JPWO2019194246A1 - 複合繊維及びその製造方法 - Google Patents

複合繊維及びその製造方法 Download PDF

Info

Publication number
JPWO2019194246A1
JPWO2019194246A1 JP2020512300A JP2020512300A JPWO2019194246A1 JP WO2019194246 A1 JPWO2019194246 A1 JP WO2019194246A1 JP 2020512300 A JP2020512300 A JP 2020512300A JP 2020512300 A JP2020512300 A JP 2020512300A JP WO2019194246 A1 JPWO2019194246 A1 JP WO2019194246A1
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
fibroin
seq
rep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020512300A
Other languages
English (en)
Other versions
JP7483263B2 (ja
Inventor
弘放 ▲遅▼
弘放 ▲遅▼
オリバ− セイエッド シャファート
オリバ− セイエッド シャファート
▲郁▼▲群▼ ▲荘▼
▲郁▼▲群▼ ▲荘▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spiber Inc
Original Assignee
Spiber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber Inc filed Critical Spiber Inc
Publication of JPWO2019194246A1 publication Critical patent/JPWO2019194246A1/ja
Application granted granted Critical
Publication of JP7483263B2 publication Critical patent/JP7483263B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Multicomponent Fibers (AREA)

Abstract

本発明は、芯部と、該芯部を覆う最外層と、を備える複合繊維であって、前記芯部は改変フィブロインを含み、前記最外層は構造タンパク質を含む、複合繊維を提供する。

Description

本発明は、複合繊維及びその製造方法に関する。
フィブロインは、βプリーツシート構造を有する、繊維状のタンパク質の一種であり、グリシン残基、アラニン残基及びセリン残基を合計で最大90%含有する(非特許文献1)。フィブロインとしては、昆虫又はクモ類が産生する糸を構成するタンパク質(絹タンパク質、ホーネットシルクタンパク質、スパイダーシルクタンパク質)等が知られている。より改良されたフィブロインを得るために、様々なアミノ酸配列の改変が行われており、例えば、タフネス及び伸度を向上させ、工業生産に適した組換えスパイダーシルクタンパク質が報告されている(特許文献1)。
国際公開第2017/188434号 特公平2−6869号公報 特開平6−294068号公報
Asakuraら,Encyclopedia of Agricultural Science,Academic Press:New York,NY,1994年,Vol.4,pp.1−11.
しかしながら、ウール等の一部の動物由来の繊維は、水分との接触(例えば、水若しくは湯への浸漬、又は高湿度環境への暴露等)により収縮する特性を有する。この特性は、動物由来の繊維及びそれを使用した製品の製造工程中及び使用時において、様々な問題を発生させ得る。
そのため、動物由来の繊維の防縮方法が検討されている。防縮方法としては、例えば、精練を完了した強撚糸使用の絹織物を、緊張した状態で水その他の溶媒に浸漬して所定時間加温する方法(例えば、特許文献2)、所要形状に成形された動物繊維製品に高圧飽和水蒸気を接触させて、当該形状を固定する方法(例えば、特許文献3)等が報告されている。
そこで、本発明は、上記事情に鑑み、水分との接触による収縮を低減された動物由来の繊維及びその製造方法を提供することを目的とする。
本発明は、例えば、以下の各発明に関する。
[1]
芯部と、該芯部を覆う最外層と、を備える複合繊維であって、前記芯部は改変フィブロインを含み、前記最外層は構造タンパク質を含む、複合繊維。
[2]
上記芯部と上記最外層の複合比率が、上記複合繊維の質量を基準として9:1〜1:9である、[1]に記載の複合繊維。
[3]
上記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、コラーゲン、レシリン、エラスチン、及びケラチンからなる群より選ばれる少なくとも1種である、[1]又は[2]に記載の複合繊維。
[4]
上記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、及びケラチンからなる群より選ばれる少なくとも1種である、[1]〜[3]のいずれかに記載の複合繊維。
[4−1]
上記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロイン(第3の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当する、(A)モチーフの含有量が低減されたアミノ酸配列を有する、[1]〜[4]のいずれかに記載の複合繊維。
[式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[4−2]
上記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロイン(第4の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当する、グリシン残基の含有量が低減されたアミノ酸配列を有する、[1]〜[4]のいずれかに記載の複合繊維。
[式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[4−3]
上記改変フィブロインが、式1:[(A)モチーフ−REP]表されるドメイン配列を含む改変フィブロイン(第5の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有する、[1]〜[4]のいずれかに記載の複合繊維。
[式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[4−4]
上記改変フィブロインが、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含む改変フィブロイン(第6の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当する、グルタミン残基の含有量が低減されたアミノ酸配列を有する、[1]〜[4]のいずれかに記載の複合繊維。
[式1及び式2中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が80%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[4−5]
上記改変フィブロインが、26.0以上の限界酸素指数(LOI)値を有している、[1]〜[4]のいずれかに記載の複合繊維。
[4−6]
上記改変フィブロインが、0.025℃/g超の、下記式Aに従って求められる最高吸湿発熱度を有している、[1]〜[4]のいずれかに記載の複合繊維。
式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
[式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
[5]
芯部と、該芯部を覆う最外層と、を備える複合繊維の製造方法であって、
改変フィブロイン及び溶媒を含む第1ドープ液を調製する工程と、
構造タンパク質及び溶媒を含む第2ドープ液を調製する工程と、
紡糸口金から吐出した第1ドープ液を被覆するように、第2ドープ液を紡糸口金から吐出して接合させ、凝固液中で未延伸の複合繊維を形成させる工程と、を含む、方法。
[6]
上記未延伸の複合繊維を延伸する工程を更に含む、[5]に記載の方法。
[7]
上記第1ドープ液における改変フィブロインの濃度が、上記第1ドープ液の全質量を基準として、5〜40質量%であり、
上記第2ドープ液における構造タンパク質の濃度が、上記第2ドープ液の全質量を基準として、5〜40質量%である、[5]又は[6]に記載の方法。
[8]
上記溶媒が、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、N−メチル−2−ピロリドン、アセトニトリル、N−メチルモルホリン−N−オキシド、及びギ酸、並びに、尿素、グアニジン、ドデシル硫酸ナトリウム、臭化リチウム、塩化カルシウム及びチオシアン酸リチウムからなる群から選択される少なくとも一種を含む水溶液からなる群から選択される少なくとも一種を含む、[5]〜[7]のいずれかに記載の方法。
[9]
上記凝固液が、炭素数1〜5の低級アルコール、及びアセトンからなる群から選択される少なくとも一種である、[5]〜[8]のいずれかに記載の方法。
[10]
上記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、コラーゲン、レシリン、エラスチン、及びケラチンからなる群より選ばれる少なくとも1種である、[5]〜[9]のいずれかに記載の方法。
[11]
上記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、及びケラチンからなる群より選ばれる少なくとも1種である、[5]〜[10]のいずれかに記載の方法。
[12]
上記未延伸の複合繊維を水性媒体に接触させる工程をさらに含む、[5]〜[11]のいずれかに記載の方法。
[12−1]
上記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロイン(第3の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当する、(A)モチーフの含有量が低減されたアミノ酸配列を有する、[5]〜[12]のいずれかに記載の方法。
[式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[12−2]
上記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロイン(第4の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当する、グリシン残基の含有量が低減されたアミノ酸配列を有する、[5]〜[12]のいずれかに記載の方法。
[式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[12−3]
上記改変フィブロインが、式1:[(A)モチーフ−REP]表されるドメイン配列を含む改変フィブロイン(第5の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有する、[5]〜[12]のいずれかに記載の方法。
[式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[12−4]
上記改変フィブロインが、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含む改変フィブロイン(第6の改変フィブロイン)であって、
上記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当する、グルタミン残基の含有量が低減されたアミノ酸配列を有する、[5]〜[12]のいずれかに記載の方法。
[式1及び式2中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が80%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
[12−5]
上記改変フィブロインが、26.0以上の限界酸素指数(LOI)値を有している、[5]〜[12]のいずれかに記載の方法。
[12−6]
上記改変フィブロインが、0.025℃/g超の、下記式Aに従って求められる最高吸湿発熱度を有している、[5]〜[12]のいずれかに記載の方法。
式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
[式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
[13]
[1]〜[4]及び[4−1]〜[4−6]のいずれかに記載の複合繊維を含み、
繊維、糸、布帛、編物、組み物、不織布、紙、及び綿からなる群から選択される、製品。
[14]
芯部と、該芯部を覆う最外層と、を備える複合繊維であって、芯部及び最外層のいずれか一方が改変フィブロインである、複合繊維。
本発明によれば、改変フィブロインの収縮率を低減させた複合繊維を提供することができる。また、本発明によれば、複合繊維中に改変フィブロインが含有されることにより、高い応力を示す。
改変フィブロインのドメイン配列を示す模式図である。 天然由来のフィブロインのz/w(%)の値の分布を示す図である。 天然由来のフィブロインのx/y(%)の値の分布を示す図である。 一実施形態に係る改変フィブロインのドメイン配列を示す模式図である。 一実施形態に係る改変フィブロインのドメイン配列を示す模式図である。 複合繊維を製造するための紡糸装置の一例を概略的に示す説明図である。 本発明の一実施形態に係る複合繊維の模式図である。 吸湿発熱性試験の結果の一例を示すグラフである。
以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
本発明の第一実施形態に係る複合繊維は、芯部と、該芯部を覆う最外層と、を備えており、芯部は改変フィブロインを含み、最外層は構造タンパク質で構成される。本実施形態に係る複合繊維は、芯部と最外層からなる二層構造を有するものであり、芯鞘構造とも呼ばれる。複合繊維の断面形状において、芯部と最外層が同心円状に配置されていてもよく、芯部の中心線が複合繊維の中心線と重ならなくてもよい。芯部は、繊維の端部(繊維を切断した場合は切断面も含む)を除いて、中間層又は最外層により完全に覆われており、表面に露出していない。改変フィブロインの疎水性度と構造タンパク質の疎水性度は、互いに異なっている。
本実施形態に係る複合繊維の芯部は、改変フィブロインを含む。芯部に含まれる改変フィブロインは、後述する水性媒体と接触させることにより収縮する性質を有する(以下、「水収縮性」ともいう。)。
(改変フィブロイン)
改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。なお、本実施形態において、改変フィブロインが改変クモ糸フィブロインであると、保温性、吸湿発熱性及び/又は難燃性がより優れるものとなる。
本明細書において「改変フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインとアミノ酸配列と同一であるフィブロインであってもよい。本明細書でいう「天然由来のフィブロイン」もまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。
「改変フィブロイン」は、本発明で特定されるアミノ酸配列を有するものであれば、天然由来のフィブロインのアミノ酸配列をそのまま利用したものであってもよく、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。なお、本実施形態において、改変フィブロインが改変クモ糸フィブロインであると、複合繊維は、保温性、吸湿発熱性及び/又は難燃性により優れるものとなる。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)モチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)モチーフ−REP]で表されるアミノ酸配列を意味する。ここで、(A)モチーフは、アラニン残基を主とするアミノ酸配列を示し、nは2〜20、好ましくは4〜20、より好ましくは8〜20、更に好ましくは10〜20、更により好ましくは4〜16、更によりまた好ましくは8〜16、特に好ましくは10〜16の整数であってよい。また、(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましく、90%以上であることが更により好ましく、100%(アラニン残基のみで構成されることを意味する。)であってもよい。REPは2〜200アミノ酸残基から構成されるアミノ酸配列を示し、10〜40、10〜60、10〜80、10〜100、10〜120、10〜140、10〜160、又は10〜180アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2〜300の整数を示し、8〜300、10〜300、20〜300、40〜300、60〜300、80〜300、10〜200、20〜200、20〜180、20〜160、20〜140又は20〜120の整数であってもよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。大吐糸管しおり糸由来のタンパク質の具体例としては、配列番号13で示されるアミノ酸配列(PRT410)を含むタンパク質を挙げることができる。
改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
天然由来のフィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質であり、具体的には、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、スズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、AAA27840.1(アミノ酸配列))が挙げられる。
クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)等が挙げられる。
クモ類が産生するフィブロインのより具体的な例としては、例えば、fibroin−3(adf−3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin−4(adf−4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin−like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。
改変フィブロインは、改変絹フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)であってもよく、改変クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)であってもよい。改変フィブロインとしては、改変クモ糸フィブロインが好ましい。
改変フィブロインの具体的な例として、クモの大瓶状線で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減された改変フィブロイン(第2の改変フィブロイン)、(A)モチーフの含有量が低減された改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)モチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)が挙げられる。これらの改変フィブロインは、難燃性、吸湿発熱性、保温性に優れており、防火服(例えば、消防服、レスキュー用)、防火手袋(例えば、実験室用、工業用、調理用)、手袋、マフラー、セーター、アウター及びジャケット等の防寒着(防寒衣料)、防寒衣料の中綿、インナーウェア、スポーツウェア、シャツ、寝具、並びに寝具の中綿等に使用するのにも適している。
第1の改変フィブロインとしては、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインにおいて、(A)モチーフのアミノ酸残基数は、3〜20の整数が好ましく、4〜20の整数がより好ましく、8〜20の整数が更に好ましく、10〜20の整数が更により好ましく、4〜16の整数が更によりまた好ましく、8〜16の整数が特に好ましく、10〜16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10〜200残基であることが好ましく、10〜150残基であることがより好ましく、20〜100残基であることが更に好ましく、20〜75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1〜3のいずれかに示されるアミノ酸配列又は配列番号1〜3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1−i)配列番号4(recombinant spider silk protein ADF3KaiLargeNRSH1)で示されるアミノ酸配列、又は(1−ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1〜13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1−i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)モチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
ここで、天然由来のフィブロインにおけるz/wについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、フィブロイン中のGGXからなるアミノ酸配列の含有割合が6%以下である天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、z/wを算出した。その結果を図2に示す。図2の横軸はz/w(%)を示し、縦軸は頻度を示す。図2から明らかなとおり、天然由来のフィブロインにおけるz/wは、いずれも50.9%未満である(最も高いもので、50.86%)。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、フェニルアラニン(F)残基、ロイシン(L)残基、イソロイシン(I)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2−i)配列番号6(Met−PRT380)、配列番号7(Met−PRT410)、配列番号8(Met−PRT525)若しくは配列番号9(Met−PRT799)で示されるアミノ酸配列、又は(2−ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2−i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met−PRT313)で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ−REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)モチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、C末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端にHinge及びHisタグが付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8〜11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.8%である。
(2−i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2−ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2−ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン−S−トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む改変フィブロインのより具体的な例として、(2−iii)配列番号12(PRT380)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(2−iv)配列番号12、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16(PRT313)、配列番号12、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2−iii)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2−iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2−iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のフィブロインから(A)モチーフを10〜40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1〜3つの(A)モチーフ毎に1つの(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)モチーフの欠失、及び1つの(A)モチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)モチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)モチーフ−第1のREP(50アミノ酸残基)−(A)モチーフ−第2のREP(100アミノ酸残基)−(A)モチーフ−第3のREP(10アミノ酸残基)−(A)モチーフ−第4のREP(20アミノ酸残基)−(A)モチーフ−第5のREP(30アミノ酸残基)−(A)モチーフという配列を有する。
隣合う2つの[(A)モチーフ−REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)モチーフ−REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣合う2つの[(A)モチーフ−REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8〜11.3となる[(A)モチーフ−REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)モチーフ−REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣合う2つの[(A)モチーフ−REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)モチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9〜11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8〜3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9〜8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9〜4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)モチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
ここで、天然由来のフィブロインにおけるx/yについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)モチーフ−REP]で表されるドメイン配列で構成される天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、x/yを算出した。ギザ比率が1:1.9〜4.1の場合の結果を図3に示す。
図3の横軸はx/y(%)を示し、縦軸は頻度を示す。図3から明らかなとおり、天然由来のフィブロインにおけるx/yは、いずれも64.2%未満である(最も高いもので、64.14%)。
第3の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3−i)配列番号17(Met−PRT399)、配列番号7(Met−PRT410)、配列番号8(Met−PRT525)若しくは配列番号9(Met−PRT799)で示されるアミノ酸配列、又は(3−ii)配列番号17、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3−i)の改変フィブロインについて説明する。配列番号17で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met−PRT313)で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)モチーフを欠失させ、更にC末端配列の手前に[(A)モチーフ−REP]を1つ挿入したものである。配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列は、第2の改変フィブロインで説明したとおりである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8〜11.3におけるx/yの値は15.0%である。配列番号17で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.8%である。配列番号10、配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3−i)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3−ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3−ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3(ギザ比率が1:1.8〜11.3)となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(3−iii)配列番号18(PRT399)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(3−iv)配列番号18、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号18、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3−iii)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3−iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3−iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる隣合う2つの[(A)モチーフ−REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第4の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)モチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、上述した第2の改変フィブロインと、第3の改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4−i)配列番号7(Met−PRT410)、配列番号8(Met−PRT525)、配列番号9(Met−PRT799)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(4−ii)配列番号7、配列番号8、配列番号9、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
最外層を構成する構造タンパク質は、合成繊維であってもよく、改変フィブロインであってもよい。
合成繊維は、一般的に水に濡れにくく、吸水性及び吸湿性に乏しい性質を有している。合成繊維としては、例えば、ポリエチレンテレフタレート等のポリエステル、ポリカプロアミド(ナイロン6)、ナイロン66等のポリアミド、ポリアクリル、ポリビニルホルマール(ビニロン)が挙げられる。合成繊維は、一般的に、水性媒体と接触させても収縮しにくい性質を有する。
最外層を構成する成分は、化学繊維であってもよい。化学繊維としては、天然高分子(天然繊維)、半合成高分子(半合成繊維)、及び合成高分子(合成繊維)が挙げられる。天然高分子(天然繊維)としては、例えば、レーヨン、キュプラ、ポリノジック及びリヨセル等のセルロース再生繊維が挙げられる。
半合成高分子(半合成繊維)としては、例えば、アセテート(ジアセテート)及びトリアセテート等のアセテート繊維、プロミックス等が挙げられる。
合成高分子(合成繊維)としては、例えば、上述のポリエチレンテレフタレート等のポリエステル、ポリカプロアミド(ナイロン6)、ナイロン66等のポリアミド、ポリアクリル、ポリビニルホルマール(ビニロン)、及びポリウレタン(スパンデックス)等が挙げられる。
最外層を構成する成分としてセルロース再生繊維、アセテート繊維、プロミックス、ポリアクリル、ポリビニルホルマール、又はポリウレタン等を用いる場合は、公知の溶媒(溶液)に溶解させて紡糸液(ドープ液)とし、紡糸口金から吐出して第1成分(改変フィブロイン)を芯部、第2成分(化学繊維)を鞘部として凝固液中で固めることにより、芯鞘型複合繊維とすることができる。
最外層を構成する成分としてポリエステル、又はポリアミドを用いる場合は、これらの原料を溶融させて液体とし、紡糸口金から吐出して第1成分(改変フィブロイン)を芯部、第2成分(化学繊維)を鞘部として固めることにより、芯鞘型複合繊維とすることができる。
最外層を構成する成分は、改変フィブロインであってもよい。改変フィブロインが最外層を構成することで、難燃性、吸湿発熱性、及び保温性に優れた芯鞘型複合繊維を得られうる。
本明細書において、「疎水性改変フィブロイン」とは、吸水性又は吸湿性に乏しい改変フィブロイン繊維を意味し、例えば、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)を利用して判断してもよい。疎水性指標が高いことにより、繊維自体の疎水性度が高まり、水性媒体と接触させても収縮率が低減され得る。
構造タンパク質は、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよい。あるいは、構造タンパク質は、天然由来の構造タンパク質を精製したものであってもよい。
構造タンパク質は、例えば、構造タンパク質及び当該構造タンパク質に由来する人造構造タンパク質であってもよい。構造タンパク質とは、生体内で構造及び形態等を形成又は保持する構造タンパク質を意味する。すなわち、構造タンパク質は、天然由来の構造タンパク質であってよく、天然由来の構造タンパク質のアミノ酸配列に依拠してそのアミノ酸配列の一部(例えば、当該アミノ酸配列の10%以下)を改変した改変タンパク質であってもよい。構造タンパク質としては、例えば、フィブロイン、ケラチン、コラーゲン、エラスチン及びレシリン等を挙げることができる。
フィブロインは、例えば、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上であってよい。特に、構造タンパク質は、絹フィブロイン、クモ糸フィブロイン又はこれらの組み合わせであってもよい。絹フィブロインとクモ糸フィブロインとを併用する場合、絹フィブロインの割合は、例えば、クモ糸フィブロイン100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってよい。
