JPWO2019202692A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JPWO2019202692A1
JPWO2019202692A1 JP2020514853A JP2020514853A JPWO2019202692A1 JP WO2019202692 A1 JPWO2019202692 A1 JP WO2019202692A1 JP 2020514853 A JP2020514853 A JP 2020514853A JP 2020514853 A JP2020514853 A JP 2020514853A JP WO2019202692 A1 JPWO2019202692 A1 JP WO2019202692A1
Authority
JP
Japan
Prior art keywords
shaft
electric motor
hole
rotor
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020514853A
Other languages
Japanese (ja)
Other versions
JP7145938B2 (en
Inventor
哲也 櫻田
哲也 櫻田
誠司 羽下
誠司 羽下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019202692A1 publication Critical patent/JPWO2019202692A1/en
Application granted granted Critical
Publication of JP7145938B2 publication Critical patent/JP7145938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

電動機(1)は、フレーム(2)に収容されるシャフト(3)、シャフト(3)に取り付けられて、シャフト(3)と一体に回転する回転子(4)、フレーム(2)に取り付けられる固定子(7)、および、シャフト(3)を回転可能に支持する軸受(13,14)を備える。シャフト(3)の内、回転子(4)の端面から回転子(4)の外側へ延びる部分に、少なくとも1つの貫通孔が形成される。貫通孔の貫通方向は、シャフト(3)の回転軸(AX)とねじれの位置の関係にある、または、回転軸(AX)と交差する。The electric motor (1) is attached to the shaft (3) and the shaft (3) housed in the frame (2), and is attached to the rotor (4) and the frame (2) that rotate integrally with the shaft (3). A stator (7) and bearings (13, 14) that rotatably support the shaft (3) are provided. At least one through hole is formed in a portion of the shaft (3) extending from the end face of the rotor (4) to the outside of the rotor (4). The penetrating direction of the through hole is in a twisted position with the rotating shaft (AX) of the shaft (3), or intersects the rotating shaft (AX).

Description

この発明は、電動機に関する。 The present invention relates to an electric motor.

電動機は、シャフトに取り付けられてシャフトと一体に回転する回転子、および、回転子と径方向に間隔を空けて対向する固定子を備える。電動機の高出力化による発熱量の増大または小型化による発熱密度の増大によって、固定子が有する固定子鉄心および固定子コイル、ならびに、回転子が有する回転子鉄心および回転子導体の温度が上昇する。そこで、特許文献1に開示される電動機は、回転子を冷却するため、回転子の外周と固定子の内周との間に形成される環状空隙に空気を吹き込む空気ノズルを備える。 The electric motor includes a rotor that is attached to the shaft and rotates integrally with the shaft, and a stator that faces the rotor at a radial distance. The temperature of the stator core and stator coil of the stator and the rotor core and rotor conductor of the rotor rise due to the increase in heat generation amount due to the higher output of the motor or the increase in heat generation density due to miniaturization. .. Therefore, the electric motor disclosed in Patent Document 1 includes an air nozzle for blowing air into an annular gap formed between the outer circumference of the rotor and the inner circumference of the stator in order to cool the rotor.

特開2007−325358号公報JP-A-2007-325358

回転子鉄心はシャフトに取り付けられているため、回転子鉄心の温度が上昇すると、シャフトの温度も上昇する。しかしながら、特許文献1に開示される電動機のように、回転子を冷却するだけでは、シャフトの冷却が十分にできない。シャフトの温度が上昇すると、シャフトを回転可能に支持する軸受の温度、および、軸受に充填される潤滑油の温度が上昇する。軸受および潤滑油の温度が上昇すると、軸受内部の空間の大きさの変化、潤滑剤の劣化等が生じてしまう。特許文献1に開示される電動機は、回転子が固定子の径方向の内側に設けられるインナーロータ式であるが、回転子が固定子の径方向の外側に設けられるアウターロータ式においても、同様の問題が生じ得る。 Since the rotor core is attached to the shaft, when the temperature of the rotor core rises, the temperature of the shaft also rises. However, as in the electric motor disclosed in Patent Document 1, the shaft cannot be sufficiently cooled only by cooling the rotor. When the temperature of the shaft rises, the temperature of the bearing that rotatably supports the shaft and the temperature of the lubricating oil filled in the bearing rise. When the temperature of the bearing and the lubricating oil rises, the size of the space inside the bearing changes, the lubricant deteriorates, and the like. The electric motor disclosed in Patent Document 1 is an inner rotor type in which the rotor is provided inside the stator in the radial direction, but the same applies to the outer rotor type in which the rotor is provided outside the radial direction of the stator. Problems can occur.

本発明は上述の事情に鑑みてなされたものであり、電動機のシャフトの冷却効率を高めることが目的である。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the cooling efficiency of the shaft of an electric motor.

上記目的を達成するために、本発明の電動機は、シャフト、回転子、固定子、および軸受を備える。シャフトは、回転軸まわりに回転可能に支持される。回転子は、シャフトの径方向外側に設けられ、シャフトと一体に回転する。固定子は、回転子と、径方向に間隔を空けて対向する。軸受は、シャフトを回転可能に支持する。シャフトの内、回転子の端面から回転子の外側へ延びる部分に、少なくとも1つの貫通孔が形成される。少なくとも1つの貫通孔のそれぞれの貫通方向は、回転軸とねじれの位置の関係にある。あるいは、少なくとも1つの貫通孔のそれぞれの貫通方向は、回転軸と交差する。 To achieve the above object, the electric motor of the present invention includes a shaft, a rotor, a stator, and a bearing. The shaft is rotatably supported around a rotation axis. The rotor is provided on the radial outer side of the shaft and rotates integrally with the shaft. The stator faces the rotor at a radial distance. Bearings rotatably support the shaft. At least one through hole is formed in a portion of the shaft extending from the end face of the rotor to the outside of the rotor. The penetrating direction of each of the at least one through hole has a relationship between the rotation axis and the twisted position. Alternatively, the respective penetration directions of at least one through hole intersect the axis of rotation.

本発明によれば、回転軸とねじれの位置の関係にある、または、回転軸と交差する少なくとも1つの貫通孔をシャフトに形成することで、シャフトの冷却効率を高めることが可能である。 According to the present invention, it is possible to improve the cooling efficiency of the shaft by forming at least one through hole in the shaft which is in a twisted position with the rotating shaft or intersects with the rotating shaft.

