JPWO2019208768A1 - Powder for magnetic core, magnetic core and coil parts using the same - Google Patents

Powder for magnetic core, magnetic core and coil parts using the same Download PDF

Info

Publication number
JPWO2019208768A1
JPWO2019208768A1 JP2019547333A JP2019547333A JPWO2019208768A1 JP WO2019208768 A1 JPWO2019208768 A1 JP WO2019208768A1 JP 2019547333 A JP2019547333 A JP 2019547333A JP 2019547333 A JP2019547333 A JP 2019547333A JP WO2019208768 A1 JPWO2019208768 A1 JP WO2019208768A1
Authority
JP
Japan
Prior art keywords
magnetic core
powder
fesi
magnetic
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019547333A
Other languages
Japanese (ja)
Other versions
JP6673536B1 (en
Inventor
加藤 哲朗
哲朗 加藤
千綿 伸彦
伸彦 千綿
元基 太田
元基 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Application granted granted Critical
Publication of JP6673536B1 publication Critical patent/JP6673536B1/en
Publication of JPWO2019208768A1 publication Critical patent/JPWO2019208768A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Abstract

ナノサイズのFeSi結晶が柱状組織をなす領域を備えた第一のFe基合金の粒子と、前記第一のFe基合金の粒子とは異なる金属組織からなる軟磁性材料の粒子とを含む磁心用粉末。柱状組織は、ほぼ一方向に沿って並んだ複数の線状のFeSi結晶と、その線状のFeSi結晶の間に存在する非晶質相とからなり、線状のFeSi結晶が平行に存在して現れる縞模様の組織となっている。For a magnetic core including particles of a first Fe-based alloy having a region where a nano-sized FeSi crystal has a columnar structure, and particles of a soft magnetic material having a metal structure different from the particles of the first Fe-based alloy Powder. The columnar structure is composed of a plurality of linear FeSi crystals arranged along substantially one direction and an amorphous phase existing between the linear FeSi crystals, and the linear FeSi crystals exist in parallel. It has a striped pattern that appears.

Description

本発明は、スイッチング電源等に用いられるトランス、チョークコイル、リアクトル等に好適な磁心用粉末、それを用いた磁心及びコイル部品に関する。   The present invention relates to a magnetic core powder suitable for a transformer, a choke coil, a reactor and the like used in a switching power supply and the like, and a magnetic core and a coil component using the powder.

スイッチング電源は、EV(電気自動車)、HEV(ハイブリッド車)、PHEV(プラグインハイブリッド車)、移動体通信機器(携帯電話、スマートフォン等)、パーソナルコンピュータ、サーバー等の電源供給が必要な様々な電子機器の電源回路で用いられ、小型・軽量化とともに、省エネルギーの観点から低消費電力であることが求められるようになってきた。   Switching power supplies include various electronic devices that require power supply, such as EVs (electric vehicles), HEVs (hybrid vehicles), PHEVs (plug-in hybrid vehicles), mobile communication devices (cell phones, smartphones, etc.), personal computers, servers, etc. It is used in the power supply circuit of equipment, and is required to have low power consumption from the viewpoint of energy saving as well as size and weight reduction.

また、電子機器に使用されるLSI(大規模集積回路)の微細配線化によるトランジスタの高集積化に伴って、トランジスタの耐圧が低下するとともに消費電流が増加し、動作電圧の低電圧化及び大電流化が進んでいる。それに伴って、LSIに電源を供給するDC-DCコンバータ等の電源回路もまた、LSIの動作電圧の低電圧化及び大電流化への対応が必要となる。例えば、LSIの動作電圧の低電圧化によって正常に動作する電圧範囲が狭くなるので、電源回路からの供給電圧の変動(リップル)によってLSIの電源電圧範囲を上回ったり下回ったりしてしまうと、LSIの不安定動作を招くため、電源回路のスイッチング周波数を高める対策が採られるようになった。   In addition, with the high integration of transistors due to the fine wiring of LSIs (Large Scale Integrated Circuits) used in electronic devices, the breakdown voltage of the transistors decreases and the current consumption increases, which lowers the operating voltage and increases the operating voltage. Currentization is progressing. Along with this, a power supply circuit such as a DC-DC converter that supplies power to the LSI is also required to cope with a reduction in the operating voltage of the LSI and a large current. For example, the lower operating voltage of the LSI narrows the voltage range in which it operates normally, so if the supply voltage from the power supply circuit fluctuates (ripple), it may exceed or fall below the power supply voltage range of the LSI. Therefore, measures to increase the switching frequency of the power supply circuit have come to be taken because of the unstable operation of the power supply circuit.

電源回路の高周波化や大電流化に対して、コイル部品に用いる磁心に、高周波数領域において高励磁磁束密度で動作し、かつ小型化に好適なFe基非晶質合金、ナノ結晶合金、純鉄、Fe-Si、Fe-Si-Cr等の金属系の軟磁性材料の粉末を採用する場合が多い。軟磁性材料の粉末としては、磁心とした時に磁気特性の形状異方性が生じ難く、また磁心の成形において粉末の流動性が良好な、アトマイズ法により得られる粒状粉が好適に用いられる。   Fe-based amorphous alloys, nanocrystalline alloys, pure alloys, which are suitable for miniaturization, operate in magnetic cores used for coil components with high excitation magnetic flux density in high frequency regions against high frequencies and large currents in power circuits. Powders of metal-based soft magnetic materials such as iron, Fe-Si, and Fe-Si-Cr are often used. As the powder of the soft magnetic material, a granular powder obtained by the atomization method, which is less likely to cause shape anisotropy in magnetic properties when formed into a magnetic core, and has good fluidity in molding the magnetic core, is preferably used.

前記金属系の軟磁性材料の中でも、飽和磁束密度が高く、保磁力が小さく、かつ低磁歪化が可能な軟磁性材料として、Fe基合金であって、微細なbcc構造のFeSi結晶を組織中に有するナノ結晶合金が従来から知られている。一般にナノ結晶合金は、均一で超微細な結晶粒(例えば粒径が約10 nm)を有し、主相はbcc構造のFeSi結晶で、その周囲に非晶質相が残存する組織となっている(日立金属株式会社、ファインメット(登録商標)ミクロ構造、[平成30年4月18日検索]、インターネット<URL: http://www.hitachi-metals.co.jp/product/finemet/fp04.htm>)。例えば、特開2004-349585号は、このようなナノ結晶合金を水アトマイズ法により粉末状として得ることを開示している。また、特開2016-25352号及び特開2017-110256号は、ナノ結晶合金の粉末を、ガスアトマイズ法及び高速回転水流アトマイズ法で作製することを開示している。   Among the metal-based soft magnetic materials, the saturation magnetic flux density is high, the coercive force is small, and as a soft magnetic material capable of low magnetostriction, a Fe-based alloy, FeSi crystals having a fine bcc structure in the structure The nanocrystalline alloys of the above are conventionally known. In general, nanocrystalline alloys have uniform and ultra-fine crystal grains (for example, grain size of about 10 nm), the main phase is FeSi crystals of bcc structure, and the structure has an amorphous phase around them. (Hitachi Metals Co., Ltd., Finemet (registered trademark) Microstructure, [April 18, 2018 search], Internet <URL: http://www.hitachi-metals.co.jp/product/finemet/fp04 .htm>). For example, Japanese Patent Laid-Open No. 2004-349585 discloses that such a nanocrystalline alloy is obtained as a powder by a water atomizing method. Further, JP-A-2016-25352 and JP-A-2017-110256 disclose that nanocrystalline alloy powder is produced by a gas atomizing method and a high-speed rotating water atomizing method.

コイル部品に用いる磁心は、直流電流が重畳した交流電流で励磁された磁心のインダクタンスが、高い電流値まで初期値を維持し、その低下が抑えられる、即ち、重畳特性に優れることが求められる。   A magnetic core used for a coil component is required to have an inductance of the magnetic core excited by an alternating current superposed with a direct current, which maintains an initial value up to a high current value, and whose decrease is suppressed, that is, an excellent superposition characteristic.

ナノ結晶合金は、ランダムに配向した強磁性相のFeSi結晶の粒が分散した組織を有し、結晶粒径が磁気相関長(およそ磁壁幅程度で、数十 nm)よりも小さく、見かけ上の結晶磁気異方性がゼロに近い状態となり、外部磁場に対する感受性が高い特徴を持つ。このようなナノ結晶合金を使用した磁心は、透磁率が高く、損失を小さくすることができるけれども、一方ではコイル部品として使用可能な最大電流値が小さく、直流重畳特性の改善が求められていた。   Nanocrystalline alloy has a structure in which randomly oriented FeSi crystal grains in a ferromagnetic phase are dispersed, and the crystal grain size is smaller than the magnetic correlation length (approximately the domain wall width, which is several tens of nm). The crystal magnetic anisotropy is in a state close to zero, and is highly sensitive to an external magnetic field. A magnetic core using such a nanocrystalline alloy has high magnetic permeability and can reduce loss, but on the other hand, the maximum current value that can be used as a coil component is small, and improvement in DC superposition characteristics has been required. .

本発明は上記課題に鑑みたものであり、磁心として用いられたときに直流重畳特性を向上し得る磁心用粉末、この磁心用粉末を用いた磁心及びコイル部品を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic core powder capable of improving the DC superposition characteristics when used as a magnetic core, and a magnetic core and a coil component using the magnetic core powder.

本発明の一態様は、ナノサイズのFeSi結晶が柱状組織をなす領域を備えた第一のFe基合金の粒子と、前記第一のFe基合金の粒子とは異なる金属組織からなる軟磁性材料の粒子とを含む磁心用粉末である。   One aspect of the present invention is a soft magnetic material comprising a first Fe-based alloy particle having a region where a nano-sized FeSi crystal has a columnar structure, and a metal structure different from the first Fe-based alloy particle. It is a powder for magnetic cores containing particles of

前記磁心用粉末において、第一のFe基合金の粒子は、柱状組織をなす領域においてFeSi結晶の伸長方向が異なる複数の領域を備えるのが好ましい。   In the magnetic core powder, it is preferable that the particles of the first Fe-based alloy include a plurality of regions having different column directions of FeSi crystals in different extending directions.

前記磁心用粉末において、ナノサイズのFeSi結晶が粒状組織をなす領域を備えた第二のFe基合金の粒子をさらに含むのが好ましい。   It is preferable that the magnetic core powder further contains particles of a second Fe-based alloy having regions in which nano-sized FeSi crystals form a granular structure.

前記磁心用粉末において、CuのKα特性X線を用いて測定したX線回折スペクトルにおける、2θ=45°付近のbcc構造のFeSi結晶の回折ピークのピーク強度P1に対する、2θ=56.5°付近のbcc構造のFe2B結晶の回折ピークのピーク強度P2のピーク強度比(P2/P1)は0.05以下であるのが好ましい。In the magnetic powder, in the X-ray diffraction spectrum measured using Kα characteristic X-ray of Cu, with respect to the peak intensity P1 of the diffraction peak of the FeSi crystal having the bcc structure near 2θ = 45 °, bcc around 2θ = 56.5 ° The peak intensity ratio (P2 / P1) of the peak intensity P2 of the diffraction peak of the Fe 2 B crystal of the structure is preferably 0.05 or less.

前記磁心用粉末において、印加磁界40 kA/mにおける保磁力は350 A/m以下であるのが好ましい。   In the magnetic core powder, the coercive force at an applied magnetic field of 40 kA / m is preferably 350 A / m or less.