絹糸は、カイコガ(Bombyx mori)の幼虫である蚕の作る繭から得られる繊維(繭糸)である。一般に、1本の繭糸は、2本の絹フィブロインと、これらを外側から覆うニカワ質(セリシン)とから構成される。絹フィブロインは、多数のフィブリルで構成される。絹フィブロインは、4層のセリシンで覆われる。実用的には、精練により外側のセリシンを溶解して取り除いて得られる絹フィラメントが、衣料用途に使用されている。一般的な絹糸は、1.33の比重、平均3.3decitexの繊度、及び1300〜1500m程度の繊維長を有する。絹フィブロインは、天然若しくは家蚕の繭、又は中古若しくは廃棄のシルク生地を原料として得られる。
絹フィブロインとしては、セリシン除去絹フィブロイン、セリシン未除去絹フィブロイン、又はこれらの組み合わせであってもよい。セリシン除去絹フィブロインは、絹フィブロインを覆うセリシン、及びその他の脂肪分などを除去して精製したものである。このようにして精製した絹フィブロインは、好ましくは、凍結乾燥粉末として用いられる。セリシン未除去絹フィブロインは、セリシンなどが除去されていない未精製の絹フィブロインである。
クモ糸フィブロインは、天然クモ糸構造タンパク質、及び天然クモ糸構造タンパク質に由来するポリペプチド(人造クモ糸構造タンパク質)からなる群より選ばれるクモ糸ポリペプチドを含有していてもよい。
天然クモ糸構造タンパク質としては、例えば、大吐糸管しおり糸構造タンパク質、横糸タンパク質、及び小瓶状腺構造タンパク質が挙げられる。大吐糸管しおり糸は、結晶領域と非晶領域(無定形領域とも言う。)からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つ。クモ糸の横糸は、結晶領域を持たず、非晶領域からなる繰り返し領域を持つという特徴を有する。横糸は、大吐糸管しおり糸に比べると応力は劣るが、高い伸縮性を持つ。
大吐糸管しおり糸構造タンパク質は、クモの大瓶状腺で産生され、強靭性に優れるという特徴を有する。大吐糸管しおり糸構造タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びに二ワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。天然クモ糸構造タンパク質に由来するポリペプチドは、これらのしおり糸構造タンパク質に由来するポリペプチドであってもよい。ADF3に由来するポリペプチドは、比較的合成し易く、また、強伸度及びタフネスの点で優れた特性を有する。
横糸構造タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される。横糸構造タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹構造タンパク質(flagelliform silk protein)が挙げられる。
天然クモ糸構造タンパク質に由来するポリペプチドは、組換えクモ糸構造タンパク質であってよい。組換えクモ糸構造タンパク質としては、天然型クモ糸構造タンパク質の変異体、類似体又は誘導体等が挙げられる。このようなポリペプチドの好適な一例は、大吐糸管しおり糸タンパク質の組換えクモ糸構造タンパク質(「大吐糸管しおり糸構造タンパク質に由来するポリペプチド」ともいう。)である。
フィブロイン様構造タンパク質である大吐糸管しおり糸由来の構造タンパク質及びカイコシルク由来の構造タンパク質としては、例えば、式1:[(A)モチーフ−REP1]で表されるドメイン配列を含むタンパク質が挙げられる。ここで、式1中、(A)モチーフの、Aはアラニン残基を示し、nは2〜27の整数が好ましく、4〜20、8〜20、10〜20、4〜16、8〜16、10〜16の整数であって良く、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数は40%以上であれば良く、60%以上、70%以上、80%以上、90%以上、100%(アラニン残基のみで構成されることを意味する)であってもよい。REP1は10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは10〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREP1は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
上記において、式1中の(A)モチーフを欠失させることにより、強度と伸度を維持したまま、工業的生産性を向上させた構造タンパク質でもよい。欠失させる頻度としては、例えば、N末端側からC末端側に向かって、隣合う2つの[(A)モチーフ−REP1]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8〜11.3となる上記隣合う2つの[(A)モチーフ−REP1]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、上記ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが50%以上となる構造タンパク質があげられる。
また、式1中のREPにおいて、少なくともREP中の1又は複数のグリシン残基を別のアミノ酸残基に置換したことに相当する、グリシン残基の含有量が低減されたアミノ酸配列を有する構造タンパク質でもよい。このような構造タンパク質として、グリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上である構造タンパク質があげられる。
大吐糸管しおり糸由来の構造タンパク質の具体例としては、配列番号13及び配列番号15で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。
横糸構造タンパク質に由来する構造タンパク質としては、例えば、式2:[REP2]で表されるドメイン配列を含む構造タンパク質(ここで、式2中、REP2はGly−Pro−Gly−Gly−Xから構成されるアミノ酸配列を示し、Xはアラニン(Ala)、セリン(Ser)、チロシン(Tyr)及びバリン(Val)からなる群から選ばれる一つのアミノ酸を示す。oは8〜300の整数を示す。)を挙げることができる。具体的には配列番号13で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号41で示されるアミノ酸配列(PRT215)は、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹構造タンパク質の部分的な配列(NCBIアクセッション番号:AAF36090、GI:7106224)のリピート部分及びモチーフに該当するN末端から1220残基目から1659残基目までのアミノ酸配列(PR1配列と記す。)と、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹構造タンパク質の部分配列(NCBIアクセッション番号:AAC38847、GI:2833649)のC末端から816残基目から907残基目までのC末端アミノ酸配列を結合し、結合した配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
コラーゲン由来の構造タンパク質として、例えば、式3:[REP3]で表されるドメイン配列を含む構造タンパク質(ここで、式3中、pは5〜300の整数を示す。REP3は、Gly−X−Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP3は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号42で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号42で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
レシリン由来の構造タンパク質として、例えば、式4:[REP4]で表されるドメイン配列を含む構造タンパク質(ここで、式4中、qは4〜300の整数を示す。REP4はSer−J−J−Tyr−Gly−U−Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号43で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号43で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のThrをSerに置換し、かつ95残基目のAsnをAspに置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
エラスチン由来の構造タンパク質として、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有する構造タンパク質を挙げることができる。具体的には、配列番号44で示されるアミノ酸配列を含む構造タンパク質を挙げることができる。配列番号44で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
ケラチン由来の構造タンパク質として、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。具体的には、配列番号45(PRT798)で示されるアミノ酸配列(NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列)を含む構造タンパク質を挙げることができる。配列番号45で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列のN末端に、配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
構造タンパク質又はそれに由来する構造タンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。構造タンパク質を2種以上組み合わせることで、全体としての疎水性度を所望の値に調節してもよい。
合成繊維は、一般的に水に濡れにくく、吸水性及び吸湿性に乏しい性質を有しており、疎水性繊維として知られている。化学繊維としては、例えば、ポリエチレンテレフタレート等のポリエステル、ポリカプロアミド(ナイロン6)、ナイロン66等のポリアミド、ポリアクリル、ポリビニルホルマール(ビニロン)が挙げられる。ナイロン6(公定水分率:4.5)、ポリエステル(公定水分率:0.4)は疎水性繊維に分類される。疎水性繊維は、例えば、その公定水分率が7%以下である繊維である。
改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインとアミノ酸配列と同一であるフィブロインであってもよい。最外層に使用される改変フィブロインは、例えば、天然由来のフィブロインに疎水性を付与するように人為的にドメイン配列を改変したものであってもよい。
最外層に使用される改変フィブロインの具体的な例として、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、又はグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。各アミノ酸の疎水性指標については、後述する。
第5の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
局所的に疎水性指標の大きい領域は、連続する2〜4アミノ酸残基で構成されていることが好ましい。上述の「疎水性指標の大きい領域」とは、連続する2〜4アミノ酸残基の疎水性指標の合計または平均値が、対応する天然由来のフィブロインにおける同位置のアミノ酸残基の疎水性指標の合計または平均値よりも大きい領域である。
「疎水性指標の大きいアミノ酸残基」とは、対応する天然由来のフィブロインにおける同位置のアミノ酸残基よりも大きな疎水性指標を有するアミノ酸残基である。上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)モチーフ−REP]で表されるドメイン配列を含み、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105−132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
Figure 2019194246
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)モチーフ−REP]で表されるドメイン配列から、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1〜4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4−1=7。「−1」は重複分の控除である。)。例えば、図4に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図4に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)モチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図4の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインのより具体的な例として、(5−i)配列番号19(Met−PRT720)、配列番号20(Met−PRT665)若しくは配列番号21(Met−PRT666)で示されるアミノ酸配列、又は(5−ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5−i)の改変フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、配列番号7(Met−PRT410)で示されるアミノ酸配列に対し、C末端側の端末を除いて、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、さらに一部のグルタミン残基(G)をセリン残基(S)に置換し、かつC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号8(Met−PRT525)で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5−i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5−ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5−ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(5−iii)配列番号22(PRT720)、配列番号23(PRT665)若しくは配列番号24(PRT666)で示されるアミノ酸配列、又は(5−iv)配列番号22、配列番号23若しくは配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号22、配列番号23及び配列番号24で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5−iii)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列からなるものであってもよい。
(5−iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]で表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5−iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第6の改変フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図5は、改変フィブロインのドメイン配列を示す模式図である。図5を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図5に示した改変フィブロインのドメイン配列(「[(A)モチーフ−REP]−(A)モチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)モチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図5の改変フィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、−0.8以上であることが好ましく、−0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)モチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)モチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6−i)配列番号25(Met−PRT888)、配列番号26(Met−PRT965)、配列番号27(Met−PRT889)、配列番号28(Met−PRT916)、配列番号29(Met−PRT918)、配列番号30(Met−PRT699)、配列番号31(Met−PRT698)、配列番号32(Met−PRT1009)若しくは配列番号46(Met−PRT966)で示されるアミノ酸配列を含む改変フィブロイン、又は(6−ii)配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32若しくは配列番号46で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