本発明の実施の形態1に係る電動機の断面図Sectional drawing of the electric motor which concerns on Embodiment 1 of this invention 実施の形態1に係るシャフトの正面図Front view of the shaft according to the first embodiment 実施の形態1に係るシャフトの断面図Cross-sectional view of the shaft according to the first embodiment 実施の形態1に係るシャフトの上面図Top view of the shaft according to the first embodiment 遠心ファンの断面図Sectional view of centrifugal fan 実施の形態1に係るシャフトの断面図Cross-sectional view of the shaft according to the first embodiment 実施の形態1に係るシャフトの断面図Cross-sectional view of the shaft according to the first embodiment 実施の形態1に係るシャフトの断面図Cross-sectional view of the shaft according to the first embodiment 本発明の実施の形態2に係るシャフトの断面図Sectional drawing of the shaft which concerns on Embodiment 2 of this invention 実施の形態2に係るシャフトの上面図Top view of the shaft according to the second embodiment 本発明の実施の形態3に係るシャフトの正面図Front view of the shaft according to the third embodiment of the present invention. 実施の形態3に係るシャフトの断面図Cross-sectional view of the shaft according to the third embodiment 実施の形態3に係るシャフトの上面図Top view of the shaft according to the third embodiment 本発明の実施の形態4に係るシャフトの正面図Front view of the shaft according to the fourth embodiment of the present invention. 実施の形態4に係るシャフトの断面図Cross-sectional view of the shaft according to the fourth embodiment 実施の形態4に係るシャフトの上面図Top view of the shaft according to the fourth embodiment 本発明の実施の形態5に係るシャフトの正面図Front view of the shaft according to the fifth embodiment of the present invention. 実施の形態5に係るシャフトの断面図Cross-sectional view of the shaft according to the fifth embodiment 本発明の実施の形態6に係るシャフトの正面図Front view of the shaft according to the sixth embodiment of the present invention. 実施の形態6に係るシャフトの断面図Cross-sectional view of the shaft according to the sixth embodiment 実施の形態6に係るシャフトの上面図Top view of the shaft according to the sixth embodiment 本発明の実施の形態7に係るシャフトの正面図Front view of the shaft according to the seventh embodiment of the present invention. 本発明の実施の形態8に係るシャフトの正面図Front view of the shaft according to the eighth embodiment of the present invention.

以下、本発明の実施の形態に係る電動機について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, the electric motor according to the embodiment of the present invention will be described in detail with reference to the drawings. In the figure, the same or equivalent parts are designated by the same reference numerals.

(実施の形態1)
図1に示すように、電動機1は、フレーム2、フレーム2に収容されるシャフト3、シャフト3と一体に回転する回転子4、および、フレーム2に取り付けられる固定子7を備える。図1において、Z軸が鉛直方向であり、Y軸は、シャフト3の回転軸AXと平行であり、X軸はY軸およびZ軸に直交する方向である。図1において、回転軸AXを一点鎖線で示す。電動機1は、鉄道車両の駆動用電動機として用いられる。この場合、フレーム2は、鉄道車両の台車に固定され、シャフト3の一端は、継手および歯車を介して鉄道車両の車軸に連結される。回転子4は、シャフト3の径方向外側に設けられる。回転子4は、シャフト3に嵌合する回転子鉄心5および回転子鉄心5の外周面に形成された溝に挿入される回転子導体6を有する。また固定子7は、フレーム2に取り付けられた固定子鉄心8、および固定子鉄心8に形成された溝に挿入される固定子導体9を有する。回転子鉄心5の外周面と、固定子鉄心8の内周面は、間隔を空けて対向する。
(Embodiment 1)
As shown in FIG. 1, the electric motor 1 includes a frame 2, a shaft 3 housed in the frame 2, a rotor 4 that rotates integrally with the shaft 3, and a stator 7 that is attached to the frame 2. In FIG. 1, the Z-axis is in the vertical direction, the Y-axis is parallel to the rotation axis AX of the shaft 3, and the X-axis is in the direction orthogonal to the Y-axis and the Z-axis. In FIG. 1, the rotation axis AX is shown by a alternate long and short dash line. The electric motor 1 is used as a driving electric motor for a railway vehicle. In this case, the frame 2 is fixed to the bogie of the railroad vehicle, and one end of the shaft 3 is connected to the axle of the railroad vehicle via a joint and a gear. The rotor 4 is provided on the radial outer side of the shaft 3. The rotor 4 has a rotor core 5 fitted to the shaft 3 and a rotor conductor 6 inserted into a groove formed on the outer peripheral surface of the rotor core 5. Further, the stator 7 has a stator core 8 attached to the frame 2 and a stator conductor 9 inserted into a groove formed in the stator core 8. The outer peripheral surface of the rotor core 5 and the inner peripheral surface of the stator core 8 face each other with a gap.

電動機1はさらに、シャフト3に取り付けられて、シャフト3と一体に回転するファン10を備える。また電動機1は、フレーム2に取り付けられる軸受箱11,12を備える。軸受箱11は、軸受13を保持する。また軸受箱12は、軸受14を保持する。軸受13,14は、シャフト3を回転可能に支持する。フレーム2には、吸気口21および排気口22が形成される。ファン10の回転によって、吸気口21から流入した空気は、回転子4と固定子7の間の隙間、および、回転子鉄心5に形成された通風路を通り、排気口22から排気される。なお吸気口21には、塵埃の侵入を防ぐカバー23が設けられる。 The electric motor 1 further includes a fan 10 that is attached to the shaft 3 and rotates integrally with the shaft 3. Further, the electric motor 1 includes bearing boxes 11 and 12 attached to the frame 2. The bearing box 11 holds the bearing 13. The bearing box 12 holds the bearing 14. Bearings 13 and 14 rotatably support the shaft 3. An intake port 21 and an exhaust port 22 are formed in the frame 2. Due to the rotation of the fan 10, the air flowing in from the intake port 21 passes through the gap between the rotor 4 and the stator 7 and the ventilation passage formed in the rotor core 5, and is exhausted from the exhaust port 22. The intake port 21 is provided with a cover 23 for preventing the intrusion of dust.

シャフト3の内、回転子4の端面から回転子4の外側へ延びる部分に、後述する少なくとも1つの貫通孔が形成される。実施の形態1では、シャフト3の内、回転子4の端面から軸受13に向かって延びる部分に、貫通孔が形成される。図1において二点鎖線で示す部分Re1の拡大図を図2に示す。また図3は、図2におけるA−A線での断面図である。図4は、シャフト3の上面図である。図2から図4に示すように、シャフト3に、断面形状が円形の貫通孔31が形成される。貫通孔31の貫通方向は、シャフト3の回転軸AXとねじれの位置の関係にある。また貫通孔31の貫通方向は、回転軸AXと直交するXZ平面に平行である。 At least one through hole, which will be described later, is formed in a portion of the shaft 3 extending from the end face of the rotor 4 to the outside of the rotor 4. In the first embodiment, a through hole is formed in a portion of the shaft 3 extending from the end face of the rotor 4 toward the bearing 13. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. Further, FIG. 3 is a cross-sectional view taken along the line AA in FIG. FIG. 4 is a top view of the shaft 3. As shown in FIGS. 2 to 4, a through hole 31 having a circular cross-sectional shape is formed in the shaft 3. The penetrating direction of the through hole 31 is related to the rotational axis AX of the shaft 3 and the twisted position. The penetration direction of the through hole 31 is parallel to the XZ plane orthogonal to the rotation axis AX.

