JPWO2019193951A1 - Organic solvent purification system and method - Google Patents

Organic solvent purification system and method Download PDF

Info

Publication number
JPWO2019193951A1
JPWO2019193951A1 JP2020511679A JP2020511679A JPWO2019193951A1 JP WO2019193951 A1 JPWO2019193951 A1 JP WO2019193951A1 JP 2020511679 A JP2020511679 A JP 2020511679A JP 2020511679 A JP2020511679 A JP 2020511679A JP WO2019193951 A1 JPWO2019193951 A1 JP WO2019193951A1
Authority
JP
Japan
Prior art keywords
organic solvent
nmp
supplied
distillation
vacuum evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020511679A
Other languages
Japanese (ja)
Other versions
JP6970280B2 (en
Inventor
亮輔 寺師
亮輔 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Publication of JPWO2019193951A1 publication Critical patent/JPWO2019193951A1/en
Application granted granted Critical
Publication of JP6970280B2 publication Critical patent/JP6970280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/02Evaporators with heating coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

例えばN−メチル−2−ピロリドンなどの有機溶剤と水とを含む混合液から有機溶剤を分離して精製する有機溶剤精製システムは、浸透気化膜を備えて有機溶剤と水とを分離する浸透気化装置と、浸透気化装置の濃縮側から回収される有機溶剤が供給される減圧蒸発缶と、蒸留装置とを備える。(a)浸透気化装置の濃縮側と減圧蒸発缶の入口との間から分流した前記有機溶剤、及び、(b)減圧蒸発缶の気相側の出口から排出された有機溶剤の一部、の少なくとも一方が蒸留装置に供給される。減圧蒸発缶より回収された有機溶剤に対して蒸留装置により蒸留された有機溶剤が混合されて有機溶剤の供給先に供給される。For example, an organic solvent purification system that separates and purifies an organic solvent from a mixed solution containing an organic solvent such as N-methyl-2-pyrrolidone and water is provided with a permeation vaporization film to separate the organic solvent and water. It includes an apparatus, a vacuum evaporating can to which an organic solvent recovered from the concentration side of the permeation vaporizer is supplied, and a distillation apparatus. (A) The organic solvent diverged from between the concentration side of the permeation vaporizer and the inlet of the vacuum distillation can, and (b) a part of the organic solvent discharged from the outlet on the gas phase side of the vacuum distillation can. At least one is supplied to the distillation apparatus. The organic solvent distilled by the distillation apparatus is mixed with the organic solvent recovered from the vacuum evaporation can and supplied to the supply destination of the organic solvent.

Description

本発明は、N−メチル−2−ピロリドン(以下、NMPとも記す)に代表される有機溶剤と水との混合液から有機溶剤を分離して精製するシステム及び方法に関し、特に、浸透気化法を用いた有機溶剤精製システム及び方法に関する。 The present invention relates to a system and a method for separating and purifying an organic solvent from a mixed solution of an organic solvent typified by N-methyl-2-pyrrolidone (hereinafter, also referred to as NMP) and water, and particularly a permeation vaporization method. The organic solvent purification system and method used.

有機溶剤の中には水に対して高い溶解度を有するものがある。このような水溶性の有機溶剤を使用したのち回収して再利用する場合、有機溶剤と水との混合液が回収されることが多いため、この混合液から再利用対象となる有機溶剤を分離して精製する必要がある。回収される混合液は、有機溶剤と水のほかに、例えばイオン性物質や微粒子などの難揮発性の不純物、再利用対象となる有機溶剤とは異なる有機物質を含んでいる可能性がある。また、有機溶剤の使用形態や回収形態に応じ、混合液は、溶存酸素や溶存二酸化炭素などの溶存気体も含んでいる。 Some organic solvents have high solubility in water. When such a water-soluble organic solvent is used and then recovered and reused, a mixed solution of the organic solvent and water is often recovered. Therefore, the organic solvent to be reused is separated from this mixed solution. Need to be purified. In addition to the organic solvent and water, the recovered mixed solution may contain refractory impurities such as ionic substances and fine particles, and an organic substance different from the organic solvent to be reused. The mixed solution also contains a dissolved gas such as dissolved oxygen and dissolved carbon dioxide, depending on the form of use and recovery of the organic solvent.

水に対して高い溶解度を有する有機溶剤の一つであるNMPは、例えば、リチウムイオン二次電池の製造工程において電極活物質などの粒子を分散させたスラリーを電極集電体上に塗布し乾燥させて電極を形成する際に、スラリーの分散媒として広く用いられている。スラリーを乾燥させる際にNMPを回収することができ、回収したNMPは精製した後に再利用することができる。NMPの回収では、気化したNMPを例えば水スクラバーによって回収する、あるいは気化したNMPを吸着剤に吸着させ、その後、吸着剤に水を流してNMPを水に溶解させる、などの方法が用いられる。したがってNMPは、NMPと水とが混合した混合液として回収されることになる。このとき、回収された混合液におけるNMP濃度は、70〜99質量%程度である。混合液には、大気に由来する酸素や二酸化炭素が溶存するとともに、上述したような難揮発性の不純物や有機物質などが混入している。 NMP, which is one of the organic solvents having high solubility in water, is dried by applying, for example, a slurry in which particles such as an electrode active material are dispersed on an electrode current collector in the manufacturing process of a lithium ion secondary battery. It is widely used as a dispersion medium for slurries when forming electrodes. NMP can be recovered when the slurry is dried, and the recovered NMP can be reused after purification. In the recovery of NMP, a method such as recovering the vaporized NMP with, for example, a water scrubber, or adsorbing the vaporized NMP to an adsorbent and then flowing water through the adsorbent to dissolve the NMP in water is used. Therefore, NMP is recovered as a mixed solution of NMP and water. At this time, the NMP concentration in the recovered mixed solution is about 70 to 99% by mass. Oxygen and carbon dioxide derived from the atmosphere are dissolved in the mixed solution, and the above-mentioned refractory impurities and organic substances are mixed in the mixed solution.

従来から有機溶剤と水との混合液から有機溶剤を分離して回収する方法として、蒸留法が知られており、特に、混合液を減圧して蒸留する減圧蒸留法がよく用いられている。しかしながら、蒸留法あるいは減圧蒸留法は、多大なエネルギーを必要とする上、所望の純度まで有機溶剤を精製しようとするときには大がかりな蒸留設備が必要となるという課題を有する。そこで大がかりな設備が不要であって省エネルギー性能に優れた分離手法として、浸透気化(Pervaporation:PV)法が知られている。 Conventionally, a distillation method is known as a method for separating and recovering an organic solvent from a mixed solution of an organic solvent and water, and in particular, a vacuum distillation method in which the mixed solution is distilled under reduced pressure is often used. However, the distillation method or the vacuum distillation method has a problem that a large amount of energy is required and a large-scale distillation facility is required when purifying the organic solvent to a desired purity. Therefore, the pervaporation (PV) method is known as a separation method that does not require large-scale equipment and has excellent energy-saving performance.