前記磁心用粉末において、前記第一のFe基合金の粒子は、合金組成:Fe100-a-b-c-d-e-f-g-hCuaSibBcMdCreSnfAggCh(ただし、a、b、c、d、e、f、g及びhは原子%を表し、0.8≦a≦2.0、2.0≦b≦12.0、11.0≦c≦17.0、0≦d≦1.0、0≦e≦2.0、0≦f≦1.5、0≦g≦0.2、0≦h≦0.4を満たす数値であり、MはNb,Ti,Zr,Hf,V,Ta,及びMoからなる群から選択される1種以上の元素である。)を有するのが好ましい。In the powder for magnetic core, the particles of the first Fe-based alloy have an alloy composition: Fe 100-abcdefgh Cu a Si b B c M d Cr e Sn f Ag g C h (however, a, b, c, d , E, f, g and h represent atomic%, 0.8 ≦ a ≦ 2.0, 2.0 ≦ b ≦ 12.0, 11.0 ≦ c ≦ 17.0, 0 ≦ d ≦ 1.0, 0 ≦ e ≦ 2.0, 0 ≦ f ≦ 1.5, Are numerical values that satisfy 0 ≦ g ≦ 0.2 and 0 ≦ h ≦ 0.4, and M is one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta, and Mo.) It is preferable to have.

本発明の別の一態様は、前記磁心用粉末をバインダで結合してなる磁心である。   Another aspect of the present invention is a magnetic core formed by binding the powder for magnetic core with a binder.

発明のさらに別の一態様は、前記磁心とコイルとを含むコイル部品である。   Yet another aspect of the invention is a coil component including the magnetic core and a coil.

本発明の磁心用粉末は、磁心として用いられたときに、直流重畳特性を向上させることが可能である。また、この磁心用粉末を用いた磁心及びコイル部品を提供することができる。   The powder for magnetic core of the present invention can improve the direct current superposition characteristics when used as a magnetic core. Further, it is possible to provide a magnetic core and a coil component using the magnetic powder.

本発明の一実施例に係る磁心用粉末に含まれる粒子の組織構造を説明するための模式図である。It is a schematic diagram for demonstrating the tissue structure of the particle contained in the powder for magnetic cores which concerns on one Example of this invention. 図1の組織構造における、線状のFeSi結晶の構造を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the structure of a linear FeSi crystal in the texture structure of FIG. 本発明の一実施例に係る磁心用粉末(No.1及び2)と参考例の磁心用粉末(No.*3)の粒度分布を示すグラフである。3 is a graph showing particle size distributions of magnetic core powders (Nos. 1 and 2) according to one example of the present invention and magnetic core powders (No. * 3) of the reference example. 本発明の一実施例に係る磁心用粉末(No.1及び2)と参考例の磁心用粉末(No.*3)のX線回折スペクトルを示すグラフである。3 is a graph showing X-ray diffraction spectra of magnetic core powders (No. 1 and 2) according to one example of the present invention and magnetic core powders (No. * 3) of the reference example. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面を観察したTEM写真である。FIG. 3 is a TEM photograph observing a particle cross section of the magnetic core powder (No. 1) of the present invention having a particle diameter corresponding to d90. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面を観察した他の視野のTEM写真である。FIG. 3 is a TEM photograph of another field of view in which a particle cross section of the magnetic core powder (No. 1) of the present invention having a particle diameter corresponding to d90 is observed. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面のSi(ケイ素)元素組成マッピング写真である。FIG. 3 is a Si (silicon) element composition mapping photograph of a particle cross section of the magnetic core powder (No. 1) of the present invention having a particle diameter of d90. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面のB(ホウ素)元素組成マッピング写真である。2 is a B (boron) elemental composition mapping photograph of a particle cross section of a magnetic core powder (No. 1) of the present invention having a particle diameter of d90. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面のCu(銅)元素組成マッピング写真である。3 is a photograph of a Cu (copper) elemental composition mapping of a particle cross section having a particle diameter corresponding to d90 of the magnetic core powder (No. 1) of the present invention.

以下、本発明の一実施形態に係る磁心用粉末、及びそれを用いた磁心、並びにコイル部品について具体的に説明する。ただし、本発明はこれらに限定されるものではない。なお、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大又は縮小等して図示した部分がある。また説明において示される寸法や形状、構成部材の相対的な位置関係等は特に断わりの記載がない限りは、それらのみに限定されない。さらに説明においては、同一の名称、符号については同一又は同質の部材を示していて、図示していても詳細説明を省略する場合がある。   Hereinafter, a powder for a magnetic core according to an embodiment of the present invention, a magnetic core using the powder, and a coil component will be specifically described. However, the present invention is not limited to these. In addition, in some or all of the drawings, portions unnecessary for description are omitted, and there are portions illustrated in an enlarged or reduced form for ease of description. Further, the dimensions and shapes shown in the description, the relative positional relationship of the constituent members, and the like are not limited to these unless otherwise specified. Further, in the description, the same name or reference numeral indicates the same or the same member, and the detailed description may be omitted even if it is illustrated.

[1]磁心用粉末
本発明は、発明者等がナノ結晶軟磁性材料について鋭意研究する中で、新規な結晶組織構造を有するナノ結晶合金を見出し、その特性を活用する検討の中で至ったものである。発明の理解を容易にするため、新規な結晶組織構造を有するナノ結晶合金について詳細に説明する。
[1] Powder for magnetic core The present invention has led to the discovery of a nanocrystalline alloy having a novel crystallographic structure structure while the inventors have been earnestly researching a nanocrystalline soft magnetic material, and a study to utilize its properties. It is a thing. In order to facilitate understanding of the invention, a nanocrystalline alloy having a novel crystallographic structure will be described in detail.

(1)組織構造
従来のナノ結晶合金は、非晶質相からCuクラスター(Cuに富む領域)を起点に結晶化させることによって得られ、平均結晶粒径が例えば30 nm以下であって、ランダムに配向した強磁性相のFeSi結晶の粒が非晶質相中に分散した組織となっている。つまり、従来のナノ結晶合金では、ナノサイズのFeSi結晶が粒状組織をなしている。FeSi結晶の粒成長は任意の方向に起きてランダムな析出となり、規則性を持った析出形態とはならない。なお、ナノ結晶(ナノサイズの結晶)とは、一般的には平均結晶粒径が100 nm以下のものをいう。
(1) Texture Structure Conventional nanocrystalline alloys are obtained by crystallizing from an amorphous phase with Cu clusters (Cu-rich region) as the starting point, and the average crystal grain size is, for example, 30 nm or less. The structure is such that FeSi crystal grains of the ferromagnetic phase oriented in the direction are dispersed in the amorphous phase. That is, in the conventional nanocrystalline alloy, nanosized FeSi crystals have a granular structure. Grain growth of FeSi crystals occurs in arbitrary directions and becomes random precipitation, and does not have a regular precipitation morphology. The nanocrystals (nanosize crystals) generally mean those having an average crystal grain size of 100 nm or less.

一方、新規な組織構造のナノ結晶合金は、ナノサイズのFeSi結晶が柱状組織をなしている。この柱状組織とは、非晶質相中にほぼ一方向に沿って並んだ複数の線状のFeSi結晶が間隔をもって存在している組織である。図1はナノサイズのFeSi結晶が柱状組織をなしている状態を説明するための模式図である。この柱状組織を有するナノ結晶合金100では、線状のFeSi結晶200が平行線状に存在して現れる縞模様の組織となっていて、その線状のFeSi結晶200の間は非晶質相250となっている。   On the other hand, in the nanocrystalline alloy with a novel texture, nanosized FeSi crystals form a columnar texture. The columnar structure is a structure in which a plurality of linear FeSi crystals lined up along substantially one direction are present at intervals in the amorphous phase. FIG. 1 is a schematic diagram for explaining a state in which nano-sized FeSi crystals have a columnar structure. In the nanocrystalline alloy 100 having this columnar structure, the linear FeSi crystals 200 are present in parallel lines and appear as a striped structure, and the amorphous phase 250 exists between the linear FeSi crystals 200. Has become.

図2は図1の組織構造にて観察される線状のFeSi結晶200の構造を説明するための模式図である。線状のFeSi結晶200は、柱状構造で多数の括れを備えた数珠形を有している。括れの間の部分は略楕円球状であって、複数の略楕円球状部が連接して柱状をなしている。略楕円球状部の短径はおよそ10 nmから20 nm、長径が20 nmから40 nmのナノサイズである。線状のFeSi結晶200の長さは様々だが、例えば200 nm以上であって、その長さは合金組織内の応力分布の影響を受けて変動すると考えられる。以下、この新規な組織構造を柱状組織と呼び、従来の組織構造を粒状組織と呼ぶ場合がある。   FIG. 2 is a schematic diagram for explaining the structure of the linear FeSi crystal 200 observed in the structure structure of FIG. The linear FeSi crystal 200 has a bead shape having a columnar structure and a large number of constrictions. The portion between the constrictions has a substantially elliptic spherical shape, and a plurality of substantially elliptic spherical portions are connected to form a columnar shape. The short diameter of the approximately elliptical spherical part is about 10 to 20 nm, and the long diameter is nano-sized with 20 to 40 nm. The length of the linear FeSi crystal 200 varies, but is, for example, 200 nm or more, and it is considered that the length varies due to the influence of the stress distribution in the alloy structure. Hereinafter, this new structure may be referred to as a columnar structure, and the conventional structure may be referred to as a granular structure.

粒状組織のFeSi結晶を備える従来のナノ結晶組織では、前述のように、見かけ上の結晶磁気異方性がゼロに近い状態となり、外部磁場に対する感受性が高く、このような結晶組織を有するナノ結晶合金を使用した磁心は透磁率が高く、損失も小さいといった特徴がある。   In the conventional nanocrystal structure including the FeSi crystal having a granular structure, as described above, the apparent crystal magnetic anisotropy is in a state close to zero, and the sensitivity to an external magnetic field is high. A magnetic core made of an alloy is characterized by high magnetic permeability and small loss.

一方、新規な組織構造である柱状組織では、FeSi結晶は幅に対して伸長方向の長さが長い長尺の柱状構造である。柱状組織のFeSi結晶を有する構造であると、従来の粒状組織のFeSi結晶を有する構造である場合と比べて大きな磁気異方性が発現して、保磁力の増加、透磁率の低下、損失の増加を招き、所望の軟磁気特性が得られないといった問題が予測される。このような問題に対して、本発明者等は、合金組織中に、FeSi結晶の伸長方向が異なる複数の領域を有するようにする、すなわち、それぞれの領域ではFeSi結晶の伸長方向が揃っており規則性を有するが、領域ごとにFeSi結晶の伸長方向が異なり、隣接する領域間では線状のFeSi結晶が不連続であり、合金全体でみれば規則性を有さない結晶組織とすることで改善し得ることを見出した。   On the other hand, in the columnar structure which is a novel structure structure, the FeSi crystal is a long columnar structure having a length in the extension direction longer than its width. A structure having a FeSi crystal having a columnar structure exhibits greater magnetic anisotropy than a structure having a FeSi crystal having a conventional granular structure, which increases coercive force, decreases magnetic permeability, and causes loss. It is expected that there will be an increase and that the desired soft magnetic characteristics cannot be obtained. For such a problem, the present inventors, in the alloy structure, to have a plurality of regions having different stretching directions of FeSi crystals, that is, the stretching directions of the FeSi crystals are aligned in each region. Although it has regularity, the elongation direction of the FeSi crystal is different in each region, the linear FeSi crystal is discontinuous between adjacent regions, and by making the crystal structure with no regularity in the whole alloy We found that it could be improved.