上述の構成を有する電動機1が通電されると、固定子導体9が回転磁界を形成し、回転磁界によって、回転子導体6に誘導電流が流れ、トルクが発生する。その結果、回転子鉄心5およびシャフト3が一体に回転する。シャフト3の軸受箱12に近い一端は、図示しない継手および歯車を介して鉄道車両の車軸に連結されており、シャフト3が回転することで、鉄道車両は動力を得る。車軸に連結されるシャフト3の一端を駆動側、他端を反駆動側と呼ぶ。また電動機1が通電されると、固定子鉄心8および固定子導体9、ならびに、回転子鉄心5および回転子導体6の温度が上昇する。回転子鉄心5の温度が上昇することで、回転子鉄心5が嵌合しているシャフト3の温度も上昇する。 When the electric motor 1 having the above configuration is energized, the stator conductor 9 forms a rotating magnetic field, and the rotating magnetic field causes an induced current to flow in the rotor conductor 6 to generate torque. As a result, the rotor core 5 and the shaft 3 rotate integrally. One end of the shaft 3 near the bearing box 12 is connected to the axle of the railway vehicle via joints and gears (not shown), and the rotation of the shaft 3 causes the railway vehicle to obtain power. One end of the shaft 3 connected to the axle is called the drive side, and the other end is called the anti-drive side. When the electric motor 1 is energized, the temperatures of the stator core 8 and the stator conductor 9, and the rotor core 5 and the rotor conductor 6 rise. As the temperature of the rotor core 5 rises, the temperature of the shaft 3 to which the rotor core 5 is fitted also rises.

実施の形態1に係る電動機1では、上述のように、シャフト3に貫通孔31が形成されることで、シャフト3の表面積が増大するため、シャフト3からシャフト3の周囲の空気に伝達される熱量が増大する。その結果、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。また電動機1が通電され、図3において白抜きの矢印で示す方向にシャフト3が回転すると、貫通孔31の内部において、黒色の矢印で示す方向に空気が流れる。シャフト3に形成された貫通孔31の内部に空気が流れるため、貫通孔31の内周面から熱を伝達された空気は、貫通孔31の内部に滞留することなく、貫通孔31の開口から排気される。そのため、シャフト3の冷却効率を向上させることが可能である。換言すれば、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。なおシャフト3が図3において白抜きの矢印で示す方向と反対方向に回転する場合、黒色の矢印で示す方向と反対方向に、貫通孔31の内部に空気が流れる。 In the electric motor 1 according to the first embodiment, as described above, the surface area of the shaft 3 is increased by forming the through hole 31 in the shaft 3, so that the electric motor 1 is transmitted from the shaft 3 to the air around the shaft 3. The amount of heat increases. As a result, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized. When the electric motor 1 is energized and the shaft 3 rotates in the direction indicated by the white arrow in FIG. 3, air flows inside the through hole 31 in the direction indicated by the black arrow. Since air flows inside the through hole 31 formed in the shaft 3, the air transferred from the inner peripheral surface of the through hole 31 does not stay inside the through hole 31 and passes through the opening of the through hole 31. It is exhausted. Therefore, it is possible to improve the cooling efficiency of the shaft 3. In other words, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized. When the shaft 3 rotates in the direction opposite to the direction indicated by the white arrow in FIG. 3, air flows inside the through hole 31 in the direction opposite to the direction indicated by the black arrow.

シャフト3の回転時に貫通孔31の内部に空気の流れが生じる原理について、一般的な遠心ファンを用いて説明する。図5に示すように、一般的な遠心ファンの羽根車51は、ハブ52、およびハブ52から径方向に延びる翼53を有する。羽根車51は、回転軸AX’まわりに回転する。ハブ52の半径をr1とし、羽根車51の半径をr2とする。すなわち、翼53の内径を2・r1とし、外径を2・r2とする。遠心ファンが、図5の白抜き矢印で示すように、反時計回りに回転するものとする。遠心ファンにおいては、径方向の外側に向かって空気の流れが発生し、翼53の内周側から外周側に向かうにつれて、静圧が上昇する。翼53の内周側における周速度をベクトルu1、相対速度をベクトルω1、絶対速度をベクトルc1で表す。また翼53の外周側における周速度をベクトルu2、相対速度をベクトルω2、絶対速度をベクトルc2で表す。この場合、翼53の内周側から外周側に向かう際の静圧上昇量ΔPは、下記(1)式で表される。下記(1)式におけるρは空気密度である。
ΔP=ρ・(u2・c2−u1・c1) ・・・(1)
The principle that air flows inside the through hole 31 when the shaft 3 rotates will be described using a general centrifugal fan. As shown in FIG. 5, a typical centrifugal fan impeller 51 has a hub 52 and blades 53 extending radially from the hub 52. The impeller 51 rotates around the rotation axis AX'. The radius of the hub 52 is r1, and the radius of the impeller 51 is r2. That is, the inner diameter of the blade 53 is 2.r1, and the outer diameter is 2.r2. It is assumed that the centrifugal fan rotates counterclockwise as shown by the white arrow in FIG. In the centrifugal fan, an air flow is generated toward the outside in the radial direction, and the static pressure increases from the inner peripheral side to the outer peripheral side of the blade 53. The peripheral velocity on the inner peripheral side of the blade 53 is represented by the vector u1, the relative velocity is represented by the vector ω1, and the absolute velocity is represented by the vector c1. Further, the peripheral velocity on the outer peripheral side of the wing 53 is represented by the vector u2, the relative velocity is represented by the vector ω2, and the absolute velocity is represented by the vector c2. In this case, the static pressure increase amount ΔP when going from the inner peripheral side to the outer peripheral side of the blade 53 is expressed by the following equation (1). Ρ in the following equation (1) is the air density.
ΔP = ρ ・ (u2 ・ c2-u1 ・ c1) ・ ・ ・ (1)

翼53の内周側における速度と翼53の外周側における速度の差が大きくなるにつれて、静圧上昇量ΔPは大きくなる。換言すれば、翼53の内径と外径の差が大きくなるにつれて、静圧上昇量ΔPは大きくなる。静圧上昇量ΔPが大きくなると、遠心ファンが発生させる風量は大きくなる。 As the difference between the velocity on the inner peripheral side of the blade 53 and the velocity on the outer peripheral side of the blade 53 increases, the static pressure increase amount ΔP increases. In other words, as the difference between the inner diameter and the outer diameter of the blade 53 increases, the static pressure increase amount ΔP increases. As the static pressure increase amount ΔP increases, the air volume generated by the centrifugal fan increases.