(6−i)の改変フィブロインについて説明する。配列番号25で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met−PRT410)中のQQを全てVLに置換したものである。配列番号26で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。配列番号27で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。配列番号28で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。配列番号29で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列(Met−PRT525)中のQQを全てVLに置換したものである。配列番号31で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号32で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met−PRT410)中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31及び配列番号32で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。
Figure 2019194246
(6−i)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32又は配列番号46で示されるアミノ酸配列からなるものであってもよい。
(6−ii)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32又は配列番号46で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6−ii)の改変フィブロインもまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6−ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6−ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む改変フィブロインのより具体的な例として、(6−iii)配列番号33(PRT888)、配列番号34(PRT965)、配列番号35(PRT889)、配列番号36(PRT916)、配列番号37(PRT918)、配列番号38(PRT699)、配列番号39(PRT698)、配列番号40(PRT1009)若しくは配列番号47(PRT966)で示されるアミノ酸配列を含む改変フィブロイン、又は(6−iv)配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40若しくは配列番号47で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40及び配列番号47で示されるアミノ酸配列は、それぞれ配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31、配列番号32及び配列番号46で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40及び配列番号47で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
Figure 2019194246
(6−iii)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40又は配列番号47で示されるアミノ酸配列からなるものであってもよい。
(6−iv)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40又は配列番号47で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6−iv)の改変フィブロインもまた、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6−iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6−iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変(人造)フィブロイン繊維の限界酸素指数(LOI)値は、18以上であってよく、20以上であってもよく、22以上であってもよく、24以上であってもよく、26以上であってもよく、28以上であってもよく、29以上であってもよく、30以上であってもよい。上記のLOI値は、「消防庁危険物規制課長 消防危50号(平成7年5月31日付け)」に記載の「粉粒状又は融点の低い合成樹脂の試験方法」に準拠して測定される値である。
改変(人造)フィブロイン繊維の、下記式Aに従って求められる最高吸湿発熱度は、0.025℃/g超であってよく、0.026℃/g以上であってもよく、0.027℃/g以上であってもよく、0.028℃/g以上であってもよく、0.029℃/g以上であってもよく、0.030℃/g以上であってもよく、0.035℃/g以上であってもよく、0.040℃/g以上であってもよい。最高吸湿発熱度の上限に特に制限はないが、通常、0.060℃/g以下である。
式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
[式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
改変フィブロイン繊維の保温性指数は、0.22以上であってよく、0.24以上であってよく、0.26以上であってよく、0.28以上であってよく、0.30以上であってよく、0.32以上であってよい。保温性指数の上限に特に制限はないが、例えば、0.60以下、又は0.40以下であってよい。
改変フィブロイン繊維は、優れた保温性を有することが好ましく、下記式Cに従って求められる保温性指数が0.20以上であってよい。
式C: 保温性指数=保温率(%)/試料の目付け(g/m
また、本実施形態に係る複合繊維は、複数の芯部を備えていてもよい。このような複合繊維は、一般的に海島構造とも呼ばれ、島部が上述の芯部に対応し、海部が上述の最外層と同じ特徴を備える。
本発明の第二実施形態は、芯部と、該芯部を覆う最外層と、芯部と最外層の間に1つ又は複数の中間層と、を備えており、芯部及び中間層の少なくとも一方は改変フィブロインを含み、最外層は構造タンパク質から構成される。
本実施形態に係る複合繊維では、芯部及び中間層の少なくとも一方が水収縮性を有している。また、芯部と中間層の両方が水収縮性を有していてもよい。芯部及び中間層のいずれか一方のみが水収縮性を有する場合には、他方を構成する材料は限定されない。本実施形態に係る複合繊維には、例えば、芯部と最外層が個々に構造タンパク質で構成され、中間層が水収縮性を有する複合繊維も包含される。
本発明の各実施形態に係る複合繊維の一例を図7に示す。図7(a)は、芯部51と最外層52(鞘部)が同心円状に配置された複合繊維50を示す模式図である。図7(a)において、芯部51の中心線は、複合繊維の中心線と重なるように配置される。図7(b)は、芯部51と最外層52(鞘部)が非同心円状に配置された複合繊維50を示す模式図である。図7(b)において、芯部51の中心線は、複合繊維の中心線と重ならず、芯部51を被覆する最外層52の厚さは一定ではない。図7(c)は、複数の芯部51と、最外層52(鞘部)とを備える複合繊維50を示す模式図である。図7(d)は、芯部51と最外層52の間に中間層53を備える三層構造の複合繊維50を示す模式図である。
芯部に含まれる改変フィブロインの疎水性度と最外層に含まれる構造タンパク質の疎水性度は、互いに異なっている。改変フィブロイン又は構造タンパク質の疎水性度は、それぞれを構成する各アミノ酸残基(但し、タグ配列及びヒンジ配列に相当するアミノ酸残基は除く。)の各HIの合計を算出し、それをアミノ酸残基数で除した値である。芯部に含まれる改変フィブロインの疎水性度は、例えば、−0.8以下であることが好ましく、−0.55以下であることがより好ましい。また、最外層(又は中間層)に含まれる構造タンパク質の疎水性度は、例えば、−0.8超であり、−0.55超であることがより好ましい。
芯部が複数の改変フィブロインを含む場合、芯部の疎水性度は、芯部中に含まれる各改変フィブロインの各疎水性度を算出し、各成分の割合に応じた平均値として算出してもよい。例えば、各改変フィブロインの疎水性度に、その改変フィブロインの芯部における含有率をかけて得られる数値を合計し、改変フィブロインの数で除した値を用いてもよい。
最外層(又は中間層)が複数の構造タンパク質を含む場合、最外層(又は中間層)の疎水性度は、最外層(又は中間層)中に含まれる各構造タンパク質の各疎水性度を算出し、各成分の割合に応じた平均値として算出してもよい。例えば、各構造タンパク質の疎水性度に、その構造タンパク質の芯部における含有率をかけて得られる数値を合計し、構造タンパク質の数で除した値を用いてもよい。
また、上述のように、芯部が複数の改変フィブロインを含有する場合、又は最外層(又は中間層)が複数の構造タンパク質を含有する場合において、含有率が小さい(例えば、含有率が10%以下)改変フィブロイン又は構造タンパク質は、当該成分全体の疎水性度への寄与が十分に小さいため、その改変フィブロイン又は構造タンパク質の疎水性度を考慮せずに、各成分の疎水性度を算出してもよい。例えば、絹糸は約75%の絹フィブロインと約25%のセリシン(UniProtデータベース、Entry No.P07856)から構成される。絹フィブロインは、フィブロインH鎖(UniProtデータベース、Entry No.P05790)、フィブロインL鎖(UniProtデータベース、Entry No.P21828)、及びフィブロヘキサメリン(UniProtデータベース、Entry No.P04148)から構成されており、量的にフィブロインH鎖が大部分を占めている。天然の構造タンパク質として、セリシンを除去した家蚕の絹フィブロインを使用する場合、当該絹フィブロインの疎水性度は、主要成分であるフィブロインH鎖の各アミノ酸残基の各HIの合計を算出し、それをアミノ酸残基数で除した値である、疎水性度0.216としてもよい。
配列番号13、配列番号14、配列番号15、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39、配列番号40及び配列番号47で示されるアミノ酸配列の疎水性度は表4に示すとおりである。各アミノ酸配列の疎水性度を算出するにあたり、改変フィブロインと無関係な配列(すなわち、配列番号11で示されるアミノ酸配列に相当する配列)を除いて算出した。
Figure 2019194246
配列番号42、配列番号43、配列番号44、及び配列番号45で示されるアミノ酸配列の疎水性度は表5に示すとおりである。各アミノ酸配列の疎水性度を算出するにあたり、構造タンパク質と無関係な配列(すなわち、配列番号11で示されるアミノ酸配列に相当する配列)を除いて算出した。
Figure 2019194246
<改変フィブロインの製造方法>
改変フィブロインは、例えば、当該改変フィブロインをコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
改変フィブロインをコードする核酸の製造方法は、特に制限されない。例えば、天然のフィブロインをコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングし、遺伝子工学的手法により改変する方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手したフィブロインのアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、改変フィブロインの精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなる改変フィブロインをコードする核酸を合成してもよい。
調節配列は、宿主における改変フィブロインの発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、改変フィブロインを発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、改変フィブロインをコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
原核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002−238569号公報)等を挙げることができる。
真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
真核生物を宿主とする場合、改変フィブロインをコードする核酸を導入するベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
改変フィブロインは、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該改変フィブロインを生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15〜40℃である。培養時間は、通常16時間〜7日間である。培養中の培養培地のpHは3.0〜9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル−β−D−チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
発現させた改変フィブロインの単離、精製は通常用いられている方法で行うことができる。例えば、当該改変フィブロインが、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、改変フィブロインの単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)−セファロース、DIAION HPA−75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S−Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
また、改変フィブロインが細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分として改変フィブロインの不溶体を回収する。回収した改変フィブロインの不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法により改変フィブロインの精製標品を得ることができる。当該改変フィブロインが細胞外に分泌された場合には、培養上清から当該改変フィブロインを回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
<ドープ液>
第1ドープ液は、改変フィブロイン及び溶媒を含む。第2ドープ液は、構造タンパク質と溶媒を含む。
第1ドープ液における改変フィブロインの濃度は、特に限定されず、所望の複合繊維の捲縮性及び繊維径、最外層(又は中間層)に含まれる構造タンパク質との組み合わせ等の要因に応じて、適宜設定することができる。例えば、改変フィブロインの濃度は、第1ドープ液の全質量に基づき(第1ドープ液の全質量を100質量%としたとき)、5〜40質量%であることが好ましく、7〜40質量%であることがより好ましく、10〜40質量%であることがより好ましく、7〜35質量%であることがより好ましく、10〜35質量%であることがより好ましく、12〜35質量%であることがより好ましく、15〜35質量%であることがより好ましく、15〜30質量%であることがさらに好ましく、20〜35質量%であることがさらに好ましく、20〜30質量%であることがさらに好ましい。改変フィブロインの濃度が5質量%以上であると、複合繊維の生産性がより向上する傾向がある。改変フィブロインの濃度が40質量%以下であると、紡糸口金からドープ液をより一層安定的に吐出させることができ、生産性がより向上する傾向がある。
第2ドープ液における構造タンパク質の濃度は、特に限定されず、所望の複合繊維の捲縮性及び繊維径、芯部に含まれる構造タンパク質との組み合わせ等の要因に応じて、適宜設定することができる。例えば、改変フィブロインの濃度は、第2ドープ液の全質量に基づき(第2ドープ液の全質量を100質量%としたとき)、5〜40質量%であることが好ましく、7〜40質量%であることがより好ましく、10〜40質量%であることがより好ましく、7〜35質量%であることがより好ましく、10〜35質量%であることがより好ましく、12〜35質量%であることがより好ましく、15〜35質量%であることがより好ましく、15〜30質量%であることがさらに好ましく、20〜35質量%であることがさらに好ましく、20〜30質量%であることがさらに好ましい。改変フィブロインの濃度が5質量%以上であると、複合繊維の生産性がより向上する傾向がある。改変フィブロインの濃度が40質量%以下であると、紡糸口金からドープ液をより一層安定的に吐出させることができ、生産性がより向上する傾向がある。
第1ドープ液の溶媒は、改変フィブロインを溶解し得るものであればよい。また、第2ドープ液の溶媒は、構造タンパク質を溶解し得るものであればよい。このような溶媒としては、ヘキサフルオロイソプロパノール(HFIP)、ヘキサフルオロアセトン(HFA)、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)、1,3−ジメチル−2−イミダゾリドン(DMI)、N−メチル−2−ピロリドン(NMP)、アセトニトリル、N−メチルモルホリン−N−オキシド(NMO)、ギ酸等が挙げられる。また、溶媒は水溶液であってもよく、具体的には、尿素、グアニジン、ドデシル硫酸ナトリウム(SDS)、臭化リチウム、塩化カルシウム及びチオシアン酸リチウムからなる群から選択される少なくとも一種を含む水溶液が挙げられる。これらの溶媒は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
ドープ液の調製方法は、当業者に周知の方法でよく、改変フィブロイン又は構造タンパク質と、溶媒とを任意の順序で混合してもよい。