また柱状組織のFeSi結晶を有すると磁気モーメントは伸長方向に配向しやすく、また組織がナノオーダであるため磁場への高い感受性が残されたものとなる。磁化容易軸方向に向くFeの磁気モーメントを回転させる過程を、磁化容易軸につながれたばねを用いて形象すると、線状のFeSi結晶の配向性と磁場への感受性との兼ね合いで、伸長方向の磁場への高い飽和性を有するため、垂直方向の磁場に対して磁気モーメントは磁場と並行になろうと回転するが、その回転はばねによって制限され、また磁場が除かれると速やかに磁化容易軸方向に向くと考えられる。このような磁気モーメントの磁場に対する応答がリニアで、磁場に対する感受性が高磁場まで持続する特性によれば、柱状組織のFeSi結晶を有するナノ結晶合金を使用した磁心は、FeSi結晶による大きな飽和磁化が得られるとともに、大電流(高磁場)まで高い増分透磁率μΔを持続することができると考えられる。   In addition, if the FeSi crystal has a columnar structure, the magnetic moment tends to be oriented in the elongation direction, and since the structure is in the nano-order, high sensitivity to the magnetic field remains. When the process of rotating the magnetic moment of Fe in the direction of the easy axis of magnetization is modeled by using a spring connected to the easy axis of magnetization, the magnetic field in the stretching direction is balanced by the orientation of the linear FeSi crystal and the sensitivity to the magnetic field. Due to its high saturation property, the magnetic moment rotates in parallel with the magnetic field in the vertical magnetic field, but its rotation is limited by the spring, and when the magnetic field is removed, the magnetic moment rapidly moves in the easy axis direction. It is thought to be suitable. According to the characteristics that the response of the magnetic moment to the magnetic field is linear and the sensitivity to the magnetic field lasts up to a high magnetic field, a magnetic core using a nanocrystalline alloy having a FeSi crystal with a columnar structure has a large saturation magnetization due to the FeSi crystal. It is considered that the high incremental magnetic permeability μΔ can be maintained up to a large current (high magnetic field) while being obtained.

(2)磁心用粉末
このような知見を基に、本発明者等は、さらに検討を進める中で、新規な柱状組織を備えるナノ結晶合金の粉末と、さらに従来の粒状組織を備えるナノ結晶合金の粉末及び/又は他の軟磁性材料の粉末との混合粉末にすることで、それぞれの異なる磁気的特徴を活用・補完し、磁心として用いた場合に、磁心損失の増加、透磁率の低下を抑えながら、重畳特性を改善する磁心用粉末が得られることを見出した。
(2) Powder for magnetic core Based on such knowledge, the inventors of the present invention, while proceeding with further studies, powder of a nanocrystalline alloy having a novel columnar structure, and a nanocrystalline alloy having a conventional granular structure. Powder and / or powder of other soft magnetic material is used as a mixed powder to utilize / complement each different magnetic characteristic, and when used as a magnetic core, increase in magnetic core loss and decrease in magnetic permeability It has been found that a powder for magnetic cores that improves the superimposition characteristics can be obtained while suppressing.

ナノ結晶合金における柱状組織の出現のメカニズムについては明確になっていないが、柱状組織のFeSi結晶は従来の粒状組織のFeSi結晶と同様に、非晶質相からCuクラスターを起点にFeSi結晶を析出(結晶化)すると考えられる。これまでの検討で、従来の粒状組織のFeSi結晶は、専ら熱処理で非晶質相から形成されるが、柱状組織のFeSi結晶は溶湯が冷却されて合金化される冷却過程で形成され、この点で従来のナノ結晶の組織形成とは異なる。   Although the mechanism of the appearance of columnar structures in nanocrystalline alloys has not been clarified, FeSi crystals with columnar structures precipitate FeSi crystals starting from Cu clusters in the amorphous phase, similar to FeSi crystals with conventional granular structures. (Crystallization). In the study so far, the conventional FeSi crystals having a granular structure are exclusively formed from the amorphous phase by heat treatment, whereas the FeSi crystals having a columnar structure are formed in the cooling process in which the molten metal is cooled and alloyed. This is different from the conventional nanocrystal structure formation.

柱状組織の形成では、合金作製時の冷却速度や合金内での冷却速度の分布(合金粒子表層部と中心部との速度勾配)が重要で、合金組成によっても変わるが、合金の非晶質化のためには、例えば、溶湯を103℃/秒程度以上の速度で冷却可能であること、及び(サブμm)3〜(数μm)3の大きさの体積単位で、冷却の過程で合金内部に応力分布の異なる領域を生じさせることが求められる。特に、溶湯の冷却過程における500℃付近での冷却速度が影響すると考えられる。In forming the columnar structure, the cooling rate during alloy production and the distribution of the cooling rate within the alloy (velocity gradient between the surface layer part and the central part of the alloy particles) are important, and they vary depending on the alloy composition. In order to achieve this, for example, the molten metal can be cooled at a rate of about 10 3 ° C / sec or more, and (sub-μm) 3 to (several μm) in a volume unit of 3 It is required to generate regions having different stress distributions inside the alloy. In particular, it is considered that the cooling rate at around 500 ° C. affects the cooling process of the molten metal.

柱状組織のFeSi結晶を有するナノ結晶合金の粉末の作製においては、上述の要求を満足し得るなら製法、条件等は限定されない。例えば、従来の粒状組織のFeSi結晶を有するナノ結晶合金の粉末の作製に使用される、ガスアトマイズ法、水アトマイズ法、高速回転水流アトマイズ法などの水やガスを溶湯の粉砕手段とする方法を採用しても良いし、火炎を超音速又は音速に近い速度でフレームジェットとして噴射する高速燃焼炎アトマイズ法などのアトマイズ法で粉末化しても良い。   In the preparation of the nanocrystalline alloy powder having the FeSi crystals having the columnar structure, the manufacturing method, conditions, etc. are not limited as long as the above requirements can be satisfied. For example, the conventional method used to prepare a nanocrystalline alloy powder having FeSi crystals having a granular structure, such as a gas atomizing method, a water atomizing method, or a high-speed water jet atomizing method, which uses water or gas as a means for pulverizing a molten metal Alternatively, it may be powdered by an atomizing method such as a high-speed combustion flame atomizing method in which a flame is jetted as a flame jet at a supersonic speed or a speed close to the sonic speed.

本発明者等の検討によれば、柱状組織を有するナノ結晶合金の粒子の作製において、特には高速燃焼炎アトマイズ法が好適であることが分かった。高速燃焼炎アトマイズ法は他のアトマイズ法ほど一般的ではないが、例えば、特開2014-136807号等に記載される。高速燃焼炎アトマイズ法では、高速燃焼器による高速燃焼炎で溶湯を粉末状とし、液体窒素、液化炭酸ガスなどの冷却媒体を噴射可能な複数の冷却ノズルを有する急速冷却機構により冷却する。   According to the study by the present inventors, it has been found that the high-speed combustion flame atomization method is particularly suitable for the production of nanocrystalline alloy particles having a columnar structure. The high-speed combustion flame atomizing method is not so general as other atomizing methods, but is described in, for example, JP-A-2014-136807. In the high-speed combustion flame atomizing method, the molten metal is powdered by a high-speed combustion flame from a high-speed combustor and cooled by a rapid cooling mechanism having a plurality of cooling nozzles capable of injecting a cooling medium such as liquid nitrogen or liquefied carbon dioxide gas.

アトマイズ法で得られる粒子は球形に近く、冷却速度は粒径に大きく依存することが知られている。大気よりも熱交換効率が高い液体中や気体中(例えば、水、He又は水蒸気)を粉砕された溶湯が高速で通過すると、その表面は高い冷却速度で冷却される。表面から効率よく抜熱されると、熱伝導に従い内部も冷却されるが、冷却速度にはばらつきがあって、先に固まる表層部と遅れて固まる中心部とで体積差が発生する。得られる合金粒子が相対的に大径である程に、冷却速度のばらつきは顕著に現れる。   It is known that the particles obtained by the atomization method have a substantially spherical shape, and the cooling rate greatly depends on the particle size. When a crushed molten metal passes through a liquid or gas (for example, water, He or steam) having a higher heat exchange efficiency than the atmosphere at a high speed, the surface thereof is cooled at a high cooling rate. When the heat is efficiently removed from the surface, the inside is also cooled according to heat conduction, but the cooling rate varies, and a volume difference occurs between the surface layer portion that first solidifies and the central portion that solidifies later. The larger the diameter of the obtained alloy particles, the more remarkable the variation in the cooling rate.

上述の高速燃焼炎アトマイズ法によれば、冷却過程の初期の段階では、粉砕された溶湯は急冷されて過冷却ガラス状態の合金となっていて、体積差による歪の自己緩和のために、冷却過程の粒子には、(サブμm)3〜(数μm)3の大きさの体積単位で応力分布の異なる領域が生じる。そして各領域は、周囲の領域からの拘束力により相互に応力を受けた状態となっていると考えられる。さらに冷却過程で結晶相と非晶質相とに分離する際に、応力が印加された状態の非晶質相からCuクラスターを起点にFeSi結晶の析出が開始すると、それを引き金に、非晶質相の原子移動を伴うクリープ挙動の効果もあって、FeSi結晶の端部が次の結晶粒形成を引き起こし、応力方向に結晶粒成長が進行して、原子レベルで連続的に格子がつながった数珠形に結晶粒成長が起きると考えられる。According to the above-mentioned high-speed combustion flame atomizing method, in the initial stage of the cooling process, the crushed molten metal is rapidly cooled into an alloy in a supercooled glass state, which is cooled for self-relaxation of strain due to volume difference. In the particles in the process, regions having different stress distributions are produced in volume units of (sub-μm) 3 to (several μm) 3 . It is considered that the respective regions are in a state of being mutually stressed by the restraining force from the surrounding regions. Further, when the crystalline phase and the amorphous phase are separated in the cooling process, when the precipitation of FeSi crystal starts from the Cu cluster as the starting point from the amorphous phase in the state where the stress is applied, the amorphous phase is triggered by it. Due to the effect of creep behavior accompanied by atomic migration of the crystalline phase, the edge of the FeSi crystal caused the formation of the next crystal grain, the crystal grain growth proceeded in the stress direction, and the lattice was continuously connected at the atomic level. It is considered that crystal growth occurs in a bead shape.

また本発明者等の検討によれば、高速燃焼炎アトマイズ法では、柱状組織の粒子と粒状組織の粒子とを同時に作製できることが判明している。高速燃焼炎アトマイズ法では、粒子の粒径が典型的には10μm以下で、同じ組成では単ロール法により作製されたリボンよりも冷却速度が高くなる傾向が観察されている。粉末化時の冷却速度が速い場合は、粒内の冷却速度分布が抑えられ、ひずみや圧力分布も小さくなるため、得られる粒子の組織は実質的に非晶質相となって柱状組織のFeSi結晶は得られ難い。それを従来のナノ結晶合金のように熱処理すると、その組織は従来と同様にFeSi結晶が粒状組織となる。   Further, according to the study by the present inventors, it has been found that the particles having a columnar structure and the particles having a granular structure can be simultaneously produced by the high-speed combustion flame atomizing method. In the high-speed combustion flame atomizing method, it has been observed that the particle size is typically 10 μm or less, and that the cooling rate tends to be higher than that of the ribbon prepared by the single roll method with the same composition. When the cooling rate during pulverization is fast, the cooling rate distribution in the grains is suppressed, and the strain and pressure distribution are also reduced, so the resulting grain structure becomes a substantially amorphous phase and the columnar structure of FeSi Crystals are difficult to obtain. When it is heat-treated like a conventional nanocrystalline alloy, its structure becomes FeSi crystals having a granular structure as in the conventional structure.

粒子の粒径が10μmを超えて、典型的には20μm程度になると、内部と外部との冷却速度の差が大きくなり、冷却時の体積変化の時間差に由来したひずみが蓄積され、さらに冷却速度が相対的に遅い内部から柱状組織のFeSi結晶が析出し易い。   When the particle size exceeds 10 μm, typically around 20 μm, the difference in cooling rate between the inside and the outside becomes large, and the strain due to the time difference of the volume change during cooling is accumulated. However, FeSi crystals having a columnar structure are likely to precipitate from the relatively slow inside.

このような知見に基づけば、少なくとも粒径が10〜20μmの粒子を含む粉末であれば、それが一度のアトマイズ処理で得た粉末であっても、柱状組織のFeSi結晶を有するナノ結晶合金の粉末と粒状組織のFeSi結晶を有するナノ結晶合金の粉末とを含む粉末とすることが可能である。また、それを分級すれば柱状組織のナノ結晶合金の粉末と粒状組織のナノ結晶合金の粉末との比率を異ならせることも可能である。   Based on such knowledge, as long as the powder contains particles having a particle size of at least 10 to 20 μm, even if it is a powder obtained by a single atomization treatment, it is possible to obtain a nanocrystalline alloy having a FeSi crystal with a columnar structure. A powder containing the powder and a powder of a nanocrystalline alloy having FeSi crystals having a granular structure can be used. Further, if the particles are classified, the ratio of the nanocrystalline alloy powder having a columnar structure and the nanocrystalline alloy powder having a granular structure can be made different.