上述の遠心ファンにおける静圧上昇の原理を実施の形態1に係る電動機1が有するシャフト3に適用する。シャフト3は、図6の白抜き矢印で示すように、反時計回りに回転するものとする。この場合に、図6において太い実線で示す貫通孔31の内周面の一部が翼32を形成するものとする。また図6において太い点線で示す貫通孔31の内周面の一部が翼33を形成するものとする。翼32の内径を2・r1、外径を2・r2とする。また翼33の内径を2・r3、外径を2・r2とする。貫通孔31の貫通方向は、回転軸AXとねじれの位置にあり、r1<r3が成立する。図7に示すように、翼32の内周側における周速度をベクトルu1、相対速度をベクトルω1、絶対速度をベクトルc1で表す。また翼32の外周側における周速度をベクトルu2、相対速度をベクトルω2、絶対速度をベクトルc2で表す。図8に示すように、翼33の内周側における周速度をベクトルu1’、相対速度をベクトルω1’、絶対速度をベクトルc1’で表す。また翼33の外周側における周速度をベクトルu2’、相対速度をベクトルω2’、絶対速度をベクトルc2’で表す。この場合、翼32の内周側から外周側に向かう際の静圧上昇量ΔPは上記(1)式で表される。また翼33の内周側から外周側に向かう際の静圧上昇量ΔP’は下記(2)式で表される。
ΔP’=ρ・(u2’・c2’−u1’・c1’) ・・・(2)
The principle of increasing the static pressure in the centrifugal fan described above is applied to the shaft 3 of the electric motor 1 according to the first embodiment. The shaft 3 is assumed to rotate counterclockwise as shown by the white arrow in FIG. In this case, it is assumed that a part of the inner peripheral surface of the through hole 31 shown by the thick solid line in FIG. 6 forms the wing 32. Further, it is assumed that a part of the inner peripheral surface of the through hole 31 shown by the thick dotted line in FIG. 6 forms the wing 33. The inner diameter of the wing 32 is 2.r1, and the outer diameter is 2.r2. Further, the inner diameter of the wing 33 is set to 2.r3, and the outer diameter is set to 2.r2. The penetration direction of the through hole 31 is at a twisted position with the rotation axis AX, and r1 <r3 is established. As shown in FIG. 7, the peripheral velocity on the inner peripheral side of the wing 32 is represented by the vector u1, the relative velocity is represented by the vector ω1, and the absolute velocity is represented by the vector c1. Further, the peripheral velocity on the outer peripheral side of the wing 32 is represented by the vector u2, the relative velocity is represented by the vector ω2, and the absolute velocity is represented by the vector c2. As shown in FIG. 8, the peripheral velocity on the inner peripheral side of the wing 33 is represented by the vector u1', the relative velocity is represented by the vector ω1', and the absolute velocity is represented by the vector c1'. Further, the peripheral velocity on the outer peripheral side of the wing 33 is represented by the vector u2', the relative velocity is represented by the vector ω2', and the absolute velocity is represented by the vector c2'. In this case, the static pressure increase amount ΔP when going from the inner peripheral side to the outer peripheral side of the blade 32 is expressed by the above equation (1). Further, the static pressure increase amount ΔP'when the blade 33 is directed from the inner peripheral side to the outer peripheral side is expressed by the following equation (2).
ΔP'= ρ ・ (u2' ・ c2'-u1' ・ c1') ・ ・ ・ (2)

r1<r3であるため、翼32の内周側における速度と翼32の外周側における速度の差は、翼33の内周側における速度と翼33の外周側における速度の差より大きい。したがって、ΔP>ΔP’が成立する。翼32が発生させる風量は翼33が発生させる風量より大きいため、図3に示す矢印の方向に、貫通孔31の内部に空気が流れる。貫通孔31の内部に空気が流れることで、シャフト3から、貫通孔31の内部を流れる空気に熱を伝達することができる。その結果、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。上述のように、シャフト3に貫通孔31を形成することで、シャフト3の冷却効率を高めることができる。 Since r1 <r3, the difference between the speed on the inner peripheral side of the blade 32 and the speed on the outer peripheral side of the blade 32 is larger than the difference between the speed on the inner peripheral side of the blade 33 and the speed on the outer peripheral side of the blade 33. Therefore, ΔP> ΔP'holds. Since the air volume generated by the blade 32 is larger than the air volume generated by the blade 33, air flows inside the through hole 31 in the direction of the arrow shown in FIG. By allowing air to flow inside the through hole 31, heat can be transferred from the shaft 3 to the air flowing inside the through hole 31. As a result, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized. As described above, by forming the through hole 31 in the shaft 3, the cooling efficiency of the shaft 3 can be improved.

以上説明したとおり、実施の形態1に係る電動機1によれば、回転軸AXとねじれの位置の関係にある貫通孔31をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。 As described above, according to the electric motor 1 according to the first embodiment, it is possible to improve the cooling efficiency of the shaft 3 by forming the through hole 31 in the shaft 3 which has a twisted position with the rotating shaft AX. Is.

(実施の形態2)
実施の形態1においては、1つの貫通孔31がシャフト3に形成されたが、2つの貫通孔がシャフト3に形成されてもよい。実施の形態2に係る電動機1は、シャフト3の形状を除いて、図1に示す実施の形態1に係る電動機1と同様である。図9は、図2におけるA−A線での断面図である。図10は、シャフト3の上面図である。図9および図10に示すように、シャフト3に、断面形状が円形の貫通孔31,34が形成される。貫通孔31,34のそれぞれの貫通方向は、シャフト3の回転軸AXとねじれの位置の関係にある。また貫通孔31,34の貫通方向は、回転軸AXと直交するXZ平面に平行である。なお図9において、回転軸AXを通る面P1を一点鎖線で示す。貫通孔31,34は、回転軸AXを通る面P1に対して対称な形状を有する。
(Embodiment 2)
In the first embodiment, one through hole 31 is formed in the shaft 3, but two through holes may be formed in the shaft 3. The electric motor 1 according to the second embodiment is the same as the electric motor 1 according to the first embodiment shown in FIG. 1, except for the shape of the shaft 3. FIG. 9 is a cross-sectional view taken along the line AA in FIG. FIG. 10 is a top view of the shaft 3. As shown in FIGS. 9 and 10, through holes 31 and 34 having a circular cross-sectional shape are formed in the shaft 3. The penetrating directions of the through holes 31 and 34 are in a relationship of the rotational axis AX of the shaft 3 and the twisted position. The penetration directions of the through holes 31 and 34 are parallel to the XZ plane orthogonal to the rotation axis AX. In FIG. 9, the surface P1 passing through the rotation axis AX is shown by a alternate long and short dash line. The through holes 31 and 34 have a shape symmetrical with respect to the surface P1 passing through the rotation axis AX.

図9において白抜きの矢印で示す方向にシャフト3が回転する場合、黒色の矢印で示す方向に貫通孔31,34の内部に空気の流れが生じる。シャフト3に形成された貫通孔31,34のそれぞれの内部に空気の流れが生じることで、シャフト3から、貫通孔31,34の内部を流れる空気に熱を伝達することができる。その結果、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。なおシャフト3が図9において白抜きの矢印で示す方向と反対方向に回転する場合、黒色の矢印で示す方向と反対方向に、貫通孔31の内部に空気の流れが生じる。 When the shaft 3 rotates in the direction indicated by the white arrow in FIG. 9, an air flow is generated inside the through holes 31 and 34 in the direction indicated by the black arrow. By generating an air flow inside each of the through holes 31 and 34 formed in the shaft 3, heat can be transferred from the shaft 3 to the air flowing inside the through holes 31 and 34. As a result, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized. When the shaft 3 rotates in the direction opposite to the direction indicated by the white arrow in FIG. 9, an air flow is generated inside the through hole 31 in the direction opposite to the direction indicated by the black arrow.