浸透気化法では、分離処理の対象となる成分に対して親和性を有する分離膜、例えば水分に対して親和性を有する分離膜を使用し、この対象成分を含む混合液、例えば有機溶剤と水との混合液を分離膜の濃縮側に供給し、分離膜の透過側では減圧にしたり不活性ガスを流したりする。その結果、分離膜における各成分の透過速度差により、成分の分離が行なわれる。浸透気化法で用いる分離膜を浸透気化膜と呼ぶ。水分を透過させるための分離膜としては、例えば、ゼオライト膜が使用される。分離膜によって水分のみが透過側に移動するとすれば、分離膜の濃縮側には有機溶剤が残存することとなり、有機溶剤を回収することができる。浸透気化法により水分と有機溶剤との分離を行う場合、効率よく分離を行うためには加熱が必要となる。また、有機溶剤に含まれるイオン性不純物を除去する方法としては、例えば、イオン交換樹脂を用いる方法が知られている。特許文献1には、NMPと水との混合液からNMPを分離するNMP分離システムとして、浸透気化装置を用いるとともに、浸透気化装置の後段にイオン交換装置を設けたものが開示されている。しかしながら、浸透気化装置の後段にイオン交換装置を設けた場合、このイオン交換装置は、非水溶媒であるNMPからのイオン除去を行うことになるので、イオン交換効率が小さく、またイオン交換樹脂の交換に大きな手間を要するという問題点がある。さらにこのイオン交換装置内のイオン交換樹脂が破過した場合に、システム内に存在する分離膜やろ過膜に由来するナトリウムやケイ素など不純物が精製したNMPに残存するおそれもある。 In the osmotic vaporization method, a separation membrane having an affinity for a component to be separated, for example, a separation membrane having an affinity for water is used, and a mixed solution containing this target component, for example, an organic solvent and water. The mixed solution with and is supplied to the concentrated side of the separation membrane, and the pressure is reduced or an inert gas is flowed on the permeation side of the separation membrane. As a result, the components are separated by the difference in permeation rate of each component in the separation membrane. The separation membrane used in the osmotic vaporization method is called an osmotic vaporization membrane. As the separation membrane for allowing water to permeate, for example, a zeolite membrane is used. If only the water is moved to the permeation side by the separation membrane, the organic solvent remains on the concentration side of the separation membrane, and the organic solvent can be recovered. When the water and the organic solvent are separated by the osmotic vaporization method, heating is required for efficient separation. Further, as a method for removing ionic impurities contained in an organic solvent, for example, a method using an ion exchange resin is known. Patent Document 1 discloses a system in which an osmotic vaporizer is used as an NMP separation system for separating NMP from a mixed solution of NMP and water, and an ion exchange device is provided after the osmotic vaporizer. However, when an ion exchange device is provided after the permeation vaporizer, the ion exchange device removes ions from NMP, which is a non-aqueous solvent, so that the ion exchange efficiency is low and the ion exchange resin is used. There is a problem that it takes a lot of time and effort to replace. Further, if the ion exchange resin in the ion exchange device breaks through, impurities such as sodium and silicon derived from the separation membrane and the filtration membrane existing in the system may remain in the purified NMP.

浸透気化装置によって有機溶剤を水から分離した後に、この有機溶剤をさらに精製する方法として、浸透気化装置の後段に蒸発缶を設け、この蒸発缶で有機溶剤を蒸留する方法が知られており、アルコールの精製などに用いられている。本発明者らは、既に、特許文献2において、有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から有機溶剤を分離して精製する有機溶剤精製システムであって、混合液を加熱する加熱手段と、浸透気化膜を備えて加熱手段の後段に設けられ、有機溶剤と水とを分離する浸透気化装置と、浸透気化装置の濃縮側から回収される有機溶剤が供給される減圧蒸発缶と、減圧蒸発缶で気化した有機溶剤を加熱手段の熱源として加熱手段に供給する配管と、を備えるものを開示している。特許文献2に記載された有機溶剤精製システムでは、減圧蒸発缶で気化した有機溶剤の凝縮熱を回収し、浸透気化装置の熱源とする。このため、減圧蒸発缶に投入した熱量の一部または全量がシステム内でリサイクルされることとなり、システム全体で必要となるエネルギー量を削減できる。したがって特許文献2に記載された方法によれば、省エネルギー性能を達成しつつイオン性不純物や微粒子などを確実に除去できる。 As a method of further purifying the organic solvent after separating the organic solvent from water by the permeation vaporizer, a method of providing an evaporative can after the permeation vaporizer and distilling the organic solvent with the evaporative can is known. It is used for purification of alcohol. The present inventors have already described in Patent Document 2 an organic solvent purification system that separates and purifies an organic solvent from a mixed solution containing water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm. There is a heating means for heating the mixed solution, a permeation vaporizer provided after the heating means provided with a permeation vaporization film and separating the organic solvent and water, and an organic recovered from the concentration side of the permeation vaporizer. A vacuum evaporating can for supplying a solvent and a pipe for supplying an organic solvent vaporized in the depressurizing evaporating can to the heating means as a heat source of the heating means are disclosed. In the organic solvent purification system described in Patent Document 2, the heat of condensation of the organic solvent vaporized in the vacuum evaporative can is recovered and used as a heat source for the osmotic vaporizer. Therefore, a part or all of the amount of heat input to the vacuum evaporation can is recycled in the system, and the amount of energy required for the entire system can be reduced. Therefore, according to the method described in Patent Document 2, ionic impurities, fine particles, and the like can be reliably removed while achieving energy saving performance.

特開2013−18747号公報Japanese Unexamined Patent Publication No. 2013-18747 国際公開第2016/017491号International Publication No. 2016/017491

浸透気化装置の後段に減圧蒸発缶を備える有機溶剤精製システムは、有機溶剤と水との混合液から不純物含有量の少ない有機溶剤を得ることができる。しかしながらこの有機溶剤精製システムでは、減圧蒸発缶が理論段数の多い装置ではないので、例えば、水とNMPの混合液から精製NMPを分離する場合に、NMPと同程度の沸点を有する不純物をNMPから分離することが難しく、純度低下の可能性がある、という問題点を有する。特に、有機溶剤を使用する有機溶剤使用設備から水との混合物の形で有機溶剤を回収し、この混合物から有機溶剤を分離して精製し、その有機溶剤を有機溶剤使用設備において再利用する場合には、循環再利用を繰り返している間に、目的とする有機溶剤と同程度の沸点を有する不純物、特に有機物質である不純物の濃度が次第に上昇してしまう、という問題点が生ずる。同程度の沸点を有する物質を相互に分離するためには多段の蒸留塔を用いることが一般的であるが、多段の蒸留塔を設ける場合には、上述したようにエネルギー消費が大きくなるとともに、高純度の物質を得ることはできるもののその物質に着目した回収率は低下する。 An organic solvent purification system provided with a vacuum evaporating can at the subsequent stage of the permeation vaporizer can obtain an organic solvent having a low impurity content from a mixed solution of an organic solvent and water. However, in this organic solvent purification system, the vacuum evaporation can is not a device having a large number of theoretical plates. Therefore, for example, when separating purified NMP from a mixed solution of water and NMP, impurities having a boiling point similar to that of NMP are removed from NMP. It has a problem that it is difficult to separate and there is a possibility that the purity may decrease. In particular, when the organic solvent is recovered in the form of a mixture with water from the equipment using the organic solvent, the organic solvent is separated and purified from the mixture, and the organic solvent is reused in the equipment using the organic solvent. However, there is a problem that the concentration of an impurity having a boiling point similar to that of the target organic solvent, particularly an impurity which is an organic substance, gradually increases during repeated circulation and reuse. In order to separate substances having the same boiling point from each other, it is common to use a multi-stage distillation column. However, when a multi-stage distillation column is provided, energy consumption increases and energy consumption increases as described above. Although a high-purity substance can be obtained, the recovery rate focusing on that substance decreases.

本発明の目的は、浸透気化法を用いた有機溶剤精製システムであって、イオン性不純物や微粒子などを確実に除去できるとともに、高い回収率で高純度の有機溶剤を得ることができる有機溶剤精製システム及び方法を提供することにある。 An object of the present invention is an organic solvent purification system using an osmotic vaporization method, which can reliably remove ionic impurities and fine particles, and can obtain a high-purity organic solvent with a high recovery rate. To provide systems and methods.

本発明の有機溶剤精製システムは、有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から有機溶剤を分離して精製する有機溶剤精製システムであって、混合液を加熱する加熱手段と、加熱手段の後段に設けられ、浸透気化膜を備えて有機溶剤と水とを分離する浸透気化装置と、浸透気化装置の濃縮側から回収される有機溶剤が供給される減圧蒸発缶と、減圧蒸発缶とは独立して設けられた蒸留装置とを有し、(a)浸透気化装置の濃縮側と減圧蒸発缶の入口との間から分流した有機溶剤、及び、(b)減圧蒸発缶の気相側の出口から排出された有機溶剤の一部、の少なくとも一方が蒸留装置に供給され、減圧蒸発缶より回収された有機溶剤に対して蒸留装置により蒸留された有機溶剤を混合して有機溶剤の供給先に供給する。 The organic solvent purification system of the present invention is an organic solvent purification system that separates and purifies an organic solvent from a mixed solution containing water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm, and is mixed. A heating means for heating the liquid, a permeation vaporizer provided after the heating means and provided with a permeation vaporizing film to separate the organic solvent and water, and an organic solvent recovered from the concentration side of the permeation vaporizer are supplied. It has a decompression evaporation can and a distillation apparatus provided independently of the decompression evaporation can, and (a) an organic solvent that has been separated from between the concentration side of the permeation vaporizer and the inlet of the decompression evaporation can, and (B) At least one of the part of the organic solvent discharged from the outlet on the gas phase side of the vacuum evaporation can was supplied to the distillation apparatus, and the organic solvent recovered from the vacuum evaporation can was distilled by the distillation apparatus. The organic solvent is mixed and supplied to the supply destination of the organic solvent.