柱状組織のFeSi結晶を有するナノ結晶合金には、磁心用粉末が要求される磁気特性を満足する範囲であれば、一部にFeSi結晶以外の結晶相を含んでいても良い。FeSi結晶以外の結晶相とは、結晶磁気異方性が高く、軟磁気特性を悪化させる相と考えられえているFe2B結晶が例示される。例えば、後述するbcc構造のFeSi結晶の回折ピークのピーク強度P1に対する、bcc構造のFe2B結晶の回折ピークのピーク強度P2のピーク強度比(P2/P1)で規定すれば、そのピーク強度比(P2/P1)は0.05以下であるのが好ましい。優れた磁気特性の結晶質の磁心用粉末を得るにはピーク強度比(P2/P1)が0.03以下であるのが好ましく、ピーク強度P2が測定のノイズレベル以下の実質0(ゼロ)であるのが望ましい。The nanocrystalline alloy having FeSi crystals having a columnar structure may partially include a crystalline phase other than FeSi crystals as long as the magnetic properties required of the magnetic core powder are satisfied. The crystal phase other than the FeSi crystal is exemplified by Fe 2 B crystal which has a high magnetocrystalline anisotropy and is considered to be a phase which deteriorates the soft magnetic characteristics. For example, the peak intensity ratio (P2 / P1) of the peak intensity P2 of the diffraction peak of the Fe 2 B crystal of the bcc structure to the peak intensity P1 of the diffraction peak of the FeSi crystal of the bcc structure described below (P2 / P1) (P2 / P1) is preferably 0.05 or less. In order to obtain a crystalline magnetic core powder with excellent magnetic properties, the peak intensity ratio (P2 / P1) is preferably 0.03 or less, and the peak intensity P2 is substantially 0 (zero) below the measurement noise level. Is desirable.

本発明の磁心用粉末は、予め準備した粒状組織のナノ結晶合金の粉末及び/又は他の軟磁性材料の粉末と、柱状組織のナノ結晶合金の粉末とを混合したものでも良いし、結晶化後に粒状組織のナノ結晶合金となる粉末と、柱状組織のナノ結晶合金の粉末とを混合した粉末に、結晶化のための熱処理を施したものでも良い。なお、ここで結晶化のための熱処理は、粒状組織のナノ結晶合金とするために行うものである。   The magnetic core powder of the present invention may be a mixture of a nanocrystalline alloy powder having a granular structure and / or a powder of another soft magnetic material prepared in advance, and a powder of a nanocrystalline alloy having a columnar structure, or may be crystallized. A powder obtained by mixing a powder which later becomes a nanocrystalline alloy having a granular structure and a powder of a nanocrystalline alloy having a columnar structure and which has been subjected to a heat treatment for crystallization may be used. The heat treatment for crystallization is performed to obtain a nanocrystalline alloy having a granular structure.

(3)熱処理
結晶化後に粒状組織のナノ結晶合金となる粉末と、柱状組織のナノ結晶合金の粉末とを混合した粉末を熱処理する場合、熱処理に使用する炉は600℃近傍まで温度制御が可能な加熱炉であれば、どのようなものでも特に問題なく使用することができる。例えば、バッチ式の電気炉、メッシュベルト式の連続電気炉により行うことができる。酸化を防ぐのであれば雰囲気調整が可能であるものが好ましい。
(3) Heat treatment When heat-treating a powder that is a mixture of a powder that becomes a nanocrystalline alloy with a grain structure after crystallization and a powder of a nanocrystalline alloy with a columnar structure, the furnace used for the heat treatment can control the temperature up to around 600 ° C. Any heating furnace can be used without any particular problem. For example, it can be carried out by a batch type electric furnace or a mesh belt type continuous electric furnace. It is preferable that the atmosphere can be adjusted if oxidation is prevented.

このような熱処理における熱処理条件は、柱状組織のナノ結晶合金にFeSi結晶以外のFe2B結晶など、軟磁気特性を劣化させる結晶相を増加させることが無い適切な設定であれば良い。熱処理温度は、粒状組織となるナノ結晶合金の結晶化開始温度に基づいて適宜設定され得る。なお結晶化開始温度は、示差走査熱量分析装置(DSC:Differential Scanning Calorimeter)を用い、室温(RT)から600℃の温度範囲にて、600℃/hrの昇温速度で粉末の熱分析を行うことにより測定することができる。熱処理温度は、粒状組織となるナノ結晶合金の結晶化温度にもよるが、350〜450℃、好ましくは390〜430℃の範囲とするのが望ましい。熱処理温度は、昇温の後、最高到達温度のことであり、この温度を所定の時間保持する場合、その保持温度でもある。The heat treatment conditions in such heat treatment may be set appropriately so as not to increase the crystal phase that deteriorates the soft magnetic characteristics such as Fe 2 B crystal other than FeSi crystal in the nanocrystalline alloy having a columnar structure. The heat treatment temperature can be appropriately set based on the crystallization start temperature of the nanocrystalline alloy having a granular structure. Note that the crystallization start temperature is a differential scanning calorimeter (DSC) using a differential scanning calorimeter (DSC), in the temperature range of room temperature (RT) to 600 ℃, the thermal analysis of the powder at a heating rate of 600 ℃ / hr It can be measured by The heat treatment temperature depends on the crystallization temperature of the nanocrystalline alloy forming the grain structure, but is preferably in the range of 350 to 450 ° C, preferably 390 to 430 ° C. The heat treatment temperature is the highest temperature reached after the temperature is raised, and is also the holding temperature when the temperature is held for a predetermined time.

熱処理時間は、1秒から3時間、好ましくは連続式炉であれば1秒〜300秒、バッチ式炉であれば300秒から2時間(7200秒)であるのが望ましい。熱処理時間は、熱処理温度で保持される時間である。   The heat treatment time is preferably 1 second to 3 hours, preferably 1 second to 300 seconds for a continuous furnace, and 300 seconds to 2 hours (7200 seconds) for a batch furnace. The heat treatment time is the time to be kept at the heat treatment temperature.

熱処理における300℃以上の温度範囲における平均昇温速度(目標とする熱処理温度に到達するまでの平均昇温速度)は、0.001〜1000℃/秒、好ましくは連続式炉なら0.5〜500℃/秒の範囲、バッチ式炉であれば0.006〜0.08℃/秒の範囲にあるのが望ましい。昇温速度が上記の範囲にあると、合金の結晶化よって生じる自己発熱で過剰に温度上昇するのを防ぎ、熱処理温度の設定に対して著しくオーバーシュートすることが抑制され、得られる粉末の磁気特性の劣化を防ぐことができる。   The average heating rate in the temperature range of 300 ° C or higher in the heat treatment (average heating rate until reaching the target heat treatment temperature) is 0.001 to 1000 ° C / sec, preferably 0.5 to 500 ° C / sec for a continuous furnace. The range of 0.006 to 0.08 ° C / sec is preferable for a batch type furnace. When the temperature rising rate is within the above range, it prevents excessive temperature rise due to self-heating caused by crystallization of the alloy, and suppresses overshoot significantly against setting of heat treatment temperature, resulting in magnetic properties of the obtained powder. It is possible to prevent deterioration of characteristics.

(4)合金組成
ナノ結晶合金の組成は、FeSi結晶の柱状組織化が可能で、Si、B及びCuを含むものであれば良い。以下にアトマイズ法により柱状組織のナノ結晶合金を得るのに好適な合金組成を例示するが、それに限定するものではない。アトマイズ法によって得られる磁心用粉末の粒度分布において、粒径が大径の粒子で柱状組織のFeSi結晶となり、小径の粒子で粒状組織のFeSi結晶となる合金組成であっても良い。
(4) Alloy composition The composition of the nanocrystalline alloy may be any composition that enables columnar organization of FeSi crystals and contains Si, B and Cu. Examples of alloy compositions suitable for obtaining a nanocrystalline alloy having a columnar structure by the atomization method are shown below, but the invention is not limited thereto. In the particle size distribution of the magnetic core powder obtained by the atomization method, an alloy composition may be used in which particles having a large particle diameter form columnar structure FeSi crystals and particles having a small particle diameter form FeSi crystals having a particle structure.

ナノ結晶合金の組成は、Fe100-a-b-c-d-e-f-g-hCuaSibBcMdCreSnfAggCh(ただし、a、b、c、d、e、f、g及びhは原子%を表し、0.8≦a≦2.0、2.0≦b≦12.0、11.0≦c≦17.0、0≦d≦1.0、0≦e≦2.0、0≦f≦1.5、0≦g≦0.2、及び0≦h≦0.4を満たす数値であり、MはNb,Ti,Zr,Hf,V,Ta,及びMoからなる群から選択される1種以上の元素である。)であるのが好ましい。The composition of the nanocrystalline alloy is Fe 100-abcdefgh Cu a Si b B c M d Cr e Sn f Ag g C h (where a, b, c, d, e, f, g and h represent atomic%. , 0.8 ≦ a ≦ 2.0, 2.0 ≦ b ≦ 12.0, 11.0 ≦ c ≦ 17.0, 0 ≦ d ≦ 1.0, 0 ≦ e ≦ 2.0, 0 ≦ f ≦ 1.5, 0 ≦ g ≦ 0.2, and 0 ≦ h ≦ 0.4 It is a numerical value to be satisfied, and M is preferably one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta, and Mo.).

Cuは結晶化後の合金組織を微細化し柱状組織のFeSi結晶の形成に寄与する元素である。また粒状組織の形成にも寄与する元素である。Cu含有量は原子%で0.8%以上2.0%以下であるのが好ましい。Cu含有量が少ないと添加の効果が得られず、逆に多いと飽和磁束密度が低下する。Cuが過剰な場合、冷却過程での結晶化が進行しすぎるために、結晶粒成長の抑制効果を有する残留アモルファス相が欠乏し、結晶粒の粗大化や磁気異方性が高いFe2Bの析出などが起こり易く、軟磁気特性を悪化させる場合がある。アトマイズの冷却過程において、十分なCuクラスターの数密度を与えるように、Cu含有量は1.0%以上がより好ましく、1.1%以上がさらに好ましく、1.2%以上が最も好ましい。またCu含有量は1.8%以下であるのがより好ましく、1.5%以下であるのがさらに好ましい。Cu is an element that refines the alloy structure after crystallization and contributes to the formation of columnar structure FeSi crystals. It is also an element that contributes to the formation of a granular structure. The Cu content in atomic% is preferably 0.8% or more and 2.0% or less. If the Cu content is low, the effect of addition cannot be obtained, and conversely, if it is high, the saturation magnetic flux density decreases. When Cu is excessive, crystallization in the cooling process progresses too much, the residual amorphous phase having the effect of suppressing crystal grain growth is deficient, and coarsening of crystal grains and high magnetic anisotropy of Fe 2 B Precipitation is likely to occur, which may deteriorate the soft magnetic properties. In the cooling process of atomization, the Cu content is more preferably 1.0% or more, further preferably 1.1% or more, and most preferably 1.2% or more so as to give a sufficient number density of Cu clusters. Further, the Cu content is more preferably 1.8% or less, further preferably 1.5% or less.