以上説明したとおり、実施の形態2に係る電動機1によれば、シャフト3の回転軸AXとねじれの位置の関係にある貫通孔31,34をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。また貫通孔31,34の形状は、回転軸AXを通る平面に対して対称であり、回転軸AXに対してシャフト3の質量の偏りが生じない。そのため、シャフト3の回転時に、貫通孔31,34を形成することによる振動が発生しない。 As described above, according to the electric motor 1 according to the second embodiment, the cooling efficiency of the shaft 3 is increased by forming the through holes 31 and 34 in the shaft 3 which are in a twisted position with the rotating shaft AX of the shaft 3. It is possible to increase. Further, the shapes of the through holes 31 and 34 are symmetrical with respect to the plane passing through the rotation axis AX, and the mass of the shaft 3 is not biased with respect to the rotation axis AX. Therefore, when the shaft 3 rotates, vibration due to the formation of the through holes 31 and 34 does not occur.

(実施の形態3)
実施の形態1においては、1つの貫通孔31がシャフト3に形成され、実施の形態2においては、2つの貫通孔31,34がシャフト3に形成されたが、3つ以上の貫通孔がシャフト3に形成されてもよい。実施の形態3に係る電動機1は、シャフト3の形状を除いて、図1に示す実施の形態1に係る電動機1と同様である。図1において二点鎖線で示す部分Re1の拡大図を図11に示す。図12は、図11におけるB−B線での断面図である。図13は、シャフト3の上面図である。図11から図13に示すように、シャフト3に、貫通孔36,37,38が形成される。貫通孔36,37,38のそれぞれの貫通方向は、シャフト3の回転軸AXとねじれの位置の関係にある。また貫通孔36,37,38の貫通方向は、回転軸AXと直交するXZ平面に平行である。さらに貫通孔36,37,38それぞれの貫通方向が成す角の大きさは互いに一致する。すなわち、貫通孔36,37それぞれの貫通方向が成す角の大きさ、貫通孔37,38それぞれの貫通方向が成す角の大きさ、および貫通孔36,38それぞれの貫通方向が成す角の大きさは、互いに一致する。
(Embodiment 3)
In the first embodiment, one through hole 31 is formed on the shaft 3, and in the second embodiment, two through holes 31 and 34 are formed on the shaft 3, but three or more through holes are formed on the shaft. It may be formed in 3. The electric motor 1 according to the third embodiment is the same as the electric motor 1 according to the first embodiment shown in FIG. 1, except for the shape of the shaft 3. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. FIG. 12 is a cross-sectional view taken along the line BB in FIG. FIG. 13 is a top view of the shaft 3. As shown in FIGS. 11 to 13, through holes 36, 37, 38 are formed in the shaft 3. The penetrating directions of the through holes 36, 37, and 38 are related to the rotational axis AX of the shaft 3 and the twisted position. The penetration directions of the through holes 36, 37, and 38 are parallel to the XZ plane orthogonal to the rotation axis AX. Further, the sizes of the angles formed by the penetration directions of the through holes 36, 37, and 38 are the same as each other. That is, the size of the angle formed by the penetrating directions of the through holes 36 and 37, the size of the angle formed by the penetrating directions of the through holes 37 and 38, and the size of the angle formed by the penetrating directions of the through holes 36 and 38, respectively. Match each other.

図12において白抜きの矢印で示す方向にシャフト3が回転する場合、黒色の矢印で示す方向に貫通孔36,37,38の内部に空気の流れが生じる。シャフト3に形成された貫通孔36,37,38のそれぞれの内部に空気の流れが生じることで、シャフト3から、貫通孔36,37,38の内部を流れる空気に熱を伝達することができる。その結果、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。なおシャフト3が図12において白抜きの矢印で示す方向と反対方向に回転する場合、黒色の矢印で示す方向と反対方向に、貫通孔36,37,38の内部に空気の流れが生じる。 When the shaft 3 rotates in the direction indicated by the white arrow in FIG. 12, an air flow is generated inside the through holes 36, 37, 38 in the direction indicated by the black arrow. By creating an air flow inside each of the through holes 36, 37, 38 formed in the shaft 3, heat can be transferred from the shaft 3 to the air flowing inside the through holes 36, 37, 38. .. As a result, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized. When the shaft 3 rotates in the direction opposite to the direction indicated by the white arrow in FIG. 12, air flows inside the through holes 36, 37, 38 in the direction opposite to the direction indicated by the black arrow.

以上説明したとおり、実施の形態3に係る電動機1によれば、シャフト3の回転軸AXとねじれの位置の関係にある貫通孔36,37,38をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。また貫通孔36,37,38のそれぞれの貫通方向が成す角の大きさを互いに一致させて貫通孔36,37,38を形成することで、回転軸AXに対してシャフト3の質量の偏りが生じない。そのため、シャフト3の回転時に、貫通孔36,37,38を形成することによる振動が発生しない。 As described above, according to the electric motor 1 according to the third embodiment, the shaft 3 is formed by forming through holes 36, 37, 38 in the shaft 3 which are in a twisted position with the rotating shaft AX of the shaft 3. It is possible to increase the cooling efficiency. Further, by forming the through holes 36, 37, 38 by matching the sizes of the angles formed by the through directions of the through holes 36, 37, 38 with each other, the mass of the shaft 3 is biased with respect to the rotation shaft AX. Does not occur. Therefore, when the shaft 3 rotates, vibration due to the formation of the through holes 36, 37, 38 does not occur.

(実施の形態4)
シャフト3の外周面において、貫通孔31の周りに座繰り部を形成してもよい。実施の形態4に係る電動機1は、シャフト3の形状を除いて、図1に示す実施の形態1に係る電動機1と同様である。図1において二点鎖線で示す部分Re1の拡大図を図14に示す。図15は、図14におけるC−C線での断面図である。図16は、シャフト3の上面図である。シャフト3に形成される貫通孔31の形状は、実施の形態1と同様である。実施の形態4に係る電動機1においては、図14から図16に示すように、シャフト3の外周面において、貫通孔31の周りに凹部35が形成される。凹部35の径は、貫通孔31の径より大きい。凹部35の中心軸は、貫通孔31の中心軸と比べて、回転軸AXを通るYZ平面から遠くに位置する。
(Embodiment 4)
A counterbore may be formed around the through hole 31 on the outer peripheral surface of the shaft 3. The electric motor 1 according to the fourth embodiment is the same as the electric motor 1 according to the first embodiment shown in FIG. 1, except for the shape of the shaft 3. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. FIG. 15 is a cross-sectional view taken along the line CC in FIG. FIG. 16 is a top view of the shaft 3. The shape of the through hole 31 formed in the shaft 3 is the same as that of the first embodiment. In the electric motor 1 according to the fourth embodiment, as shown in FIGS. 14 to 16, a recess 35 is formed around the through hole 31 on the outer peripheral surface of the shaft 3. The diameter of the recess 35 is larger than the diameter of the through hole 31. The central axis of the recess 35 is located farther from the YZ plane passing through the rotation axis AX than the central axis of the through hole 31.