本発明の有機溶剤精製方法は、有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から有機溶剤を分離して精製する方法であって、混合液を加熱する加熱工程と、加熱された混合液を、浸透気化膜を用いて有機溶剤と水とに分離する分離工程と、浸透気化膜の濃縮側から回収される有機溶剤を減圧蒸発させる減圧蒸発工程と、(a)分離工程ののち減圧蒸発工程の前の有機溶剤の一部、及び、(b)減圧蒸発工程によって回収される有機溶剤の一部、の少なくとも一方を蒸留して精製する蒸留工程と、を有し、減圧蒸発工程によって回収されかつ蒸留工程にまわされていない有機溶剤に蒸留工程で精製された有機溶剤を混合して有機溶剤の供給先に供給する。 The organic solvent purification method of the present invention is a method of separating and purifying an organic solvent from a mixed solution containing water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm, and heating the mixed solution. A heating step of separating the heated mixed solution into an organic solvent and water using a permeation vaporization film, and a decompression evaporation step of evaporating the organic solvent recovered from the concentrated side of the permeation vaporization film under reduced pressure. , (A) A part of the organic solvent after the separation step and before the vacuum evaporation step, and (b) A distillation step of distilling and purifying at least one of the organic solvent recovered by the vacuum evaporation step. , And the organic solvent recovered by the reduced pressure evaporation step and not sent to the distillation step is mixed with the organic solvent purified by the distillation step and supplied to the supply destination of the organic solvent.

本発明では、浸透気化によって有機溶剤の脱水を行なったのち減圧蒸発を行なうことによって有機溶剤の精製を行なう際に、浸透気化後あるいは減圧蒸発後の有機溶剤の一部についてさらに蒸留処理を行うことにより、有機溶剤を循環させて再利用する場合であっても、有機溶剤中での不純物濃度の上昇を抑えることができる。蒸留処理に回される有機溶剤の量は少量でよいので、エネルギー消費の増加量は小さく、また、有機溶剤の回収率の悪化も少ない。したがって本発明では、イオン性不純物や微粒子などを確実に除去できるとともに、低い消費エネルギーかつ高い回収率で高純度の有機溶剤を得ることができる。 In the present invention, when purifying an organic solvent by dehydrating the organic solvent by permeation vaporization and then evaporating under reduced pressure, a part of the organic solvent after permeation vaporization or evaporation under reduced pressure is further distilled. Therefore, even when the organic solvent is circulated and reused, it is possible to suppress an increase in the impurity concentration in the organic solvent. Since the amount of the organic solvent sent to the distillation treatment may be small, the amount of increase in energy consumption is small, and the deterioration of the recovery rate of the organic solvent is also small. Therefore, in the present invention, ionic impurities, fine particles, and the like can be reliably removed, and a high-purity organic solvent can be obtained with low energy consumption and high recovery rate.

本発明の実施の一形態の有機溶剤精製システムの構成を示す図である。It is a figure which shows the structure of the organic solvent purification system of one Embodiment of this invention. 本発明の別の実施形態の有機溶剤精製システムの構成を示す図である。It is a figure which shows the structure of the organic solvent purification system of another embodiment of this invention. 実施例1で用いたシステムの構成を示す図である。It is a figure which shows the structure of the system used in Example 1. FIG. 比較例1で用いたシステムの構成を示す図である。It is a figure which shows the structure of the system used in the comparative example 1. FIG.

次に、本発明の好ましい実施の形態について、図面を参照して説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施の一形態の有機溶剤精製システムとして、本発明に基づく有機溶剤精製システムの基本的な態様を示している。この有機溶剤精製システム10は、有機溶剤と水との混合液から有機溶剤を分離して精製するものであり、例えば、リチウムイオン二次電池の製造工程などから回収される、NMP(すなわちN−メチル−2−ピロリドン)と水との混合液を処理してNMPを分離し精製するために用いられるものである。以下では有機溶剤としてNMPを用いる場合を説明するが、本発明が適用可能な有機溶剤はNMPに限定されるものではない。本発明は、一般的には大気圧(0.1013Mpa)での沸点が水の沸点すなわち100℃よりも高く、好ましくは大気圧下での沸点が浸透気化膜装置の一般的な運転温度である120℃であるかそれ以上である有機溶剤に対しても、適用することができる。このような有機溶剤の例を表1に示す。表1において沸点は0.1013MPaでの値である。 FIG. 1 shows a basic aspect of an organic solvent purification system based on the present invention as an organic solvent purification system according to an embodiment of the present invention. This organic solvent purification system 10 separates and purifies an organic solvent from a mixed solution of an organic solvent and water, and is recovered from, for example, a manufacturing process of a lithium ion secondary battery, NMP (that is, N-). It is used to separate and purify NMP by treating a mixed solution of methyl-2-pyrrolidone) and water. Hereinafter, the case where NMP is used as the organic solvent will be described, but the organic solvent to which the present invention can be applied is not limited to NMP. In the present invention, the boiling point at atmospheric pressure (0.1013 Mpa) is generally higher than the boiling point of water, that is, 100 ° C., and the boiling point under atmospheric pressure is preferably the general operating temperature of the osmotic vaporizer. It can also be applied to organic solvents at 120 ° C. or higher. Table 1 shows examples of such organic solvents. In Table 1, the boiling point is a value at 0.1013 MPa.

Figure 2019193951
Figure 2019193951

本発明が適用可能な有機溶剤としては、水との共沸混合物をつくらない有機溶剤がより好ましい。表1に示した有機溶剤においては、PGME、PGMEA及びピリジンを除いたものが、水との共沸混合物をつくらない有機溶剤である。 As the organic solvent to which the present invention can be applied, an organic solvent that does not form an azeotropic mixture with water is more preferable. Among the organic solvents shown in Table 1, those excluding PGME, PGMEA and pyridine are organic solvents that do not form an azeotropic mixture with water.

例えばリチウムイオン二次電池の製造工程などに用いられるNMP使用設備50は、NMPガスの形態でNMPを排出する。このNMPガスは、例えば、スクラバー51において水と接触させることによりNMP水溶液として回収され、あるいは、吸着剤52に吸着させてそののちこの吸着剤52を水で処理することによりNMP水溶液として回収される。このようにして回収されたNMP水溶液が、本実施形態の有機溶剤精製システム10に供給される。 For example, the NMP-using equipment 50 used in the manufacturing process of a lithium ion secondary battery or the like discharges NMP in the form of NMP gas. This NMP gas is recovered as an NMP aqueous solution by contacting it with water in a scrubber 51, or is recovered as an NMP aqueous solution by adsorbing it on an adsorbent 52 and then treating the adsorbent 52 with water. .. The NMP aqueous solution recovered in this manner is supplied to the organic solvent purification system 10 of the present embodiment.

有機溶剤精製システム10は、回収されたNMP水溶液、すなわちNMPと水との混合液を貯える原液タンク11を有しており、原液タンク11内の混合液は、ポンプ12によって浸透気化装置14に供給される。ポンプ12と浸透気化装置14との間には、混合液を加熱するために加熱器13が設けられており、加熱器13は蒸気が供給されてその蒸気によって混合液を加熱する。浸透気化装置14に供給される混合液は、例えば120℃程度にまで昇温される。浸透気化装置13には、例えばゼオライトによって構成された浸透気化膜15が設けられており、ここで混合液がNMPと水とに分離される。水は浸透気化膜15を透過するので、浸透気化装置14の透過側出口から水蒸気の形態で流出する。この水蒸気は、冷水が供給される凝縮器16によって冷却されて凝縮し、排出される。ゼオライトには、その骨格構造と、含まれているシリコンとアルミニウムとの比率とに応じて、A型、Y型、T型、MOR型、CHA型などの種類があるが、浸透気化膜15をゼオライトで構成する場合には、特許文献2にも記載されているように、A型のゼオライトを用いることが好ましい。リークを防止する必要が特にあるときなどには、例えば、T型、Y型、CHA型のゼオライト膜を用いることが好ましい場合もある。また、A型ゼオライトと、上述したA型以外のゼオライト、例えばT型、Y型、MOR型、CHA型から選択された少なくとも1種類のゼオライトとを含むものを浸透気化膜15に用いることもできる。 The organic solvent purification system 10 has a stock solution tank 11 for storing the recovered NMP aqueous solution, that is, a mixed solution of NMP and water, and the mixed solution in the stock solution tank 11 is supplied to the permeation vaporizer 14 by the pump 12. Will be done. A heater 13 is provided between the pump 12 and the permeation vaporizer 14 to heat the mixed liquid, and the heater 13 is supplied with steam and heats the mixed liquid by the steam. The temperature of the mixed solution supplied to the osmotic vaporizer 14 is raised to, for example, about 120 ° C. The osmotic vaporizer 13 is provided with an osmotic vaporizing membrane 15 made of, for example, zeolite, in which the mixed solution is separated into NMP and water. Since water permeates the osmotic vaporization membrane 15, it flows out in the form of water vapor from the permeation side outlet of the osmotic vaporizer 14. This water vapor is cooled by the condenser 16 to which cold water is supplied, condensed, and discharged. Zeolites are classified into A-type, Y-type, T-type, MOR-type, CHA-type, etc., depending on their skeletal structure and the ratio of silicon and aluminum contained in them. When composed of zeolite, it is preferable to use type A zeolite as described in Patent Document 2. When it is particularly necessary to prevent leakage, for example, it may be preferable to use a T-type, Y-type, or CHA-type zeolite membrane. Further, a zeolite containing A-type zeolite and a zeolite other than the above-mentioned A-type, for example, at least one type of zeolite selected from T-type, Y-type, MOR-type, and CHA-type can be used for the permeation vaporization membrane 15. ..

