JP7236622B2 - Particles of nanocrystalline alloy. - Google Patents

Particles of nanocrystalline alloy. Download PDF

Info

Publication number
JP7236622B2
JP7236622B2 JP2020034684A JP2020034684A JP7236622B2 JP 7236622 B2 JP7236622 B2 JP 7236622B2 JP 2020034684 A JP2020034684 A JP 2020034684A JP 2020034684 A JP2020034684 A JP 2020034684A JP 7236622 B2 JP7236622 B2 JP 7236622B2
Authority
JP
Japan
Prior art keywords
powder
fesi
magnetic core
magnetic
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020034684A
Other languages
Japanese (ja)
Other versions
JP2020111830A5 (en
JP2020111830A (en
Inventor
哲朗 加藤
伸彦 千綿
元基 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROTERIAL, LTD.
Original Assignee
PROTERIAL, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROTERIAL, LTD. filed Critical PROTERIAL, LTD.
Publication of JP2020111830A publication Critical patent/JP2020111830A/en
Publication of JP2020111830A5 publication Critical patent/JP2020111830A5/en
Application granted granted Critical
Publication of JP7236622B2 publication Critical patent/JP7236622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Description

本発明は、スイッチング電源等に用いられるトランス、チョークコイル、リアクトル等に好適な磁心用粉末、それを用いた磁心及びコイル部品に関する。 TECHNICAL FIELD The present invention relates to magnetic core powder suitable for transformers, choke coils, reactors and the like used in switching power supplies and the like, and to magnetic cores and coil parts using the same.

スイッチング電源は、EV(電気自動車)、HEV(ハイブリッド車)、PHEV(プラグインハイブリッド車)、移動体通信機器(携帯電話、スマートフォン等)、パーソナルコンピュータ、サーバー等の電源供給が必要な様々な電子機器の電源回路で用いられ、小型・軽量化とともに、省エネルギーの観点から低消費電力であることが求められるようになってきた。 Switching power supplies are used in EV (electric vehicles), HEV (hybrid vehicles), PHEV (plug-in hybrid vehicles), mobile communication devices (mobile phones, smartphones, etc.), personal computers, servers, and various other electronic devices that require power supply. They are used in the power supply circuits of equipment, and along with being smaller and lighter, there is a growing demand for low power consumption from the standpoint of energy conservation.

また、電子機器に使用されるLSI(大規模集積回路)の微細配線化によるトランジスタの高集積化に伴って、トランジスタの耐圧が低下するとともに消費電流が増加し、動作電圧の低電圧化及び大電流化が進んでいる。それに伴って、LSIに電源を供給するDC-DCコンバータ等の電源回路もまた、LSIの動作電圧の低電圧化及び大電流化への対応が必要となる。例えば、LSIの動作電圧の低電圧化によって正常に動作する電圧範囲が狭くなるので、電源回路からの供給電圧の変動(リップル)によってLSIの電源電圧範囲を上回ったり下回ったりしてしまうと、LSIの不安定動作を招くため、電源回路のスイッチング周波数を高める対策が採られるようになった。 In addition, along with the high integration of transistors due to the finer wiring of LSIs (Large Scale Integrated Circuits) used in electronic devices, the breakdown voltage of transistors has decreased and the current consumption has increased, resulting in lower operating voltages and higher operating voltages. Electrification is progressing. Along with this, power supply circuits such as DC-DC converters that supply power to LSIs also need to cope with lower operating voltages and larger currents of LSIs. For example, lowering the operating voltage of an LSI narrows the voltage range in which it can operate normally. Therefore, measures to increase the switching frequency of the power supply circuit have been taken.

電源回路の高周波化や大電流化に対して、コイル部品に用いる磁心に、高周波数領域において高励磁磁束密度で動作し、かつ小型化に好適なFe基非晶質合金、ナノ結晶合金、純鉄、Fe-Si、Fe-Si-Cr等の金属系の軟磁性材料の粉末を採用する場合が多い。軟磁性材料の粉末としては、磁心とした時に磁気特性の形状異方性が生じ難く、また磁心の成形において粉末の流動性が良好な、アトマイズ法により得られる粒状粉が好適に用いられる。 Fe-based amorphous alloys, nanocrystalline alloys, and pure Fe-based amorphous alloys, nanocrystalline alloys, and pure alloys that operate at high excitation flux densities in the high-frequency range and are suitable for miniaturization are used for the magnetic cores used in coil components for high-frequency and high-current power supply circuits. Powders of metallic soft magnetic materials such as iron, Fe--Si, and Fe--Si--Cr are often used. As the powder of the soft magnetic material, a granular powder obtained by an atomization method is preferably used because the shape anisotropy of the magnetic properties hardly occurs when the magnetic core is formed, and the powder has good fluidity in molding the magnetic core.

前記金属系の軟磁性材料の中でも、飽和磁束密度が高く、保磁力が小さく、かつ低磁歪化が可能な軟磁性材料として、Fe基合金であって、微細なbcc構造のFeSi結晶を組織中に有するナノ結晶合金が従来から知られている。一般にナノ結晶合金は、均一で超微細な結晶粒(例えば粒径が約10 nm)を有し、主相はbcc構造のFeSi結晶で、その周囲に非晶質相が残存する組織となっている(日立金属株式会社、ファインメット(登録商標)ミクロ構造、[平成30年4月18日検索]、インターネット<URL:http://www.hitachi-metals.co.jp/product/finemet/fp04.htm>(非特許文献1))。例えば、特開2004-349585号(特許文献1)は、このようなナノ結晶合金を水アトマイズ法により粉末状として得ることを開示している。また、特開2016-25352号(特許文献2)及び特開2017-110256号(特許文献3)は、ナノ結晶合金の粉末を、ガスアトマイズ法及び高速回転水流アトマイズ法で作製することを開示している。 Among the metal-based soft magnetic materials, as a soft magnetic material that has a high saturation magnetic flux density, a small coercive force, and is capable of achieving low magnetostriction, it is an Fe-based alloy that contains FeSi crystals with a fine bcc structure in the organization. Nanocrystalline alloys have been known for some time. In general, nanocrystalline alloys have uniform and ultra-fine crystal grains (for example, the grain size is about 10 nm), the main phase is FeSi crystals with a bcc structure, and the amorphous phase remains in the surroundings. (Hitachi Metals Co., Ltd., Finemet (registered trademark) microstructure, [searched on April 18, 2018], Internet <URL: http://www.hitachi-metals.co.jp/product/finemet/fp04 .htm> (Non-Patent Document 1)). For example, Japanese Patent Application Laid-Open No. 2004-349585 (Patent Document 1) discloses obtaining such a nanocrystalline alloy in powder form by a water atomization method. In addition, Japanese Patent Application Laid-Open Nos. 2016-25352 (Patent Document 2) and 2017-110256 (Patent Document 3) disclose that a nanocrystalline alloy powder is produced by a gas atomization method and a high-speed rotating water stream atomization method. there is

特開2004-349585号公報JP 2004-349585 A 特開2016-25352号公報JP 2016-25352 A 特開2017-110256号公報JP 2017-110256 A

日立金属株式会社、ファインメット(登録商標)ミクロ構造、[平成30年4月18日検索]、インターネット<URL:http://www.hitachi-metals.co.jp/product/finemet/fp04.htm>Hitachi Metals, Ltd., Finemet (registered trademark) microstructure, [searched on April 18, 2018], Internet <URL: http://www. hitachi-metals. co. jp/product/finemet/fp04. http>

コイル部品に用いる磁心は、直流電流が重畳した交流電流で励磁された磁心のインダクタンスが、高い電流値まで初期値を維持し、その低下が抑えられる、即ち、重畳特性に優れることが求められる。 The magnetic core used for the coil component is required to have an inductance excited by an alternating current superimposed with a direct current, which maintains its initial value up to a high current value and suppresses its decrease, that is, has excellent superimposition characteristics.

ナノ結晶合金は、ランダムに配向した強磁性相のFeSi結晶の粒が分散した組織を有し、結晶粒径が磁気相関長(およそ磁壁幅程度で、数十 nm)よりも小さく、見かけ上の結晶磁気異方性がゼロに近い状態となり、外部磁場に対する感受性が高い特徴を持つ。このようなナノ結晶合金を使用した磁心は、透磁率が高く、損失を小さくすることができるけれども、一方ではコイル部品として使用可能な最大電流値が小さく、直流重畳特性の改善が求められていた。 Nanocrystalline alloys have a structure in which randomly oriented ferromagnetic phase FeSi crystal grains are dispersed. The crystal magnetic anisotropy becomes a state close to zero, and it is characterized by high sensitivity to external magnetic fields. Magnetic cores using such nanocrystalline alloys have high magnetic permeability and can reduce loss, but on the other hand, the maximum current value that can be used as a coil component is small, and improvement in DC superimposition characteristics has been desired. .

本発明は上記課題に鑑みたものであり、磁心として用いられたときに直流重畳特性を向上し得る磁心用粉末、及びこの磁心用粉末を用いた磁心及びコイル部品を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic core powder capable of improving DC superimposition characteristics when used as a magnetic core, and a magnetic core and coil parts using this magnetic core powder. .

本発明の一態様は、ナノサイズのFeSi結晶が柱状組織をなす領域を備えた第一のFe基合金の粒子と、前記第一のFe基合金の粒子とは異なる金属組織からなる軟磁性材料の粒子とを含む磁心用粉末である。 One aspect of the present invention is a soft magnetic material comprising particles of a first Fe-based alloy having a region in which nano-sized FeSi crystals form a columnar structure, and a metal structure different from that of the particles of the first Fe-based alloy. and particles for a magnetic core.

前記磁心用粉末において、第一のFe基合金の粒子は、柱状組織をなす領域においてFeSi結晶の伸長方向が異なる複数の領域を備えるのが好ましい。 In the magnetic core powder, the particles of the first Fe-based alloy preferably have a plurality of regions in which FeSi crystals extend in different directions in the region forming the columnar structure.

前記磁心用粉末において、ナノサイズのFeSi結晶が粒状組織をなす領域を備えた第二のFe基合金の粒子をさらに含むのが好ましい。 It is preferable that the magnetic core powder further includes particles of a second Fe-based alloy having a region in which nano-sized FeSi crystals form a granular structure.

前記磁心用粉末において、CuのKα特性X線を用いて測定したX線回折スペクトルにおける、2θ=45°付近のbcc構造のFeSi結晶の回折ピークのピーク強度P1に対する、2θ=56.5°付近のbcc構造のFe2B結晶の回折ピークのピーク強度P2のピーク強度比(P2/P1)は0.05以下であるのが好ましい。 In the magnetic core powder, in the X-ray diffraction spectrum measured using the Kα characteristic X-ray of Cu, bcc near 2θ = 56.5 ° with respect to the peak intensity P1 of the diffraction peak of the FeSi crystal with the bcc structure near 2θ = 45 ° The peak intensity ratio (P2/P1) of the peak intensity P2 of the diffraction peak of the Fe 2 B crystal of the structure is preferably 0.05 or less.

前記磁心用粉末において、印加磁界40 kA/mにおける保磁力は350 A/m以下であるのが好ましい。 The magnetic core powder preferably has a coercive force of 350 A/m or less in an applied magnetic field of 40 kA/m.

