WO2021162125A1 - Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite - Google Patents

Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite Download PDF

Info

Publication number
WO2021162125A1
WO2021162125A1 PCT/JP2021/005452 JP2021005452W WO2021162125A1 WO 2021162125 A1 WO2021162125 A1 WO 2021162125A1 JP 2021005452 W JP2021005452 W JP 2021005452W WO 2021162125 A1 WO2021162125 A1 WO 2021162125A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
water
membrane
zeolite membrane
ion
Prior art date
Application number
PCT/JP2021/005452
Other languages
French (fr)
Japanese (ja)
Inventor
亮輔 寺師
篤史 久松
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2021162125A1 publication Critical patent/WO2021162125A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/365Osmotic distillation or osmotic evaporation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A

Definitions

  • the present invention relates to a method and system for separating water and an organic solvent from a mixed solution of water and an organic solvent, and a method for producing an ion exchange type zeolite used for separating water and an organic solvent.
  • NMP N-methyl-2-pyrrolidone
  • the NMP When the slurry is dried, the NMP is vaporized, and the vaporized NMP is recovered using a water scrubber or the like. Therefore, in order to reuse the recovered NMP, water is separated from the NMP, and after the water is separated, the NMP is separated. NMP needs to be further purified.
  • the pervaporation (PV) method is known as a separation method that does not require large-scale equipment and has excellent energy-saving performance.
  • a film having an affinity for water was used as the osmotic vaporization film (that is, a separation film), and a mixed solution of the organic solvent and water was supplied to the osmotic vaporization film.
  • zeolites that make up the zeolite membrane, depending on their composition and aluminosilicate skeleton, but the osmotic vaporization membranes for separating the organic solvent and water include CHA type, X type, Y type and Zeolites such as type A are widely used.
  • Patent Document 1 in order to purify NMP recovered in a form containing water from the manufacturing process of a lithium ion secondary battery, water and NMP are separated by osmotic vaporization treatment using a zeolite membrane as an osmotic vaporization membrane. It discloses that.
  • the organic solvent and water are separated by the osmotic vaporization treatment using the zeolite membrane as the osmotic vaporization membrane, the organic solvent leaks together with the water on the osmotic side of the osmotic vaporization membrane, that is, a leak phenomenon is observed. Leakage of the organic solvent along with the water causes a loss in the organic solvent to be reused and increases the wastewater treatment cost for the permeated water.
  • An object of the present invention is a separation method and system capable of reducing the amount of organic solvent leaking to the permeation side of the permeation vaporization membrane when separating the organic solvent and water by the permeation vaporization treatment using the zeolite membrane as the permeation vaporization membrane.
  • An object of the present invention is to provide a method for producing an ion exchange type zeolite membrane constituting an osmotic vaporization membrane used for carrying out this separation method.
  • Zeolites have micropores formed in their aluminosilicate skeleton, and sodium ions (Na + ) are usually trapped as counter cations in the micropores. It is known that the properties of zeolite can be changed by replacing the sodium ions trapped in the micropores with other cations.
  • a zeolite in which a cation trapped in a micropore as a counter cation is changed from a sodium ion to another ion is referred to as an ion exchange type zeolite, and a zeolite membrane composed of an ion exchange type zeolite is referred to as an ion exchange type zeolite. Called a membrane.
  • the present inventors use an ion exchange type zeolite membrane in which the sodium ion contained in the zeolite membrane is replaced with another monovalent cation as the permeation vaporization membrane, so that the amount of the organic solvent leaks to the permeation side of the permeation vaporization membrane.
  • an ion exchange type zeolite membrane In the production of an ion exchange type zeolite membrane, by adding a monovalent cation to a mixed solution of an organic solvent and water, ion exchange of the zeolite membrane is promoted, and the organic to be separated
  • a monovalent cation is added to a mixed solution of a solvent and water and the mixed solution is permeated and vaporized using a permeation vaporization membrane which is a zeolite membrane, the amount of leakage of the organic solvent to the permeation side can be reduced. And completed the present invention.
  • the method for producing an ion exchange type zeolite membrane of the present invention is a method for producing an ion exchange type zeolite membrane, in which the zeolite membrane is treated with a treatment liquid containing an organic solvent for treatment, water, and a monovalent cation. Has a step to do.
  • a method of treating the zeolite membrane with the treatment liquid for example, a method of immersing the zeolite membrane in the treatment liquid or a permeation vaporization treatment of the treatment liquid itself using the zeolite membrane as the permeation vaporization membrane.
  • a method of immersing the zeolite membrane in the treatment liquid or a permeation vaporization treatment of the treatment liquid itself using the zeolite membrane as the permeation vaporization membrane There is a way to do it.
  • an organic solvent having high solubility in water is preferable, and as an example, alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone, and N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone) ( NMP), 1-methoxy-2-propanol (PGME), propylene glycol-1-monomethyl ether-2-acetate (PEGMEA), pyridine, dimethyl sulfoxide (DMSO), monoethanolamine (MEA), N, N-dimethylformamide (DMF), ⁇ -butyrolactone (GBL), dimethylacetamide (DMA) and the like can be mentioned.
  • NMP is preferable as the organic solvent for treatment.
  • the treatment liquid preferably contains 50% by mass or more and 99% by mass or less of the organic solvent for treatment, and more preferably 90% by mass or more and 98% by mass or less of the organic solvent for treatment.
  • the monovalent cation added to the treatment liquid may be any cation that can be replaced with sodium ion in zeolite, and in particular, one or more cations selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like. It is preferable to have.
  • As the monovalent cation silver (I) ion (Ag + ) and copper (I) ion (Cu + ) can also be used.
  • hydrogen ion (H + ) can also be used as a monovalent cation. If the concentration of the cation in the treatment liquid is too low, the progress of ion exchange will be slowed down.
  • the concentration of the monovalent cation in the treatment liquid is preferably 1 ⁇ mol / L or more and 1 mol / L or less, and more preferably 10 ⁇ mol / L or more and 100 mmol / L or less.
  • the monovalent cation is added to the treatment liquid, for example, as a salt containing the cation.
  • the zeolite membrane used to form the ion exchange type zeolite membrane is A-type zeolite or X-type when an ion exchange type zeolite membrane is used as the permeation vaporization film when the organic solvent and water are separated by permeation vaporization.
  • a membrane made of at least one of zeolite, Y-type zeolite and CHA-type zeolite is preferable, and a zeolite membrane made of A-type zeolite is more preferable.
  • the first separation method of the present invention is a separation method for separating the organic solvent to be separated and water from the mixed liquid of the organic solvent to be separated and water, and the mixed liquid is subjected to the above-mentioned production method of the present invention.
  • a permeation vaporization treatment using the produced ion exchange type zeolite membrane as a permeation vaporization film is performed to separate the organic solvent to be separated and water from the mixed solution.
  • the organic solvent to be separated may be any organic solvent as long as it has a high solubility in water.
  • the organic solvent to be separated preferably has a boiling point of more than 100 ° C. at 1 atm, for example. It is preferable that it does not form an azeotropic mixture with water.
  • Examples of the organic solvent to be separated, which has a boiling point of more than 100 ° C. at 1 atm and does not form an azeotropic mixture with water include NMP, DMSO, MEA, DMF, GBL, DMA, and the like, and in particular, NMP. ..
  • the organic solvent to be separated may be the same organic solvent as the organic solvent for treatment used in the production of the ion exchange type zeolite membrane, or may be a different organic solvent.
  • the second separation method of the present invention is a separation method for separating an organic solvent and water from a mixed solution of an organic solvent and water, in which sodium ions in the membrane are monovalent other than sodium ions in the mixed solution.
  • An osmotic vaporization treatment is performed using an ion exchange type zeolite membrane substituted with the cation of the above as an osmotic vaporization membrane to separate the organic solvent and water from the mixed solution.
  • the sodium ions in the membrane of the zeolite membrane composed of at least one of A-type zeolite, X-type zeolite, Y-type zeolite and CHA-type zeolite are other than sodium ions.
  • the zeolite membrane is an ion exchange type zeolite membrane substituted with the monovalent cation of the above, and more preferably an ion exchange type zeolite membrane derived from the A type zeolite membrane.
  • the monovalent cation is preferably one or more cations selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like.
  • the organic solvent contained in the mixture is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP.
  • the third separation method of the present invention is a separation method for separating an organic solvent and water from a mixed solution of an organic solvent and water, in which a step of adding a monovalent cation to the mixed solution and a monovalent solution.
  • the mixed liquid to which the cation of the above is added is subjected to a permeation vaporization treatment using a zeolite membrane as a permeation vaporization film to separate the organic solvent and water from the mixed liquid.
  • the zeolite membrane is preferably a membrane made of at least one of A-type zeolite, X-type zeolite, Y-type zeolite and CHA-type zeolite, and is a membrane made of A-type zeolite. Is more preferable.
  • the monovalent cation added to the mixed solution may be a cation captured by the zeolite membrane instead of the sodium ion, and in particular, one or more selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like. It is preferably a cation of.
  • the monovalent cation silver (I) ion (Ag + ) and copper (I) ion (Cu + ) can also be used.
  • an acid-resistant zeolite such as CHA-type zeolite
  • hydrogen ion (H + ) can also be used as a monovalent cation. If the concentration of the monovalent cation in the mixed solution is too low, the effect of preventing the leakage of the organic solvent to the permeation side of the permeation vaporization membrane will not be sufficiently exhibited. Considering the solubility of the added monovalent cation, there is an upper limit to the concentration of the monovalent cation in the mixed solution.
  • the amount of the monovalent cation added to the mixed solution is preferably such that the concentration of the cation in the mixed solution is 1 ⁇ mol / L or more and 1 mol / L or less, and the concentration of the cation in the mixed solution is 10 ⁇ mol. It is more preferable that the concentration is / L or more and 100 mmol / L or less.
  • the monovalent cation is added to the mixture, for example, as a salt containing the cation.
  • the organic solvent contained in the mixed solution is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP.
  • the organic solvent discharged from the concentrated side of the osmotic vaporization membrane contains cations added to the mixed solution.
  • the discharged organic solvent contains the metal ion.
  • a step of removing the metal ions for example, there is a method of vaporizing only the organic solvent by an evaporation can such as a vacuum evaporation can and leaving the metal ions in the evaporation can as a residue.
  • the first separation system of the present invention is a separation system that separates an organic solvent and water from a mixed solution of an organic solvent and water, and has an osmotic vaporizer provided with an osmotic vaporizing film to which the mixed solution is supplied.