SiはFeSi結晶の主成分であるFeに固溶し、磁歪や磁気異方性の低減に寄与する。Si含有量は原子%で2.0%以上12.0%以下であるのが好ましい。また、ナノ結晶合金の非晶質化を促進する効果を有することが知られていて、冷却過程では、Bとともに存在することでアモルファス形成能を強める効果を有する。また、冷却過程における粗大な結晶粒析出の抑制の効果を有する。Si含有量が少ないと添加の効果が得られず、他方、Si含有量が高すぎる場合には飽和磁束密度の低下が起きる。一方でFe3Siの規則化配列が起きやすくなるため、Si含有量の下限はより好ましくは3.0%である。高飽和磁束密度を得るには、Si含有量は10.0%以下がより好ましく、8.0%以下がさらに好ましく、5.0%以下が最も好ましい。Si dissolves in Fe, which is the main component of the FeSi crystal, and contributes to the reduction of magnetostriction and magnetic anisotropy. The Si content is preferably 2.0% or more and 12.0% or less in atomic%. Further, it is known to have the effect of promoting the amorphization of the nanocrystalline alloy, and in the cooling process, when it is present together with B, it has the effect of enhancing the amorphous forming ability. Further, it has an effect of suppressing coarse crystal grain precipitation in the cooling process. If the Si content is low, the effect of addition cannot be obtained, while if the Si content is too high, the saturation magnetic flux density decreases. On the other hand, since the ordered arrangement of Fe 3 Si is likely to occur, the lower limit of the Si content is more preferably 3.0%. In order to obtain a high saturation magnetic flux density, the Si content is more preferably 10.0% or less, further preferably 8.0% or less, most preferably 5.0% or less.

Bは、急冷における合金の非晶質化を促進する効果を有することが知られている。B含有量は原子%で11.0%以上17.0%以下であるのが好ましい。B含有量が少ないと、アモルファス相形成のためには極めて高い冷却速度が必要となりマイクロメータオーダの比較的粗大な結晶粒が析出し易くなって、良好な軟磁気特性が得られない場合がある。またB含有量が多いと、結晶化後の組織中の残留アモルファス相の体積分率が高くなり、飽和磁化等の磁気特性を低下させることにつながる。Si及びBの含有量の合計が少ないほどFe含有量を上げられるため、高飽和磁束密度を得るにはSi及びBの含有量の合計が20.0%以下であるのが好ましく、19.0%以下であるのがより好ましく、18.0%以下であるのが最も好ましい。   B is known to have the effect of promoting amorphization of the alloy during quenching. The B content is preferably 11.0% or more and 17.0% or less in atomic%. If the B content is low, an extremely high cooling rate is required for forming an amorphous phase, and relatively coarse crystal grains of the order of micrometers are likely to precipitate, and good soft magnetic properties may not be obtained. . Further, when the B content is large, the volume fraction of the residual amorphous phase in the structure after crystallization becomes high, which leads to deterioration of magnetic characteristics such as saturation magnetization. Since the Fe content can be increased as the total content of Si and B is smaller, the total content of Si and B is preferably 20.0% or less and 19.0% or less in order to obtain a high saturation magnetic flux density. Is more preferable and 18.0% or less is the most preferable.

MはNb,Ti,Zr,Hf,V,Ta及びMoからなる群から選択される1種以上の元素である。柱状組織の、又は粒状組織のFeSi結晶を得る上で必須ではないが、結晶化後に粒状組織のナノ結晶合金となる粉末と柱状組織のナノ結晶合金の粉末とを混合した粉末を熱処理する場合、粒状組織のFeSi結晶の粒径の均一化に有効であり、M元素の含有量は、原子%で1.0%以下(0を含む)であるのが好ましく、0.8%以下(0を含む)であるのがより好ましく、0.5%以下(0を含む)であるのが最も好ましい。   M is one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta and Mo. Columnar structure, or, although not essential in obtaining FeSi crystals of a granular structure, when heat-treating a powder obtained by mixing a powder of a nanocrystalline alloy having a granular structure and a powder of a nanocrystalline alloy of a columnar structure after crystallization, It is effective for uniformizing the grain size of FeSi crystals having a granular structure, and the content of M element is preferably 1.0% or less (including 0) in atomic%, and 0.8% or less (including 0). Is more preferable, and 0.5% or less (including 0) is most preferable.

Crは原子%で2.0%以下(0を含む)であるのが好ましい。柱状組織のFeSi結晶を得る上で必須ではないが、ナノ結晶合金の耐食性を向上するのに有効な元素である。アトマイズ法で粉末を作製する際、内部を酸化から防ぐ効果を得るには、Cr含有量は0.1%以上であるのが好ましく、0.3%以上であるのがより好ましい。一方で、単体では反強磁性的に振る舞い、Fe原子との混成でFeの強磁性を弱めて飽和磁束密度の低下を招くため、Cr含有量の上限としては、1.5%であるのがより好ましく、1.1%であるのが最も好ましい。   Cr is preferably 2.0% or less (including 0) in atomic%. Although not essential for obtaining FeSi crystals having a columnar structure, it is an effective element for improving the corrosion resistance of nanocrystalline alloys. In order to obtain the effect of preventing the inside from being oxidized when the powder is produced by the atomization method, the Cr content is preferably 0.1% or more, more preferably 0.3% or more. On the other hand, since it behaves antiferromagnetically as a simple substance and weakens the ferromagnetism of Fe by mixing with Fe atoms and causes a decrease in saturation magnetic flux density, the upper limit of the Cr content is more preferably 1.5%. , 1.1% is most preferable.

Snは原子%で1.5%以下(0を含む)であるのが好ましい。柱状組織のFeSi結晶を得る上で必須ではないが、Cuのクラスター形成を助けるのに有効な元素である。微量に添加されることで、結晶化の過程でSn原子が最初に集まることで、さらにその周辺に拡散中のCu原子がポテンシャルエネルギーを下げるために集まりクラスターを形成する。Cuのクラスター形成の助剤である効果を勘案すると、Sn含有量の上限はCu含有量を超えないのが好ましい。また非磁性元素であることからSn含有量は0.5%以下(0を含む)であるのがより好ましい。Sn含有量の下限は0.01%であるのがより好ましく、0.05%であるのが最も好ましい。   Sn is preferably 1.5% or less (including 0) in atomic%. Although it is not essential for obtaining a FeSi crystal having a columnar structure, it is an element effective for assisting Cu cluster formation. When added in a small amount, Sn atoms first gather during the crystallization process, and Cu atoms diffusing further gather around the Sn atoms to form a cluster to lower the potential energy. Considering the effect of Cu as an auxiliary agent for cluster formation, it is preferable that the upper limit of the Sn content does not exceed the Cu content. Further, since it is a non-magnetic element, the Sn content is more preferably 0.5% or less (including 0). The lower limit of the Sn content is more preferably 0.01%, most preferably 0.05%.

Agは柱状組織のFeSi結晶を得る上で必須ではないが、Agは溶湯中で分離し、アトマイズ後のナノ結晶合金の凝固初期から析出していて、熱処理初期のCuクラスターの核となるように機能する。Agの好ましい含有量は原子%で0.2%以下(0を含む)である。   Ag is not essential to obtain FeSi crystals with columnar structure, but Ag separates in the molten metal and precipitates from the initial solidification of the nanocrystalline alloy after atomization, so that it becomes the nucleus of Cu clusters in the initial stage of heat treatment. Function. The preferable content of Ag is 0.2% or less (including 0) in atomic%.

Cもまた柱状組織のFeSi結晶を得る上で必須ではないが、溶湯の粘度の安定化に作用し、その好ましい含有量は原子%で0.4%以下(0を含む)である。   C is also not essential for obtaining FeSi crystals having a columnar structure, but it acts to stabilize the viscosity of the molten metal, and its preferable content is 0.4% or less (including 0) in atomic%.

他にナノ結晶合金に含まれる不可避的不純物として、S、O、N等を含み得る。不可避的不純物の含有量は、それぞれ、Sが200 ppm以下、Oが5000 ppm以下、Nが1000 ppm以下であるのが好ましい。   Other inevitable impurities contained in the nanocrystalline alloy may include S, O, N and the like. The content of unavoidable impurities is preferably 200 ppm or less for S, 5000 ppm or less for O, and 1000 ppm or less for N, respectively.

Feは、ナノ結晶合金を構成する主元素であり、飽和磁化等の磁気特性に影響を与える。他の非鉄金属とのバランスにもよるが、Feを原子%で77.0%以上含むのが好ましく、それによって飽和磁化が大きいナノ結晶合金を得ることができる。Fe含有量は、より好ましくは77.5%以上であり、さらに好ましくは78.0%以上であり、最も好ましくは79.0%以上である。   Fe is a main element that constitutes a nanocrystalline alloy, and affects magnetic properties such as saturation magnetization. Although it depends on the balance with other non-ferrous metals, it is preferable to contain 77.0% or more of Fe in atomic%, whereby a nanocrystalline alloy having a large saturation magnetization can be obtained. The Fe content is more preferably 77.5% or more, further preferably 78.0% or more, and most preferably 79.0% or more.

なお上記にて柱状組織のFeSi結晶を有するナノ結晶合金を得るのに好適な組成を示したが、その合金組成で粒状組織のFeSi結晶を有する従来のナノ結晶合金も得ることができる。   Although the composition suitable for obtaining the nanocrystalline alloy having the FeSi crystals having the columnar structure has been shown above, the conventional nanocrystalline alloy having the FeSi crystals having the granular structure can be obtained with the alloy composition.

[2]磁心及びコイル部品
本発明の一実施形態の磁心用粉末は、圧粉磁心用として、あるいはメタルコンポジット用として好適なものとなる。圧粉磁心では、例えば、磁心用粉末を絶縁材料及び結合剤として機能するバインダと混合して使用する。バインダとしては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、キシレン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ポリアミドイミド、ポリイミド、水ガラス等が挙げられるが、これらに限定されるものではない。磁心用粉末とバインダとの混合物は、必要に応じてステアリン酸亜鉛等の潤滑剤を混ぜた後、成形金型内に充填し、油圧プレス成形機等で10 MPa〜2 GPa程度の成形圧力で加圧して所定の形状の圧粉体に成形することができる。次いで、成形後の圧粉体を300℃〜結晶化温度未満の温度で、1時間程度で熱処理して、成形歪みを除去すると共にバインダを硬化させて圧粉磁心を得る。この場合の熱処理雰囲気は不活性雰囲気でも酸化雰囲気でも良い。得られる圧粉磁心は、円環状や、矩形枠状等の環状体であってもよいし、棒状や板状の形態であっても良く、その形態は目的に応じて様々に選択することができる。
[2] Magnetic Core and Coil Parts The magnetic powder for one embodiment of the present invention is suitable for dust cores or for metal composites. In the dust core, for example, the powder for the magnetic core is mixed with an insulating material and a binder functioning as a binder and used. Examples of the binder include, but are not limited to, epoxy resin, unsaturated polyester resin, phenol resin, xylene resin, diallyl phthalate resin, silicone resin, polyamideimide, polyimide and water glass. The mixture of powder for magnetic core and binder should be mixed with a lubricant such as zinc stearate, if necessary, and then filled in the molding die, and be molded with a hydraulic press molding machine at a molding pressure of about 10 MPa to 2 GPa. It can be pressed to form a green compact having a predetermined shape. Next, the green compact after molding is heat-treated at a temperature of 300 ° C. to lower than the crystallization temperature for about 1 hour to remove molding strain and harden the binder to obtain a powder magnetic core. The heat treatment atmosphere in this case may be an inert atmosphere or an oxidizing atmosphere. The obtained dust core may be an annular body, an annular body such as a rectangular frame shape, or a rod-like or plate-like form, and the form may be variously selected according to the purpose. it can.

メタルコンポジット材として用いる場合、磁心用粉末とバインダとを含む混合物中にコイルを埋没させて一体成形しても良い。例えばバインダに熱可塑性樹脂や熱硬化性樹脂を適宜選択すれば、射出成形等の公知の成形手段で容易にコイルを封止したメタルコンポジットコア(コイル部品)とすることができる。また磁心用粉末とバインダとを含む混合物をドクターブレード法等の公知のシート化手段でシート状の磁心としても良い。また磁心用粉末とバインダとを含む混合物を不定形のシールド材として用いても良い。   When used as a metal composite material, the coil may be embedded in a mixture containing the magnetic core powder and a binder to be integrally molded. For example, by appropriately selecting a thermoplastic resin or a thermosetting resin as the binder, a metal composite core (coil component) in which the coil is easily sealed by a known molding means such as injection molding can be obtained. Further, a mixture containing the magnetic core powder and the binder may be formed into a sheet-shaped magnetic core by a known sheet forming means such as a doctor blade method. Further, a mixture containing the powder for magnetic core and the binder may be used as an amorphous shield material.