前記磁心用粉末において、前記第一のFe基合金の粒子は、合金組成:Fe100-a-b-c-d-e-f-g-hCuaSibBcMdCreSnfAggCh(ただし、a、b、c、d、e、f、g及びhは原子%を表し、0.8≦a≦2.0、2.0≦b≦12.0、11.0≦c≦17.0、0≦d≦1.0、0≦e≦2.0、0≦f≦1.5、0≦g≦0.2、0≦h≦0.4を満たす数値であり、MはNb,Ti,Zr,Hf,V,Ta,及びMoからなる群から選択される1種以上の元素である。)を有するのが好ましい。 In the magnetic core powder, the particles of the first Fe-based alloy have an alloy composition: Fe 100-abcdefgh Cu a Si b B c M d Cre Sn f Ag g C h (where a, b, c, d , e, f, g and h represent atomic %, 0.8≤a≤2.0, 2.0≤b≤12.0, 11.0≤c≤17.0, 0≤d≤1.0, 0≤e≤2.0, 0≤f≤1.5, 0≤g≤0.2, 0≤h≤0.4, and M is one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta, and Mo.) It is preferable to have

本発明の別の一態様は、前記磁心用粉末をバインダで結合してなる磁心である。 Another aspect of the present invention is a magnetic core formed by binding the magnetic core powder with a binder.

発明のさらに別の一態様は、前記磁心とコイルとを含むコイル部品である。 Yet another aspect of the invention is a coil component including the magnetic core and the coil.

本発明の磁心用粉末は、磁心として用いられたときに、直流重畳特性を向上させることが可能である。また、この磁心用粉末を用いた磁心及びコイル部品を提供することができる。 The magnetic core powder of the present invention can improve DC superposition characteristics when used as a magnetic core. Moreover, it is possible to provide a magnetic core and a coil component using this magnetic core powder.

本発明の一実施例に係る磁心用粉末に含まれる粒子の組織構造を説明するための模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram for explaining the structure of particles contained in a magnetic core powder according to an example of the present invention; 図1の組織構造における、線状のFeSi結晶の構造を説明するための模式図である。2 is a schematic diagram for explaining the structure of linear FeSi crystals in the structure of FIG. 1. FIG. 本発明の一実施例に係る磁心用粉末(No.1及び2)と参考例の磁心用粉末(No.*3)の粒度分布を示すグラフである。1 is a graph showing the particle size distribution of magnetic core powders (Nos. 1 and 2) according to one example of the present invention and magnetic core powder (No.*3) of a reference example. 本発明の一実施例に係る磁心用粉末(No.1及び2)と参考例の磁心用粉末(No.*3)のX線回折スペクトルを示すグラフである。1 is a graph showing X-ray diffraction spectra of magnetic core powders (Nos. 1 and 2) according to one example of the present invention and magnetic core powder (No.*3) of a reference example. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面を観察したTEM写真である。1 is a TEM photograph of a particle cross section of a powder for a magnetic core (No. 1) of the present invention with a particle size corresponding to d90. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面を観察した他の視野のTEM写真である。FIG. 10 is a TEM photograph of another view of the particle cross section of the magnetic core powder (No. 1) of the present invention with a particle size corresponding to d90. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面のSi(ケイ素)元素組成マッピング写真である。1 is a Si (silicon) elemental composition mapping photograph of a particle cross section of a particle size corresponding to d90 of the magnetic core powder (No. 1) of the present invention. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面のB(ホウ素)元素組成マッピング写真である。1 is a B (boron) elemental composition mapping photograph of a particle cross section of a particle size corresponding to d90 of the magnetic core powder (No. 1) of the present invention. 本発明の磁心用粉末(No.1)のd90相当の粒径の粒子断面のCu(銅)元素組成マッピング写真である。1 is a Cu (copper) elemental composition mapping photograph of a particle cross section of a particle size corresponding to d90 of the magnetic core powder (No. 1) of the present invention.

以下、本発明の一実施形態に係る磁心用粉末、及びそれを用いた磁心、並びにコイル部品について具体的に説明する。ただし、本発明はこれらに限定されるものではない。なお、図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大又は縮小等して図示した部分がある。また説明において示される寸法や形状、構成部材の相対的な位置関係等は特に断わりの記載がない限りは、それらのみに限定されない。さらに説明においては、同一の名称、符号については同一又は同質の部材を示していて、図示していても詳細説明を省略する場合がある。 Hereinafter, a magnetic core powder, a magnetic core using the same, and a coil component according to an embodiment of the present invention will be specifically described. However, the present invention is not limited to these. It should be noted that, in some or all of the drawings, parts that are not necessary for explanation are omitted, and some parts are enlarged or reduced in order to facilitate explanation. In addition, unless otherwise specified, the dimensions, shapes, relative positional relationships, etc. of constituent members shown in the description are not limited to them. Furthermore, in the description, the same names and symbols indicate the same or homogeneous members, and detailed description may be omitted even if they are illustrated.

[1]磁心用粉末
本発明は、発明者等がナノ結晶軟磁性材料について鋭意研究する中で、新規な結晶組織構造を有するナノ結晶合金を見出し、その特性を活用する検討の中で至ったものである。発明の理解を容易にするため、新規な結晶組織構造を有するナノ結晶合金について詳細に説明する。
[1] Magnetic core powder The present invention has been made in the course of the inventors' intensive research on nanocrystalline soft magnetic materials, finding a nanocrystalline alloy having a novel crystallographic structure, and studying how to utilize its characteristics. It is. To facilitate understanding of the invention, a nanocrystalline alloy having a novel crystallographic structure will be described in detail.

(1)組織構造
従来のナノ結晶合金は、非晶質相からCuクラスター(Cuに富む領域)を起点に結晶化させることによって得られ、平均結晶粒径が例えば30 nm以下であって、ランダムに配向した強磁性相のFeSi結晶の粒が非晶質相中に分散した組織となっている。つまり、従来のナノ結晶合金では、ナノサイズのFeSi結晶が粒状組織をなしている。FeSi結晶の粒成長は任意の方向に起きてランダムな析出となり、規則性を持った析出形態とはならない。なお、ナノ結晶(ナノサイズの結晶)とは、一般的には平均結晶粒径が100 nm以下のものをいう。
(1) Microstructure Conventional nanocrystalline alloys are obtained by crystallization from an amorphous phase starting from Cu clusters (Cu-rich regions), and have an average crystal grain size of, for example, 30 nm or less, and random FeSi crystal grains of the ferromagnetic phase oriented in the direction are dispersed in the amorphous phase. In other words, in conventional nanocrystalline alloys, nano-sized FeSi crystals form a granular structure. Grain growth of FeSi crystals occurs in an arbitrary direction, resulting in random precipitation, and does not result in a regular precipitation form. Nanocrystals (nano-sized crystals) generally refer to those having an average crystal grain size of 100 nm or less.

一方、新規な組織構造のナノ結晶合金は、ナノサイズのFeSi結晶が柱状組織をなしている。この柱状組織とは、非晶質相中にほぼ一方向に沿って並んだ複数の線状のFeSi結晶が間隔をもって存在している組織である。図1はナノサイズのFeSi結晶が柱状組織をなしている状態を説明するための模式図である。この柱状組織を有するナノ結晶合金100では、線状のFeSi結晶200が平行線状に存在して現れる縞模様の組織となっていて、その線状のFeSi結晶200の間は非晶質相250となっている。 On the other hand, in the nanocrystalline alloy with a novel structure, nano-sized FeSi crystals form a columnar structure. This columnar structure is a structure in which a plurality of linear FeSi crystals arranged substantially along one direction are present at intervals in the amorphous phase. FIG. 1 is a schematic diagram for explaining a state in which nano-sized FeSi crystals form a columnar structure. In the nanocrystalline alloy 100 having this columnar structure, the linear FeSi crystals 200 exist in parallel lines to form a striped structure, and the amorphous phase 250 is formed between the linear FeSi crystals 200. It has become.

図2は図1の組織構造にて観察される線状のFeSi結晶200の構造を説明するための模式図である。線状のFeSi結晶200は、柱状構造で多数の括れを備えた数珠形を有している。括れの間の部分は略楕円球状であって、複数の略楕円球状部が連接して柱状をなしている。略楕円球状部の短径はおよそ10 nmから20 nm、長径が20 nmから40 nmのナノサイズである。線状のFeSi結晶200の長さは様々だが、例えば200 nm以上であって、その長さは合金組織内の応力分布の影響を受けて変動すると考えられる。以下、この新規な組織構造を柱状組織と呼び、従来の組織構造を粒状組織と呼ぶ場合がある。 FIG. 2 is a schematic diagram for explaining the structure of linear FeSi crystals 200 observed in the structure of FIG. The linear FeSi crystal 200 has a columnar structure and a beaded shape with many constrictions. The portion between the constrictions has a substantially elliptical spherical shape, and a plurality of substantially elliptical spherical portions are connected to form a columnar shape. The nearly ellipsoidal spherical portion has a nano-size with a minor axis of about 10 nm to 20 nm and a major axis of about 20 nm to 40 nm. Although the length of the linear FeSi crystal 200 varies, it is, for example, 200 nm or more, and the length is considered to fluctuate under the influence of the stress distribution within the alloy structure. Hereinafter, this new structure will be referred to as columnar structure, and the conventional structure will be referred to as granular structure.

粒状組織のFeSi結晶を備える従来のナノ結晶組織では、前述のように、見かけ上の結晶磁気異方性がゼロに近い状態となり、外部磁場に対する感受性が高く、このような結晶組織を有するナノ結晶合金を使用した磁心は透磁率が高く、損失も小さいといった特徴がある。 In a conventional nanocrystalline structure comprising FeSi crystals with a granular structure, as described above, the apparent magnetocrystalline anisotropy is close to zero, and the sensitivity to external magnetic fields is high. Magnetic cores using alloys are characterized by high magnetic permeability and low loss.

一方、新規な組織構造である柱状組織では、FeSi結晶は幅に対して伸長方向の長さが長い長尺の柱状構造である。柱状組織のFeSi結晶を有する構造であると、従来の粒状組織のFeSi結晶を有する構造である場合と比べて大きな磁気異方性が発現して、保磁力の増加、透磁率の低下、損失の増加を招き、所望の軟磁気特性が得られないといった問題が予測される。このような問題に対して、本発明者等は、合金組織中に、FeSi結晶の伸長方向が異なる複数の領域を有するようにする、すなわち、それぞれの領域ではFeSi結晶の伸長方向が揃っており規則性を有するが、領域ごとにFeSi結晶の伸長方向が異なり、隣接する領域間では線状のFeSi結晶が不連続であり、合金全体でみれば規則性を有さない結晶組織とすることで改善し得ることを見出した。 On the other hand, in the columnar structure, which is a novel structure, the FeSi crystal has a long columnar structure with a length in the extension direction that is longer than the width. In a structure having FeSi crystals with a columnar structure, a larger magnetic anisotropy is exhibited than in a structure having FeSi crystals with a conventional granular structure, resulting in an increase in coercive force, a decrease in magnetic permeability, and a reduction in loss. It is expected that the magnetic field will increase and the desired soft magnetic properties will not be obtained. In order to solve such a problem, the inventors of the present invention provide the alloy structure with a plurality of regions in which the FeSi crystals have different elongation directions. Although it has regularity, the FeSi crystals have different elongation directions in each region, and the linear FeSi crystals are discontinuous between adjacent regions. I have found that it can be improved.