  • the osmotic vaporization membrane is an ion exchange type zeolite membrane in which sodium ions are replaced with other monovalent cations.
  • the ion exchange type zeolite membrane has a monovalent sodium ion in the membrane in the zeolite membrane composed of at least one of A-type zeolite, X-type zeolite, Y-type zeolite and CHA-type zeolite.
  • An ion-exchange type zeolite membrane substituted with a cation is preferable, and an ion-exchange type zeolite membrane derived from the A-type zeolite membrane is more preferable.
  • the monovalent cation is preferably one or more cations selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like.
  • the organic solvent contained in the mixture is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP.
  • the second separation system of the present invention is a separation system that separates an organic solvent and water from a mixture of an organic solvent and water, and is an addition means for adding a monovalent cation to the mixture and an addition means for adding the monovalent cation. It has a permeation vaporizer provided in the subsequent stage, provided with a zeolite membrane as a permeation vaporization film, and to which a mixed liquid is supplied.
  • the zeolite membrane is similar to that described in the third separation method, and the monovalent cations added to the mixture are similar to those described in the third separation method. belongs to.
  • the adding means is such that the concentration of the monovalent cation in the mixed solution is, for example, 1 ⁇ mol / L or more and 1 mol / L or less, and preferably the concentration of the monovalent cation in the mixed solution is 10 ⁇ mol / L or more and 100 mmol / L or less.
  • the cation is added to the mixture.
  • the addition means is, for example, a salt injection device that injects a salt containing a monovalent cation into the mixed solution.
  • the organic solvent contained in the mixture is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP. Further, in this separation system, since the organic solvent discharged from the concentrated side of the osmotic vaporization membrane contains a salt added to the mixed solution, it is discharged from the concentrated side to the concentrated side of the osmotic vaporized membrane as necessary.
  • An ion removing means for removing the salt from the organic solvent may be connected.
  • the ion removing means is composed of an evaporator such as a vacuum evaporator.
  • the present invention when separating an organic solvent and water by an osmotic vaporization treatment using a zeolite membrane as an osmotic vaporization membrane, the amount of the organic solvent leaking to the osmotic side of the osmotic vaporization membrane can be reduced, and this separation method A method for producing an ion exchange type zeolite membrane constituting the osmotic vaporization membrane used in the above can be obtained.
  • a mixed solution of an organic solvent having high solubility in water and water is supplied, and the mixed solution is separated into the organic solvent and water by osmotic vaporization treatment.
  • the organic solvent contained in the mixed solution is N-methyl-2-pyrrolidone (NMP), but in the present invention, the organic solvent to be separated from water is not limited to NMP. Any organic solvent can be the target of separation from water as long as it is an organic solvent that can be separated from water by permeation vaporization.
  • the mixed solution of NMP and water is obtained, for example, when NMP is recovered from the manufacturing process of a lithium ion secondary battery.
  • FIG. 1 shows a separation system according to a first embodiment of the present invention.
  • This separation system includes an osmotic vaporizer 10 having an osmotic vaporization membrane 11 in order to separate NMP from the mixed solution by an osmotic vaporization treatment.
  • the mixture is pressurized by the pump 12 and heated to an operating temperature of, for example, about 120 ° C. by the heat exchanger 13 to which steam is supplied, and is supplied to the permeation vaporizer 10.
  • An ion exchange type zeolite membrane is used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10.
  • the ion exchange type zeolite membrane used in this embodiment will be described later, but the ion exchange type zeolite membrane is a separation membrane having an affinity for water and has a property of allowing only water to permeate if the leak component is ignored.
  • the mixed solution supplied to the osmotic vaporizer 10 is separated into NMP, which is an organic solvent, and water by the osmotic vaporizing membrane 11, and the NMP is discharged from the outlet C on the concentration side of the osmotic vaporizer 10.
  • Moisture is discharged from the outlet P on the permeation side of the permeation vaporizer 10 and condenses into water in the condenser 14 to which cold water is supplied. In reality, some NMP leaks into the water discharged from the condenser 14.
  • the ion exchange type zeolite membrane used as the permeation vaporization film 11 in the separation system of the present embodiment is obtained by processing, for example, CHA-type, X-type, Y-type or A-type zeolite, particularly A-type zeolite into a membrane.
  • Sodium ion (Na + ) contained in zeolite is replaced with at least one of other monovalent cations such as potassium ion (K + ), rubidium ion (Rb + ) and cesium ion (Cs +). be.
  • the zeolite membrane may be treated with the treatment liquid to which the cation is added.
  • Methods for treating the zeolite membrane with the treatment liquid include immersion of the zeolite membrane in the treatment liquid and osmotic vaporization treatment of the treatment liquid itself with the zeolite membrane.
  • the treatment liquid In the permeation vaporization treatment of the treatment liquid itself by the zeolite membrane, the treatment liquid is supplied to one surface of the zeolite membrane, and the treatment liquid is added to the zeolite membrane so that the surface to which the treatment liquid is supplied has a high temperature and pressure. It is a treatment that separates the treatment liquid into its organic solvent and water by applying temperature and pressure with a zeolite membrane. The treated water after permeating the membrane evaporates. At this time, the monovalent cation contained in the treatment liquid diffuses into the zeolite membrane to replace the sodium ion in the zeolite membrane.
  • the amount of leak NMP contained in the water discharged from the outlet P on the osmotic side of the osmotic vaporizer 10 can be determined. Can be reduced.
  • a zeolite membrane made of ion-exchange type zeolite is subjected to ion exchange treatment by processing zeolite into a membrane and then immersing the zeolite membrane in this treatment liquid using an aqueous solution containing a cation to be captured by the zeolite as a treatment liquid. Is generated.
  • this treatment is performed by a batch treatment, and in order to increase the degree of ion exchange, it is necessary to repeatedly immerse the zeolite in the treatment liquid while exchanging the treatment liquid, resulting in poor work efficiency. Heating is effective for accelerating ion exchange, but since the A-type zeolite membrane does not have high resistance to moisture, the membrane may deteriorate when treated with a heated aqueous solution.
  • a zeolite membrane is immersed in a treatment liquid in which a monovalent cation that replaces sodium ions is added to a treatment liquid in which an organic solvent and water are mixed, and the treatment liquid itself is permeated and vaporized by the zeolite membrane.
  • a zeolite membrane made of exchangeable zeolite is produced. Therefore, it is not necessary to repeatedly immerse the zeolite in the treatment liquid while exchanging the treatment liquid, and the work efficiency can be improved. Moreover, since it is not necessary to heat the treatment liquid, deterioration of the A-type zeolite membrane can be particularly suppressed.
  • FIG. 2 shows a separation system according to a second embodiment of the present invention.
  • This separation system is similar to the separation system shown in FIG. 1, but a solution of a monovalent cation salt other than sodium ion is applied to the mixture of NMP and water on the inlet side of the pump 12.
  • a salt injection device 15 for injection is provided, and the osmotic vaporization film 11 uses a zeolite film that has not undergone an ion exchange treatment, that is, a zeolite film in which the counter cation in the zeolite remains sodium ion.
  • the monovalent cation added to the mixed solution by the salt injection device 15 is, for example, at least one of potassium ion, rubidium ion and cesium ion.
  • the zeolite membrane that has been ion-exchanged in advance is not used as the permeation vaporization membrane 11, but the permeation vaporization membrane is formed by the monovalent cation in the mixed liquid during the permeation vaporization treatment of the mixed liquid.
  • the ion exchange of 11 proceeds, and as a result, the same effect as when the ion exchange type zeolite membrane is used as the permeation vaporization membrane 11 can be obtained.
  • the metal ions from the NMP are directed to the outlet C on the concentration side of the permeation vaporizer 10.
  • a reduced pressure evaporation can 17 is connected to remove the above.
  • a heat exchanger 16 is provided between the outlet C on the concentration side and the vacuum evaporation can 17 to supply cold water to lower the temperature of the NMP.
  • the NMP is vaporized in the reduced pressure evaporation can 17 and discharged from the reduced pressure evaporation can 17 as the NMP of the gas phase.
  • the metal ions are hardly volatile and remain in the vacuum evaporation can 17. Thereby, NMP containing no metal ion can be obtained.
  • Example 1 The same zeolite membrane used in Comparative Example 1 was immersed in a treatment liquid containing potassium ions to obtain an ion exchange type zeolite membrane.
  • the treatment liquid contained 95% by mass of NMP and 5% by mass of water, and contained 16 mmol / L of potassium bromide (KBr) as a salt containing potassium ions based on the total volume of the treatment liquid.
  • KBr potassium bromide
  • Example 2 An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 1 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 1. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Comparative Example 2 The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that an A-type zeolite membrane different from that in Comparative Example 1 was used. The results are shown in Table 1.
  • Example 3 The same zeolite membrane used in Comparative Example 2 was immersed in a treatment liquid containing potassium ions to obtain an ion exchange type zeolite membrane.
  • the treatment liquid contained 95% by mass of NMP and 5% by mass of water, and contained 16 ⁇ mol / L of potassium chloride (KCl) as a salt containing potassium ions based on the total volume of the treatment liquid.
  • KCl potassium chloride
  • the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Example 4 An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 3 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 2. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Comparative Example 3 The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that the A-type zeolite membrane different from Comparative Examples 1 and 2 was used. The results are shown in Table 1.
  • Example 5 The same zeolite membrane used in Comparative Example 3 was immersed in a treatment liquid containing cesium ions to obtain an ion exchange type zeolite membrane.
  • the treatment liquid contained 95% by mass of NMP and 5% by mass of water, and contained 16 ⁇ mol / L of cesium chloride (CsCl) as a salt containing cesium ions based on the total volume of the treatment liquid.
  • CsCl cesium chloride
  • the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Example 6 An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 5 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 3. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Comparative Example 4 The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that an A-type zeolite membrane different from that in Comparative Example 1 was used. The results are shown in Table 1.
  • Example 7 The same zeolite membrane used in Comparative Example 4 was immersed in a treatment liquid containing potassium ions to obtain an ion exchange type zeolite membrane.
  • the treatment liquid contained 80% by mass of NMP and 20% by mass of water, and contained 16 ⁇ mol / L of potassium chloride as a salt containing potassium ions based on the total volume of the treatment liquid.
  • the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Example 8 An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 7 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 4. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 2.
  • Comparative Example 5 The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that an A-type zeolite membrane different from that in Comparative Example 1 was used. The results are shown in Table 1.
  • Example 9 The same zeolite membrane as that used in Comparative Example 5 was immersed in a treatment liquid containing cesium ions to obtain an ion exchange type zeolite membrane.