第1ドープ液及び第2ドープ液には、必要に応じて無機塩を添加してもよい。無機塩は、改変フィブロインの溶解促進剤として機能し得る。無機塩としては、例えば、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ土類金属硝酸塩等が挙げられる。無機塩の具体例としては、炭酸リチウム、塩化リチウム、塩化カルシウム、硝酸カルシウム、臭化リチウム、臭化バリウム、臭化カルシウム、塩素酸バリウム、過塩素酸ナトリウム、過塩素酸リチウム、過塩素酸バリウム、過塩素酸カルシウム、過塩素酸マグネシウムが挙げられる。
ドープ液の粘度は、複合繊維の用途や紡糸方法に応じて、適宜設定できる。ドープ液の粘度は、例えば、20℃において、5000〜40000mPa・secであってよく、7000〜40000mPa・sec、10000〜40000mPa・sec、7000〜35000mPa・sec、10000〜35000mPa・sec、10000〜30000mPa・sec、又は10000〜25000mPa・secであってよい。ドープ液の粘度は、例えば京都電子工業社製の商品名“EMS粘度計”を使用して測定することができる。
ドープ液は、溶解を促進するために、ある程度の時間撹拌又は振とうしてもよい。その際、改変フィブロイン又は構造タンパク質が溶媒に溶解する温度まで加熱してもよい。ドープ液は、例えば、30℃以上、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、又は、90℃以上に加熱してもよい。加熱温度の上限は、例えば、溶媒の沸点以下である。
<紡糸>
複合繊維は、公知の紡糸方法によって製造することができる。例えば、複合繊維は、第1ドープ液及び第2ドープ液を用いて、乾式紡糸、溶融紡糸、湿式紡糸、乾湿式紡糸等の公知の紡糸方法により紡糸することにより得ることができる。好ましい紡糸方法としては、湿式紡糸、又は乾温式紡糸を挙げることができる。
湿式紡糸又は乾湿式紡糸では、第1ドープ液と第2ドープ液を紡糸口金(ノズル)から吐出して接合させ、凝固液中で改変フィブロインを固めることにより、未延伸糸の状態で複合繊維を得ることができる。
図6は、複合繊維を製造するための紡糸装置の一例を概略的に示す説明図である。図6に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、未延伸糸製造装置2と、湿熱延伸装置3と、乾燥装置4とを有している。
紡糸装置10を使用した紡糸方法を説明する。まず、貯槽7に貯蔵されたドープ液6が、ギアポンプ8により口金9から押し出される。ラボスケールにおいては、ドープ液をシリンダーに充填し、シリンジポンプを用いてノズルから押し出してもよい。次いで、押し出されたドープ液6は、エアギャップ19を経て、凝固液槽20の凝固液11内に供給され、溶媒が除去されて、タンパク質が凝固し、繊維状凝固体が形成される。次いで、繊維状凝固体が、延伸浴槽21内の温水12中に供給されて、延伸される。延伸倍率は供給ニップローラ13と引き取りニップローラ14との速度比によって決まる。その後、延伸された繊維状凝固体が、乾燥装置4に供給され、糸道22内で乾燥されて、複合繊維36が、巻糸体5として得られる。18a〜18gは糸ガイドである。
複合繊維製造用の紡糸口金(ノズル)としては、例えば、芯鞘構造の複合繊維製造用のノズル、海島構造の複合繊維製造用のノズル等が知られている。芯鞘構造の複合繊維製造用のノズルでは、ノズルの中央部に、第1ドープ液(複合繊維の芯部に対応する)を押し出す第1の口金が配置され、その周りに第2ドープ液(最外層に対応する)を押し出す第2の口金が配置されている。第2の口金は、第1の口金から押し出された第1ドープ液を第2ドープ液が被覆するように、第1の口金に向けて傾斜していてもよい。第2の口金は、第1の口金を囲むように円形状になっていてもよい。また、第1の口金と第2の口金が一体となってノズルパックを形成していてもよい。各口金は、サイズ、温度制御等により吐出量が一定となるように設計されたものが好ましい。第2の口金から押し出された第2ドープ液は、第1の口金から押し出された第1ドープ液を被覆するように一体化し、凝固液と接触することにより、芯鞘構造の未延伸糸を形成させる。複合繊維が中間層を更に備える場合には、第1ドープ液(複合繊維の芯部に対応する)を第2ドープ液(複合繊維の中間層に対応する)が被覆した後に、第3の口金から第2ドープ液を更に被覆するように、第3ドープ液(最外層に対応する)を押し出し、三層構造の未延伸糸を形成させる。同様にノズルを追加することにより、四層構造、五層構造の未延伸糸を形成させることも可能である。また、海島構造の複合繊維用のノズルは、ノズルの中央部に第1ドープ液を押し出す複数の第1の口金が配置されている以外は、上述の芯鞘構造の複合繊維製造用のノズルと同様である。
各口金の位置は、使用する繊維原料の種類、各ドープ液の粘度、押し出し速度、温度等の紡糸条件に応じて、適宜調整することができる。
凝固液11としては、脱溶媒できる溶液であればよく、例えば、メタノール、エタノール及び2−プロパノール等の炭素数1〜5の低級アルコール、並びにアセトン等を挙げることができる。凝固液11は、適宜水を含んでいてもよい。凝固液11の温度は、0〜30℃であることが好ましい。凝固したタンパク質が凝固液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行える長さがあればよく、例えば、200〜500mmである。凝固液11中での滞留時間は、未延伸糸中からドープ溶媒が除去される時間であればよい。また、凝固液11中で延伸(前延伸)をしてもよい。凝固液槽20は多段設けてもよく、また延伸は必要に応じて、各段、又は特定の段で行ってもよい。低級アルコールの蒸発を抑えるために凝固液を低温に維持し、未延伸糸の状態で引き取ってもよい。また、凝固液中で未延伸糸を延伸してもよい(前延伸)。
上記方法で得られた未延伸糸(又は前延伸糸)は、延伸工程により延伸糸(複合繊維)の状態となり得る。延伸方法としては、湿熱延伸、乾熱延伸等をあげることができる。
湿熱延伸は、温水中、温水に有機溶剤等を加えた溶液中、又はスチーム加熱中で行うことができる。温度としては、例えば、40〜200℃であってよく、50〜180℃であってよく、50〜150℃であってよく、75〜90℃であってよい。湿熱延伸における延伸倍率は、未延伸糸(又は前延伸糸)に対して、例えば、1〜30倍であってよく、2〜25倍であってよく、2〜20倍であってよく、2〜15倍であってよく、2〜10倍であってよく、2〜8倍であってよく、2〜6倍であってよく、2〜4倍であってよい。ただし、延伸倍率は、所望する繊維の太さ、機械物性などの特性が得られる範囲であれば限定されるものではない。
乾熱延伸は、接触型の熱板、及び非接触型の炉などの装置を用いて行うことができるが、特に限定されるものではなく、繊維を所定の温度まで昇温させ、かつ所定の倍率で延伸が可能な装置であればよい。温度としては、例えば、100℃〜270℃であってよく、140℃〜230℃であってよく、140℃〜200℃であってよく、160℃〜200℃であってよく、160℃〜180℃であってよい。
乾熱延伸工程における延伸倍率は、未延伸糸(又は前延伸糸)に対して、例えば、1〜30倍であってよく、2〜30倍であってよく、2〜20倍であってよく、3〜15倍であってよく、3〜10倍であることが好ましく、3〜8倍であることがより好ましく、4〜8倍であることがさらに好ましい。ただし、延伸倍率は、所望する繊維の太さ、機械物性などの特性が得られる範囲であれば限定されるものではない。
延伸工程は、湿熱延伸及び乾熱延伸を、それぞれ単独で行うものであってもよく、またこれらを多段で、又は組み合わせて行うものであってもよい。すなわち、延伸工程として一段目延伸として湿熱延伸を行い、二段目延伸として乾熱延伸を行うか、あるいは一段目延伸として湿熱延伸を行い、二段目延伸として湿熱延伸行い、更に三段目延伸として乾熱延伸で行ってもよく、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。
延伸工程を経た複合繊維の最終的な延伸倍率の下限値は、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、又は9倍であってよい。延伸工程を経た複合繊維の最終的な延伸倍率の上限値は、好ましくは40倍、30倍、20倍、15倍、14倍、13倍、12倍、11倍、又は10倍であってよい。また、例えば、3〜40倍であってよく、3〜30倍であってよく、5〜30倍であってよく、5〜20倍であってよく、5〜15倍であってよく、5〜13倍であってよい。
紡糸工程において、紡糸口金の口金形状、ホール形状、ホール数などは特に眼定されるものではなく、所望の繊維径及び単糸本数等に応じて適宜選択できる。
乾燥の前又は後に、必要に応じて、未延伸糸(若しくは前延伸糸)又は延伸糸に対して、帯電抑制性、収束性及び潤滑性等を付与する目的で油剤を付与してもよい。付与する油剤の種類及び付与する量等は、特に限定されるものではなく、複合繊維を使用する用途、被合繊維の取扱い性等を考慮して、適宜調整することができる。
紡糸口金のホール形状が円形である場合は、0.1mm〜0.6mmの孔径を例示できる。孔径が0.1mm以上であると、圧力損失を低減することができ、設備費用を抑えることができる。孔径が0.6mm以下であると、繊維径を細くするための延伸操作を省略することができ、吐出から引き取りまでの間で断裂(延伸切れ)を起こす可能性をより低減することができる。
紡糸口金を通過する際の温度、及び紡糸口金の温度は、特に限定されるものではなく、使用するドープ液の濃度及び粘度、溶媒の種類等により適宜調整すればよい。紡糸口金の温度は、改変フィブロイン及び構造タンパク質の劣化等を防止するという観点から、30℃〜100℃が好ましい。また、当該温度は、溶媒の揮発による圧力上昇、ドープ液の固形化による配管内の閉塞が発生する可能性をより低減するという観点から、用いる溶媒の沸点に満たない温度を上限とすることが好ましい。これにより工程安定性が向上する。
本実施形態に係る方法は、ドープ液の吐出前にドープ液を濾過する工程(濾過工程)、及び/又は吐出前にドープ液を脱泡する工程(脱泡工程)を更に設けてもよい。
本実施形態に係る複合繊維の製造方法は、更に捲縮工程を設けてもよい。捲縮工程は、複合繊維を水性媒体と接触させることで、捲縮させる(以下、「水捲縮」という場合がある)工程である。特に図7(b)に示すような偏心芯鞘型複合繊維は、潜在捲縮能を有しており、水性媒体と接触させることで、より優れた捲縮性を示し得る。
水性媒体に接触させることにより、外力によらずに、複合改変フィブロイン繊維を捲縮させることができる。水性媒体とは、水(水蒸気を含む。)を含む液体又は気体(スチーム)の媒体である。水性媒体は水であってもよく、水と親水性溶媒との混合液であってもよい。親水性溶媒としては、例えば、エタノール及びメタノール等の揮発性溶媒又その蒸気を挙げることができる。水性媒体は、水とエタノール、メタノールなどの揮発性溶媒との混合液体であってよく、水、又は水とエタノールとの混合液体であることが好ましい。揮発性溶媒又はその蒸気を含む水性媒体を使用することで、水捲縮後の乾燥速度が向上させることができ、更には最終的に得られる捲縮ステープル又は捲縮繊維に柔らかな風合いを付与し得る。
水と揮発性溶媒又はその蒸気との比率は、特に限定されず、例えば、水:揮発性溶媒は、質量比で10:90〜90:10であってもよい。水の含有量は、水性媒体の全質量を基準として、30質量%以上であることが好ましく、40質量%又は50質量%以上であってもよい。水性媒体が液体である場合、水性媒体には油剤を分散させることが好ましい。この場合は、水捲縮と油剤付着を同時に行うことができる。なお、油剤としては、例えば、帯電防止用、摩擦軽減用、柔軟性付与用、又は撥水性付与用等の工程通過性や機能性付与等の一般的な目的で使用される公知の油剤であればいずれも使用可能である。なお、油剤の量は、特に限定されず、例えば、油剤と水性媒体の全質量に対して1〜10質量%であってもよく、或いは2〜5質量%であってよい。
水性媒体は、水(水蒸気を含む)を含む10〜230℃の液体又は気体であることが好ましい。水性媒体の温度は、10℃以上、25℃以上、40℃以上、60℃以上、又は100℃以上であってよく、230℃以下、120℃以下、又は100℃以下であってよい。より具体的には、水性媒体が気体(スチーム)である場合、水性媒体の温度は100〜230℃が好ましく、100〜120℃がより好ましい。水性媒体のスチームが230℃以下であると、複合繊維の熱変性を防ぐことができる。水性媒体が液体である場合、水性媒体の温度は、効率良く捲縮を付与する観点から、10℃以上、25℃以上、又は40℃以上が好ましく、複合繊維の強度を高く保つ観点から、60℃以下が好ましい。
水性媒体と接触する時間は、特に制限されないが、30秒以上であればよく、1分以上、又は2分以上であってよく、生産性の観点から10分以下であることが好ましい。またスチームの場合は、液体に比べて短い時間で大きな収縮率が得られると考えられる。水性媒体との接触は、常圧下で行ってもよく、減圧下(例えば、真空)で行ってもよい。
水性媒体と接触させる方法としては、複合繊維を水性媒体に浸漬する方法、複合繊維に対して水性媒体のスチームを噴霧する方法、水性媒体のスチームが充満した環境に複合繊維を暴露する方法等が挙げられる。水性媒体がスチームである場合、複合繊維への水性媒体の接触は、一般的なスチームセット装置を使用して行うことができる。スチームセット装置の具体例としては、製品名:FMSA型スチームセッター(福伸工業株式会社製)、製品名:EPS−400(辻井染機工業株式会社製)等の装置を挙げることができる。水性媒体のスチームにより複合繊維を捲縮する方法の具体例としては、所定の収容室内に複合繊維を収容する一方、収容室内に水性媒体のスチームを導入して、収容室内の温度を上記所定温度(例えば、100℃〜230℃)に調整しつつ、複合繊維にスチームを接触させることが挙げられる。
水性媒体との接触による複合繊維の捲縮工程は、好ましくは複合繊維に対して引張力が何ら加えられない(繊維軸方向に何ら緊張されない)状態、若しくは所定の大きさだけ加えられた(繊維軸方向に所定量だけ緊張させられた)状態で実施される。その際に複合繊維に加えられる引張力を調整することで、捲縮の程度をコントロールすることも可能である。複合繊維に加えられる引張力の調製方法としては、例えば、複合繊維に様々な重さの重りを吊す等して、それら繊維に対して負荷される荷重を調整する方法、繊維を弛ませた状態で両末端を同定すると共に、その弛み量を種々変更する方法、繊維を紙管又はボビン等の被巻回体に巻き付けると共に、その際の巻き付け力(紙管やボビンへの締付力)を適宜に変更する方法等が挙げられる。
複合繊維を水性媒体と接触させた後に、さらに乾燥させてもよい。乾燥方法は、特に限定されず、乾燥は、自然乾燥でもよく、熱嵐やホットローラーで乾燥しでもよい。乾燥温度としては、特に限定されず、例えば20〜150℃であってよく、40〜120℃であることが好ましく、60〜100℃であることがより好ましい。
本実施形態に係る複合繊維において、改変フィブロインを含む芯部と、構造タンパク質を含む最外層は、互いに疎水性度が異なる。
複合繊維における、芯部と最外層の疎水性度の差(改変フィブロインの疎水性度と構造タンパク質の疎水性度の差)は、所望の捲縮性に応じて適宜選択することができ、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がより好ましく、0.4以上がより好ましく、0.5以上がより好ましく、0.6以上がより好ましく、0.7以上がより好ましく、0.8以上がより好ましく、0.9以上がより好ましく、1.0以上がより好ましく、1.1以上がより好ましく、1.2以上がさらに好ましく、1.3以上が特に好ましい。疎水性度の差が大きいほど、より優れた潜在捲縮性を安定して付与し得る。
複合繊維における芯部と最外層(存在する場合は、中間層)は、水収縮による収縮率が互いに異なっている。芯部に使用される改変フィブロインは、水性媒体との接触により収縮する。一方、最外層(又は中間層)に使用される構造タンパク質は、水性媒体と接触しても収縮しないか、又は芯部と比較して収縮率が小さい。
改変フィブロインを同条件で紡糸して得られた改変フィブロイン繊維の水性媒体に対する収縮率を表6に示す。収縮率は、以下の方法で算出した。
<収縮率>
長さ約30cmの複数本の改変フィブロイン繊維を束ね、繊度150デニールの繊維束とする。この繊維束に0.8gの鉛錘を取り付け、その状態で繊維束を40℃の水に10分間浸漬して収縮させ、製造工程由来の残留応力による収縮を除去する。繊維束を水中から取り出し、0.8gの鉛錘を取り付けたまま室温で2時間おいて乾燥させる。乾燥後、繊維束の長さを測定する。再度、40℃の水に10分間浸漬して収縮させ、水中で繊維束の長さを測定する。これら湿潤、乾燥を少なくとも3回繰り返し、湿潤時の平均の長さ(Lwet)、乾燥時の平均の長さ(Ldry)を求める。収縮率は下記式に従って算出される。
式:収縮率(%)=(1−(Ldry/Lwet))×100
Figure 2019194246
複合繊維における芯部と最外層の複合比率は、特に限定されるものではなく、芯部と最外層の組み合わせや、所望の捲縮性、複合形態等に応じて、適宜設定するこができる。芯部と最外層の複合比率は、例えば、重量基準で90:10〜10:90の範囲であってよく、80:20〜20:80の範囲であってよく、75:25〜25:75の範囲であってよく、75:25〜35:65の範囲であってよく、70:30〜30:70の範囲であってよく、65:35〜35:65の範囲であってよく、65:35〜45:55の範囲であってよく、60:40〜40:60の範囲であってよい。
複合繊維の断面形状は、特に限定されるものではなく、丸断面、三角断面、マルチローパル断面、だるま型断面、扁平断面、その他公知の断面形状のいずれであってもよい。複合繊維が図7(b)に示すような偏心芯鞘型複合繊維(複合繊維の断面形状が同心二重円ではない。)であると、捲縮発現性と風合いのバランスがより優れる。
複合繊維の繊維径は、特に限定されるものではなく、用途等に応じて適宜設定することができ、例えば、10〜125μmであってよく、10〜100μmであってよく、10〜80μmであってよく、10〜60μmであってよく、10〜40μmであってよく、10〜35μmであってよく、10〜30μmであってよい。繊維径が125μm以下であると、紡糸工程における脱溶媒速度が大きくなりにくい。繊維径が10μm以上であると、複合繊維を安定して得られやすくなる。