また、本発明の一実施形態の磁心用粉末では、FeSi結晶が柱状組織をなすナノ結晶合金の粉末にFe系非晶質合金や、純鉄、Fe-Si、Fe-Si-Crの結晶質の金属系軟磁性材料の粉末等、他の軟磁性粉末を加えて用いても良い。   Further, in the magnetic core powder according to one embodiment of the present invention, a powder of a nanocrystalline alloy in which FeSi crystals form a columnar structure is an Fe-based amorphous alloy, pure iron, Fe-Si, and a crystalline material of Fe-Si-Cr. Other soft magnetic powders such as the powder of the metal-based soft magnetic material may be added and used.

いずれの場合も、得られる磁心は直流重畳特性が向上された磁気特性に優れたものとなり、インダクタ、ノイズフィルタ、チョークコイル、トランス、リアクトルなどに好適に用いられる。   In any case, the obtained magnetic core has excellent magnetic characteristics with improved DC superposition characteristics, and is suitably used for inductors, noise filters, choke coils, transformers, reactors and the like.

[3]実施例
以下、本発明の一実施形態に係る磁心用粉末と、それを用いた磁心及びコイル部品について具体的に説明するが、本発明はこれに限定されるものではなく、技術的思想の範囲内で適宜変更可能である。
[3] Example Hereinafter, a magnetic core powder according to an embodiment of the present invention and a magnetic core and a coil component using the magnetic powder will be specifically described, but the present invention is not limited to this and technical It can be appropriately changed within the scope of the idea.

Fe、Cu、Si、B、Nb、Cr、Sn及びCがアトマイズ後、下記に示す組成A及び組成Bの合金組成となるように秤量し、アルミナの坩堝の中に入れて高周波誘導加熱装置の真空チャンバー内に配置して真空引きを行い、その後、減圧状態で、不活性雰囲気(Ar)中にて高周波誘導加熱により溶解した。その後、溶湯を冷却して2種の母合金のインゴットを作製した。   Fe, Cu, Si, B, Nb, Cr, Sn and C are atomized, then weighed so as to have the alloy composition of composition A and composition B shown below, and put into an alumina crucible for high-frequency induction heating. It was placed in a vacuum chamber to perform vacuuming, and then, under reduced pressure, it was melted by high frequency induction heating in an inert atmosphere (Ar). Then, the molten metal was cooled to prepare two master alloy ingots.

[合金組成]
組成A:Febal.Cu1.2Si4.0B15.5Cr1.0Sn0.2C0.2
組成B:Febal.Cu1.0Si13.5B11.0Nb3.0Cr1.0
[Alloy composition]
Composition A: Fe bal. Cu 1.2 Si 4.0 B 15.5 Cr 1.0 Sn 0.2 C 0.2
Composition B: Fe bal. Cu 1.0 Si 13.5 B 11.0 Nb 3.0 Cr 1.0

次いで得られたインゴットを再溶解し、溶湯を高速燃焼炎アトマイズ法により粉末化した。用いたアトマイズ装置は、溶融金属を収納する容器と、容器底面の中央に設けられ容器内部に連通する注湯ノズルと、注湯ノズルから下方に流出する溶融金属に向かってフレームジェットを噴射可能なジェットバーナー(ハード工業有限会社製)と、粉砕された溶湯を冷却する冷却手段とを備えている。フレームジェットは溶融金属を粉砕して溶融金属粉末を形成可能に構成され、各ジェットバーナーは火炎を超音速又は音速に近い速度でフレームジェットとして噴射するように構成されている。冷却手段は、粉砕された溶融金属に向かって冷却媒体を噴射可能に構成された複数の冷却ノズルを有している。冷却媒体は、水、液体窒素、液化炭酸ガスなどを用いることができる。   Next, the obtained ingot was redissolved and the molten metal was pulverized by the high-speed combustion flame atomizing method. The atomizing device used is capable of injecting a flame jet toward a container for containing molten metal, a pouring nozzle provided at the center of the bottom of the container and communicating with the inside of the container, and a molten metal flowing downward from the pouring nozzle. It is equipped with a jet burner (made by HARD INDUSTRY CO., LTD.) And a cooling means for cooling the crushed molten metal. The flame jet is configured to be capable of crushing molten metal to form molten metal powder, and each jet burner is configured to inject a flame as a flame jet at a supersonic speed or a speed close to sonic speed. The cooling means has a plurality of cooling nozzles configured to inject a cooling medium toward the crushed molten metal. Water, liquid nitrogen, liquefied carbon dioxide, or the like can be used as the cooling medium.

噴射するフレームジェットの温度を1300℃、原料の溶融金属の垂下速度を5 kg/minとした。冷却媒体として水を使用し、液体ミストにして冷却ノズルから噴射した。溶融金属の冷却速度は水の噴射量を4.5リットル/min〜7.5リットル/minで調整した。   The temperature of the jetted flame jet was 1300 ° C, and the hanging speed of the molten metal as the raw material was 5 kg / min. Water was used as a cooling medium, and it was made into a liquid mist and sprayed from a cooling nozzle. The cooling rate of the molten metal was adjusted by adjusting the injection amount of water at 4.5 liters / min to 7.5 liters / min.

得られた組成A及び組成Bの粉末を遠心力型気流式分級機(日清エンジニアリング製TC-15)で分級して、組成Aの平均粒径d50が異なる2種(d50の大きい方をNo.1、小さい方をNo.2の粉末とした。)、及び組成Bの1種(No.*3の粉末とした。)の磁心用粉末を得た。得られた磁心用粉末の粒度を下記評価方法で測定した。   The obtained powders of composition A and composition B were classified by a centrifugal force type airflow classifier (TC-15 manufactured by Nisshin Engineering Co., Ltd.), and two kinds having different average particle diameters d50 of composition A (the larger d50 is .1 and the smaller one was No. 2 powder), and one kind of composition B (No. * 3 powder) was obtained. The particle size of the obtained powder for magnetic core was measured by the following evaluation method.

[粉末の粒度]
レーザー回折散乱式粒度分布測定装置(堀場製作所製LA-920)により測定し、レーザー回折法により計測される体積基準の粒度分布から、小径側からの累積%がそれぞれ10体積%、50体積%及び90体積%となる粒子径であるd10、d50及びd90を得た。図3にNo.1〜*3の粉末の粒度分布図を示す。
[Powder particle size]
Measured with a laser diffraction scattering type particle size distribution measuring device (LA-920 manufactured by Horiba Ltd.), from the volume-based particle size distribution measured by the laser diffraction method, cumulative% from the small diameter side is 10% by volume, 50% by volume and Particle diameters of d10, d50 and d90, which are 90% by volume, were obtained. Figure 3 shows the particle size distribution chart of No. 1 to * 3 powders.

得られた各粉末について、以下の評価方法にて飽和磁化、保磁力、及びX線回折法による回折スペクトルを測定した。   With respect to each of the obtained powders, the saturation magnetization, the coercive force, and the diffraction spectrum by the X-ray diffraction method were measured by the following evaluation methods.

[飽和磁化及び保磁力]
試料の粉末を容器内に入れてVSM(Vibrating Sample Magnetometer振動試料型磁力計、東英工業製VSM-5)による磁化測定を行い、ヒステリシスループから、磁気の強さがHm=800 kA/mの時の飽和磁化と、Hm=40 kA/mの条件での保磁力を求めた。
[Saturation magnetization and coercive force]
The powder of the sample is put in the container and the magnetization is measured by VSM (Vibrating Sample Magnetometer, VSM-5 manufactured by Toei Industry Co., Ltd.). From the hysteresis loop, the magnetic strength is Hm = 800 kA / m. The saturation magnetization at the time and the coercive force under the condition of Hm = 40 kA / m were obtained.

[回折スペクトル]
X線回折装置(株式会社リガク製Rigaku RINT-2000)を使用し、X線回折法による回折スペクトルから、2θ=45°付近(44°〜46°の間)のbcc構造のFeSi結晶の回折ピークのピーク強度P1と、2θ=56.5°(56°〜57°の間)付近のbcc構造のFe2B結晶の回折ピークのピーク強度P2を求め、ピーク強度比(P2/P1)を算出した。X線回折強度測定の条件は、X線Cu-Kα、印加電圧40 kV、電流100 mA、発散スリット1°、散乱スリット1°、受光スリット0.3 mm、走査を連続とし、走査速度2°/min、走査ステップ0.02°、走査範囲20〜60°とした。
[Diffraction spectrum]
Using an X-ray diffractometer (Rigaku RINT-2000 manufactured by Rigaku Corporation), from the diffraction spectrum by the X-ray diffraction method, the diffraction peak of the FeSi crystal of the bcc structure around 2θ = 45 ° (between 44 ° and 46 °). And the peak intensity P2 of the diffraction peak of the Fe 2 B crystal having a bcc structure near 2θ = 56.5 ° (between 56 ° and 57 °) were calculated, and the peak intensity ratio (P2 / P1) was calculated. The conditions for X-ray diffraction intensity measurement are X-ray Cu-Kα, applied voltage 40 kV, current 100 mA, divergence slit 1 °, scattering slit 1 °, light-receiving slit 0.3 mm, scanning is continuous, and scanning speed is 2 ° / min. The scanning step was 0.02 ° and the scanning range was 20 to 60 °.

得られた結果を表1に示す。なお表1においてNo.に“*”を付与した試料は、参考例である。   The results obtained are shown in Table 1. The samples with “*” added to No. in Table 1 are reference examples.

X線回折法による回折スペクトルを確認したところ、A組成の平均粒径が異なる2種の磁心用粉末(No.1及びNo.2の粉末)では、bcc構造のFeSi結晶の回折ピークとbcc構造のFe2B結晶の回折ピークが確認されたが、B組成の1種の磁心用粉末(No.*3の粉末)ではハローパターンのみが観察され、FeSi結晶及びFe2B結晶の回折ピークは確認されなかった。またTEM観察にて、A組成の2種の粉末では線状のFeSi結晶が間隔をもって連続する縞模様の組織を確認した。この組織は後述する熱処理後の粉末でも同様に観察された。As a result of confirming the diffraction spectrum by the X-ray diffraction method, it was found that in the two kinds of magnetic core powders (No. 1 and No. 2 powders) having different A composition average particle diameters, the diffraction peak of the FeSi crystal of the bcc structure and the bcc structure were observed. Although the diffraction peak of Fe 2 B crystal was confirmed, only the halo pattern was observed in the one type of powder for magnetic core of B composition (powder of No. * 3), and the diffraction peaks of FeSi crystal and Fe 2 B crystal were Not confirmed. In addition, the TEM observation confirmed a striped structure in which linear FeSi crystals were continuous at intervals in the two kinds of powders of A composition. This structure was also observed in the powder after heat treatment described later.

次に雰囲気調整が可能な電気熱処理炉で、SUS製容器に100g入れられたNo.1〜*3の磁心用粉末3種を酸素濃度0.5%以下のN2雰囲気にて熱処理した。熱処理は、0.006℃/秒の速度で昇温し、表2に示す保持温度に達した後、この保持温度で1時間保持し、その後、加熱を止めて炉冷して行った。Next, in an electric heat treatment furnace capable of adjusting the atmosphere, 100 g of three powders for magnetic cores No. 1 to * 3 put in a SUS container were heat treated in an N 2 atmosphere with an oxygen concentration of 0.5% or less. The heat treatment was performed by raising the temperature at a rate of 0.006 ° C./sec, reaching the holding temperature shown in Table 2 and then holding for 1 hour at this holding temperature, then stopping heating and cooling the furnace.