  • the treatment liquid contained 80% by mass of NMP and 20% by mass of water, and contained 16 ⁇ mol / L of cesium chloride as a salt containing cesium ions based on the total volume of the treatment liquid.
  • this ion-exchange type zeolite membrane as the osmotic vaporization membrane 11 the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Example 10 An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 9 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 5. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • the permeation vaporization treatment of the treatment liquid itself can be performed as compared with the case where the zeolite membrane is immersed in the treatment liquid and a monovalent cation is introduced into the membrane.
  • the leakage of NMP in the resulting ion exchange type zeolite membrane was further reduced and the separation coefficient was further improved.
  • the osmotic vaporization treatment is performed by the obtained ion exchange type zeolite membrane. There was no significant difference in the separation coefficient at that time.
  • Example 11 The separation system shown in FIG. 2 was assembled. However, the decompression evaporation can 17 and the heat exchanger 16 in the previous stage are not provided.
  • the osmotic vaporization membrane 11 the same type A zeolite membrane as that used in Comparative Example 1 was used. A mixed solution containing 95% by mass of NMP and 5% by mass of water and further added with potassium ions was supplied to the permeation vaporizer 10, and the mixture was permeated and vaporized at an operating temperature of 120 ° C. Potassium ions were added to the mixed solution by adding KBr to the mixed solution. The concentration of KBr in the mixture was 16 mmol / L based on the total volume of the mixture.
  • Example 12 Except that the A-type zeolite membrane used in Comparative Example 2 was used as the osmotic vaporization membrane 11, KCl was used as a drug for adding potassium ions to the mixed solution, and the concentration of KCl in the mixed solution was 16 ⁇ mol / L. Obtained the transmission coefficient and the separation coefficient in the same manner as in Example 11. The results are shown in Table 2.
  • Example 13 The A-type zeolite membrane used in Comparative Example 3 was used as the permeation vaporization membrane 11, and CsCl was added to the mixed solution assuming that cesium ions were added instead of potassium ions to the mixed solution, and the concentration of CsCl in the mixed solution was 16 ⁇ mol /.
  • the transmission coefficient and the separation coefficient were obtained in the same manner as in Example 11 except that the value was L. The results are shown in Table 2.
  • the zeolite membrane was treated with a treatment liquid containing an organic solvent, water and a monovalent cation to obtain an ion exchange type zeolite membrane, and this ion exchange type zeolite membrane was obtained.
  • the organic solvent on the osmotic side of the osmotic vaporizing film 11 is compared with the case where the osmotic vaporization treatment is performed by adding a monovalent cation to the mixed solution itself to be separated. It was found that the leakage of the solvent can be further suppressed and the separation coefficient can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

A method for separating an organic solvent, e.g., N-methyl-2-pyrrolidone (NMP), and water from a liquid mixture including the organic solvent and water by pervaporation with a zeolite membrane as a pervaporation membrane, the method employing an ion exchange type zeolite membrane as the pervaporation membrane 11. The ion exchange type zeolite membrane is produced by treating a zeolite membrane with a treatment liquid comprising an organic solvent, water, and monovalent cations.

Description

水と有機溶媒とを分離する方法及びシステム、並びにイオン交換型ゼオライトの製造方法Methods and systems for separating water and organic solvents, and methods for producing ion-exchange zeolites
 本発明は、水と有機溶媒との混合液から水と有機溶媒とを分離する方法及びシステムと、水と有機溶媒との分離に用いられるイオン交換型ゼオライトの製造方法とに関する。 The present invention relates to a method and system for separating water and an organic solvent from a mixed solution of water and an organic solvent, and a method for producing an ion exchange type zeolite used for separating water and an organic solvent.
 水と有機溶媒との混合液から水と有機溶媒とを分離することに対する要望がある。有機溶媒の使用後にその有機溶媒を回収して精製し再使用するときに、有機溶媒の使用及び回収の過程において水が有機溶媒に混入することがあり、そのような場合には、混入している水を有機溶媒から分離して、水分を含まない有機溶媒としなければならない。例えばリチウム二次イオン電池の製造工程では、有機溶媒の一つであるN-メチル-2-ピロリドン(以下、NMPとも記す)に電極活物質の粒子を分散させてスラリーとし、電極集電体上にそのスラリーを塗布して乾燥させて電極を形成する。スラリーを乾燥させる際にNMPは気化し、気化したNMPは水スクラバーなどを用いて回収されるので、回収したNMPを再利用するためには、NMPから水を分離し、水を分離した後のNMPをさらに精製する必要がある。 There is a demand for separating water and organic solvent from the mixed solution of water and organic solvent. When the organic solvent is recovered, purified and reused after the use of the organic solvent, water may be mixed with the organic solvent in the process of using and recovering the organic solvent. In such a case, the organic solvent is mixed. The water used must be separated from the organic solvent into a water-free organic solvent. For example, in the manufacturing process of a lithium secondary ion battery, particles of the electrode active material are dispersed in N-methyl-2-pyrrolidone (hereinafter, also referred to as NMP), which is one of the organic solvents, to form a slurry, which is formed on the electrode current collector. The slurry is applied to and dried to form an electrode. When the slurry is dried, the NMP is vaporized, and the vaporized NMP is recovered using a water scrubber or the like. Therefore, in order to reuse the recovered NMP, water is separated from the NMP, and after the water is separated, the NMP is separated. NMP needs to be further purified.
 水と有機溶媒との混合液から水と有機溶媒とを分離する方法として、両者の沸点の違いなどを利用した蒸留法が知られているが、蒸留法は多大なエネルギーを必要とする上、大掛かりな設備を必要とする。そこで大がかりな設備が不要であって省エネルギー性能に優れた分離手法として、浸透気化(Pervaporation:PV)法が知られている。浸透気化法による有機溶媒と水との分離では、水分に対して親和性を有する膜を浸透気化膜(すなわち分離膜)として使用し、有機溶媒と水との混合液を浸透気化膜に供給したときに水分だけが浸透気化膜を透過する現象を使用する。浸透気化膜において混合液が供給された側では有機溶媒が濃縮される。浸透気化膜を挟んで混合液が供給される側を濃縮側と呼び、浸透気化膜を挟んで混合液の濃縮側とは反対になる側、すなわち水分が透過してくる側を透過側と呼ぶ。浸透気化膜としては、ゼオライト膜が広く使用されている。ゼオライト膜を構成するゼオライトにはその組成やアルミノシリケート骨格の違いによっていくつかの種類があるが、有機溶媒と水とを分離するための浸透気化膜には、CHA型、X型、Y型及びA型などのゼオライトが広く用いられている。特許文献1には、リチウムイオン二次電池の製造工程から水を含む形態で回収されたNMPを精製するために、ゼオライト膜を浸透気化膜として用いて浸透気化処理により水とNMPとを分離することを開示している。 As a method for separating water and an organic solvent from a mixed solution of water and an organic solvent, a distillation method using the difference in boiling points between the two is known, but the distillation method requires a large amount of energy and also requires a large amount of energy. Requires large-scale equipment. Therefore, the pervaporation (PV) method is known as a separation method that does not require large-scale equipment and has excellent energy-saving performance. In the separation of the organic solvent and water by the osmotic vaporization method, a film having an affinity for water was used as the osmotic vaporization film (that is, a separation film), and a mixed solution of the organic solvent and water was supplied to the osmotic vaporization film. Sometimes we use the phenomenon that only water permeates the osmotic vaporization film. The organic solvent is concentrated on the side of the osmotic vaporization membrane to which the mixed solution is supplied. The side on which the mixed solution is supplied across the osmotic vaporization membrane is called the concentration side, and the side opposite to the concentration side of the mixed solution across the osmotic vaporization membrane, that is, the side through which water permeates is called the permeation side. .. Zeolite membranes are widely used as the osmotic vaporization membranes. There are several types of zeolites that make up the zeolite membrane, depending on their composition and aluminosilicate skeleton, but the osmotic vaporization membranes for separating the organic solvent and water include CHA type, X type, Y type and Zeolites such as type A are widely used. In Patent Document 1, in order to purify NMP recovered in a form containing water from the manufacturing process of a lithium ion secondary battery, water and NMP are separated by osmotic vaporization treatment using a zeolite membrane as an osmotic vaporization membrane. It discloses that.
特開2013-18747号公報Japanese Unexamined Patent Publication No. 2013-18747
 ゼオライト膜を浸透気化膜として用いて浸透気化処理により有機溶媒と水との分離を行った場合、浸透気化膜の透過側に、水分とともに有機溶媒が漏れ出す、すなわちリークする現象が見られる。水分とともに有機溶媒がリークすると、その分、再使用する有機溶媒における損失が発生するとともに、透過水についての排水処理コストの増大がもたらされる。 When the organic solvent and water are separated by the osmotic vaporization treatment using the zeolite membrane as the osmotic vaporization membrane, the organic solvent leaks together with the water on the osmotic side of the osmotic vaporization membrane, that is, a leak phenomenon is observed. Leakage of the organic solvent along with the water causes a loss in the organic solvent to be reused and increases the wastewater treatment cost for the permeated water.
 本発明の目的は、ゼオライト膜を浸透気化膜として用いる浸透気化処理によって有機溶媒と水とを分離する際に、浸透気化膜の透過側にリークする有機溶媒の量を低減できる分離方法及びシステムと、この分離方法の実施に用いられる浸透気化膜を構成するイオン交換型ゼオライト膜の製造方法とを提供することにある。 An object of the present invention is a separation method and system capable of reducing the amount of organic solvent leaking to the permeation side of the permeation vaporization membrane when separating the organic solvent and water by the permeation vaporization treatment using the zeolite membrane as the permeation vaporization membrane. An object of the present invention is to provide a method for producing an ion exchange type zeolite membrane constituting an osmotic vaporization membrane used for carrying out this separation method.
 ゼオライトは、そのアルミノシリケート骨格に形成された微細孔を有しており、微細孔の中には、通常、対カチオンとしてナトリウムイオン(Na+)が捕捉されている。微細孔に捕捉されているナトリウムイオンを他のカチオンに置き換えることにより、ゼオライトの特性を変えることができることが知られている。なお、本明細書では、対カチオンとして微細孔に捕捉されているカチオンをナトリウムイオンから他のイオンに変えたゼオライトをイオン交換型ゼオライトと称し、イオン交換型ゼオライトからなるゼオライト膜をイオン交換型ゼオライト膜と称する。 Zeolites have micropores formed in their aluminosilicate skeleton, and sodium ions (Na + ) are usually trapped as counter cations in the micropores. It is known that the properties of zeolite can be changed by replacing the sodium ions trapped in the micropores with other cations. In the present specification, a zeolite in which a cation trapped in a micropore as a counter cation is changed from a sodium ion to another ion is referred to as an ion exchange type zeolite, and a zeolite membrane composed of an ion exchange type zeolite is referred to as an ion exchange type zeolite. Called a membrane.
