにのみ重畳低減制御を行うことを特徴とする請求項8に記載の内燃機関用点火装置。 The ignition control means can set a predetermined first current value and a predetermined second current value higher than the first current value as a set secondary current value, and the set secondary current value is the first. The ignition device for an internal combustion engine according to claim 8, wherein the superimposition increase control is performed only when the current value is high, and the superimposition reduction control is performed only when the set secondary current value is the second current value.
JP2020516979A 2018-05-01 2018-05-01 Ignition system for internal combustion engine Active JP6992170B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017369 WO2019211885A1 (en) 2018-05-01 2018-05-01 Ignition device for internal combustion engines

Publications (2)

Publication Number Publication Date
JPWO2019211885A1 true JPWO2019211885A1 (en) 2021-05-13
JP6992170B2 JP6992170B2 (en) 2022-01-13

Family

ID=68386404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516979A Active JP6992170B2 (en) 2018-05-01 2018-05-01 Ignition system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6992170B2 (en)
WO (1) WO2019211885A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164028A (en) * 1991-12-13 1993-06-29 Hanshin Electric Co Ltd Overlapped discharge type ignition device for internal combustion engine
JP2015017562A (en) * 2013-07-11 2015-01-29 株式会社デンソー Ignition control device
JP2015200254A (en) * 2014-04-10 2015-11-12 株式会社デンソー Ignitor
WO2017183062A1 (en) * 2016-04-22 2017-10-26 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164028A (en) * 1991-12-13 1993-06-29 Hanshin Electric Co Ltd Overlapped discharge type ignition device for internal combustion engine
JP2015017562A (en) * 2013-07-11 2015-01-29 株式会社デンソー Ignition control device
JP2015200254A (en) * 2014-04-10 2015-11-12 株式会社デンソー Ignitor
WO2017183062A1 (en) * 2016-04-22 2017-10-26 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine

Also Published As

Publication number Publication date
WO2019211885A1 (en) 2019-11-07
JP6992170B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP4497027B2 (en) Engine ignition device
JP7012830B2 (en) Ignition system for internal combustion engine
JP6324432B2 (en) Ignition control device and ignition control method for internal combustion engine
JP6273988B2 (en) Ignition device for internal combustion engine
JP6461281B1 (en) Ignition device
JP6773004B2 (en) Ignition system for internal combustion engine
JP6549901B2 (en) Igniter
JP5253144B2 (en) Ignition device for internal combustion engine
JP2018084209A (en) Ignition device for internal combustion engine
JP2014070626A (en) Ignition device of internal combustion engine
JP4952641B2 (en) Ignition system for internal combustion engine
JP6992198B2 (en) Ignition system for internal combustion engine
US9957944B2 (en) Ignition apparatus for internal combustion engine
JP6992170B2 (en) Ignition system for internal combustion engine
JP6627644B2 (en) Ignition control device
WO2019130462A1 (en) Internal combustion engine ignition device
JP6739644B2 (en) Ignition device for internal combustion engine
JP6992174B2 (en) Ignition system for internal combustion engine
US20120293088A1 (en) Ignition apparatus
JP6401011B2 (en) Multiple ignition device for internal combustion engine
JP7408453B2 (en) Ignition system for internal combustion engines
JP2010101212A (en) Ignition device for internal combustion engine
WO2021064851A1 (en) Internal combustion engine ignition device
JP5610456B2 (en) Ignition device for internal combustion engine
JP6214118B2 (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6992170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150