熱処理後のNo.1〜*3の粉末にて、前述と同じ評価方法で飽和磁化、保磁力、及びX線回折法による回折スペクトルを測定した。得られた結果を表2に示す。   Saturation magnetization, coercive force, and diffraction spectrum by X-ray diffractometry were measured for the No. 1 to * 3 powders after heat treatment by the same evaluation method as described above. The results obtained are shown in Table 2.

また、熱処理後のNo.1〜*3の粉末にて、d10及びd90に相当する粒径の複数の粒子を選別し、樹脂に埋めて切断研磨した後、断面を透過型電子顕微鏡(TEM/EDX:Transmission Electron Microscope/energy dispersive X-ray spectroscopy)で観察した。図5はNo.1のd90相当の粒子の断面を研磨しで観察したTEM写真である。図6は他の視野を同じ条件で観察したTEM写真である。図7は、No.1のd90相当の粒子の断面の他の視野を観察しSi(ケイ素)元素で組成マッピングした写真であり、図8はB(ホウ素)元素で組成マッピングした写真であり、図9はCu(銅)元素で組成マッピングした写真である。   In addition, after No. 1 ~ * 3 powder after heat treatment, a plurality of particles having a particle diameter corresponding to d10 and d90 are selected, embedded in a resin and cut and polished, and then the cross section is a transmission electron microscope (TEM / EDX: Transmission Electron Microscope / energy dispersive X-ray spectroscopy). FIG. 5 is a TEM photograph observed by polishing the cross section of the No. 1 particle corresponding to d90. FIG. 6 is a TEM photograph of another field of view observed under the same conditions. FIG. 7 is a photograph in which another field of view of the cross section of particles corresponding to d90 of No. 1 is observed and composition mapped with Si (silicon) element, and FIG. 8 is a photograph with composition mapped in B (boron) element, FIG. 9 is a photograph of composition mapping with Cu (copper) element.

図5から、観察視野において濃淡が平行線状に交互に現れる柱状組織(縞模様の組織)が確認された。TEMによるスポット回折測定と組成マッピングとによって、線状に観察される明度が低い濃い部分はFeSi結晶であり、明度が高い淡い部分は非晶質相であると特定された。また他の視野の図6から、縞模様の組織の領域や、明度が低い濃い部分がドット様の組織に見える領域などが観察された。いずれの領域でも明度が低い濃い部分がFeSi結晶であり、明度が高い淡い部分は非晶質相であった。さらに詳細に観察したところ、いずれの領域でもFeSi結晶が線状に形成されていて、観察面に現れる方向で、縞模様に見えたり、ドット様に見えたりすることが判明した。つまり一つの粒子中でFeSi結晶の群が伸びる方向が異なる領域を有していて、一つ一つの領域ではFeSi結晶がほぼ一方向に結晶が析出した柱状組織となっている。この一つの領域では、線状のFeSi結晶の伸長方向が揃って規則性を有するが、領域ごとにFeSi結晶の伸長方向が異なり、隣接する領域間で線状のFeSi結晶が不連続となっており、粒子全体でみれば規則性を持たない組織となっていた。   From FIG. 5, a columnar structure (striped pattern structure) in which light and shade alternately appear in parallel lines in the observation visual field was confirmed. By the spot diffraction measurement by TEM and composition mapping, it was identified that a dark portion with a low lightness observed linearly was a FeSi crystal and a light portion with a high lightness was an amorphous phase. Also, from FIG. 6 in another field of view, a region of a striped tissue and a region where a dark portion with low lightness looks like a dot-like tissue were observed. In each region, the dark part with low lightness was the FeSi crystal, and the light part with high lightness was the amorphous phase. Upon further detailed observation, it was found that FeSi crystals were formed in a linear shape in any of the regions, and appeared in a striped pattern or a dot-like shape in the direction in which they appeared on the observation surface. That is, each particle has a region in which the group of FeSi crystals extends in different directions, and in each region, the FeSi crystal has a columnar structure in which crystals are precipitated in substantially one direction. In this one region, the elongation directions of the linear FeSi crystals are aligned and have regularity, but the elongation directions of the FeSi crystals are different in each region, and the linear FeSi crystals become discontinuous between adjacent regions. However, the organization of the particles as a whole did not have regularity.

元素分布マッピングでは明るい色調ほど対象元素が多いことを示す。同一視野でSi、B、及びCuをそれぞれ組成マッピングした図7、図8及び図9に示す結果から、線状のFeSi結晶に対応する領域はSiとCuとが濃化し、線状のFeSi結晶の間の非晶質相に対応する領域はBが濃化していることが確認される。また、Fe(図示せず)は全体で確認されるがSiとCuとが濃化した領域で濃度が高いことが確認された。   Element distribution mapping shows that the lighter the color tone, the more target elements. From the results shown in FIG. 7, FIG. 8 and FIG. 9 in which Si, B, and Cu are composition-mapped in the same field of view, the region corresponding to the linear FeSi crystal is enriched with Si and Cu, and the linear FeSi crystal is obtained. It is confirmed that B is concentrated in the region corresponding to the amorphous phase between. Further, although Fe (not shown) was confirmed as a whole, it was confirmed that the concentration was high in the region where Si and Cu were concentrated.

線状のFeSi結晶と非晶質相とのスピノーダル分解によって、FeとSiとがFeSi結晶の形成に使われ、結晶相に入りにくいBが非晶質相に濃縮され、非晶質相のB濃度が相対的に高くなるように相分離が進み、周期的な濃度変調構造が現れると考えられる。   By spinodal decomposition of the linear FeSi crystal and the amorphous phase, Fe and Si are used to form the FeSi crystal, and B, which is difficult to enter into the crystalline phase, is concentrated in the amorphous phase. It is considered that the phase separation proceeds so that the concentration becomes relatively high, and a periodic concentration modulation structure appears.

No.2の粉末では、d90に相当する粒径の複数の粒子の観察で、図5や図6で観察される組織と同様の縞模様の柱状組織の領域が観察されたが、No.*3の粉末では、縞模様の柱状組織の領域が観察されず、従来の組織構造である粒径が30 nm程度のFeSi結晶の粒が非晶質相中に分散した粒状組織となっていた。   In the powder of No. 2, the region of the striped columnar structure similar to the structure observed in FIGS. 5 and 6 was observed by observing a plurality of particles having a particle size corresponding to d90, but No. * In the powder of No. 3, no region of a striped columnar structure was observed, and FeSi crystal grains having a grain size of about 30 nm, which is the conventional texture structure, were dispersed in the amorphous phase to form a grain structure.

熱処理後のNo.1〜*3の粉末のd10に相当する粒径の複数の粒子の観察では、いずれも従来の組織構造である粒状組織となっていた。つまり、No.1及び2の磁心用粉末は、粒状組織のナノ結晶合金の粉末と柱状組織のナノ結晶合金の粉末とが混合した粉末となっていることがわかる。一方、参考例のNo.*3の粉末は、柱状組織のナノ結晶合金の粉末は存在せず、従来の粒状組織のナノ結晶合金の粉末となっている。   Observation of a plurality of particles having a particle diameter corresponding to d10 of the No. 1 to * 3 powders after the heat treatment revealed that all had a granular structure that is the conventional structure. That is, it is understood that the magnetic core powders Nos. 1 and 2 are powders in which the nanocrystalline alloy powder having a granular structure and the nanocrystalline alloy powder having a columnar structure are mixed. On the other hand, the powder of No. * 3 of the reference example does not have a nanocrystalline alloy powder having a columnar structure, but is a conventional nanocrystalline alloy powder having a granular structure.

柱状組織のナノ結晶合金の粒子では非晶質相にFe2B結晶が形成され易い。また粉末中のFe2B結晶を含む粒子の存在割合が多いほどFe2B結晶のピークが強く発現するため、そのピーク強度から柱状組織構造の粒子の存在割合の多少を相対的に評価することができる。図4に示した回折スペクトル図では、合金組成AのNo.1及び2の粉末(熱処理後)ではともにFeSi結晶のピークとFe2B結晶のピークとが確認された。合金組成BのNo.*3の粉末(熱処理後)ではFeSi結晶のピークは確認されたが、Fe2B結晶のピークは確認されなかった。FeSi結晶のピーク強度P1に対するFe2B結晶のピーク強度P2の比P2/P1は、全体として小径の粒度分布を有するNo.2の粉末の方が小さくなった。また、保磁力もNo.2の粉末の方が小さくなっていた。Fe 2 B crystals are likely to be formed in the amorphous phase in the nanocrystalline alloy particles having a columnar structure. Further, the more the proportion of particles containing Fe 2 B crystals in the powder is, the stronger the peak of Fe 2 B crystals is expressed. Therefore, the relative proportion of the proportion of particles having a columnar structure should be evaluated from the peak intensity. You can In the diffraction spectrum diagram shown in FIG. 4, the peaks of the FeSi crystal and the Fe 2 B crystal were confirmed in both the powders of No. 1 and 2 of alloy composition A (after heat treatment). In the No. * 3 powder of alloy composition B (after heat treatment), the peak of the FeSi crystal was confirmed, but the peak of the Fe 2 B crystal was not confirmed. The ratio P2 / P1 of the peak intensity P2 of the Fe 2 B crystal to the peak intensity P1 of the FeSi crystal was smaller for the No. 2 powder having a particle size distribution with a smaller diameter as a whole. Also, the coercive force of the No. 2 powder was smaller.

熱処理後のNo.1〜*3の粉末100部に対してシリコーン樹脂をそれぞれ5部加えて混錬し、成形金型内に充填し、油圧プレス成形機で400 MPaの加圧により成形してφ13.5 mm×φ7.7 mm×t2.0 mmの円環状の磁心を作製した。作製した磁心について占積率、磁心損失、初透磁率、及び増分透磁率の評価を行った。結果を表3に示す。表3においても、参考例の磁心用粉末を使用した試料にはNo.に*を付与して区別している。   To 100 parts of No. 1 to * 3 powder after heat treatment, add 5 parts each of silicone resin, knead, fill in the molding die, and press with a hydraulic press molding machine to press 400 MPa. An annular magnetic core of φ13.5 mm × φ7.7 mm × t2.0 mm was prepared. The space factor, the core loss, the initial magnetic permeability, and the incremental magnetic permeability of the manufactured magnetic core were evaluated. The results are shown in Table 3. Also in Table 3, the samples using the magnetic core powder of the reference example are distinguished by adding * to the No.

[占積率(相対密度)]
磁気測定を評価した円環状の磁心に対して250℃で熱処理を施し、バインダを分解して粉末を得た。粉末の重量と円環状の磁心の寸法と質量から、体積重量法により密度(kg/m3)を算出し、ガス置換法から得られる各合金組成A及びBの粉末の真密度で除して磁心の占積率(相対密度)(%)を算出した。
[Space factor (relative density)]
The annular magnetic core evaluated for magnetic measurement was heat-treated at 250 ° C. to decompose the binder to obtain a powder. From the weight of the powder and the size and mass of the annular magnetic core, calculate the density (kg / m 3 ) by the volumetric weight method, and divide by the true density of the powder of each alloy composition A and B obtained from the gas replacement method. The space factor (relative density) (%) of the magnetic core was calculated.

[磁心損失]
円環状の磁心を被測定物とし、一次側巻線と二次側巻線とをそれぞれ18ターン巻回し、岩通計測株式会社製B-HアナライザSY-8218により、最大磁束密度30 mT、周波数2 MHzの条件で磁心損失(kW/m3)を室温(25℃)で測定した。
[Core loss]
An annular magnetic core is used as the object to be measured, and the primary side winding and the secondary side winding are wound 18 turns each, and the maximum magnetic flux density of 30 mT and the frequency of 2 MHz are measured by BW analyzer SY-8218 manufactured by Iwatsu Measurement Co., Ltd. The magnetic core loss (kW / m 3 ) was measured at room temperature (25 ° C) under the condition of.