 本発明者らは、ゼオライト膜に含まれるナトリウムイオンを他の1価のカチオンに置換したイオン交換型ゼオライト膜を浸透気化膜として用いることにより、浸透気化膜の透過側にリークする有機溶媒の量を低減できること、イオン交換型ゼオライト膜の製造に際しては、有機溶媒と水との混合液に1価のカチオンを添加することにより、ゼオライト膜のイオン交換が促進されること、及び、分離対象の有機溶媒と水との混合液に対して1価のカチオンを添加しゼオライト膜である浸透気化膜を用いてこの混合液を浸透気化処理したときに、透過側への有機溶媒のリーク量を低減できることを見出し、本発明を完成させた。 The present inventors use an ion exchange type zeolite membrane in which the sodium ion contained in the zeolite membrane is replaced with another monovalent cation as the permeation vaporization membrane, so that the amount of the organic solvent leaks to the permeation side of the permeation vaporization membrane. In the production of an ion exchange type zeolite membrane, by adding a monovalent cation to a mixed solution of an organic solvent and water, ion exchange of the zeolite membrane is promoted, and the organic to be separated When a monovalent cation is added to a mixed solution of a solvent and water and the mixed solution is permeated and vaporized using a permeation vaporization membrane which is a zeolite membrane, the amount of leakage of the organic solvent to the permeation side can be reduced. And completed the present invention.
 したがって本発明のイオン交換型ゼオライト膜の製造方法は、イオン交換型ゼオライト膜の製造方法であって、処理用有機溶媒と、水と、1価のカチオンと、を含む処理液によってゼオライト膜を処理する工程を有する。 Therefore, the method for producing an ion exchange type zeolite membrane of the present invention is a method for producing an ion exchange type zeolite membrane, in which the zeolite membrane is treated with a treatment liquid containing an organic solvent for treatment, water, and a monovalent cation. Has a step to do.
 本発明の製造方法において、処理液によってゼオライト膜を処理する方法としては、例えば、処理液中にゼオライト膜を浸漬する方法、あるいは、ゼオライト膜を浸透気化膜として用いて処理液自体の浸透気化処理を行う方法がある。処理用有機溶媒としては、水に対して高い溶解度を有する有機溶媒が好ましく、一例として、メチルアルコール、エチルアルコールなどのアルコール類、アセトンなどのケトン類、さらには、N-メチル-2-ピロリドン(NMP)、1-メトキシ-2-プロパノール(PGME)、プロピレングリコール-1-モノメチルエーテル-2-アセテート(PEGMEA)、ピリジン、ジメチルスルホキシド(DMSO)、モノエタノールアミン(MEA)、N,N-ジメチルホルムアミド(DMF)、γ-ブチロラクトン(GBL)、ジメチルアセトアミド(DMA)などが挙げられる。中でもNMPが処理用有機溶媒として好ましい。処理液における処理用有機溶媒の濃度は、高すぎると1価のカチオンを混合液に溶解させにくくなり、低すぎると、ゼオライト膜のイオン交換を促進する効果が発揮されにくくなるとともに、特にゼオライト膜がA型ゼオライトからなる場合には、水分によるゼオライト膜の劣化が無視できなくなる。そのため処理液は、処理用有機溶媒を50質量%以上99質量%以下含むことが好ましく、処理用有機溶媒を90質量%以上98質量%以下含むことがさらに好ましい。 In the production method of the present invention, as a method of treating the zeolite membrane with the treatment liquid, for example, a method of immersing the zeolite membrane in the treatment liquid or a permeation vaporization treatment of the treatment liquid itself using the zeolite membrane as the permeation vaporization membrane. There is a way to do it. As the organic solvent for treatment, an organic solvent having high solubility in water is preferable, and as an example, alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone, and N-methyl-2-pyrrolidone (N-methyl-2-pyrrolidone) ( NMP), 1-methoxy-2-propanol (PGME), propylene glycol-1-monomethyl ether-2-acetate (PEGMEA), pyridine, dimethyl sulfoxide (DMSO), monoethanolamine (MEA), N, N-dimethylformamide (DMF), γ-butyrolactone (GBL), dimethylacetamide (DMA) and the like can be mentioned. Of these, NMP is preferable as the organic solvent for treatment. If the concentration of the organic solvent for treatment in the treatment liquid is too high, it becomes difficult to dissolve the monovalent cation in the mixed liquid, and if it is too low, the effect of promoting ion exchange of the zeolite membrane becomes difficult to be exhibited, and in particular, the zeolite membrane When is composed of A-type zeolite, deterioration of the zeolite membrane due to moisture cannot be ignored. Therefore, the treatment liquid preferably contains 50% by mass or more and 99% by mass or less of the organic solvent for treatment, and more preferably 90% by mass or more and 98% by mass or less of the organic solvent for treatment.
 処理液に添加される1価のカチオンは、ゼオライトにおいてナトリウムイオンと置換可能なものであればよいが、特に、カリウムイオン、ルビジウムイオン及びセシウムイオンなどからなる群から選ばれた1以上のカチオンであることが好ましい。1価のカチオンとして、銀(I)イオン(Ag+)や銅(I)イオン(Cu+)も使用可能である。CHA型のゼオライトなど、耐酸性を有するゼオライトを対象とする場合には、水素イオン(H+)を1価のカチオンとして使用することも可能である。処理液におけるそのカチオンの濃度が低すぎると、イオン交換の進行が遅くなる。添加される1価のカチオンについて溶解度などを考えると、処理液におけるそのカチオンの濃度には上限がある。したがって、処理液における1価のカチオンの濃度は、1μmol/L以上1mol/L以下とすることが好ましく、10μmol/L以上100mmol/L以下とすることがより好ましい。1価のカチオンは、例えば、そのカチオンを含む塩として処理液に添加される。 The monovalent cation added to the treatment liquid may be any cation that can be replaced with sodium ion in zeolite, and in particular, one or more cations selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like. It is preferable to have. As the monovalent cation, silver (I) ion (Ag + ) and copper (I) ion (Cu + ) can also be used. When targeting an acid-resistant zeolite such as CHA-type zeolite, hydrogen ion (H + ) can also be used as a monovalent cation. If the concentration of the cation in the treatment liquid is too low, the progress of ion exchange will be slowed down. Considering the solubility of the added monovalent cation, there is an upper limit to the concentration of the cation in the treatment liquid. Therefore, the concentration of the monovalent cation in the treatment liquid is preferably 1 μmol / L or more and 1 mol / L or less, and more preferably 10 μmol / L or more and 100 mmol / L or less. The monovalent cation is added to the treatment liquid, for example, as a salt containing the cation.
 イオン交換型ゼオライト膜を生成するために用いられるゼオライト膜は、有機溶媒と水とを浸透気化により分離するときの浸透気化膜としてイオン交換型ゼオライト膜を用いる場合には、A型ゼオライト、X型ゼオライト、Y型ゼオライト及びCHA型ゼオライトのうちの少なくとも1つのゼオライトからなる膜であることが好ましく、A型ゼオライトからなるゼオライト膜であることがより好ましい。 The zeolite membrane used to form the ion exchange type zeolite membrane is A-type zeolite or X-type when an ion exchange type zeolite membrane is used as the permeation vaporization film when the organic solvent and water are separated by permeation vaporization. A membrane made of at least one of zeolite, Y-type zeolite and CHA-type zeolite is preferable, and a zeolite membrane made of A-type zeolite is more preferable.
 本発明の第1の分離方法は、分離対象有機溶媒と水との混合液から分離対象有機溶媒と水とを分離する分離方法であって、混合液に対し、上述した本発明の製造方法によって製造されたイオン交換型ゼオライト膜を浸透気化膜として用いる浸透気化処理を行って、混合液から分離対象有機溶媒と水とを分離する。 The first separation method of the present invention is a separation method for separating the organic solvent to be separated and water from the mixed liquid of the organic solvent to be separated and water, and the mixed liquid is subjected to the above-mentioned production method of the present invention. A permeation vaporization treatment using the produced ion exchange type zeolite membrane as a permeation vaporization film is performed to separate the organic solvent to be separated and water from the mixed solution.
 第1の分離方法において、分離対象有機溶媒は、水に対して高い溶解度を有する有機溶媒であれば任意の有機溶媒であってよい。浸透気化処理において有機溶媒を液相として回収し水分を気相として回収する場合には、分離対象有機溶媒は、例えば、1気圧での沸点が100℃を超えるものであることが好ましく、また、水と共沸混合物を作らないものであることが好ましい。1気圧での沸点が100℃を超え、かつ、水と共沸混合物を形成しない分離対象有機溶媒としては、NMP、DMSO、MEA、DMF、GBL及びDMAなどが挙げられ、特に、NMPが挙げられる。分離対象有機溶媒は、イオン交換型ゼオライト膜の製造において用いた処理用有機溶媒と同じ有機溶媒であっても異なる有機溶媒であってもよい。 In the first separation method, the organic solvent to be separated may be any organic solvent as long as it has a high solubility in water. When the organic solvent is recovered as a liquid phase and the water content is recovered as a gas phase in the permeation vaporization treatment, the organic solvent to be separated preferably has a boiling point of more than 100 ° C. at 1 atm, for example. It is preferable that it does not form an azeotropic mixture with water. Examples of the organic solvent to be separated, which has a boiling point of more than 100 ° C. at 1 atm and does not form an azeotropic mixture with water, include NMP, DMSO, MEA, DMF, GBL, DMA, and the like, and in particular, NMP. .. The organic solvent to be separated may be the same organic solvent as the organic solvent for treatment used in the production of the ion exchange type zeolite membrane, or may be a different organic solvent.
 本発明の第2の分離方法は、有機溶媒と水との混合液から有機溶媒と水とを分離する分離方法であって、混合液に対し、膜中のナトリウムイオンがナトリウムイオン以外の1価のカチオンに置換されているイオン交換型ゼオライト膜を浸透気化膜として用いる浸透気化処理を行って、混合液から有機溶媒と水とを分離する。 The second separation method of the present invention is a separation method for separating an organic solvent and water from a mixed solution of an organic solvent and water, in which sodium ions in the membrane are monovalent other than sodium ions in the mixed solution. An osmotic vaporization treatment is performed using an ion exchange type zeolite membrane substituted with the cation of the above as an osmotic vaporization membrane to separate the organic solvent and water from the mixed solution.