シャフト3が回転する場合に、貫通孔31の内部に生じる空気の流れは、実施の形態1と同様である。貫通孔31の径より径が大きい凹部35が形成されることで、静圧上昇量ΔPが増大する。凹部35の中心軸は、貫通孔31の中心軸と比べて、回転軸AXを通るYZ平面から遠くに位置することで、さらに静圧上昇量ΔPを増大させることができる。静圧上昇量ΔPが増大すると、貫通孔31の内部に流れる空気の量が増大するため、シャフト3の冷却効率をさらに向上させることができる。 When the shaft 3 rotates, the flow of air generated inside the through hole 31 is the same as that of the first embodiment. By forming the recess 35 having a diameter larger than the diameter of the through hole 31, the static pressure increase amount ΔP increases. By locating the central axis of the recess 35 farther from the YZ plane passing through the rotation axis AX than the central axis of the through hole 31, the static pressure increase amount ΔP can be further increased. When the static pressure increase amount ΔP increases, the amount of air flowing inside the through hole 31 increases, so that the cooling efficiency of the shaft 3 can be further improved.

以上説明したとおり、実施の形態4に係る電動機1によれば、シャフト3の外周面において貫通孔31の周りに凹部35を形成することで、シャフト3の冷却効率を高めることが可能である。 As described above, according to the electric motor 1 according to the fourth embodiment, it is possible to improve the cooling efficiency of the shaft 3 by forming the recess 35 around the through hole 31 on the outer peripheral surface of the shaft 3.

(実施の形態5)
貫通孔31,34,36,37,38のそれぞれにおいて、貫通方向に直交する断面の面積は一定であるが、貫通方向に直交する断面の面積は一定でなくともよい。実施の形態5に係る電動機1においては、断面の面積が一定でない貫通孔39がシャフト3に形成される。図1において二点鎖線で示す部分Re1の拡大図を図17に示す。図18は、図17におけるD−D線での断面図である。図17および図18に示すように、シャフト3に、貫通孔39が形成される。貫通孔39の貫通方向は、シャフト3の回転軸AXとねじれの位置の関係にある。また貫通孔39の貫通方向は、回転軸AXと直交するXZ平面に平行である。貫通孔39の一端の開口面積は、他端の開口面積より小さい。シャフト3が回転する場合に、貫通孔31の内部に生じる空気の流れは、実施の形態1と同様である。電動機1の回転方向が一定である場合に、空気が流入する貫通孔39の一端の開口の面積を、他端の開口の面積より小さくすることで、風量が増大する。
(Embodiment 5)
In each of the through holes 31, 34, 36, 37, and 38, the area of the cross section orthogonal to the penetration direction is constant, but the area of the cross section orthogonal to the penetration direction does not have to be constant. In the electric motor 1 according to the fifth embodiment, a through hole 39 having a non-constant cross-sectional area is formed in the shaft 3. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. FIG. 18 is a cross-sectional view taken along the line DD in FIG. As shown in FIGS. 17 and 18, a through hole 39 is formed in the shaft 3. The penetrating direction of the through hole 39 is in a relationship of a twisted position with the rotating shaft AX of the shaft 3. The penetration direction of the through hole 39 is parallel to the XZ plane orthogonal to the rotation axis AX. The opening area at one end of the through hole 39 is smaller than the opening area at the other end. When the shaft 3 rotates, the flow of air generated inside the through hole 31 is the same as that of the first embodiment. When the rotation direction of the electric motor 1 is constant, the air volume is increased by making the area of the opening at one end of the through hole 39 into which air flows into smaller than the area of the opening at the other end.

以上説明したとおり、実施の形態5に係る電動機1によれば、断面の面積が一定でない貫通孔39をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。 As described above, according to the electric motor 1 according to the fifth embodiment, it is possible to improve the cooling efficiency of the shaft 3 by forming the through hole 39 having a non-constant cross-sectional area on the shaft 3.

(実施の形態6)
貫通孔31,34,36,37,38,39のそれぞれにおいて、貫通方向は、回転軸AXとねじれの位置の関係にあるが、貫通孔の貫通方向は、回転軸AXと交差してもよい。図1において二点鎖線で示す部分Re1の拡大図を図19に示す。図20は、図19におけるE−E線での断面図である。図21は、シャフト3の上面図である。図19から図21に示すように、シャフト3に、貫通孔40が形成される。貫通孔40の貫通方向は、シャフト3の回転軸AXと交差する。また貫通孔40の貫通方向は、回転軸AXと直交するXZ平面に平行である。貫通孔40を形成することで、シャフト3の表面積が増大し、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。
(Embodiment 6)
In each of the through holes 31, 34, 36, 37, 38, and 39, the penetration direction is in a twisted position with the rotation axis AX, but the penetration direction of the through hole may intersect the rotation axis AX. .. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. FIG. 20 is a cross-sectional view taken along the line EE in FIG. FIG. 21 is a top view of the shaft 3. As shown in FIGS. 19 to 21, a through hole 40 is formed in the shaft 3. The penetration direction of the through hole 40 intersects with the rotation axis AX of the shaft 3. The penetration direction of the through hole 40 is parallel to the XZ plane orthogonal to the rotation axis AX. By forming the through hole 40, the surface area of the shaft 3 is increased, and the temperature rise of the shaft 3 when the electric motor 1 is energized can be suppressed.

以上説明したとおり、実施の形態6に係る電動機1によれば、貫通孔40をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。 As described above, according to the electric motor 1 according to the sixth embodiment, it is possible to improve the cooling efficiency of the shaft 3 by forming the through hole 40 in the shaft 3.

(実施の形態7)
貫通孔は、回転軸AXの方向に並んで設けられてもよい。図1において二点鎖線で示す部分Re1の拡大図を図22に示す。実施の形態7に係る電動機1においては、実施の形態1に係る電動機1のシャフト3に形成される貫通孔31に加えて、貫通孔31と同じ形状の貫通孔41がシャフト3に形成される。貫通孔31,41を形成することで、シャフト3の表面積が増大し、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。またシャフト3が回転する際は、実施の形態1と同様に、貫通孔31,41の内部に空気の流れが生じる。シャフト3に形成された貫通孔31,41のそれぞれの内部に空気の流れが生じることで、シャフト3から、貫通孔31,41の内部を流れる空気に熱を伝達することができる。その結果、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。
(Embodiment 7)
The through holes may be provided side by side in the direction of the rotation axis AX. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. In the electric motor 1 according to the seventh embodiment, in addition to the through hole 31 formed in the shaft 3 of the electric motor 1 according to the first embodiment, a through hole 41 having the same shape as the through hole 31 is formed in the shaft 3. .. By forming the through holes 31 and 41, the surface area of the shaft 3 is increased, and the temperature rise of the shaft 3 when the electric motor 1 is energized can be suppressed. Further, when the shaft 3 rotates, an air flow is generated inside the through holes 31 and 41 as in the first embodiment. By generating an air flow inside each of the through holes 31 and 41 formed in the shaft 3, heat can be transferred from the shaft 3 to the air flowing inside the through holes 31 and 41. As a result, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized.

以上説明したとおり、実施の形態7に係る電動機1によれば、貫通孔31,41をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。 As described above, according to the electric motor 1 according to the seventh embodiment, it is possible to improve the cooling efficiency of the shaft 3 by forming the through holes 31 and 41 in the shaft 3.