また柱状組織のFeSi結晶を有すると磁気モーメントは伸長方向に配向しやすく、また組織がナノオーダであるため磁場への高い感受性が残されたものとなる。磁化容易軸方向に向くFeの磁気モーメントを回転させる過程を、磁化容易軸につながれたばねを用いて形象すると、線状のFeSi結晶の配向性と磁場への感受性との兼ね合いで、伸長方向の磁場への高い飽和性を有するため、垂直方向の磁場に対して磁気モーメントは磁場と並行になろうと回転するが、その回転はばねによって制限され、また磁場が除かれると速やかに磁化容易軸方向に向くと考えられる。このような磁気モーメントの磁場に対する応答がリニアで、磁場に対する感受性が高磁場まで持続する特性によれば、柱状組織のFeSi結晶を有するナノ結晶合金を使用した磁心は、FeSi結晶による大きな飽和磁化が得られるとともに、大電流(高磁場)まで高い増分透磁率μΔを持続することができると考えられる。 In addition, when FeSi crystals have a columnar structure, the magnetic moment tends to be oriented in the direction of elongation, and since the structure is nano-order, high sensitivity to magnetic fields remains. If we imagine the process of rotating the magnetic moment of Fe in the direction of the easy axis using a spring connected to the easy axis, we find that the orientation of the linear FeSi crystals and their susceptibility to the magnetic field produce a magnetic field in the direction of elongation. , the magnetic moment rotates parallel to the magnetic field in response to a perpendicular magnetic field, but the rotation is restricted by the spring, and when the magnetic field is removed, it quickly rotates to the easy axis direction. It is thought that it will turn. According to the characteristic that the response of the magnetic moment to the magnetic field is linear and the susceptibility to the magnetic field persists up to a high magnetic field, a magnetic core using a nanocrystalline alloy with FeSi crystals in a columnar texture exhibits a large saturation magnetization due to the FeSi crystals. It is believed that a high incremental magnetic permeability μΔ can be obtained and maintained up to large currents (high magnetic fields).

(2)磁心用粉末
このような知見を基に、本発明者等は、さらに検討を進める中で、新規な柱状組織を備えるナノ結晶合金の粉末と、さらに従来の粒状組織を備えるナノ結晶合金の粉末及び/又は他の軟磁性材料の粉末との混合粉末にすることで、それぞれの異なる磁気的特徴を活用・補完し、磁心として用いた場合に、磁心損失の増加、透磁率の低下を抑えながら、重畳特性を改善する磁心用粉末が得られることを見出した。
(2) Powders for magnetic cores Based on these findings, the inventors of the present invention, in the course of further studies, have found powders of nanocrystalline alloys having a novel columnar structure and nanocrystalline alloys having a conventional granular structure. powder and/or mixed powder with powder of other soft magnetic materials, the different magnetic characteristics of each are utilized and complemented, and when used as a magnetic core, increase in core loss and decrease in magnetic permeability It has been found that a magnetic core powder can be obtained that improves the superimposition properties while suppressing the

ナノ結晶合金における柱状組織の出現のメカニズムについては明確になっていないが、柱状組織のFeSi結晶は従来の粒状組織のFeSi結晶と同様に、非晶質相からCuクラスターを起点にFeSi結晶を析出(結晶化)すると考えられる。これまでの検討で、従来の粒状組織のFeSi結晶は、専ら熱処理で非晶質相から形成されるが、柱状組織のFeSi結晶は溶湯が冷却されて合金化される冷却過程で形成され、この点で従来のナノ結晶の組織形成とは異なる。 Although the mechanism of the appearance of the columnar structure in nanocrystalline alloys is not clear, FeSi crystals with a columnar structure precipitate FeSi crystals from the amorphous phase starting from Cu clusters in the same way as FeSi crystals with a conventional granular structure. (Crystallization). In the studies so far, FeSi crystals with a conventional granular structure are formed from the amorphous phase exclusively by heat treatment, but FeSi crystals with a columnar structure are formed in the cooling process in which the molten metal is cooled and alloyed. This is different from conventional nanocrystal structure formation in that respect.

柱状組織の形成では、合金作製時の冷却速度や合金内での冷却速度の分布(合金粒子表層部と中心部との速度勾配)が重要で、合金組成によっても変わるが、合金の非晶質化のためには、例えば、溶湯を103℃/秒程度以上の速度で冷却可能であること、及び(サブμm)3~(数μm)3の大きさの体積単位で、冷却の過程で合金内部に応力分布の異なる領域を生じさせることが求められる。特に、溶湯の冷却過程における500℃付近での冷却速度が影響すると考えられる。 In the formation of a columnar structure, the cooling rate during alloy production and the distribution of the cooling rate within the alloy (velocity gradient between the surface layer and the center of the alloy particle) are important. For example, it is possible to cool the molten metal at a rate of about 10 3 ° C./sec or more, and in the process of cooling, the volume unit of the size of (sub μm) 3 to (several μm) 3 It is required to create regions with different stress distributions inside the alloy. In particular, it is considered that the cooling rate around 500°C in the cooling process of the molten metal has an effect.

柱状組織のFeSi結晶を有するナノ結晶合金の粉末の作製においては、上述の要求を満足し得るなら製法、条件等は限定されない。例えば、従来の粒状組織のFeSi結晶を有するナノ結晶合金の粉末の作製に使用される、ガスアトマイズ法、水アトマイズ法、高速回転水流アトマイズ法などの水やガスを溶湯の粉砕手段とする方法を採用しても良いし、火炎を超音速又は音速に近い速度でフレームジェットとして噴射する高速燃焼炎アトマイズ法などのアトマイズ法で粉末化しても良い。 In the production of nanocrystalline alloy powder having FeSi crystals with a columnar structure, the production method, conditions, etc. are not limited as long as the above requirements can be satisfied. For example, methods using water or gas as a means of pulverizing molten metal, such as gas atomization, water atomization, and high-speed rotating water jet atomization, which are used to produce powders of nanocrystalline alloys having FeSi crystals with a conventional granular structure, are adopted. Alternatively, it may be pulverized by an atomization method such as a high-speed combustion flame atomization method in which a flame is jetted as a flame jet at supersonic speed or near sonic speed.

本発明者等の検討によれば、柱状組織を有するナノ結晶合金の粒子の作製において、特には高速燃焼炎アトマイズ法が好適であることが分かった。高速燃焼炎アトマイズ法は他のアトマイズ法ほど一般的ではないが、例えば、特開2014-136807号等に記載される。高速燃焼炎アトマイズ法では、高速燃焼器による高速燃焼炎で溶湯を粉末状とし、液体窒素、液化炭酸ガスなどの冷却媒体を噴射可能な複数の冷却ノズルを有する急速冷却機構により冷却する。 According to studies by the present inventors, it has been found that the high-velocity combustion flame atomization method is particularly suitable for producing particles of a nanocrystalline alloy having a columnar structure. The high-velocity combustion flame atomization method is not as common as other atomization methods, but is described, for example, in JP-A-2014-136807. In the high-speed combustion flame atomization method, the molten metal is pulverized by high-speed combustion flame in a high-speed combustor, and cooled by a rapid cooling mechanism having a plurality of cooling nozzles capable of injecting a cooling medium such as liquid nitrogen or liquefied carbon dioxide.

アトマイズ法で得られる粒子は球形に近く、冷却速度は粒径に大きく依存することが知られている。大気よりも熱交換効率が高い液体中や気体中(例えば、水、He又は水蒸気)を粉砕された溶湯が高速で通過すると、その表面は高い冷却速度で冷却される。表面から効率よく抜熱されると、熱伝導に従い内部も冷却されるが、冷却速度にはばらつきがあって、先に固まる表層部と遅れて固まる中心部とで体積差が発生する。得られる合金粒子が相対的に大径である程に、冷却速度のばらつきは顕著に現れる。 Particles obtained by the atomization method are nearly spherical, and it is known that the cooling rate greatly depends on the particle size. When the pulverized molten metal passes through a liquid or gas (for example, water, He or water vapor), which has a higher heat exchange efficiency than air, at a high speed, the surface is cooled at a high cooling rate. When heat is efficiently removed from the surface, the inside is also cooled by heat conduction, but the cooling rate varies, and a volume difference occurs between the surface layer that hardens first and the center that hardens later. The larger the diameter of the obtained alloy particles, the more pronounced the variation in the cooling rate.

上述の高速燃焼炎アトマイズ法によれば、冷却過程の初期の段階では、粉砕された溶湯は急冷されて過冷却ガラス状態の合金となっていて、体積差による歪の自己緩和のために、冷却過程の粒子には、(サブμm)3~(数μm)3の大きさの体積単位で応力分布の異なる領域が生じる。そして各領域は、周囲の領域からの拘束力により相互に応力を受けた状態となっていると考えられる。さらに冷却過程で結晶相と非晶質相とに分離する際に、応力が印加された状態の非晶質相からCuクラスターを起点にFeSi結晶の析出が開始すると、それを引き金に、非晶質相の原子移動を伴うクリープ挙動の効果もあって、FeSi結晶の端部が次の結晶粒形成を引き起こし、応力方向に結晶粒成長が進行して、原子レベルで連続的に格子がつながった数珠形に結晶粒成長が起きると考えられる。 According to the high-velocity combustion flame atomization method described above, in the early stages of the cooling process, the pulverized molten metal is quenched into a supercooled glassy state alloy, and due to the self-relaxation of the strain due to the volume difference, cooling In process particles, regions with different stress distribution occur in volume units with a size of (sub-μm) 3 to (several μm) 3 . Each region is considered to be in a state of being mutually stressed by the restraining force from the surrounding regions. Furthermore, when separating into a crystalline phase and an amorphous phase during the cooling process, when FeSi crystals start to precipitate from the amorphous phase in a stress-applied state starting from Cu clusters, this triggers an amorphous phase. Partly due to the effect of creep behavior that accompanies the atomic migration of the solid phase, the edge of the FeSi crystal triggered the formation of the next grain, and the grain growth progressed in the stress direction, and the lattice was continuously connected at the atomic level. It is considered that grain growth occurs in a beaded shape.

また本発明者等の検討によれば、高速燃焼炎アトマイズ法では、柱状組織の粒子と粒状組織の粒子とを同時に作製できることが判明している。高速燃焼炎アトマイズ法では、粒子の粒径が典型的には10μm以下で、同じ組成では単ロール法により作製されたリボンよりも冷却速度が高くなる傾向が観察されている。粉末化時の冷却速度が速い場合は、粒内の冷却速度分布が抑えられ、ひずみや圧力分布も小さくなるため、得られる粒子の組織は実質的に非晶質相となって柱状組織のFeSi結晶は得られ難い。それを従来のナノ結晶合金のように熱処理すると、その組織は従来と同様にFeSi結晶が粒状組織となる。 Further, according to the studies of the present inventors, it has been found that particles with a columnar structure and particles with a granular structure can be produced simultaneously by the high-speed combustion flame atomizing method. In the fast burning flame atomization method, the particle size is typically less than 10 μm, and a trend towards higher cooling rates than ribbons made by the single roll method of the same composition has been observed. When the cooling rate during pulverization is fast, the cooling rate distribution in the grains is suppressed, and the strain and pressure distributions are also small. Crystals are difficult to obtain. When it is heat-treated like a conventional nanocrystalline alloy, its structure becomes a grain structure of FeSi crystals as before.

粒子の粒径が10μmを超えて、典型的には20μm程度になると、内部と外部との冷却速度の差が大きくなり、冷却時の体積変化の時間差に由来したひずみが蓄積され、さらに冷却速度が相対的に遅い内部から柱状組織のFeSi結晶が析出し易い。 When the particle size exceeds 10 μm, typically about 20 μm, the difference in cooling rate between the inside and the outside increases, and strain due to the time difference in volume change during cooling accumulates, further increasing the cooling rate. FeSi crystals with a columnar structure tend to precipitate from the inside where the flow rate is relatively slow.

このような知見に基づけば、少なくとも粒径が10~20μmの粒子を含む粉末であれば、それが一度のアトマイズ処理で得た粉末であっても、柱状組織のFeSi結晶を有するナノ結晶合金の粉末と粒状組織のFeSi結晶を有するナノ結晶合金の粉末とを含む粉末とすることが可能である。また、それを分級すれば柱状組織のナノ結晶合金の粉末と粒状組織のナノ結晶合金の粉末との比率を異ならせることも可能である。 Based on such findings, it is believed that a powder containing particles with a particle size of at least 10 to 20 μm, even if it is a powder obtained by a single atomization process, can produce a nanocrystalline alloy having FeSi crystals with a columnar structure. It can be a powder comprising a powder and a powder of a nanocrystalline alloy with FeSi crystals in a grain structure. Further, by classifying the particles, it is possible to differentiate the ratio between the nanocrystalline alloy powder having a columnar structure and the nanocrystalline alloy powder having a granular structure.