複合繊維の捲縮数は、用途等に応じて適宜設定することができ、例えば、捲縮数5個/25mm以上であってよく、捲縮数10個/25mm以上であってよく、捲縮数15個/25mm以上であってよく、捲縮数20個/25mm以上であってよく、捲縮数25個/25mm以上であってよい。
複合繊維は、用途等に応じて、さらに複合繊維内のポリペプチド分子間で化学的に架橋させてもよい。架橋させることができる官能基は、例えば、アミノ基、カルボキシル基、チオール基及びヒドロキシ基等が挙げられる。例えば、ポリペプチドに含まれるリジン側鎖のアミノ基は、グルタミン酸又はアスパラギン酸側鎖のカルボキシル基と脱水縮合によりアミド結合で架橋できる。真空加熱下で脱水縮合反応を行なうことにより架橋しでもよいし、カルボジイミド等の脱水縮合剤により架橋させてもよい。
ポリペプチド分子間の架橋は、カルボジイミド、グルタルアルデヒド等の架橋剤を用いて行ってもよく、トランスグルタミナーゼ等の酵素を用いて行ってもよい。カルボジイミドは、一般式RN=C=NR(式中、R及びRは、それぞれ独立に、炭素数1〜6のアルキル基、シクロアルキル基を含む有機基を示す。)で示される化合物である。カルボジイミドの具体例として、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)、N,N’−ジシクロヘキシルカルボジイミド(DCC)、1−シクロヘキシル−3−(2−モルホリノエチル)カルボジイミド、ジイソプロピルカルボジイミド(DIC)等が挙げられる。これらの中でも、EDC及びDICはポリペプチド分子間のアミド結合形成能が高く、架橋反応し易いことから好ましい。
架橋処理は、複合繊維に架橋剤を付与して真空加熱乾燥で架橋するのが好ましい。架橋剤は純品を複合繊維に付与してもよいし、炭素数1〜5の低級アルコール及び緩衝液等で0.005〜10質量%の濃度に希釈したものを複合繊維に付与してもよい。架橋処理は、温度20〜45℃で3〜42時間行うのが好ましい。架橋処理により、複合繊維に更に高い応力(強度)を付与することができる。
(複合繊維の捲縮性評価)
複合繊維の捲縮性は、捲縮工程を経て潜在性捲縮を発現させた複合繊維の一定の長さにおける捲縮数を確認すること等により、評価することができる。
〔製品〕
本実施形態に係る複合繊維は、各種の製品に応用することができる。このような製品としては、例えば、繊維、糸、布帛、編み物、組み物、不織布、紙、及び綿等を挙げることができる。繊維としては、例えば、長繊維、短繊維、モノフィラメント、マルチフィラメント等を挙げることができ、糸としては、紡績糸、撚糸、仮撚糸、加工糸、混繊糸、混紡糸等を挙げることができる。さらに、これらの繊維や糸から、織物等の布帛、編物、組み物、不織布等、紙、綿等を製造することができる。これらの製品は、公知の方法により製造することができる。
以下、実施例等に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
1.改変フィブロインの製造
(1)発現ベクターの作製
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号15、配列番号37及び配列番号47で示されるアミノ酸配列を有する改変フィブロイン(以下、それぞれ「PRT799」、「PRT918」及び「PRT966」ともいう。)を設計した。なお、配列番号15で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。配列番号47で示されるアミノ酸配列(PRT966)は、疎水度の向上を目的として、配列番号7で示されるアミノ酸配列(N末端に配列番号11で示されるアミノ酸配列が付加される前のアミノ酸配列)中に存在する20個のドメイン配列の領域を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換し、さらにN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)を付加したものである。
次に、PRT799、PRT918及びPRT966をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、それぞれタンパク質発現ベクターpET−22b(+)に組換えて発現ベクターを得た。
(2)改変フィブロインの発現
上記で得られた発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表7)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
Figure 2019194246
当該シード培養液を500mLの生産培地(表8)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
Figure 2019194246
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル−β−チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、改変フィブロインを発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS−PAGEを行い、IPTG添加に依存した目的とする改変フィブロインサイズのバンドの出現により、目的とする改変フィブロインの発現を確認した。
(3)改変フィブロインの精製
IPTGを添加してから2時間後に回収した菌体を20mM Tris−HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris−HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社製)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris−HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris−HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製、セルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収することにより、改変フィブロイン(PRT799、PRT918及びPRT966)を得た。
2.絹フィブロインの製造
天然の蚕(Bombyx mori)の繭を用い、中身を除去した蚕の繭を小さく切断した。沸騰した0.5質量%マルセル石鹸水(マルセル石鹸はおろし金で細かくしたものを使用)で約30分間煮た後、沸騰したお湯で30分間煮た。この手順をさらに2回繰り返した(計3回)。最後に沸騰したお湯で30分間煮て、絹フィブロインを覆うセリシンを完全に除去し、セリシン除去後の絹フィブロインを37℃の環境下で一晩乾燥させた。乾燥後の絹の重さを測り、10質量/体積%となるように、LiBr水溶液(9mol/L)を加え、40℃で2時間溶解させた。この水溶液をセルロース透析膜(VISKASESELESCOAP社製のSeamless Cellulose Tubing、36/32)に入れ、蒸留水を用いて3〜4日間透析した。透析後の回収溶液を、20℃、15000rpm、1時間で遠心し、溶け残りや不純物などを除去した。更に濃度が2質量%以下になるように脱イオン水で希釈した。希釈後、フィルター(ADVANTEC社製、150μm)に通し、不純物を完全に除去した。絹フィブロイン水溶液を−80℃で凍結させ、一晩かけて凍結乾燥した。十分に水分が抜けたことを確認し、絹フィブロイン粉末を得た。得られた絹フィブロインを用いてSDS−PAGEを行い、バンドの出現により、絹フィブロインの分子量が70kDaであることを確認した。
3.複合繊維の製造
<実施例1>
(1)ドープ液の調製
第1ドープ液として、上記改変フィブロインの製造工程で得られた改変フィブロイン(PRT799、疎水性度:0.49)20質量%を、ギ酸(純度98%)80質量%と混合し、40℃のアルミブロックヒーターで1時間加温することにより溶解させた。得られた溶液を、目開き1μmの金属フィルターで濾過し、脱泡して第1ドープ液を調製した。
上記絹フィブロインの製造工程で得られた絹フィブロイン粉末10質量%と、ギ酸90質量%を用いた他は、第1ドープ液と同様にして第2ドープ液を調製した。
(2)湿式紡糸
卓上の紡糸装置を用いて湿式紡糸を行なった。調製した第1ドープ液と第2ドープ液とをそれぞれリザーブタンクに充填した。不活性ガス(窒素)を用いて、外形28μm/内径22μmの孔径の同軸ノズルから第1ドープ液と第2ドープ液とを吐出し、100質量%エタノール凝固液槽中へ吐出させた。凝固後、凝固液槽中で延伸を行った。2つのメタノール浴槽での洗浄、水洗浄浴中での洗浄及び延伸後、乾熱板を用いて乾燥させ、複合重量比芯部:鞘部=2:1の芯鞘型複合繊維(原糸)を得、巻き取った。
湿式紡糸の条件は以下のとおりである。
吐出圧:0.5bar
凝固浴延伸倍率:0.5倍
水洗浄浴延伸倍率:3倍
凝固液(エタノール)の温度:5℃
乾燥温度:60℃
<実施例2>
(1)ドープ液の調製
第1ドープ液は、実施例1と同様にして調製した。
第2ドープ液として、上記改変フィブロインの製造工程で得られた改変フィブロイン(PRT966、疎水性度:−0.80)10質量%と、ギ酸90質量%を混合し、加温温度を70℃とした他は、第1ドープ液と同様にして第2ドープ液を調製した。
(2)湿式紡糸
調製した第1ドープ液と第2ドープ液とをそれぞれリザーブタンクに充填した。実施例1と同様にして湿式紡糸を行い、潜在性捲縮を発現させた、複合重量比芯部:鞘部=2:1の芯鞘型複合繊維(原糸)の複合繊維を得、巻き取った。
<比較例1>
(1)ドープ液の調製
改変フィブロイン(PRT799)20質量%を、ギ酸80質量%と混合した他は、実施例1と同様にしてドープ液を調製した。
(2)湿式紡糸
卓上の紡糸装置を用いて湿式紡糸を行なった。孔径30μmのモノホールノズルからドープ液を吐出し、水洗浄浴中での延伸倍率を6倍とした他は、実施例1と同様にして改変フィブロイン繊維(原糸)を得、巻き取った。
4.複合繊維の物性評価
(1)応力の評価
実施例1及び2、並びに比較例1の未延伸糸の物性を以下の方法で測定した。
(a)光学顕微鏡を用いて複合繊維の直径を求めた。
(b)温度20℃、相対湿度65%の条件で引張り試験機(INSTRON3342)を用いて複合繊維の応力を測定した。引張試験では10m秒間隔で測定した。各サンプルは厚紙で作製した型枠に貼り付け、つかみ治具間距離は20mm、引張り速度は10mm/分とした。ロードセル容量10N、つかみ冶具はクリップ式とした。測定値はサンプル数n=5の平均値とした。
原糸の物性評価結果を表7に示す。表7中の応力値は、比較例1の改変フィブロイン繊維(PRT799単独)の応力の値を100としたときの相対値である。
(2)収縮性の評価
上記実施例1と2、及び比較例1で得られた複合繊維(原糸)を長さ約30cmに揃えて束ね、繊度150デニールの複合繊維束とした。各複合繊維束に0.8gの鉛錘を取り付け、その状態で繊維束を40℃の水に10分間浸漬して収縮させ、製造工程由来の残留応力を除去した。残留応力除去後の繊維束を水中から取り出し、0.8gの鉛錘を取り付けたまま、室温で2時間おいて乾燥させた。乾燥後、各繊維束の長さを測定した。その後、繊維束を40℃の水に10分間浸漬して収縮させ、水中で複合繊維束の長さを測定した。この湿潤及び乾燥の操作を3回繰り返し、湿潤時の平均の長さ(Lwet:単位cm)、乾燥時の平均の長さ(Ldry:単位cm)を求め、下記式に従って収縮率を算出した。
収縮率(%)={1−(Ldry/Lwet)}×100
実施例1及び2の複合繊維の収縮率を表9に示す。表9中の収縮率は、比較例1の改変フィブロイン繊維(PRT799単独)の収縮率の値を100としたときの相対値である。
Figure 2019194246
実施例1及び2の複合繊維は、比較例1の繊維(PRT799単独)と比べて、優れた収縮率の低減効果を得ることができ、疎水性度が大きい(疎水度が大きい)ほど、更に収縮率の低減効果を付与可能であることが認められた。さらに、実施例1の複合繊維では、応力値の向上が認められた。
参考例1:改変フィブロインの燃焼性試験
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0質量%)に、改変フィブロイン(PRT799)の凍結乾燥粉末を、濃度24質量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
得られた紡糸原液を90℃に加熱し、目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は90℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
原料繊維を撚り合せた撚糸を使用して、丸編機を使用した丸編みで編地(太さ:180デニール、ゲージ数:18)を製造した。得られた編地を20g切り出して、試験片として使用した。
燃焼性試験は、「消防庁危険物規制課長 消防危50号(平成7年5月31日付け)」に記載の「粉粒状又は融点の低い合成樹脂の試験方法」に準拠した。試験は、温度22℃、相対湿度45%、気圧1021hPaの条件下で実施した。測定結果(酸素濃度(%)、燃焼率(%)、換算燃焼率(%))を表10に示す。
Figure 2019194246
燃焼性試験の結果、改変フィブロイン(PRT799)繊維で編んだ編地の限界酸素指数(LOI)値は27.2であった。一般にLOI値が26以上であると、難燃性であると知られている。改変フィブロインは、難燃性に優れていることが分かる。
参考例2:改変フィブロインの吸湿発熱性評価
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0質量%)に、改変フィブロインの凍結乾燥粉末を、濃度24質量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
得られた紡糸原液を60℃に加熱し、目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
比較のため、原料繊維として、市販されているウール繊維、コットン繊維、テンセル繊維、レーヨン繊維及びポリエステル繊維を用意した。
各原料繊維を使用して、横編機を使用した横編みで編地をそれぞれ製造した。PRT918繊維又はPRT799繊維を使用した編地の太さ及びゲージ数を表10に示すとおりである。その他の原料繊維を使用した編地は、改変フィブロイン繊維の編地とほぼ同一のカバーファクターとなるように太さ及びゲージ数を調整した。具体的には、以下のとおりである。
Figure 2019194246
10cm×10cmに裁断した編地を2枚合わせにし、四辺を縫い合わせて試験片(試料)とした。試験片を低湿度環境(温度20±2℃、相対湿度40±5%)で4時間以上放置した後、高湿度環境(温度20±2℃、相対湿度90±5%)に移し、試験片内部中央に取り付けた温度センサーにより30分間、1分間隔で温度の測定を行った。
測定結果から、下記式Aに従って、最高吸湿発熱度を求めた。
式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
図8は、吸湿発熱性試験の結果の一例を示すグラフである。グラフの横軸は、試料を低湿度環境から高湿度環境に移した時点を0とし、高湿度環境での放置時間(分)を示す。グラフの縦軸は、温度センサーで測定した温度(試料温度)を示す。図8に示したグラフ中、Mで示した点が、試料温度の最高値に対応している。
各編地の最高吸湿発熱度の算出結果を表12に示す。
Figure 2019194246
表12に示すとおり、改変フィブロイン(PRT918及びPRT799)は、既存の材料と比べて、最高吸湿発熱度が高く、吸湿発熱性に優れていることが分かる。
参考例3:改変フィブロインの保温性評価
塩化リチウムのジメチルスルホキシド溶液(濃度:4.0質量%)に、改変フィブロインの凍結乾燥粉末を、濃度24質量%となるよう添加し、シェーカーを使用して3時間混合することにより、溶解させた。その後、不溶物と泡を取り除き、改変フィブロイン溶液(紡糸原液)を得た。
得られた紡糸原液を60℃に加熱し、目開き5μmの金属フィルターで濾過し、次いで30mLのステンレスシリンジ内で静置し、脱泡させた後に、ニードル径0.2mmのソリッドノズルから100質量%メタノール凝固浴槽中へ吐出させた。吐出温度は60℃であった。凝固後、得られた原糸を巻き取り、自然乾燥させて改変フィブロイン繊維(原料繊維)を得た。
比較のため、原料繊維として、市販されているウール繊維、シルク繊維、綿繊維、レーヨン繊維及びポリエステル繊維を用意した。
各原料繊維を使用して、横編機を使用した横編みで編地をそれぞれ製造した。PRT966繊維又はPRT799繊維を使用した編地の番手、撚り本数、ゲージ数、目付けは、表13に示すとおりである。その他の原料繊維を使用した編地は、改変フィブロイン繊維の編地とほぼ同一のカバーファクターとなるように調整した。具体的には、以下のとおりである。
Figure 2019194246
保温性は、カトーテック株式会社製のKES−F7サーモラボII試験機を使用し、ドライコンタクト法(皮膚と衣服が乾燥状態で直接触れた時を想定した方法)を用いて評価した。20cm×20cmの矩形に裁断した編地1枚を試験片(試料)として使用した。試験片を、一定温度(30℃)に設定した熱板にセットし、風洞内風速30cm/秒の条件で、試験片を介して放散された熱量(a)を求めた。試験片をセットしない状態で、上記同様の条件で放散された熱量(b)を求め、下記式Bに従い保温率(%)を算出した。
式B: 保温率(%)=(1−a/b)×100
測定結果から、下記式Cに従って、保温性指数を求めた。
式C: 保温性指数=保温率(%)/試料の目付け(g/m
保温性指数の算出結果を表14に示す。保温性指数が高いほど、保温性に優れる材料と評価することができる。
Figure 2019194246
表14に示すとおり、改変フィブロイン(PRT966及びPRT799)は、既存の材料と比べて、保温性指数が高く、保温性に優れていることが分かる。
1…押出し装置、2…未延伸糸製造装置、3…湿熱延伸装置、4…乾燥装置、6…ドープ液、9…紡糸口金、10…紡糸装置、11…凝固液、20…凝固液槽、21…延伸浴槽、36…複合繊維。