 第2の分離方法において、イオン交換型ゼオライト膜は、A型ゼオライト、X型ゼオライト、Y型ゼオライト及びCHA型ゼオライトのうちの少なくとも1つのゼオライトからなるゼオライト膜における膜中のナトリウムイオンがナトリウムイオン以外の1価のカチオンに置換されているイオン交換型ゼオライト膜であることが好ましく、A型ゼオライト膜に由来するイオン交換型ゼオライト膜であることがより好ましい。第2の分離方法において、1価のカチオンは、カリウムイオン、ルビジウムイオン及びセシウムイオンなどからなる群から選ばれた1以上のカチオンであることが好ましい。1価のカチオンとして、銀(I)イオン(Ag+)や銅(I)イオン(Cu+)も使用可能である。CHA型のゼオライトなど、耐酸性を有するゼオライトを用いる場合には、水素イオン(H+)を1価のカチオンとして使用することも可能である。混合液に含まれる有機溶媒は、第1の分離方法において分離対象有機溶媒として列挙した有機溶媒であることが好ましく、NMPであることがより好ましい。 In the second separation method, in the ion exchange type zeolite membrane, the sodium ions in the membrane of the zeolite membrane composed of at least one of A-type zeolite, X-type zeolite, Y-type zeolite and CHA-type zeolite are other than sodium ions. It is preferable that the zeolite membrane is an ion exchange type zeolite membrane substituted with the monovalent cation of the above, and more preferably an ion exchange type zeolite membrane derived from the A type zeolite membrane. In the second separation method, the monovalent cation is preferably one or more cations selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like. As the monovalent cation, silver (I) ion (Ag + ) and copper (I) ion (Cu + ) can also be used. When an acid-resistant zeolite such as CHA-type zeolite is used, hydrogen ion (H + ) can also be used as a monovalent cation. The organic solvent contained in the mixture is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP.
 本発明の第3の分離方法は、有機溶媒と水との混合液から有機溶媒と水とを分離する分離方法であって、混合液に対して1価のカチオンを添加する工程と、1価のカチオンが添加された混合液に対し、ゼオライト膜を浸透気化膜として用いる浸透気化処理を行って、混合液から有機溶媒と水とを分離する工程と、を有する。 The third separation method of the present invention is a separation method for separating an organic solvent and water from a mixed solution of an organic solvent and water, in which a step of adding a monovalent cation to the mixed solution and a monovalent solution. The mixed liquid to which the cation of the above is added is subjected to a permeation vaporization treatment using a zeolite membrane as a permeation vaporization film to separate the organic solvent and water from the mixed liquid.
 第3の分離方法において、ゼオライト膜は、A型ゼオライト、X型ゼオライト、Y型ゼオライト及びCHA型ゼオライトのうちの少なくとも1つのゼオライトからなる膜であることが好ましく、A型ゼオライトからなる膜であることがより好ましい。混合液に添加される1価のカチオンは、ナトリウムイオンに代わってゼオライト膜に捕捉されるカチオンであればよいが、特に、カリウムイオン、ルビジウムイオン及びセシウムイオンなどからなる群から選ばれた1以上のカチオンであることが好ましい。1価のカチオンとして、銀(I)イオン(Ag+)や銅(I)イオン(Cu+)も使用可能である。CHA型のゼオライトなど、耐酸性を有するゼオライトを用いる場合には、水素イオン(H+)を1価のカチオンとして使用することも可能である。混合液における1価のカチオンの濃度が低すぎると、浸透気化膜の透過側への有機溶媒のリークを防ぐ効果が十分には発揮されなくなる。また添加される1価のカチオンについて溶解度などを考えると、混合液における1価のカチオンの濃度には上限がある。したがって混合液への1価のカチオンの添加量は、混合液におけるそのカチオンの濃度が1μmol/L以上1mol/L以下となるようなものであることが好ましく、混合液におけるそのカチオンの濃度が10μmol/L以上100mmol/L以下となるようなものであることがより好ましい。1価のカチオンは、例えば、そのカチオンを含む塩として混合液に添加される。 In the third separation method, the zeolite membrane is preferably a membrane made of at least one of A-type zeolite, X-type zeolite, Y-type zeolite and CHA-type zeolite, and is a membrane made of A-type zeolite. Is more preferable. The monovalent cation added to the mixed solution may be a cation captured by the zeolite membrane instead of the sodium ion, and in particular, one or more selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like. It is preferably a cation of. As the monovalent cation, silver (I) ion (Ag + ) and copper (I) ion (Cu + ) can also be used. When an acid-resistant zeolite such as CHA-type zeolite is used, hydrogen ion (H + ) can also be used as a monovalent cation. If the concentration of the monovalent cation in the mixed solution is too low, the effect of preventing the leakage of the organic solvent to the permeation side of the permeation vaporization membrane will not be sufficiently exhibited. Considering the solubility of the added monovalent cation, there is an upper limit to the concentration of the monovalent cation in the mixed solution. Therefore, the amount of the monovalent cation added to the mixed solution is preferably such that the concentration of the cation in the mixed solution is 1 μmol / L or more and 1 mol / L or less, and the concentration of the cation in the mixed solution is 10 μmol. It is more preferable that the concentration is / L or more and 100 mmol / L or less. The monovalent cation is added to the mixture, for example, as a salt containing the cation.
 第3の分離方法において、混合液に含まれる有機溶媒は、第1の分離方法において分離対象有機溶媒として列挙した有機溶媒であることが好ましく、NMPであることがより好ましい。またこの分離方法では、浸透気化膜の濃縮側から排出される有機溶媒には、混合液に添加したカチオンが含まれている。特に1価のカチオンとして金属イオンを添加した場合には、排出される有機溶媒にはその金属イオンが含まれることになる。有機溶媒に金属イオンが含まれていることが後工程において好ましくない場合には、浸透気化膜の濃縮側から排出される有機溶媒から金属イオンを除去する工程を設けることが好ましい。金属イオンを除去する工程は、例えば、減圧蒸発缶などの蒸発缶によって有機溶媒だけを気化させ、残渣として金属イオンを蒸発缶内に残留させる方法がある。 In the third separation method, the organic solvent contained in the mixed solution is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP. Further, in this separation method, the organic solvent discharged from the concentrated side of the osmotic vaporization membrane contains cations added to the mixed solution. In particular, when a metal ion is added as a monovalent cation, the discharged organic solvent contains the metal ion. When it is not preferable that the organic solvent contains metal ions in the subsequent step, it is preferable to provide a step of removing the metal ions from the organic solvent discharged from the concentrated side of the osmotic vaporization membrane. As a step of removing the metal ions, for example, there is a method of vaporizing only the organic solvent by an evaporation can such as a vacuum evaporation can and leaving the metal ions in the evaporation can as a residue.
 本発明の第1の分離システムは、有機溶媒と水との混合液から有機溶媒と水とを分離する分離システムであって、浸透気化膜を備え混合液が供給される浸透気化装置を有し、浸透気化膜は、ナトリウムイオンが他の1価のカチオンに置換されているイオン交換型ゼオライト膜である。 The first separation system of the present invention is a separation system that separates an organic solvent and water from a mixed solution of an organic solvent and water, and has an osmotic vaporizer provided with an osmotic vaporizing film to which the mixed solution is supplied. The osmotic vaporization membrane is an ion exchange type zeolite membrane in which sodium ions are replaced with other monovalent cations.
 第1の分離システムにおいて、イオン交換型ゼオライト膜は、A型ゼオライト、X型ゼオライト、Y型ゼオライト及びCHA型ゼオライトのうちの少なくとも1つのゼオライトからなるゼオライト膜における膜中のナトリウムイオンが1価のカチオンに置換されているイオン交換型ゼオライト膜であることが好ましく、A型ゼオライト膜に由来するイオン交換型ゼオライト膜であることがより好ましい。第1の分離システムにおいて、1価のカチオンは、カリウムイオン、ルビジウムイオン及びセシウムイオンなどからなる群から選ばれた1以上のカチオンであることが好ましい。1価のカチオンとして、銀(I)イオン(Ag+)や銅(I)イオン(Cu+)も使用可能である。CHA型のゼオライトなど、耐酸性を有するゼオライトを用いる場合には、水素イオン(H+)を1価のカチオンとして使用することも可能である。混合液に含まれる有機溶媒は、第1の分離方法において分離対象有機溶媒として列挙した有機溶媒であることが好ましく、NMPであることがより好ましい。 In the first separation system, the ion exchange type zeolite membrane has a monovalent sodium ion in the membrane in the zeolite membrane composed of at least one of A-type zeolite, X-type zeolite, Y-type zeolite and CHA-type zeolite. An ion-exchange type zeolite membrane substituted with a cation is preferable, and an ion-exchange type zeolite membrane derived from the A-type zeolite membrane is more preferable. In the first separation system, the monovalent cation is preferably one or more cations selected from the group consisting of potassium ion, rubidium ion, cesium ion and the like. As the monovalent cation, silver (I) ion (Ag + ) and copper (I) ion (Cu + ) can also be used. When an acid-resistant zeolite such as CHA-type zeolite is used, hydrogen ion (H + ) can also be used as a monovalent cation. The organic solvent contained in the mixture is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP.
 本発明の第2の分離システムは、有機溶媒と水との混合液から有機溶媒と水とを分離する分離システムであって、混合液に1価のカチオンを添加する添加手段と、添加手段の後段に設けられ、浸透気化膜としてゼオライト膜を備え、混合液が供給される浸透気化装置と、を有する。 The second separation system of the present invention is a separation system that separates an organic solvent and water from a mixture of an organic solvent and water, and is an addition means for adding a monovalent cation to the mixture and an addition means for adding the monovalent cation. It has a permeation vaporizer provided in the subsequent stage, provided with a zeolite membrane as a permeation vaporization film, and to which a mixed liquid is supplied.