柱状組織のFeSi結晶を有するナノ結晶合金には、磁心用粉末が要求される磁気特性を満足する範囲であれば、一部にFeSi結晶以外の結晶相を含んでいても良い。FeSi結晶以外の結晶相とは、結晶磁気異方性が高く、軟磁気特性を悪化させる相と考えられえているFe2B結晶が例示される。例えば、後述するbcc構造のFeSi結晶の回折ピークのピーク強度P1に対する、bcc構造のFe2B結晶の回折ピークのピーク強度P2のピーク強度比(P2/P1)で規定すれば、そのピーク強度比(P2/P1)は0.05以下であるのが好ましい。優れた磁気特性の結晶質の磁心用粉末を得るにはピーク強度比(P2/P1)が0.03以下であるのが好ましく、ピーク強度P2が測定のノイズレベル以下の実質0(ゼロ)であるのが望ましい。 The nanocrystalline alloy having FeSi crystals with a columnar structure may partially contain crystal phases other than FeSi crystals as long as the magnetic properties required for magnetic core powders are satisfied. Crystal phases other than FeSi crystals are exemplified by Fe 2 B crystals, which have high magnetocrystalline anisotropy and are considered to deteriorate soft magnetic properties. For example, if defined by the peak intensity ratio (P2/P1) of the peak intensity P2 of the diffraction peak of the Fe 2 B crystal with the bcc structure to the peak intensity P1 of the diffraction peak of the FeSi crystal with the bcc structure, which will be described later, the peak intensity ratio (P2/P1) is preferably 0.05 or less. In order to obtain a crystalline magnetic core powder with excellent magnetic properties, the peak intensity ratio (P2/P1) is preferably 0.03 or less, and the peak intensity P2 is substantially 0 (zero) below the measurement noise level. is desirable.

本発明の磁心用粉末は、予め準備した粒状組織のナノ結晶合金の粉末及び/又は他の軟磁性材料の粉末と、柱状組織のナノ結晶合金の粉末とを混合したものでも良いし、結晶化後に粒状組織のナノ結晶合金となる粉末と、柱状組織のナノ結晶合金の粉末とを混合した粉末に、結晶化のための熱処理を施したものでも良い。なお、ここで結晶化のための熱処理は、粒状組織のナノ結晶合金とするために行うものである。 The magnetic core powder of the present invention may be a mixture of a powder of a nanocrystalline alloy having a granular structure and/or a powder of another soft magnetic material prepared in advance and a powder of a nanocrystalline alloy having a columnar structure, or a powder obtained by crystallization. A powder obtained by mixing a powder that will later become a nanocrystalline alloy with a granular structure and a powder of a nanocrystalline alloy with a columnar structure, and subjected to a heat treatment for crystallization may be used. Here, the heat treatment for crystallization is performed to obtain a nanocrystalline alloy with a granular structure.

(3)熱処理
結晶化後に粒状組織のナノ結晶合金となる粉末と、柱状組織のナノ結晶合金の粉末とを混合した粉末を熱処理する場合、熱処理に使用する炉は600℃近傍まで温度制御が可能な加熱炉であれば、どのようなものでも特に問題なく使用することができる。例えば、バッチ式の電気炉、メッシュベルト式の連続電気炉により行うことができる。酸化を防ぐのであれば雰囲気調整が可能であるものが好ましい。
(3) Heat treatment When heat-treating a powder that is a mixture of a nano-crystalline alloy powder with a granular structure after crystallization and a nano-crystalline alloy powder with a columnar structure, the temperature of the furnace used for heat treatment can be controlled up to around 600°C. Any suitable heating furnace can be used without any particular problems. For example, a batch type electric furnace or a mesh belt type continuous electric furnace can be used. In order to prevent oxidation, it is preferable that the atmosphere can be adjusted.

このような熱処理における熱処理条件は、柱状組織のナノ結晶合金にFeSi結晶以外のFe2B結晶など、軟磁気特性を劣化させる結晶相を増加させることが無い適切な設定であれば良い。熱処理温度は、粒状組織となるナノ結晶合金の結晶化開始温度に基づいて適宜設定され得る。なお結晶化開始温度は、示差走査熱量分析装置(DSC:Differential Scanning Calorimeter)を用い、室温(RT)から600℃の温度範囲にて、600℃/hrの昇温速度で粉末の熱分析を行うことにより測定することができる。熱処理温度は、粒状組織となるナノ結晶合金の結晶化温度にもよるが、350~450℃、好ましくは390~430℃の範囲とするのが望ましい。熱処理温度は、昇温の後、最高到達温度のことであり、この温度を所定の時間保持する場合、その保持温度でもある。 The heat treatment conditions in such a heat treatment may be appropriately set so as not to increase crystal phases that deteriorate soft magnetic properties, such as Fe 2 B crystals other than FeSi crystals, in the columnar nanocrystalline alloy. The heat treatment temperature can be appropriately set based on the crystallization start temperature of the nanocrystalline alloy that forms the granular structure. The crystallization start temperature is determined by thermal analysis of the powder using a differential scanning calorimeter (DSC) in a temperature range from room temperature (RT) to 600°C at a heating rate of 600°C/hr. can be measured by The heat treatment temperature is desirably in the range of 350 to 450°C, preferably 390 to 430°C, although it depends on the crystallization temperature of the nanocrystalline alloy forming the granular structure. The heat treatment temperature is the highest temperature reached after heating, and when this temperature is held for a predetermined time, it is also the holding temperature.

熱処理時間は、1秒から3時間、好ましくは連続式炉であれば1秒~300秒、バッチ式炉であれば300秒から2時間(7200秒)であるのが望ましい。熱処理時間は、熱処理温度で保持される時間である。 The heat treatment time is desirably 1 second to 3 hours, preferably 1 second to 300 seconds in a continuous furnace, and 300 seconds to 2 hours (7200 seconds) in a batch furnace. The heat treatment time is the time held at the heat treatment temperature.

熱処理における300℃以上の温度範囲における平均昇温速度(目標とする熱処理温度に到達するまでの平均昇温速度)は、0.001~1000℃/秒、好ましくは連続式炉なら0.5~500℃/秒の範囲、バッチ式炉であれば0.006~0.08℃/秒の範囲にあるのが望ましい。昇温速度が上記の範囲にあると、合金の結晶化よって生じる自己発熱で過剰に温度上昇するのを防ぎ、熱処理温度の設定に対して著しくオーバーシュートすることが抑制され、得られる粉末の磁気特性の劣化を防ぐことができる。 The average heating rate in the temperature range of 300°C or higher in heat treatment (average heating rate until reaching the target heat treatment temperature) is 0.001 to 1000°C/second, preferably 0.5 to 500°C/second for a continuous furnace. , preferably in the range of 0.006 to 0.08°C/sec for a batch type furnace. When the heating rate is within the above range, excessive temperature rise due to self-heating caused by crystallization of the alloy is prevented, significant overshoot with respect to the setting of the heat treatment temperature is suppressed, and the magnetism of the obtained powder is suppressed. Degradation of characteristics can be prevented.

(4)合金組成
ナノ結晶合金の組成は、FeSi結晶の柱状組織化が可能で、Si、B及びCuを含むものであれば良い。以下にアトマイズ法により柱状組織のナノ結晶合金を得るのに好適な合金組成を例示するが、それに限定するものではない。アトマイズ法によって得られる磁心用粉末の粒度分布において、粒径が大径の粒子で柱状組織のFeSi結晶となり、小径の粒子で粒状組織のFeSi結晶となる合金組成であっても良い。
(4) Alloy composition The composition of the nanocrystalline alloy may be any composition that enables FeSi crystals to form a columnar structure and contains Si, B, and Cu. An alloy composition suitable for obtaining a nanocrystalline alloy with a columnar structure by the atomization method is exemplified below, but the alloy composition is not limited thereto. In the particle size distribution of the magnetic core powder obtained by the atomization method, the alloy composition may be such that large-diameter particles form FeSi crystals with a columnar structure, and small-diameter particles form FeSi crystals with a granular structure.

ナノ結晶合金の組成は、Fe100-a-b-c-d-e-f-g-hCuaSibBcMdCreSnfAggCh(ただし、a、b、c、d、e、f、g及びhは原子%を表し、0.8≦a≦2.0、2.0≦b≦12.0、11.0≦c≦17.0、0≦d≦1.0、0≦e≦2.0、0≦f≦1.5、0≦g≦0.2、及び0≦h≦0.4を満たす数値であり、MはNb,Ti,Zr,Hf,V,Ta,及びMoからなる群から選択される1種以上の元素である。)であるのが好ましい。 The composition of the nanocrystalline alloy is Fe 100-abcdefgh Cu a Si b B c M d Cre Sn f Ag g C h (where a, b, c, d, e, f, g and h represent atomic %). , 0.8 ≤ a ≤ 2.0, 2.0 ≤ b ≤ 12.0, 11.0 ≤ c ≤ 17.0, 0 ≤ d ≤ 1.0, 0 ≤ e ≤ 2.0, 0 ≤ f ≤ 1.5, 0 ≤ g ≤ 0.2, and 0 ≤ h ≤ 0.4 and M is one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta, and Mo.).

Cuは結晶化後の合金組織を微細化し柱状組織のFeSi結晶の形成に寄与する元素である。また粒状組織の形成にも寄与する元素である。Cu含有量は原子%で0.8%以上2.0%以下であるのが好ましい。Cu含有量が少ないと添加の効果が得られず、逆に多いと飽和磁束密度が低下する。Cuが過剰な場合、冷却過程での結晶化が進行しすぎるために、結晶粒成長の抑制効果を有する残留アモルファス相が欠乏し、結晶粒の粗大化や磁気異方性が高いFe2Bの析出などが起こり易く、軟磁気特性を悪化させる場合がある。アトマイズの冷却過程において、十分なCuクラスターの数密度を与えるように、Cu含有量は1.0%以上がより好ましく、1.1%以上がさらに好ましく、1.2%以上が最も好ましい。またCu含有量は1.8%以下であるのがより好ましく、1.5%以下であるのがさらに好ましい。 Cu is an element that refines the alloy structure after crystallization and contributes to the formation of columnar FeSi crystals. It is also an element that contributes to the formation of a granular structure. The Cu content is preferably 0.8% or more and 2.0% or less in terms of atomic %. If the Cu content is too small, the effect of addition cannot be obtained, and conversely, if the Cu content is too high, the saturation magnetic flux density is lowered. When Cu is excessive, crystallization proceeds too much during the cooling process. Precipitation is likely to occur, which may deteriorate the soft magnetic properties. The Cu content is more preferably 1.0% or more, still more preferably 1.1% or more, and most preferably 1.2% or more so as to provide a sufficient number density of Cu clusters in the cooling process of atomization. Further, the Cu content is more preferably 1.8% or less, more preferably 1.5% or less.