Claims (24)

  1. 芯部と、該芯部を覆う最外層と、を備える複合繊維であって、前記芯部は改変フィブロインを含み、前記最外層は構造タンパク質を含む、複合繊維。
  2. 前記芯部と前記最外層の複合比率が、前記複合繊維の質量を基準として9:1〜1:9である、請求項1に記載の複合繊維。
  3. 前記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、コラーゲン、レシリン、エラスチン、及びケラチンからなる群より選ばれる少なくとも1種である、請求項1又は2に記載の複合繊維。
  4. 前記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、及びケラチンからなる群より選ばれる少なくとも1種である、請求項1〜3のいずれか一項に記載の複合繊維。
  5. 前記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当する、(A)モチーフの含有量が低減されたアミノ酸配列を有する、請求項1〜4のいずれか一項に記載の複合繊維。
    [式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  6. 前記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当する、グリシン残基の含有量が低減されたアミノ酸配列を有する、請求項1〜4のいずれか一項に記載の複合繊維。
    [式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  7. 前記改変フィブロインが、式1:[(A)モチーフ−REP]表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有する、請求項1〜4のいずれか一項に記載の複合繊維。
    [式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  8. 前記改変フィブロインが、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当する、グルタミン残基の含有量が低減されたアミノ酸配列を有する、請求項1〜4のいずれか一項に記載の複合繊維。
    [式1及び式2中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が80%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  9. 前記改変フィブロインが、26.0以上の限界酸素指数(LOI)値を有している、請求項1〜4のいずれか一項に記載の複合繊維。
  10. 前記改変フィブロインが、0.025℃/g超の、下記式Aに従って求められる最高吸湿発熱度を有している、請求項1〜4のいずれか一項に記載の複合繊維。
    式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
    [式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
  11. 芯部と、該芯部を覆う最外層と、を備える複合繊維の製造方法であって、
    改変フィブロイン及び溶媒を含む第1ドープ液を調製する工程と、
    構造タンパク質及び溶媒を含む第2ドープ液を調製する工程と、
    紡糸口金から吐出した第1ドープ液を被覆するように、第2ドープ液を紡糸口金から吐出して接合させ、凝固液中で未延伸の複合繊維を形成させる工程と、を含む、方法。
  12. 前記未延伸の複合繊維を延伸する工程を更に含む、請求項11に記載の方法。
  13. 前記第1ドープ液における改変フィブロインの濃度が、前記第1ドープ液の全質量を基準として、5〜40質量%であり、
    前記第2ドープ液における構造タンパク質の濃度が、前記第2ドープ液の全質量を基準として、5〜40質量%である、請求項11又は12に記載の方法。
  14. 前記溶媒が、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリドン、N−メチル−2−ピロリドン、アセトニトリル、N−メチルモルホリン−N−オキシド、及びギ酸、並びに、尿素、グアニジン、ドデシル硫酸ナトリウム、臭化リチウム、塩化カルシウム及びチオシアン酸リチウムからなる群から選択される少なくとも一種を含む水溶液からなる群から選択される少なくとも一種を含む、請求項11〜13のいずれか一項に記載の方法。
  15. 前記凝固液が、炭素数1〜5の低級アルコール、及びアセトンからなる群から選択される少なくとも一種である、請求項11〜14のいずれか一項に記載の方法。
  16. 前記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、コラーゲン、レシリン、エラスチン、及びケラチンからなる群より選ばれる少なくとも1種である、請求項11〜15のいずれか一項に記載の方法。
  17. 前記構造タンパク質が、絹フィブロイン、クモ糸フィブロイン、及びケラチンからなる群より選ばれる少なくとも1種である、請求項11〜16のいずれか一項に記載の方法。
  18. 前記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)モチーフが欠失したことに相当する、(A)モチーフの含有量が低減されたアミノ酸配列を有する、請求項11〜17のいずれか一項に記載の方法。
    [式1中、(A)モチーフは4〜20アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは8〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  19. 前記改変フィブロインが、式1:[(A)モチーフ−REP]で表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当する、グリシン残基の含有量が低減されたアミノ酸配列を有する、請求項11〜17のいずれか一項に記載の方法。
    [式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  20. 前記改変フィブロインが、式1:[(A)モチーフ−REP]表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有する、請求項11〜17のいずれか一項に記載の方法。
    [式1中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が83%以上である。REPは10−200アミノ酸残基から構成されるアミノ酸配列を示す。mは2−300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  21. 前記改変フィブロインが、式1:[(A)モチーフ−REP]、又は式2:[(A)モチーフ−REP]−(A)モチーフで表されるドメイン配列を含む改変フィブロインであって、
    前記ドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当する、グルタミン残基の含有量が低減されたアミノ酸配列を有する、請求項11〜17のいずれか一項に記載の方法。
    [式1及び式2中、(A)モチーフは2〜27アミノ酸残基から構成されるアミノ酸配列を示し、かつ(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数が80%以上である。REPは10〜200アミノ酸残基から構成されるアミノ酸配列を示す。mは2〜300の整数を示す。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。]
  22. 前記改変フィブロインが、26.0以上の限界酸素指数(LOI)値を有している、請求項11〜17のいずれか一項に記載の方法。
  23. 前記改変フィブロインが、0.025℃/g超の、下記式Aに従って求められる最高吸湿発熱度を有している、請求項11〜17のいずれか一項に記載の方法。
    式A: 最高吸湿発熱度={(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移したときの試料温度の最高値)−(試料を、試料温度が平衡に達するまで低湿度環境下に置いた後、高湿度環境下に移すときの試料温度)}(℃)/試料重量(g)
    [式A中、低湿度環境は、温度20℃及び相対湿度40%の環境を意味し、高湿度環境は、温度20℃及び相対湿度90%の環境を意味する。]
  24. 請求項1〜10のいずれか一項に記載の複合繊維を含み、
    繊維、糸、布帛、編物、組み物、不織布、紙及び綿からなる群から選択される、製品。
JP2020512300A 2018-04-03 2019-04-03 複合繊維及びその製造方法 Active JP7483263B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018071956 2018-04-03
JP2018071956 2018-04-03
PCT/JP2019/014871 WO2019194246A1 (ja) 2018-04-03 2019-04-03 複合繊維及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2019194246A1 true JPWO2019194246A1 (ja) 2021-04-22
JP7483263B2 JP7483263B2 (ja) 2024-05-15