NMPは、浸透気化膜15を透過しないので、浸透気化装置14において濃縮側(すなわち浸透気化膜15を挟んで混合液の供給側)に設けられている出口から排出されて減圧蒸発缶20に供給される。減圧蒸発缶20には、図1には示していないが配管を介して真空ポンプが接続しており、例えばNMPの沸点が130℃となるような圧力とするように、減圧蒸発缶20内の圧力が制御されている。減圧蒸発缶20には、NMPを気化させるために必要な量の蒸気が供給されている。この減圧蒸発缶20は、イオン性不純物や微粒子などの難揮発性の不純物を除去するために設けられている。 Since the NMP does not permeate the osmotic vaporization membrane 15, it is discharged from the outlet provided on the concentration side (that is, the supply side of the mixture across the osmotic vaporization membrane 15) in the osmotic vaporizer 14 and supplied to the vacuum evaporation can 20. Will be done. Although not shown in FIG. 1, a vacuum pump is connected to the vacuum evaporation can 20 via a pipe. For example, the pressure inside the vacuum evaporation can 20 is such that the boiling point of NMP is 130 ° C. The pressure is controlled. The vacuum evaporation can 20 is supplied with an amount of steam required for vaporizing NMP. The vacuum evaporation can 20 is provided to remove volatile impurities such as ionic impurities and fine particles.

減圧蒸発缶20の気相側の出口すなわち蒸留成分側の出口には、減圧蒸発缶20内で気化したNMPを排出する配管21が取り付けられ、配管21の途中には、NMPを凝縮するための冷却器22が設けられている。配管21の出口には配管24と配管25が接続し、配管21の出口から流れ出たNMPの一部が分流して配管24に流れ、残りが配管25に流れるようになっている。配管24には、NMPをさらに精製する蒸留装置31が設けられている。減圧蒸発缶20より回収されてNMP供給先に供給されるNMPが流れる供給配管が、配管21及び配管25によって構成されている。配管24は、供給配管から分岐して蒸留装置31の入口に接続し、減圧蒸発缶20で得たNMPの一部を蒸留装置31に供給する分岐配管である。減圧蒸発缶20の出口としては、気相側の出口すなわち蒸留成分側の出口だけでなく、液相側の出口すなわち濃縮液(缶残液ともいう)を排出する出口も設けられている。図示されるシステムでは、減圧蒸発缶20の缶残液も蒸留装置31に送るために、減圧蒸発缶20の液相側の出口と蒸留装置31とを接続する配管35が設けられている。また、図1において破線で示すように、浸透気化装置14の濃縮側と減圧蒸発缶20の入口との間の配管から分流したNMPを蒸留装置31に直接供給してもよい。 A pipe 21 for discharging the NMP vaporized in the vacuum evaporation can 20 is attached to the outlet on the gas phase side of the vacuum evaporation can 20, that is, the outlet on the distillation component side, and a pipe 21 for condensing the NMP is attached in the middle of the pipe 21. A cooler 22 is provided. The pipe 24 and the pipe 25 are connected to the outlet of the pipe 21, and a part of the NMP flowing out from the outlet of the pipe 21 is divided and flows to the pipe 24, and the rest flows to the pipe 25. The pipe 24 is provided with a distillation apparatus 31 for further purifying NMP. The supply pipe through which the NMP collected from the vacuum evaporation can 20 and supplied to the NMP supply destination flows is composed of the pipe 21 and the pipe 25. The pipe 24 is a branch pipe that branches from the supply pipe and connects to the inlet of the distillation apparatus 31 to supply a part of the NMP obtained in the vacuum evaporation can 20 to the distillation apparatus 31. As the outlet of the vacuum evaporation can 20, not only the outlet on the gas phase side, that is, the outlet on the distillation component side, but also the outlet on the liquid phase side, that is, the outlet for discharging the concentrated liquid (also referred to as the residual liquid in the can) is provided. In the system shown in the figure, a pipe 35 is provided to connect the outlet on the liquid phase side of the vacuum evaporation can 20 and the distillation apparatus 31 in order to send the residual liquid of the vacuum evaporation can 20 to the distillation apparatus 31 as well. Further, as shown by the broken line in FIG. 1, the NMP diverted from the pipe between the concentration side of the permeation vaporizer 14 and the inlet of the vacuum evaporation can 20 may be directly supplied to the distillation apparatus 31.

NMPの蒸留に用いられる蒸留装置31としては各種のものが公知であるが、ここでは、例えば、NMPとNMPよりも高い沸点を有する物質すなわち高沸点物質とを分離する精密蒸留装置や、NMPとNMPよりも低い沸点を有する物質を分離する分離塔、NMPと高沸点物質とをそれぞれ分離する2塔式精密蒸留装置などを用いることができる。蒸留装置31は連続式のものであっても回分式のものであってもよい。蒸留装置31のNMP留分の出口には配管33が接続し、配管33は配管25に合流している。その結果、この有機溶媒精製システム10では、配管25を介して流れてくるNMP、すなわち減圧蒸発缶20から回収されたが蒸留装置31には送られなかったNMPに対し、蒸留装置31での蒸留によって得られたNMPが混合されることになる。この混合されたNMPが、この有機溶媒精製システム10から供給されるNMPとして、NMPの供給先、例えば上述したNMP使用設備50に供給される。 Various types of distillation apparatus 31 used for distilling NMP are known. Here, for example, a precision distillation apparatus that separates NMP and a substance having a boiling point higher than that of NMP, that is, a substance having a high boiling point, and NMP A separation tower for separating substances having a boiling point lower than that of NMP, a two-tower type precision distillation apparatus for separating NMP and a substance having a high boiling point, and the like can be used. The distillation apparatus 31 may be a continuous type or a batch type. A pipe 33 is connected to the outlet of the NMP distillate of the distillation apparatus 31, and the pipe 33 joins the pipe 25. As a result, in this organic solvent purification system 10, the NMP flowing through the pipe 25, that is, the NMP recovered from the vacuum evaporation can 20 but not sent to the distillation apparatus 31, is distilled in the distillation apparatus 31. The NMP obtained in the above will be mixed. The mixed NMP is supplied to the NMP supply destination, for example, the above-mentioned NMP use facility 50 as the NMP supplied from the organic solvent purification system 10.