 第2の分離システムにおいて、ゼオライト膜は、第3の分離方法において説明したものと同様のものであり、混合液に添加される1価のカチオンも、第3の分離方法において説明したものと同様のものである。添加手段は、混合液における1価のカチオンの濃度が例えば1μmol/L以上1mol/L以下となり、好ましくは混合液における1価のカチオンの濃度が10μmol/L以上100mmol/L以下となるように、そのカチオンを混合液に添加する。添加手段は、例えば、1価のカチオンを含む塩を混合液に注入する塩注入装置である。第2の分離システムにおいて、混合液に含まれる有機溶媒は、第1の分離方法において分離対象有機溶媒として列挙した有機溶媒であることが好ましく、NMPであることがより好ましい。またこの分離システムでは、浸透気化膜の濃縮側から排出される有機溶媒には混合液に添加した塩が含まれているので、必要に応じ、浸透気化膜の濃縮側に、濃縮側から排出される有機溶媒からその塩を除去するイオン除去手段を接続してもよい。イオン除去手段は、例えば、減圧蒸発缶などの蒸発缶によって構成される。 In the second separation system, the zeolite membrane is similar to that described in the third separation method, and the monovalent cations added to the mixture are similar to those described in the third separation method. belongs to. The adding means is such that the concentration of the monovalent cation in the mixed solution is, for example, 1 μmol / L or more and 1 mol / L or less, and preferably the concentration of the monovalent cation in the mixed solution is 10 μmol / L or more and 100 mmol / L or less. The cation is added to the mixture. The addition means is, for example, a salt injection device that injects a salt containing a monovalent cation into the mixed solution. In the second separation system, the organic solvent contained in the mixture is preferably the organic solvent listed as the organic solvent to be separated in the first separation method, and more preferably NMP. Further, in this separation system, since the organic solvent discharged from the concentrated side of the osmotic vaporization membrane contains a salt added to the mixed solution, it is discharged from the concentrated side to the concentrated side of the osmotic vaporized membrane as necessary. An ion removing means for removing the salt from the organic solvent may be connected. The ion removing means is composed of an evaporator such as a vacuum evaporator.
 本発明によれば、ゼオライト膜を浸透気化膜として用いる浸透気化処理によって有機溶媒と水とを分離する際に、浸透気化膜の透過側にリークする有機溶媒の量を低減でき、またこの分離方法の実施に用いられる浸透気化膜を構成するイオン交換型ゼオライト膜の製造方法を得ることができる。 According to the present invention, when separating an organic solvent and water by an osmotic vaporization treatment using a zeolite membrane as an osmotic vaporization membrane, the amount of the organic solvent leaking to the osmotic side of the osmotic vaporization membrane can be reduced, and this separation method A method for producing an ion exchange type zeolite membrane constituting the osmotic vaporization membrane used in the above can be obtained.
本発明の第1の実施形態の分離システムを示すフローシートである。It is a flow sheet which shows the separation system of 1st Embodiment of this invention. 本発明の第2の実施形態の分離システムを示すフローシートである。It is a flow sheet which shows the separation system of the 2nd Embodiment of this invention.
 次に、本発明の実施の形態について、図面を参照して説明する。本発明に基づく分離システムは、水に対して大きな溶解度を有する有機溶媒と水との混合液が供給され、浸透気化処理により混合液を有機溶媒と水とに分離するものである。以下の説明では混合液に含まれる有機溶媒がN-メチル-2-ピロリドン(NMP)であるものとするが、本発明において、水からの分離対象とする有機溶媒はNMPに限定されるものではなく、浸透気化によって水から分離することができる有機溶媒であれば、任意の有機溶媒を水からの分離対象とすることができる。NMPと水との混合液は、例えば、リチウムイオン二次電池の製造工程からNMPを回収したときに得られたものである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the separation system based on the present invention, a mixed solution of an organic solvent having high solubility in water and water is supplied, and the mixed solution is separated into the organic solvent and water by osmotic vaporization treatment. In the following description, it is assumed that the organic solvent contained in the mixed solution is N-methyl-2-pyrrolidone (NMP), but in the present invention, the organic solvent to be separated from water is not limited to NMP. Any organic solvent can be the target of separation from water as long as it is an organic solvent that can be separated from water by permeation vaporization. The mixed solution of NMP and water is obtained, for example, when NMP is recovered from the manufacturing process of a lithium ion secondary battery.
 [第1の実施形態]
 図1は、本発明の第1の実施形態の分離システムを示している。この分離システムは、混合液からNMPを浸透気化処理によって分離するために、浸透気化膜11を有する浸透気化装置10を備えている。混合液は、ポンプ12によって加圧され、蒸気が供給される熱交換器13によって例えば120℃程度の動作温度にまで加熱されて浸透気化装置10に供給される。浸透気化装置10の浸透気化膜11としてイオン交換型ゼオライト膜が使用される。本実施形態で用いるイオン交換型ゼオライト膜については後述するが、イオン交換型ゼオライト膜は水分に親和性を有する分離膜であって、リーク成分を無視すれば水分だけを透過させる性質を有する。浸透気化装置10に供給された混合液は、浸透気化膜11によって有機溶媒であるNMPと水分とに分離され、NMPは、浸透気化装置10の濃縮側の出口Cから排出される。水分は、浸透気化装置10の透過側の出口Pから排出され、冷水が供給されている凝縮器14において凝縮して水となる。実際には凝縮器14から排出される水にはいくばくかのNMPがリークしている。
[First Embodiment]
FIG. 1 shows a separation system according to a first embodiment of the present invention. This separation system includes an osmotic vaporizer 10 having an osmotic vaporization membrane 11 in order to separate NMP from the mixed solution by an osmotic vaporization treatment. The mixture is pressurized by the pump 12 and heated to an operating temperature of, for example, about 120 ° C. by the heat exchanger 13 to which steam is supplied, and is supplied to the permeation vaporizer 10. An ion exchange type zeolite membrane is used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10. The ion exchange type zeolite membrane used in this embodiment will be described later, but the ion exchange type zeolite membrane is a separation membrane having an affinity for water and has a property of allowing only water to permeate if the leak component is ignored. The mixed solution supplied to the osmotic vaporizer 10 is separated into NMP, which is an organic solvent, and water by the osmotic vaporizing membrane 11, and the NMP is discharged from the outlet C on the concentration side of the osmotic vaporizer 10. Moisture is discharged from the outlet P on the permeation side of the permeation vaporizer 10 and condenses into water in the condenser 14 to which cold water is supplied. In reality, some NMP leaks into the water discharged from the condenser 14.
 本実施形態の分離システムにおいて浸透気化膜11として使用されるイオン交換型ゼオライト膜は、例えばCHA型、X型、Y型及びA型のいずれかのゼオライト、特にA型ゼオライトを膜に加工した上で、ゼオライトに含まれるナトリウムイオン(Na+)を他の1価のカチオン、例えばカリウムイオン(K+)、ルビジウムイオン(Rb+)及びセシウムイオン(Cs+)の少なくとも1つに置き換えたものである。ゼオライト膜中のナトリウムイオンを他の1価のカチオンに置き換えてイオン交換型ゼオライト膜とするときは、有機溶媒と水とを混合した処理液に、ナトリウムイオンを置き換える1価のカチオンを加え、そのカチオンが加えられた処理液によってゼオライト膜を処理すればよい。処理液によるゼオライト膜の処理方法としては、処理液へのゼオライト膜の浸漬や、ゼオライト膜による処理液自体を浸透気化処理がある。ゼオライト膜による処理液自体の浸透気化処理とは、ゼオライト膜の一方の面に対して処理液を供給し、処理液が供給された方の面が高い温度、圧力となるようにゼオライト膜に加温、加圧をしてゼオライト膜により処理液をその有機溶媒と水分とに分離する処理のことである。膜を透過後の処理水は気化する。このとき、処理液に含まれている1価のカチオンがゼオライト膜中に拡散してゼオライト膜中のナトリウムイオンを置き換える。後述の実施例から明らかになるように、イオン交換型ゼオライト膜を浸透気化膜11として使用することにより、浸透気化装置10の透過側の出口Pから排出される水分に含まれるリークNMPの量を低減することができる。 The ion exchange type zeolite membrane used as the permeation vaporization film 11 in the separation system of the present embodiment is obtained by processing, for example, CHA-type, X-type, Y-type or A-type zeolite, particularly A-type zeolite into a membrane. Sodium ion (Na + ) contained in zeolite is replaced with at least one of other monovalent cations such as potassium ion (K + ), rubidium ion (Rb + ) and cesium ion (Cs +). be. To replace the sodium ions in the zeolite membrane with other monovalent cations to form an ion exchange type zeolite membrane, add the monovalent cations that replace the sodium ions to the treatment solution in which an organic solvent and water are mixed, and then add the monovalent cations. The zeolite membrane may be treated with the treatment liquid to which the cation is added. Methods for treating the zeolite membrane with the treatment liquid include immersion of the zeolite membrane in the treatment liquid and osmotic vaporization treatment of the treatment liquid itself with the zeolite membrane. In the permeation vaporization treatment of the treatment liquid itself by the zeolite membrane, the treatment liquid is supplied to one surface of the zeolite membrane, and the treatment liquid is added to the zeolite membrane so that the surface to which the treatment liquid is supplied has a high temperature and pressure. It is a treatment that separates the treatment liquid into its organic solvent and water by applying temperature and pressure with a zeolite membrane. The treated water after permeating the membrane evaporates. At this time, the monovalent cation contained in the treatment liquid diffuses into the zeolite membrane to replace the sodium ion in the zeolite membrane. As will be clarified from the examples described later, by using the ion exchange type zeolite membrane as the osmotic vaporization membrane 11, the amount of leak NMP contained in the water discharged from the outlet P on the osmotic side of the osmotic vaporizer 10 can be determined. Can be reduced.
 従来、イオン交換型ゼオライトからなるゼオライト膜は、ゼオライトを膜に加工した上で、ゼオライトに捕捉させたいカチオンを含む水溶液を処理液としてこの処理液にゼオライト膜を浸漬することによるイオン交換処理を行って生成されている。しかしながらこの処理はバッチ処理で行なわれるとともに、イオン交換の程度を高めるためには処理液を交換しながら処理液へのゼオライトの浸漬を繰り返し行う必要があり、作業効率が悪い。イオン交換の加速のためには加温が有効であるが、A型ゼオライト膜は水分に対する耐性が高くないため、加温された水溶液で処理すると膜が劣化することがある。 Conventionally, a zeolite membrane made of ion-exchange type zeolite is subjected to ion exchange treatment by processing zeolite into a membrane and then immersing the zeolite membrane in this treatment liquid using an aqueous solution containing a cation to be captured by the zeolite as a treatment liquid. Is generated. However, this treatment is performed by a batch treatment, and in order to increase the degree of ion exchange, it is necessary to repeatedly immerse the zeolite in the treatment liquid while exchanging the treatment liquid, resulting in poor work efficiency. Heating is effective for accelerating ion exchange, but since the A-type zeolite membrane does not have high resistance to moisture, the membrane may deteriorate when treated with a heated aqueous solution.