Family

ID=68100470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020512300A Active JP7483263B2 (ja) 2018-04-03 2019-04-03 複合繊維及びその製造方法

Country Status (2)

Country Link
JP (1) JP7483263B2 (ja)
WO (1) WO2019194246A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241546A1 (ja) * 2020-05-28 2021-12-02 Spiber株式会社 目的タンパク質の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336127A (ja) * 2002-05-17 2003-11-28 Se Chemical Kk 複合繊維
CN104963027A (zh) * 2015-06-06 2015-10-07 李松群 丝素-聚己内酯双组分超细纤维的同轴静电纺丝方法
WO2017188434A1 (ja) * 2016-04-28 2017-11-02 Spiber株式会社 改変フィブロイン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020001627A2 (pt) * 2017-07-26 2020-07-21 Spiber Inc. fibroína modificada, ácido nucleico, vetor de expressão, hospedeiro, produto, fibra de fibroína artificialmente modificada, e, método para a produção de uma fibra de fibroína artificialmente modificada.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003336127A (ja) * 2002-05-17 2003-11-28 Se Chemical Kk 複合繊維
CN104963027A (zh) * 2015-06-06 2015-10-07 李松群 丝素-聚己内酯双组分超细纤维的同轴静电纺丝方法
WO2017188434A1 (ja) * 2016-04-28 2017-11-02 Spiber株式会社 改変フィブロイン

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI LINHAO, ET AL.: "Electrospun poly (ε-caprolactone)/silk fibroin core-sheath nanofibers and their potential applicati", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, vol. 49, JPN6019022455, 2011, pages 223 - 232, XP028227810, ISSN: 0005058439, DOI: 10.1016/j.ijbiomac.2011.04.018 *
LIU GUIYANG, ET AL.: "Electrospun core-sheath fibers for integrating the biocompatibility of silk fibroin and the mechanic", POLYM. ADV. TECHNOL., vol. 25, JPN6019022457, 2014, pages 1596 - 1603, XP055645656, ISSN: 0005058440, DOI: 10.1002/pat.3408 *

Also Published As

Publication number Publication date
WO2019194246A1 (ja) 2019-10-10
JP7483263B2 (ja) 2024-05-15

Similar Documents

Publication Publication Date Title
JPWO2020067574A1 (ja) タンパク質繊維の製造方法
JP7330468B2 (ja) 混紡糸並びにその編織体及びその編織体の製造方法
WO2019194245A1 (ja) 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法
WO2019194224A1 (ja) 改変フィブロイン成形体の塑性変形体の寸法回復方法
JPWO2019044982A1 (ja) 高密度編地及び高密度編地の製造方法
CN113692460B (zh) 重组结构蛋白质复丝及其制造方法
JP7483263B2 (ja) 複合繊維及びその製造方法
JP2022024192A (ja) 複合糸、及びその製造方法、並びに布地
JP7475683B2 (ja) 複合繊維及びその製造方法
WO2019194230A1 (ja) 高密度不織布、及び高密度不織布の製造方法
WO2019194263A1 (ja) 高収縮人造フィブロイン撚糸及びその製造方法、並びに人造フィブロイン撚糸及びその収縮方法
JPWO2020067547A1 (ja) 改変フィブロイン繊維
WO2019194261A1 (ja) 人造フィブロイン繊維
WO2020067545A1 (ja) 複合糸、及びその製造方法、並びに布地
JP7452861B2 (ja) 高密度織物及びその製造方法
JP7401062B2 (ja) 生地の製造方法
JP2021054819A (ja) 人工構造タンパク質繊維及びその製造方法
WO2019194260A1 (ja) 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法
JP2021031811A (ja) 染色された生地の製造方法及び生地の染色方法、並びに染色された混紡糸の製造方法及び混紡糸の染色方法
JP2020020070A (ja) タンパク質繊維及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240423

R150 Certificate of patent or registration of utility model

Ref document number: 7483263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150