ここで、本実施形態の有機溶媒精製システム10において蒸留装置31に送られるNMPの割合について説明する。以下では、質量を基準としてNMPの割合を表すものとする。蒸留装置31を介することにより、より高純度のNMPを得ることができるが、蒸留を行なう分、消費エネルギーが増大する。また、得られるNMPの純度を高めるにつれて蒸留工程でのNMPの回収率が低下する傾向もある。そこで、本実施形態では、蒸留装置31として、蒸留の際の有機溶剤の損失が無視できる構成のものを用いることが好ましいとともに、精製されて供給先に供給される有機溶剤の一部のみが蒸留工程を経たものとする。有機溶剤の循環再利用による不純物の増加を抑制するためには、供給先に供給される有機溶剤の量を基準として、蒸留装置31に供給される有機溶剤の量は、例えば、0.1%以上とすることが好ましく、0.5%以上とすることがより好ましく、1.5%以上とすることがさらに好ましい。ただし、蒸留装置31に供給される有機溶剤の量が多くなると、その分、蒸留装置31として大型のものが必要となるとともに蒸留に必要なエネルギーが増大するから、過度に多量の有機溶剤を蒸留装置31に供給しないようにすることが好ましい。エネルギー消費の増大や設備規模の増大を防ぐ観点からは、供給先に供給される有機溶剤の量を基準として、蒸留装置31に供給される有機溶剤の量は、例えば、50%以下とすることが好ましく、20%以下とすることがより好ましく、10%以下とすることがさらに好ましい。供給先に供給される有機溶剤に関し、その純度は蒸留装置31で得られる有機溶剤の純度を超えることはなく、蒸留装置31で得られる有機溶剤の割合が上昇するにつれて純度の上昇は頭打ちになる傾向にあるが、蒸留装置31で消費されるエネルギーは直線的に上昇する。供給先において必要となる純度と許容できるエネルギー消費量との関係において、蒸留装置31に供給される有機溶剤の量を決定すればよい。 Here, the ratio of NMP sent to the distillation apparatus 31 in the organic solvent purification system 10 of the present embodiment will be described. In the following, it is assumed that the ratio of NMP is expressed based on the mass. Higher purity NMP can be obtained through the distillation apparatus 31, but the energy consumption is increased by the amount of distillation. Further, as the purity of the obtained NMP is increased, the recovery rate of NMP in the distillation step tends to decrease. Therefore, in the present embodiment, it is preferable to use a distillation apparatus 31 having a configuration in which the loss of the organic solvent during distillation can be ignored, and only a part of the organic solvent purified and supplied to the supply destination is distilled. It is assumed that the process has been completed. In order to suppress the increase of impurities due to the circulation and reuse of the organic solvent, the amount of the organic solvent supplied to the distillation apparatus 31 is, for example, 0.1% based on the amount of the organic solvent supplied to the supply destination. The above is preferable, 0.5% or more is more preferable, and 1.5% or more is further preferable. However, as the amount of the organic solvent supplied to the distillation apparatus 31 increases, a large distillation apparatus 31 is required and the energy required for distillation increases accordingly, so that an excessively large amount of the organic solvent is distilled. It is preferable not to supply the device 31. From the viewpoint of preventing an increase in energy consumption and an increase in equipment scale, the amount of organic solvent supplied to the distillation apparatus 31 should be, for example, 50% or less based on the amount of organic solvent supplied to the supply destination. Is preferable, and it is more preferably 20% or less, and further preferably 10% or less. Regarding the organic solvent supplied to the supply destination, the purity does not exceed the purity of the organic solvent obtained by the distillation apparatus 31, and the increase in purity reaches a plateau as the proportion of the organic solvent obtained by the distillation apparatus 31 increases. Although there is a tendency, the energy consumed by the distillation apparatus 31 rises linearly. The amount of the organic solvent supplied to the distillation apparatus 31 may be determined in relation to the purity required at the supply destination and the allowable energy consumption.

したがって、図1の構成において、蒸留装置31でのNMPの損失が無視でき、配管35を介して蒸留装置31に送られるNMPの量が無視できるものとすれば、配管21の出口から流出するNMPのうちの例えば0.1%以上50%以下が配管24を介して蒸留装置31に供給され、残りが配管25に流入するようにすることが好ましい。実際には減圧蒸発缶20の缶残液にもNMPが含まれているから、缶残液に含まれるNMPの量も考慮しつつ、配管21から配管24と配管25とに流れるNMPの比率を決定すればよい。 Therefore, in the configuration of FIG. 1, if the loss of NMP in the distillation apparatus 31 is negligible and the amount of NMP sent to the distillation apparatus 31 via the pipe 35 is negligible, the NMP flowing out from the outlet of the pipe 21 is negligible. It is preferable that, for example, 0.1% or more and 50% or less of the above is supplied to the distillation apparatus 31 via the pipe 24, and the rest flows into the pipe 25. Actually, NMP is also contained in the residual liquid of the vacuum evaporating can 20, so the ratio of NMP flowing from the pipe 21 to the pipe 24 and the pipe 25 is determined while considering the amount of NMP contained in the can residual liquid. You just have to decide.

NMPを循環再利用する場合、回収したNMP中に、NMPと同程度の沸点を有する有機不純物が含まれるようになる。本実施形態の有機溶剤精製システム10では、減圧蒸発缶20から回収されたNMPの一部を蒸留装置31によってさらに精製することにより、NMPと同程度の沸点を有する不純物が蒸留によって除去されるので、NMPの循環再利用を行なう場合であっても、NMP中での不純物濃度の上昇を抑えることができる。また、蒸留を行なうので、蒸留装置31に供給されるNMPは減圧蒸発缶20の出口側から分流したものでなくてもよく、浸透気化装置14の濃縮側から流れ出て減圧蒸発缶20の入口に達する前のNMPの一部を蒸留装置31に供給するようにしてもよい。 When NMP is recycled and reused, the recovered NMP contains organic impurities having a boiling point similar to that of NMP. In the organic solvent purification system 10 of the present embodiment, by further purifying a part of the NMP recovered from the vacuum evaporation can 20 by the distillation apparatus 31, impurities having a boiling point similar to that of the NMP are removed by distillation. Even when the NMP is recycled and reused, the increase in the impurity concentration in the NMP can be suppressed. Further, since distillation is performed, the NMP supplied to the distillation apparatus 31 does not have to be separated from the outlet side of the vacuum distillation can 20, and flows out from the concentration side of the permeation vaporizer 14 to the inlet of the vacuum evaporation can 20. A part of the NMP before reaching may be supplied to the distillation apparatus 31.

以上の説明は、蒸留装置31はオンサイト(on-site)に設けられることを想定しているが、本実施形態では、蒸留装置31としてオフサイト(off-site)に設けられるものを使用することもできる。オフサイトに設けられる蒸留装置31を使用する場合には、配管24,31,35の先端にNMPの取り出し口を設けてこれらの取り出し口から得られたNMPをオフサイトの蒸留装置31に輸送し、配管33を設ける代わりに配管25にNMPの受け入れ口を設け、オフサイトの蒸留装置31によって蒸留されて輸送されてきたNMPをこの受け入れ口で受け入れて配管25に導入すればよい。 The above description assumes that the distillation apparatus 31 is provided on-site, but in the present embodiment, the distillation apparatus 31 provided on-site is used. You can also do it. When the distillation apparatus 31 provided off-site is used, NMP outlets are provided at the tips of the pipes 24, 31, and 35, and the NMP obtained from these outlets is transported to the off-site distillation apparatus 31. Instead of providing the pipe 33, the pipe 25 may be provided with an NMP receiving port, and the NMP distilled and transported by the off-site distillation apparatus 31 may be received by this receiving port and introduced into the pipe 25.

次に、本発明の別の実施形態について説明する。図2に示す有機溶剤精製システムは、特許文献2に記載されたものと同様に、減圧蒸発缶20から回収されるNMPガスが有する凝縮潜熱を、浸透気化装置14に供給されるNMPと水との混合液の加熱に用いるものである。図2に示す有機溶剤精製システムは、図1に示す有機溶剤精製システム10において、ポンプ12と加熱器13との間の配管に、混合液を加熱するための加熱器40をさらに設け、配管21がこの加熱器40を経由するようにしたものである。加熱器40の位置は、配管21において減圧蒸発缶20と冷却器22との間であり、配管21を流れるNMPガスの熱エネルギーが加熱器40において混合液の加熱に用いられる。さらに、冷却器22の出口には精密ろ過膜26が配置されており、精密ろ過膜26を通過したNMPが配管24,25に供給される。凝縮器16の出口には、凝縮器16で凝縮した水を貯える透過水タンク17が設けられている。 Next, another embodiment of the present invention will be described. In the organic solvent purification system shown in FIG. 2, the latent heat of condensation contained in the NMP gas recovered from the vacuum evaporation can 20 is transferred to the NMP and water supplied to the permeation vaporizer 14 in the same manner as described in Patent Document 2. It is used for heating the mixed solution of. In the organic solvent refining system shown in FIG. 2, in the organic solvent refining system 10 shown in FIG. 1, a heater 40 for heating the mixed liquid is further provided in the pipe between the pump 12 and the heater 13, and the pipe 21 is provided. Is made to pass through this heater 40. The position of the heater 40 is between the vacuum evaporation can 20 and the cooler 22 in the pipe 21, and the thermal energy of the NMP gas flowing through the pipe 21 is used to heat the mixed liquid in the heater 40. Further, a microfiltration membrane 26 is arranged at the outlet of the cooler 22, and NMP that has passed through the microfiltration membrane 26 is supplied to the pipes 24 and 25. A permeated water tank 17 for storing the water condensed by the condenser 16 is provided at the outlet of the condenser 16.