 本発明では、有機溶媒と水とを混合した処理液にナトリウムイオンを置き換える1価のカチオンが加えられた処理液にゼオライト膜を浸漬させる、ゼオライト膜により処理液自体を浸透気化処理することでイオン交換型ゼオライトからなるゼオライト膜を生成している。そのため、処理液を交換しながら処理液へのゼオライトの浸漬を繰り返し行う必要がなく、作業効率を向上させることができる。また、処理液を加温する必要がないため、特にA型ゼオライト膜の劣化を抑制することができる。 In the present invention, a zeolite membrane is immersed in a treatment liquid in which a monovalent cation that replaces sodium ions is added to a treatment liquid in which an organic solvent and water are mixed, and the treatment liquid itself is permeated and vaporized by the zeolite membrane. A zeolite membrane made of exchangeable zeolite is produced. Therefore, it is not necessary to repeatedly immerse the zeolite in the treatment liquid while exchanging the treatment liquid, and the work efficiency can be improved. Moreover, since it is not necessary to heat the treatment liquid, deterioration of the A-type zeolite membrane can be particularly suppressed.
 [第2の実施形態]
 図2は、本発明の第2の実施形態の分離システムを示している。この分離システムは、図1に示した分離システムと同様のものであるが、ポンプ12の入口側に、NMPと水との混合液に対してナトリウムイオン以外の1価のカチオンの塩の溶液を注入する塩注入装置15が設けられており、また浸透気化膜11には、イオン交換処理を経ていないゼオライト膜、すなわちゼオライトにおける対カチオンがナトリウムイオンのままであるゼオライト膜が用いられている。塩注入装置15により混合液に添加される1価のカチオンは、例えば、カリウムイオン、ルビジウムイオン及びセシウムイオンの少なくとも1つである。本実施形態の分離システムでは、浸透気化膜11として予めイオン交換がされたゼオライト膜を使用しないが、混合液の浸透気化処理を行っている間に混合液中の1価のカチオンによって浸透気化膜11のイオン交換が進行し、結果として、イオン交換型ゼオライト膜を浸透気化膜11として用いたときと同様の効果が得られる。しかも混合液から1価のカチオンがゼオライト膜に随時供給されるので、NMPと水との良好な分離特性を維持することが可能となり、浸透気化装置10の透過側の出口PからリークするNMPの量を図1に示す分離システムに比べてさらに低減することができる。
[Second Embodiment]
FIG. 2 shows a separation system according to a second embodiment of the present invention. This separation system is similar to the separation system shown in FIG. 1, but a solution of a monovalent cation salt other than sodium ion is applied to the mixture of NMP and water on the inlet side of the pump 12. A salt injection device 15 for injection is provided, and the osmotic vaporization film 11 uses a zeolite film that has not undergone an ion exchange treatment, that is, a zeolite film in which the counter cation in the zeolite remains sodium ion. The monovalent cation added to the mixed solution by the salt injection device 15 is, for example, at least one of potassium ion, rubidium ion and cesium ion. In the separation system of the present embodiment, the zeolite membrane that has been ion-exchanged in advance is not used as the permeation vaporization membrane 11, but the permeation vaporization membrane is formed by the monovalent cation in the mixed liquid during the permeation vaporization treatment of the mixed liquid. The ion exchange of 11 proceeds, and as a result, the same effect as when the ion exchange type zeolite membrane is used as the permeation vaporization membrane 11 can be obtained. Moreover, since monovalent cations are supplied to the zeolite membrane from the mixed solution at any time, it is possible to maintain good separation characteristics between NMP and water, and the NMP leaking from the outlet P on the permeation side of the permeation vaporizer 10. The amount can be further reduced as compared to the separation system shown in FIG.
 第2の実施形態の分離システムでは、混合液に添加した1価のカチオンが金属イオンである場合には、その金属イオンの大部分は、浸透気化装置10の濃縮側の出口CからNMPとともに排出される。排出されたNMPを再利用するときに金属イオンが含まれていることが好ましくない場合には、図2に示すように、浸透気化装置10の濃縮側の出口Cに対して、NMPから金属イオンを除去するために例えば減圧蒸発缶17を接続する。図示したものでは、濃縮側の出口Cと減圧蒸発缶17との間には、冷水が供給されてNMPの温度を下げる熱交換器16が設けられる。減圧蒸発缶17においてNMPは気化し、気相のNMPとして減圧蒸発缶17から排出される。金属イオンは難揮発性であり、減圧蒸発缶17内に残留する。これにより、金属イオンを含まないNMPを得ることができる。 In the separation system of the second embodiment, when the monovalent cation added to the mixed solution is a metal ion, most of the metal ion is discharged together with NMP from the outlet C on the concentration side of the permeation vaporizer 10. Will be done. When it is not preferable that metal ions are contained when the discharged NMP is reused, as shown in FIG. 2, the metal ions from the NMP are directed to the outlet C on the concentration side of the permeation vaporizer 10. For example, a reduced pressure evaporation can 17 is connected to remove the above. In the figure, a heat exchanger 16 is provided between the outlet C on the concentration side and the vacuum evaporation can 17 to supply cold water to lower the temperature of the NMP. The NMP is vaporized in the reduced pressure evaporation can 17 and discharged from the reduced pressure evaporation can 17 as the NMP of the gas phase. The metal ions are hardly volatile and remain in the vacuum evaporation can 17. Thereby, NMP containing no metal ion can be obtained.
 以下、実施例及び比較例によって、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
 [比較例1]
 図1に示して説明した分離システムを組み立てた。浸透気化装置10に設けられる浸透気化膜11としては、A型ゼオライトからなるゼオライト膜を使用した。そして、NMPを95質量%、水を5質量%含む混合液を浸透気化装置10に供給し、動作温度120℃で混合液の浸透気化処理を行った。浸透気化装置10の透過側から排出される各成分を定量することにより、浸透気化膜11について、水に対する透過係数とNMPとの透過係数とを求め、これらの透過係数から浸透気化膜11における水とNMPとの分離係数を求めた。結果を表1に示す。
[Comparative Example 1]
The separation system described in FIG. 1 was assembled. As the osmotic vaporization membrane 11 provided in the osmotic vaporizer 10, a zeolite membrane made of A-type zeolite was used. Then, a mixed solution containing 95% by mass of NMP and 5% by mass of water was supplied to the osmotic vaporizer 10, and the osmotic vaporization treatment of the mixed solution was performed at an operating temperature of 120 ° C. By quantifying each component discharged from the permeation side of the permeation vaporizer 10, the permeation coefficient with respect to water and the permeation coefficient with NMP of the permeation vaporization film 11 are obtained, and water in the permeation vaporization film 11 is obtained from these permeation coefficients. The separation coefficient between NMP and NMP was calculated. The results are shown in Table 1.
 [実施例1]
 比較例1で使用したものと同じゼオライト膜をカリウムイオンを含む処理液に浸漬してイオン交換型ゼオライト膜とした。処理液は、NMPを95質量%、水を5質量%含み、かつ、処理液の全体積を基準として、カリウムイオンを含む塩として臭化カリウム(KBr)を16mmol/L含むものであった。このイオン交換型ゼオライト膜を浸透気化膜11として用いて、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 1]
The same zeolite membrane used in Comparative Example 1 was immersed in a treatment liquid containing potassium ions to obtain an ion exchange type zeolite membrane. The treatment liquid contained 95% by mass of NMP and 5% by mass of water, and contained 16 mmol / L of potassium bromide (KBr) as a salt containing potassium ions based on the total volume of the treatment liquid. Using this ion-exchange type zeolite membrane as the osmotic vaporization membrane 11, the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [実施例2]
 実施例1で用いたものと同じ処理液を用意し、比較例1で使用したものと同じゼオライト膜を使用してこの処理液自体の浸透気化処理を行うことにより、イオン交換型ゼオライト膜を得た。このイオン交換型ゼオライト膜を浸透気化装置10の浸透気化膜11として使用し、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 2]
An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 1 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 1. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [比較例2]
 比較例1とは異なるA型ゼオライト膜を使用したことを除いて比較例1と同様の手順により透過係数及び分離係数を求めた。結果を表1に示す。
[Comparative Example 2]
The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that an A-type zeolite membrane different from that in Comparative Example 1 was used. The results are shown in Table 1.
 [実施例3]
 比較例2で使用したものと同じゼオライト膜をカリウムイオンを含む処理液に浸漬してイオン交換型ゼオライト膜とした。処理液は、NMPを95質量%、水を5質量%含み、かつ、処理液の全体積を基準として、カリウムイオンを含む塩として塩化カリウム(KCl)を16μmol/L含むものであった。このイオン交換型ゼオライト膜を浸透気化膜11として用いて、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 3]
The same zeolite membrane used in Comparative Example 2 was immersed in a treatment liquid containing potassium ions to obtain an ion exchange type zeolite membrane. The treatment liquid contained 95% by mass of NMP and 5% by mass of water, and contained 16 μmol / L of potassium chloride (KCl) as a salt containing potassium ions based on the total volume of the treatment liquid. Using this ion-exchange type zeolite membrane as the osmotic vaporization membrane 11, the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [実施例4]
 実施例3で用いたものと同じ処理液を用意し、比較例2で使用したものと同じゼオライト膜を使用してこの処理液自体の浸透気化処理を行うことにより、イオン交換型ゼオライト膜を得た。このイオン交換型ゼオライト膜を浸透気化装置10の浸透気化膜11として使用し、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 4]
An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 3 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 2. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [比較例3]
 比較例1,2とは異なるA型ゼオライト膜を使用したことを除いて比較例1と同様の手順により透過係数及び分離係数を求めた。結果を表1に示す。
[Comparative Example 3]
The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that the A-type zeolite membrane different from Comparative Examples 1 and 2 was used. The results are shown in Table 1.