SiはFeSi結晶の主成分であるFeに固溶し、磁歪や磁気異方性の低減に寄与する。Si含有量は原子%で2.0%以上12.0%以下であるのが好ましい。また、ナノ結晶合金の非晶質化を促進する効果を有することが知られていて、冷却過程では、Bとともに存在することでアモルファス形成能を強める効果を有する。また、冷却過程における粗大な結晶粒析出の抑制の効果を有する。Si含有量が少ないと添加の効果が得られず、他方、Si含有量が高すぎる場合には飽和磁束密度の低下が起きる。一方でFe3Siの規則化配列が起きやすくなるため、Si含有量の下限はより好ましくは3.0%である。高飽和磁束密度を得るには、Si含有量は10.0%以下がより好ましく、8.0%以下がさらに好ましく、5.0%以下が最も好ましい。 Si dissolves in Fe, which is the main component of FeSi crystals, and contributes to the reduction of magnetostriction and magnetic anisotropy. The Si content is preferably 2.0% or more and 12.0% or less in terms of atomic %. In addition, it is known to have the effect of promoting amorphousization of nanocrystalline alloys, and in the cooling process, it has the effect of enhancing the ability to form amorphous by being present together with B. In addition, it has the effect of suppressing the precipitation of coarse crystal grains in the cooling process. If the Si content is too low, the effect of addition cannot be obtained, while if the Si content is too high, the saturation magnetic flux density will decrease. On the other hand, the lower limit of the Si content is more preferably 3.0%, since the ordered arrangement of Fe 3 Si tends to occur. To obtain a high saturation magnetic flux density, the Si content is more preferably 10.0% or less, even more preferably 8.0% or less, and most preferably 5.0% or less.

Bは、急冷における合金の非晶質化を促進する効果を有することが知られている。B含有量は原子%で11.0%以上17.0%以下であるのが好ましい。B含有量が少ないと、アモルファス相形成のためには極めて高い冷却速度が必要となりマイクロメータオーダの比較的粗大な結晶粒が析出し易くなって、良好な軟磁気特性が得られない場合がある。またB含有量が多いと、結晶化後の組織中の残留アモルファス相の体積分率が高くなり、飽和磁化等の磁気特性を低下させることにつながる。Si及びBの含有量の合計が少ないほどFe含有量を上げられるため、高飽和磁束密度を得るにはSi及びBの含有量の合計が20.0%以下であるのが好ましく、19.0%以下であるのがより好ましく、18.0%以下であるのが最も好ましい。 B is known to have the effect of promoting the amorphization of the alloy during quenching. The B content is preferably 11.0% or more and 17.0% or less in atomic %. If the B content is low, an extremely high cooling rate is required to form an amorphous phase, and relatively coarse crystal grains on the order of micrometers are likely to precipitate, and good soft magnetic properties may not be obtained. . Also, when the B content is high, the volume fraction of the residual amorphous phase in the structure after crystallization increases, leading to deterioration of magnetic properties such as saturation magnetization. Since the Fe content can be increased as the total content of Si and B decreases, the total content of Si and B is preferably 20.0% or less, and 19.0% or less, in order to obtain a high saturation magnetic flux density. is more preferred, and 18.0% or less is most preferred.

MはNb,Ti,Zr,Hf,V,Ta及びMoからなる群から選択される1種以上の元素である。柱状組織の、又は粒状組織のFeSi結晶を得る上で必須ではないが、結晶化後に粒状組織のナノ結晶合金となる粉末と柱状組織のナノ結晶合金の粉末とを混合した粉末を熱処理する場合、粒状組織のFeSi結晶の粒径の均一化に有効であり、M元素の含有量は、原子%で1.0%以下(0を含む)であるのが好ましく、0.8%以下(0を含む)であるのがより好ましく、0.5%以下(0を含む)であるのが最も好ましい。 M is one or more elements selected from the group consisting of Nb, Ti, Zr, Hf, V, Ta and Mo. Although it is not essential for obtaining FeSi crystals with a columnar structure or a granular structure, when heat-treating a powder obtained by mixing a powder that becomes a nanocrystalline alloy with a granular structure after crystallization and a powder of a nanocrystalline alloy with a columnar structure, It is effective for homogenizing the grain size of FeSi crystals with a granular structure, and the content of the M element is preferably 1.0% or less (including 0) in atomic %, and 0.8% or less (including 0). is more preferable, and 0.5% or less (including 0) is most preferable.

Crは原子%で2.0%以下(0を含む)であるのが好ましい。柱状組織のFeSi結晶を得る上で必須ではないが、ナノ結晶合金の耐食性を向上するのに有効な元素である。アトマイズ法で粉末を作製する際、内部を酸化から防ぐ効果を得るには、Cr含有量は0.1%以上であるのが好ましく、0.3%以上であるのがより好ましい。一方で、単体では反強磁性的に振る舞い、Fe原子との混成でFeの強磁性を弱めて飽和磁束密度の低下を招くため、Cr含有量の上限としては、1.5%であるのがより好ましく、1.1%であるのが最も好ましい。 Cr is preferably 2.0% or less (including 0) in atomic %. Although it is not essential for obtaining FeSi crystals with a columnar structure, it is an effective element for improving the corrosion resistance of nanocrystalline alloys. When the powder is produced by the atomization method, the Cr content is preferably 0.1% or more, more preferably 0.3% or more, in order to obtain the effect of preventing the inside from being oxidized. On the other hand, when used alone, it acts antiferromagnetically, and when mixed with Fe atoms, it weakens the ferromagnetism of Fe and causes a decrease in the saturation magnetic flux density. Therefore, the upper limit of the Cr content is preferably 1.5%. , and most preferably 1.1%.

Snは原子%で1.5%以下(0を含む)であるのが好ましい。柱状組織のFeSi結晶を得る上で必須ではないが、Cuのクラスター形成を助けるのに有効な元素である。微量に添加されることで、結晶化の過程でSn原子が最初に集まることで、さらにその周辺に拡散中のCu原子がポテンシャルエネルギーを下げるために集まりクラスターを形成する。Cuのクラスター形成の助剤である効果を勘案すると、Sn含有量の上限はCu含有量を超えないのが好ましい。また非磁性元素であることからSn含有量は0.5%以下(0を含む)であるのがより好ましい。Sn含有量の下限は0.01%であるのがより好ましく、0.05%であるのが最も好ましい。 Sn is preferably 1.5% or less (including 0) in atomic %. Although it is not essential for obtaining FeSi crystals with a columnar structure, it is an effective element for assisting the formation of Cu clusters. By adding a small amount, Sn atoms gather first in the process of crystallization, and Cu atoms diffusing around them gather to lower the potential energy to form clusters. Considering the effect of Cu as an auxiliary agent for cluster formation, the upper limit of the Sn content preferably does not exceed the Cu content. Further, since Sn is a non-magnetic element, the Sn content is more preferably 0.5% or less (including 0). The lower limit of the Sn content is more preferably 0.01%, most preferably 0.05%.

Agは柱状組織のFeSi結晶を得る上で必須ではないが、Agは溶湯中で分離し、アトマイズ後のナノ結晶合金の凝固初期から析出していて、熱処理初期のCuクラスターの核となるように機能する。Agの好ましい含有量は原子%で0.2%以下(0を含む)である。 Ag is not essential for obtaining FeSi crystals with a columnar structure, but Ag separates in the molten metal, precipitates from the initial stage of solidification of the nanocrystalline alloy after atomization, and becomes the core of Cu clusters in the initial stage of heat treatment. Function. A preferable content of Ag is 0.2% or less (including 0) in atomic %.

Cもまた柱状組織のFeSi結晶を得る上で必須ではないが、溶湯の粘度の安定化に作用し、その好ましい含有量は原子%で0.4%以下(0を含む)である。 C is also not essential for obtaining FeSi crystals with a columnar structure, but acts to stabilize the viscosity of the molten metal, and its preferred content is 0.4% or less (including 0) in terms of atomic %.

他にナノ結晶合金に含まれる不可避的不純物として、S、O、N等を含み得る。不可避的不純物の含有量は、それぞれ、Sが200 ppm以下、Oが5000 ppm以下、Nが1000 ppm以下であるのが好ましい。 Other unavoidable impurities contained in the nanocrystalline alloy may include S, O, N, and the like. The contents of unavoidable impurities are preferably 200 ppm or less for S, 5000 ppm or less for O, and 1000 ppm or less for N, respectively.

Feは、ナノ結晶合金を構成する主元素であり、飽和磁化等の磁気特性に影響を与える。他の非鉄金属とのバランスにもよるが、Feを原子%で77.0%以上含むのが好ましく、それによって飽和磁化が大きいナノ結晶合金を得ることができる。Fe含有量は、より好ましくは77.5%以上であり、さらに好ましくは78.0%以上であり、最も好ましくは79.0%以上である。 Fe is the main element that constitutes the nanocrystalline alloy and affects magnetic properties such as saturation magnetization. Although it depends on the balance with other non-ferrous metals, it is preferable to contain 77.0 atomic % or more of Fe, whereby a nanocrystalline alloy with high saturation magnetization can be obtained. The Fe content is more preferably 77.5% or more, still more preferably 78.0% or more, and most preferably 79.0% or more.

なお上記にて柱状組織のFeSi結晶を有するナノ結晶合金を得るのに好適な組成を示したが、その合金組成で粒状組織のFeSi結晶を有する従来のナノ結晶合金も得ることができる。 Although the composition suitable for obtaining a nanocrystalline alloy having FeSi crystals with a columnar structure is shown above, conventional nanocrystalline alloys having FeSi crystals with a granular structure can also be obtained with that alloy composition.

[2]磁心及びコイル部品
本発明の一実施形態の磁心用粉末は、圧粉磁心用として、あるいはメタルコンポジット用として好適なものとなる。圧粉磁心では、例えば、磁心用粉末を絶縁材料及び結合剤として機能するバインダと混合して使用する。バインダとしては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、キシレン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ポリアミドイミド、ポリイミド、水ガラス等が挙げられるが、これらに限定されるものではない。磁心用粉末とバインダとの混合物は、必要に応じてステアリン酸亜鉛等の潤滑剤を混ぜた後、成形金型内に充填し、油圧プレス成形機等で10 MPa~2 GPa程度の成形圧力で加圧して所定の形状の圧粉体に成形することができる。次いで、成形後の圧粉体を300℃~結晶化温度未満の温度で、1時間程度で熱処理して、成形歪みを除去すると共にバインダを硬化させて圧粉磁心を得る。この場合の熱処理雰囲気は不活性雰囲気でも酸化雰囲気でも良い。得られる圧粉磁心は、円環状や、矩形枠状等の環状体であってもよいし、棒状や板状の形態であっても良く、その形態は目的に応じて様々に選択することができる。
[2] Magnetic Core and Coil Components The magnetic core powder of one embodiment of the present invention is suitable for powder magnetic cores or metal composites. In dust cores, for example, core powder is used by mixing it with a binder that functions as an insulating material and a binder. Examples of binders include epoxy resins, unsaturated polyester resins, phenol resins, xylene resins, diallyl phthalate resins, silicone resins, polyamideimides, polyimides, and water glass, but are not limited to these. The mixture of the powder for the magnetic core and the binder is mixed with a lubricant such as zinc stearate as necessary, then filled into a molding die and pressed with a hydraulic press molding machine or the like at a molding pressure of about 10 MPa to 2 GPa. It can be pressurized and molded into a compact having a predetermined shape. Next, the green compact after molding is heat-treated at a temperature between 300° C. and less than the crystallization temperature for about 1 hour to remove molding distortion and harden the binder to obtain a powder magnetic core. The heat treatment atmosphere in this case may be an inert atmosphere or an oxidizing atmosphere. The powder magnetic core to be obtained may be in the form of an annular body such as an annular shape, a rectangular frame shape, or the like, or may be in the shape of a bar or plate, and the shape may be selected variously according to the purpose. can.