図2に示す有機溶剤精製システムでは、減圧蒸発20からに気化した例えば130℃のNMPは、配管21を介し、加熱器40の熱源として加熱器40に供給される。加熱器40に供給されたNMP蒸気は、加熱器40を流れる混合液を加熱する際に凝縮する。したがって、加熱器40は混合液の加熱を行うとともにNMP蒸気の凝縮器としても機能することになる。加熱器40での加熱に蒸気等の外部熱源を熱媒として利用することなく、NMP蒸気と、NMPと水の混合液とを直接熱交換することが可能になるため、NMP蒸気温度を過度に高くする必要がなくなり、NMP精製のためのエネルギー効率が高くなる。加熱器40でのNMP蒸気側の出口には冷却器22及び精密ろ過膜26がこの順で接続しているから、NMPは冷却器22によって冷却されて完全に液体状態となり、精密ろ過膜26によって微粒子類が最終的に除去される。その結果、精密ろ過膜26の出口、すなわち配管21の出口からは、精製されたNMPが得られることになる。精製されたNMPの一部は、配管24を介して蒸留装置21に送られてさらに精製される。 In the organic solvent purification system shown in FIG. 2, NMP at, for example, 130 ° C. vaporized from the reduced pressure evaporation 20 is supplied to the heater 40 as a heat source of the heater 40 via the pipe 21. The NMP vapor supplied to the heater 40 condenses when heating the mixed solution flowing through the heater 40. Therefore, the heater 40 heats the mixed solution and also functions as a condenser of NMP steam. Since it is possible to directly exchange heat between NMP steam and a mixed solution of NMP and water without using an external heat source such as steam as a heat medium for heating in the heater 40, the NMP steam temperature becomes excessive. It does not need to be high and is more energy efficient for NMP purification. Since the cooler 22 and the microfiltration membrane 26 are connected in this order to the outlet on the NMP steam side of the heater 40, the NMP is cooled by the cooler 22 and becomes completely liquid, and the microfiltration membrane 26 cools the NMP. The fine particles are finally removed. As a result, purified NMP can be obtained from the outlet of the microfiltration membrane 26, that is, the outlet of the pipe 21. A part of the purified NMP is sent to the distillation apparatus 21 via the pipe 24 for further purification.

図2に示す有機溶剤精製システムでは、特許文献2に示されるように、ポンプ12と加熱器40との間の配管に、混合液からイオン性不純物を除去するイオン交換装置を設けてもよく、このイオン交換装置に供給される前に混合液の脱気を行なうための脱気装置を設けてもよい。さらに、2個の浸透気化装置を直列に接続して、NMPからの水の除去率を向上させるようにしてもよい。 In the organic solvent purification system shown in FIG. 2, as shown in Patent Document 2, an ion exchange device for removing ionic impurities from the mixed solution may be provided in the pipe between the pump 12 and the heater 40. A degassing device for degassing the mixed solution before being supplied to the ion exchange device may be provided. Further, two osmotic vaporizers may be connected in series to improve the removal rate of water from NMP.

次に、本発明に実施例及び比較例に基づき、本発明をさらに詳しく説明する。 Next, the present invention will be described in more detail based on Examples and Comparative Examples of the present invention.

[実施例1]
図3に示す装置を組み立てた。この装置は、NMPと水との混合液すなわちNMP水溶液を貯える原液タンク11と、浸透気化膜15を有する浸透気化装置14と、原液タンク11内のNMP水溶液を浸透気化装置14に給送するポンプ12と、浸透気化装置14の濃縮側の出口に接続された減圧蒸発缶20と、減圧蒸発缶20の気相側の出口から回収されたNMPが配管21を介して供給されてそのNMPを貯える精製液タンク60と、を備えている。ポンプ12と浸透気化装置14との間には、NMP水溶液を120℃まで加熱するために加熱器13が設けられており、加熱器13は蒸気が供給されている。浸透気化膜15を透過した水を冷却して凝縮させる凝縮器16が、浸透気化装置14の透過側の出口に接続している。浸透気化装置14の濃縮側の出口と減圧蒸発缶20との間の配管と、配管21には、それぞれ、それらの配管を流れるNMPを常温まで冷却する冷却器19,22が設けられており、冷却器19,22には冷却水が供給される。減圧蒸発缶20には蒸気を供給し、120℃の温度でNMPの減圧蒸発が行われるようにした。さらに図3に示す装置では、NMPの循環再利用を模するために、精製液タンク60から原液タンク11にNMPを循環させる配管61を設けた。減圧蒸発缶20から回収されたNMPの一部を蒸留することを模するために、配管61からそこを流れるNMPの一部を排出するための配管62を接続し、配管62との接続点より下流側の位置で、予め蒸留によって精製されたNMP(純度:99.9%。以下、蒸留NMPと呼ぶ)を系に注入するための配管63を配管61に接続した。配管62には、減圧蒸発缶20の缶残液を排出する出口すなわち液相側の出口に接続される配管35も接続している。したがって、配管62によって抜き出されるNMPの量は、配管61から抜き出されたNMPの量と配管35から抜き出された缶残液中のNMPの量との和ということになる。配管62によって抜き出されるNMPの量と、配管63によって注入される蒸留NMPの量とが等しくなるようにした。
[Example 1]
The device shown in FIG. 3 was assembled. This device is a stock solution tank 11 for storing a mixed solution of NMP and water, that is, an NMP aqueous solution, a permeation vaporizer 14 having an osmotic vaporization film 15, and a pump for feeding the NMP aqueous solution in the undiluted solution tank 11 to the permeation vaporizer 14. 12, the decompression vaporization can 20 connected to the outlet on the concentration side of the osmotic vaporizer 14, and the NMP recovered from the outlet on the gas phase side of the decompression vaporization can 20 are supplied via the pipe 21 to store the NMP. It is provided with a purification liquid tank 60. A heater 13 is provided between the pump 12 and the permeation vaporizer 14 to heat the NMP aqueous solution to 120 ° C., and steam is supplied to the heater 13. A condenser 16 that cools and condenses the water that has passed through the osmotic vaporization membrane 15 is connected to the outlet on the osmotic side of the osmotic vaporizer 14. The pipes between the outlet on the concentration side of the permeation vaporizer 14 and the vacuum evaporating can 20 and the pipes 21 are provided with coolers 19 and 22, which cool the NMP flowing through those pipes to room temperature, respectively. Cooling water is supplied to the coolers 19 and 22. Steam was supplied to the vacuum evaporation can 20 so that the vacuum evaporation of NMP was carried out at a temperature of 120 ° C. Further, in the apparatus shown in FIG. 3, in order to imitate the circulation reuse of NMP, a pipe 61 for circulating NMP from the purification liquid tank 60 to the stock solution tank 11 is provided. In order to imitate distilling a part of the NMP recovered from the vacuum evaporation can 20, a pipe 62 for discharging a part of the NMP flowing there is connected from the pipe 61, and from the connection point with the pipe 62. At a position on the downstream side, a pipe 63 for injecting NMP (purity: 99.9%, hereinafter referred to as distilled NMP) purified by distillation into the system was connected to the pipe 61. A pipe 35 connected to an outlet for discharging the residual liquid of the vacuum evaporation can 20, that is, an outlet on the liquid phase side is also connected to the pipe 62. Therefore, the amount of NMP extracted by the pipe 62 is the sum of the amount of NMP extracted from the pipe 61 and the amount of NMP in the can residual liquid extracted from the pipe 35. The amount of NMP extracted by the pipe 62 and the amount of distilled NMP injected by the pipe 63 were made equal.