[初透磁率μi]
円環状の磁心を被測定物とし、導線を30ターン巻回してコイル部品とし、LCRメータ(アジレント・テクノロジー株式会社製4284A)により、室温にて周波数100 kHzで測定したインダクタンスから次式により求めた。交流磁界を0.4 A/mとした条件で得られた値を初透磁率μiとした。
初透磁率μi=(le×L)/(μ0×Ae×N2)
(le:磁路長、L:試料のインダクタンス(H)、μ0:真空の透磁率=4π×10-7(H/m)、Ae:磁心の断面積、及びN:コイルの巻数)
[Initial permeability μi]
An annular magnetic core was used as the DUT, the conductor was wound 30 turns to form a coil component, and it was calculated by the following formula from the inductance measured at a frequency of 100 kHz at room temperature with an LCR meter (Agilent Technology Co., Ltd. 4284A). . The value obtained under the condition that the AC magnetic field was 0.4 A / m was defined as the initial permeability μi.
Initial permeability μi = (le × L) / (μ 0 × Ae × N 2 )
(le: magnetic path length, L: sample inductance (H), μ 0 : vacuum permeability = 4π × 10 -7 (H / m), Ae: magnetic core cross-sectional area, and N: number of coil turns)

[増分透磁率μΔ]
初透磁率測定に用いたコイル部品を使って、直流印加装置(42841A:ヒューレットパッカード社製)で10 kA/mの直流磁界を印加した状態にて、LCRメータ(アジレント・テクノロジー株式会社社製4284A)によりインダクタンスLを周波数100 kHzで室温(25℃)にて測定した。得られたインダクタンスから前記初透磁率μiと同様の計算式にて得られた結果を増分透磁率μΔとした。得られた増分透磁率μΔと初透磁率μiとから比μΔ/μi(%)を算出した。
[Incremental permeability μΔ]
Using the coil components used for the initial permeability measurement, apply a DC magnetic field of 10 kA / m with a DC impressing device (42841A: Hewlett Packard Co., Ltd.), and use an LCR meter (4284A by Agilent Technologies Co., Ltd.). ), The inductance L was measured at room temperature (25 ° C) at a frequency of 100 kHz. From the obtained inductance, the result obtained by the same calculation formula as the initial magnetic permeability μi was defined as the incremental magnetic permeability μΔ. The ratio μΔ / μi (%) was calculated from the obtained incremental magnetic permeability μΔ and initial magnetic permeability μi.

本発明のNo.1及びNo.2の磁心用粉末を用いた磁心は、電流変化にかかわらず透磁率の変化量が十分に小さく、ほぼ一定の値で安定した直流重畳特性を発揮できた。また、ピーク強度比P2/P1が小さいNo.2の磁心用粉末を用いた磁心は、磁心損失が小さく、かつ初透磁率は大きくなった。透磁率が低いと、必要なインダクタンスを得るのに磁心の断面積を大きくし、また巻線のターン数を増やす必要があり、その結果、コイル部品の外形が大きくなってしまう。従って、No.2の粉末の方がコイル部品の小型化において有利であることが分かる。   The magnetic cores using the No. 1 and No. 2 magnetic core powders of the present invention showed a sufficiently small amount of change in permeability regardless of the change in current, and could exhibit stable DC superposition characteristics at a substantially constant value. Further, the magnetic core using the powder for magnetic core No. 2 having a small peak intensity ratio P2 / P1 had a small magnetic core loss and a large initial magnetic permeability. If the magnetic permeability is low, it is necessary to increase the cross-sectional area of the magnetic core and the number of turns of the winding to obtain the required inductance, and as a result, the outer shape of the coil component becomes large. Therefore, it can be seen that No. 2 powder is more advantageous in reducing the size of the coil component.

Claims (8)

ナノサイズのFeSi結晶が柱状組織をなす領域を備えた第一のFe基合金の粒子と、前記第一のFe基合金の粒子とは異なる金属組織からなる軟磁性材料の粒子とを含む磁心用粉末。   For a magnetic core including particles of a first Fe-based alloy having a region where a nano-sized FeSi crystal has a columnar structure, and particles of a soft magnetic material having a metal structure different from the particles of the first Fe-based alloy Powder. 請求項1に記載の磁心用粉末において、
前記第一のFe基合金の粒子は、前記柱状組織をなす領域においてFeSi結晶の伸長方向が異なる複数の領域を備える磁心用粉末。
In the powder for magnetic core according to claim 1,
The particles of the first Fe-based alloy are magnetic core powders having a plurality of regions having different extending directions of FeSi crystals in the region forming the columnar structure.
請求項1又は2に記載の磁心用粉末において、
ナノサイズのFeSi結晶が粒状組織をなす領域を備えた第二のFe基合金の粒子をさらに含む磁心用粉末。
In the magnetic core powder according to claim 1 or 2,
A magnetic core powder further comprising particles of a second Fe-based alloy having a region where nano-sized FeSi crystals form a grain structure.
請求項1〜3のいずれかに記載の磁心用粉末において、
CuのKα特性X線を用いて測定したX線回折スペクトルにおける2θ=45°付近のbcc構造のFeSi結晶の回折ピークのピーク強度P1に対する、2θ=56.5°付近のbcc構造のFe2B結晶の回折ピークのピーク強度P2のピーク強度比(P2/P1)が0.05以下である磁心用粉末。
In the magnetic core powder according to any one of claims 1 to 3,
In the X-ray diffraction spectrum measured using the Kα characteristic X-ray of Cu, the peak intensity P1 of the diffraction peak of the FeSi crystal of bcc structure around 2θ = 45 ° is compared to the peak intensity P1 of the Fe 2 B crystal of bcc structure around 2θ = 56.5 °. Powder for magnetic core having a peak intensity ratio (P2 / P1) of the peak intensity P2 of the diffraction peak of 0.05 or less.
請求項1〜4のいずれかに記載の磁心用粉末において、
印加磁界40 kA/mにおける保磁力が350 A/m以下である磁心用粉末。
In the magnetic core powder according to any one of claims 1 to 4,
Powder for magnetic core having a coercive force of 350 A / m or less in an applied magnetic field of 40 kA / m.
請求項1〜5のいずれかに記載の磁心用粉末において、
前記第一のFe基合金の粒子が、
合金組成:Fe100-a-b-c-d-e-f-g-hCuaSibBcMdCreSnfAggCh(ただし、a、b、c、d、e、f、g及びhは原子%を表し、0.8≦a≦2.0、2.0≦b≦12.0、11.0≦c≦17.0、0≦d≦1.0、0≦e≦2.0、0≦f≦1.5、0≦g≦0.2、及び0≦h≦0.4を満たす数値であり、MはNb,Ti,Zr,Hf,V,Ta,及びMoからなる群から選択される1種以上の元素である。)を有する磁心用粉末。
In the magnetic core powder according to any one of claims 1 to 5,
Particles of the first Fe-based alloy,
Alloy composition: Fe 100-abcdefgh Cu a Si b B c M d Cr e Sn f Ag g C h (where a, b, c, d, e, f, g and h represent atomic%, 0.8 ≦ a ≤ 2.0, 2.0 ≤ b ≤ 12.0, 11.0 ≤ c ≤ 17.0, 0 ≤ d ≤ 1.0, 0 ≤ e ≤ 2.0, 0 ≤ f ≤ 1.5, 0 ≤ g ≤ 0.2, and 0 ≤ h ≤ 0.4 , M is one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta, and Mo).
請求項1〜6のいずれかに記載の磁心用粉末をバインダで結合してなる磁心。   A magnetic core obtained by binding the powder for magnetic core according to any one of claims 1 to 6 with a binder. 請求項7に記載の磁心とコイルとを含むコイル部品。   A coil component including the magnetic core according to claim 7 and a coil.
JP2019547333A 2018-04-27 2019-04-26 Powder for magnetic core, magnetic core and coil parts using the same Active JP6673536B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018086307 2018-04-27
JP2018086307 2018-04-27
PCT/JP2019/017934 WO2019208768A1 (en) 2018-04-27 2019-04-26 Powder for magnetic cores, magnetic core using same, and coil component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020034684A Division JP7236622B2 (en) 2018-04-27 2020-03-02 Particles of nanocrystalline alloy.

Publications (2)

Publication Number Publication Date
JP6673536B1 JP6673536B1 (en) 2020-03-25
JPWO2019208768A1 true JPWO2019208768A1 (en) 2020-04-30

Family

ID=68294121

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019547333A Active JP6673536B1 (en) 2018-04-27 2019-04-26 Powder for magnetic core, magnetic core and coil parts using the same
JP2020034684A Active JP7236622B2 (en) 2018-04-27 2020-03-02 Particles of nanocrystalline alloy.

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020034684A Active JP7236622B2 (en) 2018-04-27 2020-03-02 Particles of nanocrystalline alloy.

Country Status (3)

Country Link
JP (2) JP6673536B1 (en)
CN (1) CN112105472B (en)
WO (1) WO2019208768A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424164B2 (en) 2020-03-30 2024-01-30 Tdk株式会社 Soft magnetic alloys, magnetic cores, magnetic components and electronic equipment
KR20220148952A (en) 2021-04-26 2022-11-07 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compound
CN115703803A (en) 2021-08-11 2023-02-17 学校法人关西学院 Polycyclic aromatic compound, material for organic device, organic electroluminescent element, display device, and lighting device
KR20230034895A (en) 2021-09-03 2023-03-10 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compounds
KR20230043732A (en) 2021-09-24 2023-03-31 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compound

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445888B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, method for producing the same, and magnetic component
ES2666125T3 (en) * 2012-01-18 2018-05-03 Hitachi Metals, Ltd. Metal powder core, coil component and manufacturing method for metal powder core
JP6041207B2 (en) * 2012-12-27 2016-12-07 日立金属株式会社 Nanocrystalline soft magnetic alloy and magnetic component using the same
ES2716097T3 (en) * 2013-07-17 2019-06-10 Hitachi Metals Ltd Dust core, coil component that uses the same and process to produce a dust core
JP6519754B2 (en) * 2014-03-13 2019-05-29 日立金属株式会社 Magnetic core, coil parts and method of manufacturing magnetic core
DE112016003044T5 (en) * 2015-07-31 2018-06-14 Murata Manufacturing Co., Ltd. SOFT MAGNETIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF
JP6080115B2 (en) * 2015-09-03 2017-02-15 日立金属株式会社 Manufacturing method of dust core
JP6707845B2 (en) * 2015-11-25 2020-06-10 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element and electronic device
JP6205442B2 (en) * 2016-02-16 2017-09-27 ハード工業有限会社 Metal powder production equipment

Also Published As

Publication number Publication date
JP6673536B1 (en) 2020-03-25
WO2019208768A1 (en) 2019-10-31
CN112105472B (en) 2023-04-18
CN112105472A (en) 2020-12-18
JP2020111830A (en) 2020-07-27
JP7236622B2 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
JP6673536B1 (en) Powder for magnetic core, magnetic core and coil parts using the same
JP6482718B1 (en) Soft magnetic material and manufacturing method thereof
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP6669304B2 (en) Crystalline Fe-based alloy powder and method for producing the same
JP6892009B2 (en) Alloy powder, Fe-based nanocrystalline alloy powder and magnetic core
JP6881617B2 (en) Powder for magnetic core, magnetic core and coil parts using it, and powder for magnetic core
TW201932619A (en) Soft magnetic alloy and magnetic device
JP6842824B2 (en) Manufacturing method of metal soft magnetic alloy and magnetic core
JP6937386B2 (en) Fe-based soft magnetic alloy
JP6488488B2 (en) Method for producing magnetic powder and method for producing magnetic core
WO2016121950A1 (en) Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
CN108431277B (en) Iron-based soft magnetic alloy, method for producing same, and magnetic component using same
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JPWO2020196608A1 (en) Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
JP6693603B1 (en) Powder for magnetic core, magnetic core and coil parts using the powder
CN117980522A (en) Iron-based soft magnetic alloy and preparation method thereof
JP2021086941A (en) Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6673536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350