メタルコンポジット材として用いる場合、磁心用粉末とバインダとを含む混合物中にコイルを埋没させて一体成形しても良い。例えばバインダに熱可塑性樹脂や熱硬化性樹脂を適宜選択すれば、射出成形等の公知の成形手段で容易にコイルを封止したメタルコンポジットコア(コイル部品)とすることができる。また磁心用粉末とバインダとを含む混合物をドクターブレード法等の公知のシート化手段でシート状の磁心としても良い。また磁心用粉末とバインダとを含む混合物を不定形のシールド材として用いても良い。 When used as a metal composite material, the coil may be embedded in a mixture containing magnetic core powder and a binder for integral molding. For example, if a thermoplastic resin or a thermosetting resin is appropriately selected for the binder, a metal composite core (coil component) in which a coil is easily sealed can be easily formed by known molding means such as injection molding. Alternatively, a mixture containing magnetic core powder and a binder may be formed into a sheet-like magnetic core by known sheet forming means such as a doctor blade method. Alternatively, a mixture containing magnetic core powder and a binder may be used as the amorphous shield material.

また、本発明の一実施形態の磁心用粉末では、FeSi結晶が柱状組織をなすナノ結晶合金の粉末にFe系非晶質合金や、純鉄、Fe-Si、Fe-Si-Crの結晶質の金属系軟磁性材料の粉末等、他の軟磁性粉末を加えて用いても良い。 In addition, in the magnetic core powder of one embodiment of the present invention, the nanocrystalline alloy powder in which FeSi crystals form a columnar structure includes an Fe-based amorphous alloy, pure iron, Fe—Si, and Fe—Si—Cr crystals. Other soft magnetic powders such as powders of metal-based soft magnetic materials may be added and used.

いずれの場合も、得られる磁心は直流重畳特性が向上された磁気特性に優れたものとなり、インダクタ、ノイズフィルタ、チョークコイル、トランス、リアクトルなどに好適に用いられる。 In either case, the resulting magnetic core has excellent magnetic properties with improved DC superimposition properties, and is suitably used for inductors, noise filters, choke coils, transformers, reactors, and the like.

[3]実施例
以下、本発明の一実施形態に係る磁心用粉末と、それを用いた磁心及びコイル部品について具体的に説明するが、本発明はこれに限定されるものではなく、技術的思想の範囲内で適宜変更可能である。
[3] Examples Hereinafter, a magnetic core powder according to an embodiment of the present invention and a magnetic core and a coil component using the same will be specifically described, but the present invention is not limited to this, and technical It can be changed as appropriate within the scope of the idea.

Fe、Cu、Si、B、Nb、Cr、Sn及びCがアトマイズ後、下記に示す組成A及び組成Bの合金組成となるように秤量し、アルミナの坩堝の中に入れて高周波誘導加熱装置の真空チャンバー内に配置して真空引きを行い、その後、減圧状態で、不活性雰囲気(Ar)中にて高周波誘導加熱により溶解した。その後、溶湯を冷却して2種の母合金のインゴットを作製した。 After atomization, Fe, Cu, Si, B, Nb, Cr, Sn and C are weighed so that the alloy compositions of composition A and composition B shown below are obtained, placed in an alumina crucible and heated by a high frequency induction heating device. It was placed in a vacuum chamber and evacuated, and then melted by high-frequency induction heating in an inert atmosphere (Ar) under reduced pressure. After that, the molten metal was cooled to produce ingots of two kinds of master alloys.

[合金組成]
組成A:Febal.Cu1.2Si4.0B15.5Cr1.0Sn0.2C0.2
組成B:Febal.Cu1.0Si13.5B11.0Nb3.0Cr1.0
[Alloy composition]
Composition A: Fe bal. Cu 1.2 Si 4.0 B 15.5 Cr 1.0 Sn 0.2 C 0.2
Composition B: Fe bal. Cu 1.0 Si 13.5 B 11.0 Nb 3.0 Cr 1.0

次いで得られたインゴットを再溶解し、溶湯を高速燃焼炎アトマイズ法により粉末化した。用いたアトマイズ装置は、溶融金属を収納する容器と、容器底面の中央に設けられ容器内部に連通する注湯ノズルと、注湯ノズルから下方に流出する溶融金属に向かってフレームジェットを噴射可能なジェットバーナー(ハード工業有限会社製)と、粉砕された溶湯を冷却する冷却手段とを備えている。フレームジェットは溶融金属を粉砕して溶融金属粉末を形成可能に構成され、各ジェットバーナーは火炎を超音速又は音速に近い速度でフレームジェットとして噴射するように構成されている。冷却手段は、粉砕された溶融金属に向かって冷却媒体を噴射可能に構成された複数の冷却ノズルを有している。冷却媒体は、水、液体窒素、液化炭酸ガスなどを用いることができる。 The obtained ingot was then remelted and the molten metal was pulverized by a high speed combustion flame atomization method. The atomizing device used consists of a container for containing the molten metal, a pouring nozzle provided in the center of the bottom of the container and communicating with the inside of the container, and a flame jet capable of injecting a flame jet toward the molten metal flowing downward from the pouring nozzle. It is equipped with a jet burner (manufactured by Hard Kogyo Co., Ltd.) and cooling means for cooling the pulverized molten metal. The flame jet is configured to crush molten metal to form molten metal powder, and each jet burner is configured to project a flame at supersonic or near-sonic speed as a flame jet. The cooling means has a plurality of cooling nozzles capable of injecting a cooling medium toward the pulverized molten metal. Water, liquid nitrogen, liquefied carbon dioxide gas, or the like can be used as the cooling medium.

噴射するフレームジェットの温度を1300℃、原料の溶融金属の垂下速度を5 kg/minとした。冷却媒体として水を使用し、液体ミストにして冷却ノズルから噴射した。溶融金属の冷却速度は水の噴射量を4.5リットル/min~7.5リットル/minで調整した。 The flame jet temperature was set to 1300°C, and the drooping speed of the raw material molten metal was set to 5 kg/min. Water was used as a cooling medium and was sprayed from a cooling nozzle in the form of a liquid mist. The cooling rate of the molten metal was adjusted by adjusting the injection amount of water from 4.5 liters/min to 7.5 liters/min.

得られた組成A及び組成Bの粉末を遠心力型気流式分級機(日清エンジニアリング製TC-15)で分級して、組成Aの平均粒径d50が異なる2種(d50の大きい方をNo.1、小さい方をNo.2の粉末とした。)、及び組成Bの1種(No.*3の粉末とした。)の磁心用粉末を得た。得られた磁心用粉末の粒度を下記評価方法で測定した。 The obtained powders of composition A and composition B were classified with a centrifugal air classifier (Nisshin Engineering TC-15), and two types of composition A with different average particle sizes d50 (the larger d50 is No. 1, and the smaller one was designated as No. 2 powder), and one kind of composition B (designated as No. *3 powder) for a magnetic core. The particle size of the obtained magnetic core powder was measured by the following evaluation method.

[粉末の粒度]
レーザー回折散乱式粒度分布測定装置(堀場製作所製LA-920)により測定し、レーザー回折法により計測される体積基準の粒度分布から、小径側からの累積%がそれぞれ10体積%、50体積%及び90体積%となる粒子径であるd10、d50及びd90を得た。図3にNo.1~*3の粉末の粒度分布図を示す。
[Powder particle size]
From the volume-based particle size distribution measured by a laser diffraction scattering particle size distribution analyzer (Horiba LA-920) and measured by the laser diffraction method, the cumulative % from the small diameter side is 10% by volume, 50% by volume, and Particle sizes d10, d50 and d90 were obtained, which were 90% by volume. Fig. 3 shows the particle size distribution of No.1 to *3 powders.

得られた各粉末について、以下の評価方法にて飽和磁化、保磁力、及びX線回折法による回折スペクトルを測定した。 For each powder obtained, saturation magnetization, coercive force, and diffraction spectrum by X-ray diffraction were measured by the following evaluation methods.

[飽和磁化及び保磁力]
試料の粉末を容器内に入れてVSM(Vibrating Sample Magnetometer振動試料型磁力計、東英工業製VSM-5)による磁化測定を行い、ヒステリシスループから、磁気の強さがHm=800 kA/mの時の飽和磁化と、Hm=40 kA/mの条件での保磁力を求めた。
[Saturation magnetization and coercive force]
The sample powder was placed in a container and magnetization was measured using a VSM (Vibrating Sample Magnetometer, VSM-5 manufactured by Toei Kogyo Co., Ltd.). The saturation magnetization at 100°C and the coercive force at Hm = 40 kA/m were obtained.

[回折スペクトル]
X線回折装置(株式会社リガク製Rigaku RINT-2000)を使用し、X線回折法による回折スペクトルから、2θ=45°付近(44°~46°の間)のbcc構造のFeSi結晶の回折ピークのピーク強度P1と、2θ=56.5°(56°~57°の間)付近のbcc構造のFe2B結晶の回折ピークのピーク強度P2を求め、ピーク強度比(P2/P1)を算出した。X線回折強度測定の条件は、X線Cu-Kα、印加電圧40 kV、電流100 mA、発散スリット1°、散乱スリット1°、受光スリット0.3 mm、走査を連続とし、走査速度2°/min、走査ステップ0.02°、走査範囲20~60°とした。
[Diffraction spectrum]
Using an X-ray diffractometer (Rigaku RINT-2000 manufactured by Rigaku Co., Ltd.), the diffraction peak of the FeSi crystal with the bcc structure near 2θ = 45° (between 44° and 46°) was found from the diffraction spectrum obtained by the X-ray diffraction method. and the peak intensity P2 of the diffraction peak of the Fe 2 B crystal with the bcc structure near 2θ=56.5° (between 56° and 57°), and the peak intensity ratio (P2/P1) was calculated. The conditions for the X-ray diffraction intensity measurement were X-ray Cu-Kα, applied voltage of 40 kV, current of 100 mA, divergence slit of 1°, scattering slit of 1°, receiving slit of 0.3 mm, continuous scanning, and scanning speed of 2°/min. , a scanning step of 0.02°, and a scanning range of 20-60°.

得られた結果を表1に示す。なお表1においてNo.に“*”を付与した試料は、参考例である。 Table 1 shows the results obtained. Note that the samples whose numbers are marked with "*" in Table 1 are reference examples.

Figure 0007236622000001
Figure 0007236622000001

X線回折法による回折スペクトルを確認したところ、A組成の平均粒径が異なる2種の磁心用粉末(No.1及びNo.2の粉末)では、bcc構造のFeSi結晶の回折ピークとbcc構造のFe2B結晶の回折ピークが確認されたが、B組成の1種の磁心用粉末(No.*3の粉末)ではハローパターンのみが観察され、FeSi結晶及びFe2B結晶の回折ピークは確認されなかった。またTEM観察にて、A組成の2種の粉末では線状のFeSi結晶が間隔をもって連続する縞模様の組織を確認した。この組織は後述する熱処理後の粉末でも同様に観察された。 As a result of confirming the diffraction spectrum by the X-ray diffraction method, it was found that the diffraction peak of the FeSi crystal with the bcc structure and However, only a halo pattern was observed in one type of B composition powder for magnetic core (No.*3 powder ) , and the diffraction peaks of FeSi and Fe 2 B crystals were Not confirmed. In addition, by TEM observation, a striped structure in which linear FeSi crystals are continuous at intervals was confirmed in the two powders of composition A. This structure was also observed in the powder after heat treatment, which will be described later.

次に雰囲気調整が可能な電気熱処理炉で、SUS製容器に100g入れられたNo.1~*3の磁心用粉末3種を酸素濃度0.5%以下のN2雰囲気にて熱処理した。熱処理は、0.006℃/秒の速度で昇温し、表2に示す保持温度に達した後、この保持温度で1時間保持し、その後、加熱を止めて炉冷して行った。 Next, in an electric heat treatment furnace in which the atmosphere can be adjusted, 100 g of three magnetic core powders No. 1 to *3 put in a SUS container were heat treated in a N 2 atmosphere with an oxygen concentration of 0.5% or less. The heat treatment was carried out by increasing the temperature at a rate of 0.006° C./second, reaching the holding temperature shown in Table 2, holding at this holding temperature for 1 hour, and then stopping the heating and cooling in the furnace.