質量基準での含水率が20%であるNMP水溶液を原液タンク11に調製したのち、原液タンク11内のNMP水溶液のNMPとしての純度をGC(ガスクロマトグラフ)装置により確認した。そして、ポンプ12を駆動して原液タンク11内のNMP水溶液を浸透気化装置14に供給して120℃において浸透気化脱水を行い、続いて脱水後のNMPを連続的に減圧蒸発缶20に供給して、120℃において減圧蒸発を行なった。減圧蒸発を経たNMPを精製液タンク60に保存した。 After preparing an NMP aqueous solution having a water content of 20% on a mass basis in the stock solution tank 11, the purity of the NMP aqueous solution in the stock solution tank 11 as NMP was confirmed by a GC (gas chromatograph) device. Then, the pump 12 is driven to supply the NMP aqueous solution in the stock solution tank 11 to the osmotic vaporizer 14 to perform osmotic vaporization and dehydration at 120 ° C., and then the dehydrated NMP is continuously supplied to the reduced pressure evaporation can 20. Then, evaporation under reduced pressure was carried out at 120 ° C. The NMP that had undergone vacuum evaporation was stored in the purification liquid tank 60.

精製液タンク60から配管61を介してNMPを循環させながら、原液タンク11内のNMP水溶液の含水率を測定し、この含水率が20%を維持するように原液タンク11に純水を継ぎ足した。また、上述のように配管62を介してNMPを抜き出し、配管62を介して抜き出すNMPの量を、原液タンク11から排出されるNMPの量に対し、0.5%から10%の範囲で変化させ、抜き出されたNMPと同量の蒸留NMPを配管63を介して配管61に注入した。配管61を介したMMPの循環、原液タンク11への純水の継ぎ足し、配管62からのNMPの抜き出し及び配管63からの蒸留NMPの注入を継続的に行ないながら、精製液タンク61内のNMPの純度をGC装置により経時的に観察した。結果を表2に示す。 The water content of the NMP aqueous solution in the stock solution tank 11 was measured while circulating NMP from the purification liquid tank 60 via the pipe 61, and pure water was added to the stock solution tank 11 so that the water content was maintained at 20%. .. Further, as described above, the NMP is extracted through the pipe 62, and the amount of NMP extracted via the pipe 62 is changed in the range of 0.5% to 10% with respect to the amount of NMP discharged from the undiluted solution tank 11. Then, the same amount of distilled NMP as the extracted NMP was injected into the pipe 61 via the pipe 63. While continuously circulating MMP through the pipe 61, adding pure water to the stock solution tank 11, extracting NMP from the pipe 62, and injecting distilled NMP from the pipe 63, the NMP in the purified liquid tank 61 The purity was observed over time with a GC device. The results are shown in Table 2.

[比較例1]
比較例1として、図4に示す装置を組み立てた。図4に示す装置は、図3に示す装置から配管35,62,63を取り除いたものである。したがって、図4に示す装置は、循環再利用するNMPを精製するために用いられるが蒸留装置を備えない有機溶剤精製システムに相当する。図4の装置においても、図3に示した実施例1の場合と同様に、配管61を介したMMPの循環、及び原液タンク11への純水の継ぎ足しを継続的に行ないながら、精製液タンク61内のNMPの純度をGCにより経時的に観察した。結果を表2に示す。
[Comparative Example 1]
As Comparative Example 1, the apparatus shown in FIG. 4 was assembled. The device shown in FIG. 4 is the device shown in FIG. 3 with the pipes 35, 62, and 63 removed. Therefore, the apparatus shown in FIG. 4 corresponds to an organic solvent purification system used for purifying NMP that is recycled but not provided with a distillation apparatus. In the apparatus of FIG. 4, as in the case of the first embodiment shown in FIG. 3, the purified liquid tank is continuously circulated through the pipe 61 and the pure water is replenished to the stock solution tank 11. The purity of NMP in 61 was observed over time by GC. The results are shown in Table 2.

Figure 2019193951
Figure 2019193951

表2に示されるように蒸留装置を設けなかった場合に相当する比較例では、60日間にわたるNMPの循環と精製とにより、NMP純度が99.860%から99.844%まで低下した。これに対し、減圧蒸発缶20から回収したNMPの一部を蒸留したことに相当する実施例では、60日間にわたってNMPの循環と精製とを行なってもNMP純度の低下が少なく、抜き出し量が1.5%程度を超えると、むしろNMPの純度が向上した。また、これにより、抜き出し量が10〜20%もあれば、NMP純度を99.9%以上にできることがわかる。 In the comparative example corresponding to the case where the distillation apparatus was not provided as shown in Table 2, the NMP purity was reduced from 99.860% to 99.844% by the circulation and purification of NMP for 60 days. On the other hand, in the example corresponding to distilling a part of the NMP recovered from the vacuum evaporation can 20, the decrease in NMP purity is small even if the NMP is circulated and purified for 60 days, and the extraction amount is 1. When it exceeded about 5.5%, the purity of NMP was rather improved. Further, it can be seen from this that if the extraction amount is as much as 10 to 20%, the NMP purity can be increased to 99.9% or more.

10 有機溶剤精製システム
11 原液タンク
13 加熱器
14 浸透気化装置
20 減圧蒸発缶
21,24,25,33,35 配管
22,32 冷却器
31 蒸留装置
10 Organic solvent refining system 11 Undiluted solution tank 13 Heater 14 Permeation vaporizer 20 Decompression vaporization can 21, 24, 25, 33, 35 Piping 22, 32 Cooler 31 Distiller

Claims (10)