(実施の形態8)
貫通孔の貫通方向は、回転軸AXと直交する面と交差してもよい。図1において二点鎖線で示す部分Re1の拡大図を図23に示す。実施の形態8に係る電動機1においては、貫通孔42が形成される。貫通孔42の貫通方向は、XZ平面と交差する。貫通方向がXZ平面と交差する貫通孔42を形成することで、貫通方向がXZ平面に直交する面に平行な貫通孔よりも、貫通孔の内周面の面積を増大させることができる。その結果、シャフト3の表面積が増大し、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。またシャフト3が回転する際は、実施の形態1と同様に、貫通孔42の内部に空気の流れが生じる。シャフト3に形成された貫通孔42のそれぞれの内部に空気の流れが生じることで、シャフト3から、貫通孔42の内部を流れる空気に熱を伝達することができる。その結果、電動機1が通電される際のシャフト3の温度上昇を抑制することができる。
(Embodiment 8)
The penetrating direction of the through hole may intersect the plane orthogonal to the rotation axis AX. An enlarged view of the portion Re1 shown by the alternate long and short dash line in FIG. 1 is shown in FIG. 23. In the electric motor 1 according to the eighth embodiment, a through hole 42 is formed. The penetration direction of the through hole 42 intersects the XZ plane. By forming the through hole 42 whose penetration direction intersects the XZ plane, the area of the inner peripheral surface of the through hole can be increased as compared with the through hole whose penetration direction is parallel to the plane orthogonal to the XZ plane. As a result, the surface area of the shaft 3 is increased, and the temperature rise of the shaft 3 when the electric motor 1 is energized can be suppressed. Further, when the shaft 3 rotates, an air flow is generated inside the through hole 42 as in the first embodiment. By generating an air flow inside each of the through holes 42 formed in the shaft 3, heat can be transferred from the shaft 3 to the air flowing inside the through holes 42. As a result, it is possible to suppress the temperature rise of the shaft 3 when the electric motor 1 is energized.

以上説明したとおり、実施の形態8に係る電動機1によれば、貫通孔42をシャフト3に形成することで、シャフト3の冷却効率を高めることが可能である。 As described above, according to the electric motor 1 according to the eighth embodiment, it is possible to improve the cooling efficiency of the shaft 3 by forming the through hole 42 in the shaft 3.

本発明の実施の形態は上述の実施の形態に限られない。貫通孔31,34,36,37,38,39,40,41,42の断面形状は、円形に限られず、任意の形状である。一例として、楕円形、同一の直径の円の外縁を直線で繋いだ形状等でもよい。実施の形態2に係る電動機1のシャフト3に形成される貫通孔31,34に加えて、貫通孔31,34と同じ形状の2つの貫通孔をさらに形成してもよい。また実施の形態2に係る電動機1のシャフト3に形成される貫通孔31,34の貫通方向は、XZ平面と交差してもよい。実施の形態4に係る電動機1において、貫通孔31の中心軸と凹部35の中心軸とが一致する位置に、凹部35を形成してもよい。 The embodiment of the present invention is not limited to the above-described embodiment. The cross-sectional shape of the through holes 31, 34, 36, 37, 38, 39, 40, 41, 42 is not limited to a circular shape, and may be any shape. As an example, it may be an ellipse, a shape in which the outer edges of circles having the same diameter are connected by a straight line, or the like. In addition to the through holes 31 and 34 formed in the shaft 3 of the electric motor 1 according to the second embodiment, two through holes having the same shape as the through holes 31 and 34 may be further formed. Further, the penetrating directions of the through holes 31 and 34 formed in the shaft 3 of the electric motor 1 according to the second embodiment may intersect with the XZ plane. In the electric motor 1 according to the fourth embodiment, the recess 35 may be formed at a position where the central axis of the through hole 31 and the central axis of the recess 35 coincide with each other.

上述の実施の形態においては、シャフト3の内、回転子4の端面から軸受13に延びる部分に貫通孔が形成されているが、さらに、シャフト3の内、回転子4の端面から軸受14に延びる部分に貫通孔を形成してもよい。 In the above-described embodiment, a through hole is formed in a portion of the shaft 3 extending from the end face of the rotor 4 to the bearing 13, but further, in the shaft 3, the end face of the rotor 4 is formed in the bearing 14. A through hole may be formed in the extending portion.

なお上述の実施の形態の内、複数の実施の形態を任意に組み合わせてもよい。例えば、実施の形態2に係る電動機1のシャフト3の外周面において、貫通孔31,34の周りに貫通孔31,34の径より径が大きい凹部35を形成してもよい。また実施の形態4に係る電動機1のシャフト3の外周面において、貫通孔36,37,38の周りに貫通孔36,37,38の径より径が大きい凹部35を形成してもよい。また貫通孔31,34,36,37,38の一端の開口面積を他端の開口面積より小さくしてもよい。 Of the above-described embodiments, a plurality of embodiments may be arbitrarily combined. For example, on the outer peripheral surface of the shaft 3 of the electric motor 1 according to the second embodiment, a recess 35 having a diameter larger than the diameter of the through holes 31 and 34 may be formed around the through holes 31 and 34. Further, on the outer peripheral surface of the shaft 3 of the electric motor 1 according to the fourth embodiment, a recess 35 having a diameter larger than the diameter of the through holes 36, 37, 38 may be formed around the through holes 36, 37, 38. Further, the opening area at one end of the through holes 31, 34, 36, 37, 38 may be smaller than the opening area at the other end.

電動機1は、ファン10を備えずに、外部ブロワから送られる冷却風を内部に取り入れて内部を冷却してもよい。また上述の実施の形態においては、電動機1は外気を取り入れて内部を冷却する自己通風型の電動機であるが、電動機1は、全閉型の電動機でもよい。上述の実施の形態においては、電動機1は、回転子4が固定子7の径方向の内側に設けられるインナーロータ式であるが、本願発明は、回転子が固定子の径方向の外側に設けられるアウターロータ式にも適用可能である。 The electric motor 1 may not include the fan 10 and may take in the cooling air sent from the external blower to cool the inside. Further, in the above-described embodiment, the electric motor 1 is a self-ventilating electric motor that takes in outside air to cool the inside, but the electric motor 1 may be a fully closed electric motor. In the above-described embodiment, the electric motor 1 is an inner rotor type in which the rotor 4 is provided inside the stator 7 in the radial direction, but in the present invention, the rotor is provided outside the stator 7 in the radial direction. It is also applicable to the outer rotor type.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows for various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiment but by the claims. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.

1 電動機、2 フレーム、3 シャフト、4 回転子、5 回転子鉄心、6 回転子導体、7 固定子、8 固定子鉄心、9 固定子導体、10 ファン、11,12 軸受箱、13,14 軸受、21 吸気口、22 排気口、23 カバー、31,34,36,37,38,39,40,41,42 貫通孔、32,33,53 翼、35 凹部、51 羽根車、52 ハブ。 1 motor, 2 frames, 3 shafts, 4 rotors, 5 rotor cores, 6 rotor conductors, 7 stators, 8 stator cores, 9 stator conductors, 10 fans, 11, 12 bearing boxes, 13, 14 bearings , 21 intake port, 22 exhaust port, 23 cover, 31, 34, 36, 37, 38, 39, 40, 41, 42 through holes, 32, 33, 53 wings, 35 recesses, 51 impellers, 52 hubs.