熱処理後のNo.1~*3の粉末にて、前述と同じ評価方法で飽和磁化、保磁力、及びX線回折法による回折スペクトルを測定した。得られた結果を表2に示す。 After heat treatment, No. 1 to *3 powders were measured for saturation magnetization, coercive force, and diffraction spectrum by X-ray diffraction using the same evaluation method as described above. Table 2 shows the results obtained.

Figure 0007236622000002
Figure 0007236622000002

また、熱処理後のNo.1~*3の粉末にて、d10及びd90に相当する粒径の複数の粒子を選別し、樹脂に埋めて切断研磨した後、断面を透過型電子顕微鏡(TEM/EDX:Transmission Electron Microscope/energy dispersive X-ray spectroscopy)で観察した。図5はNo.1のd90相当の粒子の断面を研磨しで観察したTEM写真である。図6は他の視野を同じ条件で観察したTEM写真である。図7は、No.1のd90相当の粒子の断面の他の視野を観察しSi(ケイ素)元素で組成マッピングした写真であり、図8はB(ホウ素)元素で組成マッピングした写真であり、図9はCu(銅)元素で組成マッピングした写真である。 In addition, after heat treatment, a plurality of particles with particle sizes corresponding to d10 and d90 were selected from No. 1 to *3 powders, embedded in resin, cut and polished, and then cross-sections were examined with a transmission electron microscope (TEM/ Observed with EDX (Transmission Electron Microscope/energy dispersive X-ray spectroscopy). FIG. 5 is a TEM photograph of a polished cross-section of No. 1 particles corresponding to d90. FIG. 6 is a TEM photograph of another field of view observed under the same conditions. FIG. 7 is a photograph of composition mapping with Si (silicon) element observing another field of view of the cross section of the particle corresponding to d90 of No. 1, and FIG. 8 is a photograph of composition mapping with B (boron) element, FIG. 9 is a photograph of composition mapping with Cu (copper) element.

図5から、観察視野において濃淡が平行線状に交互に現れる柱状組織(縞模様の組織)が確認された。TEMによるスポット回折測定と組成マッピングとによって、線状に観察される明度が低い濃い部分はFeSi結晶であり、明度が高い淡い部分は非晶質相であると特定された。また他の視野の図6から、縞模様の組織の領域や、明度が低い濃い部分がドット様の組織に見える領域などが観察された。いずれの領域でも明度が低い濃い部分がFeSi結晶であり、明度が高い淡い部分は非晶質相であった。さらに詳細に観察したところ、いずれの領域でもFeSi結晶が線状に形成されていて、観察面に現れる方向で、縞模様に見えたり、ドット様に見えたりすることが判明した。つまり一つの粒子中でFeSi結晶の群が伸びる方向が異なる領域を有していて、一つ一つの領域ではFeSi結晶がほぼ一方向に結晶が析出した柱状組織となっている。この一つの領域では、線状のFeSi結晶の伸長方向が揃って規則性を有するが、領域ごとにFeSi結晶の伸長方向が異なり、隣接する領域間で線状のFeSi結晶が不連続となっており、粒子全体でみれば規則性を持たない組織となっていた。 From FIG. 5, a columnar structure (striped structure) in which shading appears alternately in parallel lines in the observation field was confirmed. By spot diffraction measurement by TEM and composition mapping, it was specified that the linear dark portions with low brightness are FeSi crystals, and the light portions with high brightness are amorphous phases. In addition, from FIG. 6 of another field of view, a region of striped texture and a region where a dark portion with low brightness looks like a dot-like texture were observed. In each region, the dark portions with low brightness were FeSi crystals, and the light portions with high brightness were amorphous phases. Upon further detailed observation, it was found that FeSi crystals were formed linearly in all regions and looked like stripes or dots depending on the direction of appearance on the observed surface. In other words, one particle has regions in which groups of FeSi crystals extend in different directions, and each region has a columnar structure in which FeSi crystals are precipitated in almost one direction. In this one region, the linear FeSi crystals are oriented in the same direction and have regularity. When viewed as a whole, the particles had a non-regular structure.

元素分布マッピングでは明るい色調ほど対象元素が多いことを示す。同一視野でSi、B、及びCuをそれぞれ組成マッピングした図7、図8及び図9に示す結果から、線状のFeSi結晶に対応する領域はSiとCuとが濃化し、線状のFeSi結晶の間の非晶質相に対応する領域はBが濃化していることが確認される。また、Fe(図示せず)は全体で確認されるがSiとCuとが濃化した領域で濃度が高いことが確認された。 In elemental distribution mapping, brighter colors indicate more target elements. From the results shown in FIGS. 7, 8, and 9, where Si, B, and Cu are respectively mapped in the same field of view, Si and Cu are concentrated in the region corresponding to the linear FeSi crystal, and the linear FeSi crystal It is confirmed that B is concentrated in the region corresponding to the amorphous phase between . Also, Fe (not shown) was confirmed throughout, but it was confirmed that the concentration was high in the region where Si and Cu were concentrated.

線状のFeSi結晶と非晶質相とのスピノーダル分解によって、FeとSiとがFeSi結晶の形成に使われ、結晶相に入りにくいBが非晶質相に濃縮され、非晶質相のB濃度が相対的に高くなるように相分離が進み、周期的な濃度変調構造が現れると考えられる。 Through spinodal decomposition of linear FeSi crystals and amorphous phase, Fe and Si are used to form FeSi crystals. It is thought that phase separation progresses so that the concentration becomes relatively high, and a periodic concentration modulation structure appears.

No.2の粉末では、d90に相当する粒径の複数の粒子の観察で、図5や図6で観察される組織と同様の縞模様の柱状組織の領域が観察されたが、No.*3の粉末では、縞模様の柱状組織の領域が観察されず、従来の組織構造である粒径が30 nm程度のFeSi結晶の粒が非晶質相中に分散した粒状組織となっていた。 In powder No. 2, when observing multiple particles with a particle size corresponding to d90, a striped columnar structure area similar to the structure observed in FIGS. 5 and 6 was observed, but No.* In the powder of No. 3, no striped columnar structure region was observed, and the grain structure was such that FeSi crystal grains with a grain size of about 30 nm, which is the conventional structure, were dispersed in the amorphous phase.

熱処理後のNo.1~*3の粉末のd10に相当する粒径の複数の粒子の観察では、いずれも従来の組織構造である粒状組織となっていた。つまり、No.1及び2の磁心用粉末は、粒状組織のナノ結晶合金の粉末と柱状組織のナノ結晶合金の粉末とが混合した粉末となっていることがわかる。一方、参考例のNo.*3の粉末は、柱状組織のナノ結晶合金の粉末は存在せず、従来の粒状組織のナノ結晶合金の粉末となっている。 Observation of a plurality of particles with particle diameters corresponding to d10 of No. 1 to *3 powders after heat treatment revealed that they all had a granular structure, which is a conventional structure. In other words, it can be seen that the magnetic core powders of Nos. 1 and 2 are powders in which the powder of the nanocrystalline alloy with a granular structure and the powder of the nanocrystalline alloy with a columnar structure are mixed. On the other hand, the powder of No. *3 of the reference example does not contain a nanocrystalline alloy powder with a columnar structure, and is a powder of a conventional nanocrystalline alloy with a granular structure.

柱状組織のナノ結晶合金の粒子では非晶質相にFe2B結晶が形成され易い。また粉末中のFe2B結晶を含む粒子の存在割合が多いほどFe2B結晶のピークが強く発現するため、そのピーク強度から柱状組織構造の粒子の存在割合の多少を相対的に評価することができる。図4に示した回折スペクトル図では、合金組成AのNo.1及び2の粉末(熱処理後)ではともにFeSi結晶のピークとFe2B結晶のピークとが確認された。合金組成BのNo.*3の粉末(熱処理後)ではFeSi結晶のピークは確認されたが、Fe2B結晶のピークは確認されなかった。FeSi結晶のピーク強度P1に対するFe2B結晶のピーク強度P2の比P2/P1は、全体として小径の粒度分布を有するNo.2の粉末の方が小さくなった。また、保磁力もNo.2の粉末の方が小さくなっていた。 Fe 2 B crystals are likely to be formed in the amorphous phase in nanocrystalline alloy particles with a columnar structure. In addition, since the peak of Fe 2 B crystals appears more strongly as the abundance of particles containing Fe 2 B crystals in the powder increases, the abundance of particles with a columnar structure can be relatively evaluated from the peak intensity can be done. In the diffraction spectrum diagram shown in FIG. 4, the peaks of FeSi crystals and the peaks of Fe 2 B crystals were confirmed in both powders of Nos. 1 and 2 of alloy composition A (after heat treatment). In powder No.*3 of alloy composition B (after heat treatment), FeSi crystal peaks were confirmed, but Fe 2 B crystal peaks were not confirmed. The ratio P2/P1 of the peak intensity P2 of the Fe 2 B crystal to the peak intensity P1 of the FeSi crystal was smaller for the No. 2 powder having a particle size distribution with a smaller diameter as a whole. In addition, the coercive force of the No. 2 powder was also smaller.

熱処理後のNo.1~*3の粉末100部に対してシリコーン樹脂をそれぞれ5部加えて混錬し、成形金型内に充填し、油圧プレス成形機で400 MPaの加圧により成形してφ13.5 mm×φ7.7 mm×t2.0 mmの円環状の磁心を作製した。作製した磁心について占積率、磁心損失、初透磁率、及び増分透磁率の評価を行った。結果を表3に示す。表3においても、参考例の磁心用粉末を使用した試料にはNo.に*を付与して区別している。 Add 5 parts each of silicone resin to 100 parts of No. 1 to *3 powders after heat treatment, knead, fill the molding die, and press 400 MPa with a hydraulic press molding machine to mold. An annular magnetic core of φ13.5 mm×φ7.7 mm×t2.0 mm was fabricated. The space factor, core loss, initial permeability, and incremental permeability of the manufactured magnetic core were evaluated. Table 3 shows the results. Also in Table 3, the samples using the magnetic core powder of the reference example are distinguished by adding * to their numbers.

[占積率(相対密度)]
磁気測定を評価した円環状の磁心に対して250℃で熱処理を施し、バインダを分解して粉末を得た。粉末の重量と円環状の磁心の寸法と質量から、体積重量法により密度(kg/m3)を算出し、ガス置換法から得られる各合金組成A及びBの粉末の真密度で除して磁心の占積率(相対密度)(%)を算出した。
[Space factor (relative density)]
A heat treatment was performed at 250° C. to decompose the binder to obtain a powder. Calculate the density (kg/m 3 ) by the volume weight method from the weight of the powder and the dimensions and mass of the annular magnetic core. The space factor (relative density) (%) of the magnetic core was calculated.

[磁心損失]
円環状の磁心を被測定物とし、一次側巻線と二次側巻線とをそれぞれ18ターン巻回し、岩通計測株式会社製B-HアナライザSY-8218により、最大磁束密度30 mT、周波数2 MHzの条件で磁心損失(kW/m3)を室温(25℃)で測定した。
[Core loss]
An annular magnetic core was used as the object to be measured, and the primary and secondary windings were each wound with 18 turns. The magnetic core loss (kW/m 3 ) was measured at room temperature (25°C) under the following conditions.