有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から前記有機溶剤を分離して精製する有機溶剤精製システムであって、
前記混合液を加熱する加熱手段と、
前記加熱手段の後段に設けられ、浸透気化膜を備えて前記有機溶剤と前記水とを分離する浸透気化装置と、
前記浸透気化装置の濃縮側から回収される前記有機溶剤が供給される減圧蒸発缶と、
前記減圧蒸発缶とは独立して設けられた蒸留装置と、
を有し、
(a)前記浸透気化装置の前記濃縮側と前記減圧蒸発缶の入口との間から分流した前記有機溶剤、及び、(b)前記減圧蒸発缶の気相側の出口から排出された前記有機溶剤の一部、の少なくとも一方が前記蒸留装置に供給され、
前記減圧蒸発缶より回収された前記有機溶剤に対して前記蒸留装置により蒸留された前記有機溶剤を混合して前記有機溶剤の供給先に供給する、有機溶剤精製システム。
An organic solvent purification system that separates and purifies the organic solvent from a mixture containing water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm.
A heating means for heating the mixed solution and
An osmotic vaporizer provided after the heating means and provided with an osmotic vaporizing membrane to separate the organic solvent and the water.
A vacuum evaporation can to which the organic solvent recovered from the concentration side of the permeation vaporizer is supplied, and
A distillation apparatus provided independently of the vacuum evaporation can and
Have,
(A) The organic solvent diverged from between the concentration side of the permeation vaporizer and the inlet of the vacuum distillation can, and (b) the organic solvent discharged from the outlet on the gas phase side of the vacuum distillation can. At least one of the parts of the above is supplied to the distillation apparatus.
An organic solvent purification system in which the organic solvent recovered from the vacuum evaporation can is mixed with the organic solvent distilled by the distillation apparatus and supplied to a supply destination of the organic solvent.
前記減圧蒸発缶の液相側の出口から排出される液体も前記蒸留装置に供給される、請求項1に記載の有機溶剤精製システム。 The organic solvent purification system according to claim 1, wherein the liquid discharged from the outlet on the liquid phase side of the vacuum evaporation can is also supplied to the distillation apparatus. 前記減圧蒸発缶の前記気相側の出口に接続されて前記減圧蒸発缶より回収されて前記供給先に供給される有機溶剤が流れる供給配管と、
前記供給配管から分岐して前記蒸留装置の入口に接続する分岐配管と、
前記蒸留装置の前記有機溶剤の留分の出口と前記供給配管とを接続する配管と、
をさらに備える請求項1または2に記載の有機溶剤精製システム。
A supply pipe connected to the outlet on the gas phase side of the vacuum evaporation can and through which an organic solvent collected from the vacuum evaporation can and supplied to the supply destination flows.
A branch pipe that branches from the supply pipe and connects to the inlet of the distillation apparatus,
A pipe connecting the outlet of the organic solvent distillate of the distillation apparatus and the supply pipe, and
The organic solvent purification system according to claim 1 or 2, further comprising.
前記減圧蒸発缶で気化し前記供給配管を流れる前記有機溶剤が前記加熱手段の熱源として用いられる、請求項3に記載の有機溶剤精製システム。 The organic solvent purification system according to claim 3, wherein the organic solvent that vaporizes in the vacuum evaporation can and flows through the supply pipe is used as a heat source for the heating means. 前記蒸留装置に供給される前記有機溶剤の量は、前記供給先に供給される前記有機溶剤の量を基準として、0.1質量%以上である、請求項1乃至4のいずれか1項に記載の有機溶剤精製システム。 The amount of the organic solvent supplied to the distillation apparatus is 0.1% by mass or more based on the amount of the organic solvent supplied to the supply destination, according to any one of claims 1 to 4. The organic solvent purification system described. 前記供給先は、前記有機溶剤を使用する設備であり、前記混合液は、前記設備から回収される回収液である、請求項1乃至5のいずれか1項に記載の有機溶剤精製システム。 The organic solvent purification system according to any one of claims 1 to 5, wherein the supply destination is equipment using the organic solvent, and the mixed liquid is a recovery liquid recovered from the equipment. 有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から前記有機溶剤を分離して精製する方法であって、
前記混合液を加熱する加熱工程と、
前記加熱された混合液を、浸透気化膜を用いて前記有機溶剤と前記水とに分離する分離工程と、
前記浸透気化膜の濃縮側から回収される前記有機溶剤を減圧蒸発させる減圧蒸発工程と、
(a)前記分離工程ののち前記減圧蒸発工程の前の前記有機溶剤の一部、及び、(b)前記減圧蒸発工程によって回収される前記有機溶剤の一部、の少なくとも一方を蒸留して精製する蒸留工程と、
を有し、前記減圧蒸発工程によって回収されかつ前記蒸留工程にまわされていない前記有機溶剤に前記蒸留工程で精製された前記有機溶剤を混合して前記有機溶剤の供給先に供給する方法。
A method of separating and purifying the organic solvent from a mixed solution containing water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm.
A heating step for heating the mixed solution and
A separation step of separating the heated mixed solution into the organic solvent and the water using an osmotic vaporization membrane.
A vacuum evaporation step of evaporating the organic solvent recovered from the concentrated side of the osmotic vaporization membrane under reduced pressure, and
At least one of (a) a part of the organic solvent after the separation step and before the vacuum distillation step and (b) a part of the organic solvent recovered by the vacuum evaporation step are distilled and purified. Distillation process and
A method in which the organic solvent purified in the distillation step is mixed with the organic solvent recovered by the vacuum distillation step and not sent to the distillation step and supplied to the supply destination of the organic solvent.
前記減圧蒸発工程によって気化した前記有機溶剤の熱エネルギーを前記加熱工程での熱源として用いる、請求項7に記載の方法。 The method according to claim 7, wherein the thermal energy of the organic solvent vaporized by the reduced pressure evaporation step is used as a heat source in the heating step. 前記蒸留工程にまわされる前記有機溶剤の量は、前記供給先に供給される前記有機溶剤の量を基準として、0.1質量%以上である、請求項7または8に記載の方法。 The method according to claim 7 or 8, wherein the amount of the organic solvent sent to the distillation step is 0.1% by mass or more based on the amount of the organic solvent supplied to the supply destination. 前記供給先は、前記有機溶剤を使用する設備であり、前記混合液は、前記設備から回収される回収液である、請求項7乃至9のいずれか1項に記載の方法。 The method according to any one of claims 7 to 9, wherein the supply destination is equipment using the organic solvent, and the mixed liquid is a recovery liquid recovered from the equipment.
JP2020511679A 2018-04-04 2019-03-15 Organic solvent purification system and method Active JP6970280B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018072077 2018-04-04
JP2018072077 2018-04-04
PCT/JP2019/010767 WO2019193951A1 (en) 2018-04-04 2019-03-15 Organic solvent purification system and method

Publications (2)

Publication Number Publication Date
JPWO2019193951A1 true JPWO2019193951A1 (en) 2021-03-11
JP6970280B2 JP6970280B2 (en) 2021-11-24

Family

ID=68100522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020511679A Active JP6970280B2 (en) 2018-04-04 2019-03-15 Organic solvent purification system and method

Country Status (3)

Country Link
JP (1) JP6970280B2 (en)
CN (1) CN111971255B (en)
WO (1) WO2019193951A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224768A1 (en) * 2021-04-20 2022-10-27 オルガノ株式会社 Cleaning method for electrode active material, battery, manufacturing method for electrode and electrode active material, and mixture manufacturing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504228A (en) * 1991-06-07 1994-05-19 ジヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・カンパニー・コマンデット・ゲゼルシャフト Compressor system with a device for continuous purification of the working fluid
JPH06254597A (en) * 1993-03-08 1994-09-13 Mitsui Eng & Shipbuild Co Ltd Treatment of aromatic compound containing waste water
JPH06277456A (en) * 1993-02-06 1994-10-04 Basf Ag Permeating evaporation of liquid mixture using membrane and azeotropic separating method by distillation
JP2013018747A (en) * 2011-07-12 2013-01-31 Japan Organo Co Ltd Nmp purification system in electrode production process
WO2016017491A1 (en) * 2014-07-29 2016-02-04 オルガノ株式会社 System and method for organic solvent purification
CN107803319A (en) * 2017-11-13 2018-03-16 林州朗坤科技有限公司 A kind of NMP recovery purification systems and its recovery method of purification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1614458B1 (en) * 2003-02-21 2010-02-17 Mitsubishi Chemical Corporation Method for concentrating water-soluble organic material
JP5793157B2 (en) * 2013-03-04 2015-10-14 日本リファイン株式会社 Solution processing equipment
CN104707549B (en) * 2015-03-19 2016-09-14 张汉文 A kind of device and method reclaiming chromatographic grade organic reagent from organic reagent waste liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504228A (en) * 1991-06-07 1994-05-19 ジヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・カンパニー・コマンデット・ゲゼルシャフト Compressor system with a device for continuous purification of the working fluid
JPH06277456A (en) * 1993-02-06 1994-10-04 Basf Ag Permeating evaporation of liquid mixture using membrane and azeotropic separating method by distillation
JPH06254597A (en) * 1993-03-08 1994-09-13 Mitsui Eng & Shipbuild Co Ltd Treatment of aromatic compound containing waste water
JP2013018747A (en) * 2011-07-12 2013-01-31 Japan Organo Co Ltd Nmp purification system in electrode production process
WO2016017491A1 (en) * 2014-07-29 2016-02-04 オルガノ株式会社 System and method for organic solvent purification
CN107803319A (en) * 2017-11-13 2018-03-16 林州朗坤科技有限公司 A kind of NMP recovery purification systems and its recovery method of purification

Also Published As

Publication number Publication date
JP6970280B2 (en) 2021-11-24
CN111971255A (en) 2020-11-20
WO2019193951A1 (en) 2019-10-10
CN111971255B (en) 2022-07-08

Similar Documents

Publication Publication Date Title
CN106132516B (en) Organic solvent purification system and method
JP6636111B2 (en) Organic solvent purification system and method
JP5442621B2 (en) Method for dehydrating mainly a mixture of ethanol and water
JP5911228B2 (en) NMP purification system in electrode manufacturing process
US20150232348A1 (en) Water desalination and brine volume reduction process
JP6415159B2 (en) Organic solvent purification system and method
JP2014144936A (en) Nmp purification system and nmp purification method
JP2014144940A (en) NMP purification system
JP2013018748A (en) Nmp purification system in electrode production process
JPH0957069A (en) Method for refining organic liquid by pervaporation, device used therefor and steam drying utilizing them
JP6970280B2 (en) Organic solvent purification system and method
JP7106474B2 (en) N-methyl-2-pyrrolidone purification method, purification device, recovery purification method, and recovery purification system
JP7328859B2 (en) Organic solvent purification method and purification system
CN211660014U (en) Refining device and recovery refining system
CN113166009B (en) Separation process and reactor system for glycol-water mixtures
JP2601941B2 (en) Recovery method and recovery equipment for lower alcohol
JPH06304453A (en) Pervaporation membrane separator using low temperature cooling medium
JP2014144939A (en) NMP purification system
KR20210082711A (en) Pervaporation membrane separation process for concentration of the organic compound and treatment of wastewater from specific organic compound containing wastewater
JP2020193178A (en) N-methyl-2-pyrolidone purification method and purification system
WO2021162125A1 (en) Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite
JP7462499B2 (en) Organic solvent purification method and purification system
JPH0671531B2 (en) Liquid-liquid separator
JP2020193177A (en) N-methyl-2-pyrolidone purification method and purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R150 Certificate of patent or registration of utility model

Ref document number: 6970280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150