Claims (7)

回転軸まわりに回転可能に支持されるシャフトと、
前記シャフトの径方向の外側に設けられ、前記シャフトと一体に回転する回転子と、
前記回転子と、径方向に間隔を空けて対向する固定子と、
前記シャフトを回転可能に支持する軸受と、
を備え、
前記シャフトの内、前記回転子の端面から前記回転子の外側へ延びる部分に、少なくとも1つの貫通孔が形成され、
前記少なくとも1つの貫通孔のそれぞれの貫通方向は、前記回転軸とねじれの位置の関係にある、または、前記回転軸と交差する、
電動機。
A shaft that is rotatably supported around the axis of rotation,
A rotor provided on the outer side in the radial direction of the shaft and rotating integrally with the shaft,
The rotor and the stator facing each other at intervals in the radial direction,
Bearings that rotatably support the shaft and
With
At least one through hole is formed in a portion of the shaft extending from the end face of the rotor to the outside of the rotor.
Each penetration direction of the at least one through hole is in a twisted position relationship with the rotation axis or intersects the rotation axis.
Electric motor.
前記回転軸を通る平面に対して対称な形状を有する2つの前記貫通孔が形成される、
請求項1に記載の電動機。
Two said through holes having a shape symmetrical with respect to a plane passing through the axis of rotation are formed.
The electric motor according to claim 1.
前記貫通方向は、前記回転軸と直交する面に平行である、
請求項1または2に記載の電動機。
The penetrating direction is parallel to the plane orthogonal to the axis of rotation.
The electric motor according to claim 1 or 2.
前記貫通方向は、前記回転軸と直交する面と交差する、
請求項1または2に記載の電動機。
The penetration direction intersects a plane orthogonal to the axis of rotation.
The electric motor according to claim 1 or 2.
前記シャフトの外周面において、前記貫通孔の径より径が大きい凹部が形成される、
請求項1から4のいずれか1項に記載の電動機。
A recess having a diameter larger than the diameter of the through hole is formed on the outer peripheral surface of the shaft.
The electric motor according to any one of claims 1 to 4.
前記少なくとも1つの貫通孔のそれぞれにおいて、一端の開口面積は、他端の開口面積より小さい、
請求項1から5のいずれか1項に記載の電動機。
In each of the at least one through holes, the opening area at one end is smaller than the opening area at the other end.
The electric motor according to any one of claims 1 to 5.
前記シャフトの一端が継手および歯車を介して鉄道車両の車軸に連結されることで、前記鉄道車両を駆動し、
前記少なくとも1つの貫通孔は、前記シャフトの内、前記回転子の端面から、前記シャフトの他端を回転可能に支持する前記軸受に向かって延びる部分に形成される、
請求項1から6のいずれか1項に記載の電動機。
One end of the shaft is connected to the axle of the railroad vehicle via a joint and a gear to drive the railroad vehicle.
The at least one through hole is formed in a portion of the shaft extending from the end face of the rotor toward the bearing that rotatably supports the other end of the shaft.
The electric motor according to any one of claims 1 to 6.
JP2020514853A 2018-04-18 2018-04-18 Electric motor Active JP7145938B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/016034 WO2019202692A1 (en) 2018-04-18 2018-04-18 Electric motor

Publications (2)

Publication Number Publication Date
JPWO2019202692A1 true JPWO2019202692A1 (en) 2021-04-22
JP7145938B2 JP7145938B2 (en) 2022-10-03

Family

ID=68239143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514853A Active JP7145938B2 (en) 2018-04-18 2018-04-18 Electric motor

Country Status (2)

Country Link
JP (1) JP7145938B2 (en)
WO (1) WO2019202692A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140512U (en) * 1984-08-17 1986-03-14 日本精工株式会社 High speed rotating shaft air cooling device
JPH066958A (en) * 1992-06-17 1994-01-14 Hitachi Ltd Main motor for vehicle
JP2007014069A (en) * 2005-06-29 2007-01-18 Meidensha Corp Motor with rotation speed detector
JP2010164454A (en) * 2009-01-16 2010-07-29 Shimadzu Corp Gas chromatograph
JP2014030284A (en) * 2012-07-31 2014-02-13 Mitsubishi Motors Corp Rotary electric machine for vehicle
JP2014047795A (en) * 2012-08-29 2014-03-17 Ihi Corp Rotary machine
JP2018129918A (en) * 2017-02-07 2018-08-16 パナソニック株式会社 Liquid pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109768A (en) 2013-12-05 2015-06-11 株式会社豊田自動織機 Rotary electric machine
JP2016025718A (en) * 2014-07-18 2016-02-08 日産自動車株式会社 Motor unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140512U (en) * 1984-08-17 1986-03-14 日本精工株式会社 High speed rotating shaft air cooling device
JPH066958A (en) * 1992-06-17 1994-01-14 Hitachi Ltd Main motor for vehicle
JP2007014069A (en) * 2005-06-29 2007-01-18 Meidensha Corp Motor with rotation speed detector
JP2010164454A (en) * 2009-01-16 2010-07-29 Shimadzu Corp Gas chromatograph
JP2014030284A (en) * 2012-07-31 2014-02-13 Mitsubishi Motors Corp Rotary electric machine for vehicle
JP2014047795A (en) * 2012-08-29 2014-03-17 Ihi Corp Rotary machine
JP2018129918A (en) * 2017-02-07 2018-08-16 パナソニック株式会社 Liquid pump

Also Published As

Publication number Publication date
WO2019202692A1 (en) 2019-10-24
JP7145938B2 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
JP4846065B1 (en) Rotating electric machine
JP6059906B2 (en) Axial gap type rotating electrical machine
JP5957605B2 (en) Axial gap type rotating electrical machine
JP2015095962A (en) Rotary machine
JP6685464B2 (en) Main motor for vehicle
JP2008220054A (en) Vehicle driving totally-enclosed motor
JP7145938B2 (en) Electric motor
JP6433587B2 (en) AC alternator rotor for vehicles
JPWO2008059687A1 (en) Rotating motor
FI123727B (en) Arrangement and method for cooling an electrical machine
JP2016100953A (en) Rotary electric machine
JP6009913B2 (en) Electric motor
JP4532964B2 (en) Double rotor motor
JP2015228768A (en) Rotary machine
WO2020208730A1 (en) Electric motor
JP2014212586A (en) Rotary electric machine
WO2021166212A1 (en) Electric motor
JP6775715B1 (en) Rotor and rotary electric machine
JP2018150933A (en) Axial flow fan
JP7135138B2 (en) Rotating electric machine
JP6958655B2 (en) Rotating machine
WO2022137416A1 (en) Electric motor
JPH09182372A (en) Main motor for railway car
JP6525313B2 (en) motor
WO2021033493A1 (en) Ring motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220920

R150 Certificate of patent or registration of utility model

Ref document number: 7145938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150