[初透磁率μi]
円環状の磁心を被測定物とし、導線を30ターン巻回してコイル部品とし、LCRメータ(アジレント・テクノロジー株式会社製4284A)により、室温にて周波数100 kHzで測定したインダクタンスから次式により求めた。交流磁界を0.4 A/mとした条件で得られた値を初透磁率μiとした。
初透磁率μi=(le×L)/(μ0×Ae×N2)
(le:磁路長、L:試料のインダクタンス(H)、μ0:真空の透磁率=4π×10-7(H/m)、Ae:磁心の断面積、及びN:コイルの巻数)
[Initial permeability μi]
Using an annular magnetic core as the object to be measured, winding 30 turns of conducting wire to form a coil component, and using an LCR meter (4284A manufactured by Agilent Technologies), the inductance was measured at room temperature at a frequency of 100 kHz. . The value obtained under the condition that the AC magnetic field was 0.4 A/m was defined as the initial permeability μi.
Initial permeability μi=(le×L)/( μ0 ×Ae× N2 )
(le: magnetic path length, L: sample inductance (H), μ 0 : vacuum permeability = 4π×10 -7 (H/m), Ae: magnetic core cross-sectional area, and N: number of coil turns)

[増分透磁率μΔ]
初透磁率測定に用いたコイル部品を使って、直流印加装置(42841A:ヒューレットパッカード社製)で10 kA/mの直流磁界を印加した状態にて、LCRメータ(アジレント・テクノロジー株式会社社製4284A)によりインダクタンスLを周波数100 kHzで室温(25℃)にて測定した。得られたインダクタンスから前記初透磁率μiと同様の計算式にて得られた結果を増分透磁率μΔとした。得られた増分透磁率μΔと初透磁率μiとから比μΔ/μi(%)を算出した。
[Incremental permeability μΔ]
Using the coil components used for the initial permeability measurement, a DC applying device (42841A: manufactured by Hewlett-Packard) applied a DC magnetic field of 10 kA/m, and an LCR meter (4284A manufactured by Agilent Technologies, Inc.) ) at a frequency of 100 kHz at room temperature (25°C). The result obtained from the obtained inductance by the same calculation formula as the initial magnetic permeability μi was defined as the incremental magnetic permeability μΔ. A ratio μΔ/μi (%) was calculated from the obtained incremental magnetic permeability μΔ and initial magnetic permeability μi.

Figure 0007236622000003
Figure 0007236622000003

本発明のNo.1及びNo.2の磁心用粉末を用いた磁心は、電流変化にかかわらず透磁率の変化量が十分に小さく、ほぼ一定の値で安定した直流重畳特性を発揮できた。また、ピーク強度比P2/P1が小さいNo.2の磁心用粉末を用いた磁心は、磁心損失が小さく、かつ初透磁率は大きくなった。透磁率が低いと、必要なインダクタンスを得るのに磁心の断面積を大きくし、また巻線のターン数を増やす必要があり、その結果、コイル部品の外形が大きくなってしまう。従って、No.2の粉末の方がコイル部品の小型化において有利であることが分かる。 The magnetic cores using the magnetic core powders of No. 1 and No. 2 of the present invention had a sufficiently small change in magnetic permeability regardless of changes in current, and could exhibit stable DC superimposition characteristics at a substantially constant value. In addition, the magnetic core using the magnetic core powder No. 2, which had a small peak intensity ratio P2/P1, had a small core loss and a large initial permeability. If the magnetic permeability is low, it is necessary to increase the cross-sectional area of the magnetic core and increase the number of winding turns to obtain the required inductance, resulting in an increase in the external dimensions of the coil component. Therefore, it can be seen that the No. 2 powder is more advantageous in downsizing the coil component.

Claims (4)

非晶質相と、
ナノサイズのFeSi結晶と、を備え、
前記FeSi結晶の少なくとも一部前記非晶質中に線状に複数並んだ柱状組織をなす領域を形成する、
ナノ結晶合金の粒子
an amorphous phase;
comprising nano-sized FeSi crystals,
At least part of the FeSi crystals form a region forming a columnar structure in which a plurality of linearly arranged lines are arranged in the amorphous phase .
Particles of nanocrystalline alloy.
請求項1に記載のナノ結晶合金の粒子において、
前記柱状組織をなす領域においてFeSi結晶の伸長方向が異なる複数の領域を備えるナノ結晶合金の粒子
In the nanocrystalline alloy particles of claim 1,
A nanocrystalline alloy particle comprising a plurality of regions in which FeSi crystals extend in different directions in the region forming the columnar structure.
請求項1又は2に記載のナノ結晶合金の粒子において、
CuのKα特性X線を用いて測定したX線回折スペクトルにおける2θ=45°付近のbcc構造のFeSi結晶の回折ピークのピーク強度P1に対する、2θ=56.5°付近のbcc構造のFe2B結晶の回折ピークのピーク強度P2のピーク強度比(P2/P1)が0.05以下であるナノ結晶合金の粒子
In the nanocrystalline alloy particles according to claim 1 or 2,
Diffraction peak of Fe2B crystal with bcc structure near 2θ=56.5° against peak intensity P1 of diffraction peak of FeSi crystal with bcc structure near 2θ=45° in X-ray diffraction spectrum measured using Kα characteristic X-ray of Cu Particles of a nanocrystalline alloy having a peak intensity ratio (P2/P1) of the peak intensity P2 of 0.05 or less.
請求項1~3のいずれかに記載のナノ結晶合金の粒子において、
合金組成:Fe100-a-b-c-d-e-f-g-hCuaSibBcMdCreSnfAggCh(ただし、a、b、c、d、e、f、g及びhは原子%を表し、0.8≦a≦2.0、2.0≦b≦12.0、11.0≦c≦17.0、0≦d≦1.0、0≦e≦2.0、0≦f≦1.5、0≦g≦0.2、及び0≦h≦0.4を満たす数値であり、MはNb,Ti,Zr,Hf,V,Ta,及びMoからなる群から選択される1種以上の元素である。)を有するナノ結晶合金の粒子
In the nanocrystalline alloy particles according to any one of claims 1 to 3,
Alloy composition: Fe100-abcdefg-hCuaSibBcMdCreSnfAggCh (where a, b, c, d, e, f, g and h represent atomic %, 0.8 ≤ a ≤ 2.0, 2.0 ≤ b ≤ 12.0, 11.0 ≤ c ≤ 17.0, 0≦d≦1.0, 0≦e≦2.0, 0≦f≦1.5, 0≦g≦0.2, and 0≦h≦0.4, and M is Nb, Ti, Zr, Hf, V, Ta, and one or more elements selected from the group consisting of Mo.).
JP2020034684A 2018-04-27 2020-03-02 Particles of nanocrystalline alloy. Active JP7236622B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086307 2018-04-27
JP2018086307 2018-04-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019547333A Division JP6673536B1 (en) 2018-04-27 2019-04-26 Powder for magnetic core, magnetic core and coil parts using the same

Publications (3)

Publication Number Publication Date
JP2020111830A JP2020111830A (en) 2020-07-27
JP2020111830A5 JP2020111830A5 (en) 2022-03-25
JP7236622B2 true JP7236622B2 (en) 2023-03-10

Family

ID=68294121

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019547333A Active JP6673536B1 (en) 2018-04-27 2019-04-26 Powder for magnetic core, magnetic core and coil parts using the same
JP2020034684A Active JP7236622B2 (en) 2018-04-27 2020-03-02 Particles of nanocrystalline alloy.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019547333A Active JP6673536B1 (en) 2018-04-27 2019-04-26 Powder for magnetic core, magnetic core and coil parts using the same

Country Status (3)

Country Link
JP (2) JP6673536B1 (en)
CN (1) CN112105472B (en)
WO (1) WO2019208768A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424164B2 (en) 2020-03-30 2024-01-30 Tdk株式会社 Soft magnetic alloys, magnetic cores, magnetic components and electronic equipment
KR20220148952A (en) 2021-04-26 2022-11-07 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compound
CN115703803A (en) 2021-08-11 2023-02-17 学校法人关西学院 Polycyclic aromatic compound, material for organic device, organic electroluminescent element, display device, and lighting device
KR20230034895A (en) 2021-09-03 2023-03-10 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compounds
KR20230043732A (en) 2021-09-24 2023-03-31 가꼬우 호징 관세이 가쿠잉 Polycyclic aromatic compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125675A (en) 2012-12-27 2014-07-07 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic parts using the same
WO2015008813A1 (en) 2013-07-17 2015-01-22 日立金属株式会社 Dust core, coil component using same and process for producing dust core
JP2016027656A (en) 2015-09-03 2016-02-18 日立金属株式会社 Manufacturing method of powder magnetic core
JP2017095773A (en) 2015-11-25 2017-06-01 セイコーエプソン株式会社 Soft magnetic powder, powder-compact magnetic core, magnetic element, and electronic apparatus
JP2017145442A (en) 2016-02-16 2017-08-24 ハード工業有限会社 Metal powder production device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445888B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, method for producing the same, and magnetic component
ES2666125T3 (en) * 2012-01-18 2018-05-03 Hitachi Metals, Ltd. Metal powder core, coil component and manufacturing method for metal powder core
JP6519754B2 (en) * 2014-03-13 2019-05-29 日立金属株式会社 Magnetic core, coil parts and method of manufacturing magnetic core
DE112016003044T5 (en) * 2015-07-31 2018-06-14 Murata Manufacturing Co., Ltd. SOFT MAGNETIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125675A (en) 2012-12-27 2014-07-07 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic parts using the same
WO2015008813A1 (en) 2013-07-17 2015-01-22 日立金属株式会社 Dust core, coil component using same and process for producing dust core
JP2016027656A (en) 2015-09-03 2016-02-18 日立金属株式会社 Manufacturing method of powder magnetic core
JP2017095773A (en) 2015-11-25 2017-06-01 セイコーエプソン株式会社 Soft magnetic powder, powder-compact magnetic core, magnetic element, and electronic apparatus
JP2017145442A (en) 2016-02-16 2017-08-24 ハード工業有限会社 Metal powder production device

Also Published As

Publication number Publication date
JP6673536B1 (en) 2020-03-25
WO2019208768A1 (en) 2019-10-31
CN112105472B (en) 2023-04-18
CN112105472A (en) 2020-12-18
JP2020111830A (en) 2020-07-27
JPWO2019208768A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7236622B2 (en) Particles of nanocrystalline alloy.
CN110225801B (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component, and dust core
JP5912349B2 (en) Soft magnetic alloy powder, nanocrystalline soft magnetic alloy powder, manufacturing method thereof, and dust core
JP6705549B2 (en) Crystalline Fe-based alloy powder, method for producing the same, and magnetic core
WO2017022594A1 (en) Soft magnetic material and method for producing same
JP6892009B2 (en) Alloy powder, Fe-based nanocrystalline alloy powder and magnetic core
JP6881617B2 (en) Powder for magnetic core, magnetic core and coil parts using it, and powder for magnetic core
JP6488488B2 (en) Method for producing magnetic powder and method for producing magnetic core
WO2016121950A1 (en) Magnetic powder and production method thereof, magnetic core and production method thereof, coil component and motor
JP2016094651A (en) Soft magnetic alloy and magnetic part
WO2017086146A1 (en) Production method of magnetic powder
CN108431277B (en) Iron-based soft magnetic alloy, method for producing same, and magnetic component using same
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
JPWO2020196608A1 (en) Amorphous alloy strip, amorphous alloy powder, nanocrystalline alloy dust core, and nanocrystal alloy dust core manufacturing method
JP6693603B1 (en) Powder for magnetic core, magnetic core and coil parts using the powder
CN117980522A (en) Iron-based soft magnetic alloy and preparation method thereof
JP2021086941A (en) Fe-BASED SOFT MAGNETIC ALLOY, THIN STRIP, POWDER, MAGNETIC CORE, AND COIL COMPONENT

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230206

R150 Certificate of patent or registration of utility model

Ref document number: 7236622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150