 [実施例5]
 比較例3で使用したものと同じゼオライト膜をセシウムイオンを含む処理液に浸漬してイオン交換型ゼオライト膜とした。処理液は、NMPを95質量%、水を5質量%含み、かつ、処理液の全体積を基準として、セシウムイオンを含む塩として塩化セシウム(CsCl)を16μmol/L含むものであった。このイオン交換型ゼオライト膜を浸透気化膜11として用いて、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 5]
The same zeolite membrane used in Comparative Example 3 was immersed in a treatment liquid containing cesium ions to obtain an ion exchange type zeolite membrane. The treatment liquid contained 95% by mass of NMP and 5% by mass of water, and contained 16 μmol / L of cesium chloride (CsCl) as a salt containing cesium ions based on the total volume of the treatment liquid. Using this ion-exchange type zeolite membrane as the osmotic vaporization membrane 11, the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [実施例6]
 実施例5で用いたものと同じ処理液を用意し、比較例3で使用したものと同じゼオライト膜を使用してこの処理液自体の浸透気化処理を行うことにより、イオン交換型ゼオライト膜を得た。このイオン交換型ゼオライト膜を浸透気化装置10の浸透気化膜11として使用し、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 6]
An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 5 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 3. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [比較例4]
 比較例1とは異なるA型ゼオライト膜を使用したことを除いて比較例1と同様の手順により透過係数及び分離係数を求めた。結果を表1に示す。
[Comparative Example 4]
The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that an A-type zeolite membrane different from that in Comparative Example 1 was used. The results are shown in Table 1.
 [実施例7]
 比較例4で使用したものと同じゼオライト膜をカリウムイオンを含む処理液に浸漬してイオン交換型ゼオライト膜とした。処理液は、NMPを80質量%、水を20質量%含み、かつ、処理液の全体積を基準として、カリウムイオンを含む塩として塩化カリウムを16μmol/L含むものであった。このイオン交換型ゼオライト膜を浸透気化膜11として用いて、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 7]
The same zeolite membrane used in Comparative Example 4 was immersed in a treatment liquid containing potassium ions to obtain an ion exchange type zeolite membrane. The treatment liquid contained 80% by mass of NMP and 20% by mass of water, and contained 16 μmol / L of potassium chloride as a salt containing potassium ions based on the total volume of the treatment liquid. Using this ion-exchange type zeolite membrane as the osmotic vaporization membrane 11, the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [実施例8]
 実施例7で用いたものと同じ処理液を用意し、比較例4で使用したものと同じゼオライト膜を使用してこの処理液自体の浸透気化処理を行うことにより、イオン交換型ゼオライト膜を得た。このイオン交換型ゼオライト膜を浸透気化装置10の浸透気化膜11として使用し、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表2に示す。
[Example 8]
An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 7 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 4. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 2.
 [比較例5]
 比較例1とは異なるA型ゼオライト膜を使用したことを除いて比較例1と同様の手順により透過係数及び分離係数を求めた。結果を表1に示す。
[Comparative Example 5]
The permeability coefficient and separation coefficient were determined by the same procedure as in Comparative Example 1 except that an A-type zeolite membrane different from that in Comparative Example 1 was used. The results are shown in Table 1.
 [実施例9]
 比較例5で使用したものと同じゼオライト膜をセシウムイオンを含む処理液に浸漬してイオン交換型ゼオライト膜とした。処理液は、NMPを80質量%、水を20質量%含み、かつ、処理液の全体積を基準として、セシウムイオンを含む塩として塩化セシウムを16μmol/L含むものであった。このイオン交換型ゼオライト膜を浸透気化膜11として用いて、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 9]
The same zeolite membrane as that used in Comparative Example 5 was immersed in a treatment liquid containing cesium ions to obtain an ion exchange type zeolite membrane. The treatment liquid contained 80% by mass of NMP and 20% by mass of water, and contained 16 μmol / L of cesium chloride as a salt containing cesium ions based on the total volume of the treatment liquid. Using this ion-exchange type zeolite membrane as the osmotic vaporization membrane 11, the same mixed solution as in Comparative Example 1 was subjected to osmotic vaporization treatment, and the permeation coefficient and separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
 [実施例10]
 実施例9で用いたものと同じ処理液を用意し、比較例5で使用したものと同じゼオライト膜を使用してこの処理液自体の浸透気化処理を行うことにより、イオン交換型ゼオライト膜を得た。このイオン交換型ゼオライト膜を浸透気化装置10の浸透気化膜11として使用し、比較例1と同じ混合液の浸透気化処理を行い、比較例1と同様に透過係数及び分離係数を求めた。結果を表1に示す。
[Example 10]
An ion exchange type zeolite membrane is obtained by preparing the same treatment liquid as that used in Example 9 and performing the permeation vaporization treatment of the treatment liquid itself using the same zeolite membrane as that used in Comparative Example 5. rice field. This ion exchange type zeolite membrane was used as the osmotic vaporization membrane 11 of the osmotic vaporizer 10, and the same mixed solution as in Comparative Example 1 was subjected to the osmotic vaporization treatment, and the permeability coefficient and the separation coefficient were obtained in the same manner as in Comparative Example 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、浸透気化膜11としてイオン交換を行っていないゼオライト膜を使用した場合に比べ、同じゼオライト膜に対してイオン交換処理を行ってイオン交換型ゼオライト膜とした場合には、浸透気化装置10の透過側から水とともに漏れ出すNMPの量が大きく低減し、浸透気化膜11における分離係数が向上することが分かった。また、ゼオライト膜のイオン交換処理に用いる処理液が同じであっても、処理液にゼオライト膜を浸漬して膜中に1価のカチオンを導入する場合よりも、処理液自体の浸透気化処理を行ってゼオライト膜に1価のカチオンを導入した場合の方が、結果として得られるイオン交換型ゼオライト膜でのNMPのリークがより低減して分離係数がさらに向上した。イオン交換型ゼオライト膜を得るときのイオン交換処理に用いる処理液における水分濃度が5質量%であるときと20質量%であるときとでは、得られたイオン交換型ゼオライト膜によって浸透気化処理を行ったときの分離係数に大きな差は見られなかった。 From Table 1, as compared with the case where the zeolite membrane which has not undergone ion exchange is used as the permeation vaporization membrane 11, when the same zeolite membrane is subjected to ion exchange treatment to obtain an ion exchange type zeolite membrane, the permeation vaporizer It was found that the amount of NMP leaking from the permeation side of No. 10 together with water was greatly reduced, and the separation coefficient in the permeation vaporizing membrane 11 was improved. Further, even if the treatment liquid used for the ion exchange treatment of the zeolite membrane is the same, the permeation vaporization treatment of the treatment liquid itself can be performed as compared with the case where the zeolite membrane is immersed in the treatment liquid and a monovalent cation is introduced into the membrane. In the case where the monovalent cation was introduced into the zeolite membrane, the leakage of NMP in the resulting ion exchange type zeolite membrane was further reduced and the separation coefficient was further improved. When the water concentration in the treatment liquid used for the ion exchange treatment when obtaining the ion exchange type zeolite membrane is 5% by mass and 20% by mass, the osmotic vaporization treatment is performed by the obtained ion exchange type zeolite membrane. There was no significant difference in the separation coefficient at that time.
 [実施例11]
 図2に示す分離システムを組み立てた。ただし減圧蒸発缶17とその前段の熱交換器16は設けていない。浸透気化膜11として、比較例1で用いたものと同じA型ゼオライト膜を使用した。NMPを95質量%、水を5質量%含み、さらにカリウムイオンを添加した混合液を浸透気化装置10に供給し、動作温度120℃で混合液の浸透気化処理を行った。混合液へのカリウムイオンの添加は、KBrを混合液に加えることにより行った。混合液の全体積を基準として、混合液におけるKBrの濃度は16mmol/Lであった。浸透気化装置10の透過側から排出される各成分を定量することにより、浸透気化膜11について、水に対する透過係数とNMPとの透過係数とを求め、これらの透過係数から浸透気化膜11における水とNMPとの分離係数を求めた。結果を表2に示す。
[Example 11]
The separation system shown in FIG. 2 was assembled. However, the decompression evaporation can 17 and the heat exchanger 16 in the previous stage are not provided. As the osmotic vaporization membrane 11, the same type A zeolite membrane as that used in Comparative Example 1 was used. A mixed solution containing 95% by mass of NMP and 5% by mass of water and further added with potassium ions was supplied to the permeation vaporizer 10, and the mixture was permeated and vaporized at an operating temperature of 120 ° C. Potassium ions were added to the mixed solution by adding KBr to the mixed solution. The concentration of KBr in the mixture was 16 mmol / L based on the total volume of the mixture. By quantifying each component discharged from the permeation side of the permeation vaporizer 10, the permeation coefficient with respect to water and the permeation coefficient with NMP of the permeation vaporization film 11 are obtained, and water in the permeation vaporization film 11 is obtained from these permeation coefficients. The separation coefficient between NMP and NMP was calculated. The results are shown in Table 2.
 [実施例12]
 浸透気化膜11として比較例2で用いたA型ゼオライト膜を使用し、混合液にカリウムイオンを添加するための薬剤としてKClを使用し、混合液におけるKClの濃度を16μmol/Lとしたこと以外は実施例11と同様にして、透過係数及び分離係数を求めた。結果を表2に示す。
[Example 12]
Except that the A-type zeolite membrane used in Comparative Example 2 was used as the osmotic vaporization membrane 11, KCl was used as a drug for adding potassium ions to the mixed solution, and the concentration of KCl in the mixed solution was 16 μmol / L. Obtained the transmission coefficient and the separation coefficient in the same manner as in Example 11. The results are shown in Table 2.
 [実施例13]
 浸透気化膜11として比較例3で用いたA型ゼオライト膜を使用し、混合液にはカリウムイオンではなくセシウムイオンを添加するとして混合液にCsClを添加し、混合液におけるCsClの濃度を16μmol/Lとしたこと以外は実施例11と同様にして、透過係数及び分離係数を求めた。結果を表2に示す。
[Example 13]
The A-type zeolite membrane used in Comparative Example 3 was used as the permeation vaporization membrane 11, and CsCl was added to the mixed solution assuming that cesium ions were added instead of potassium ions to the mixed solution, and the concentration of CsCl in the mixed solution was 16 μmol /. The transmission coefficient and the separation coefficient were obtained in the same manner as in Example 11 except that the value was L. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、浸透気化膜11としてイオン交換型ではないゼオライト膜を使用しNMPと水との混合液から浸透気化処理によりNMPと水とを分離する場合において、混合液にカリウムイオンあるいはセシウムイオンなどの1価のカチオンを添加することにより、浸透気化装置10の透過側から水とともに漏れ出すNMPの量が大きく低減し、浸透気化膜11における分離係数が向上することが分かった。特に、実施例1~10との結果と対比することにより、有機溶媒と水と1価のカチオンとを含む処理液によってゼオライト膜を処理してイオン交換型ゼオライト膜とし、このイオン交換型ゼオライト膜を浸透気化膜11として浸透気化処理を行う場合に比べ、分離対象の混合液自体に1価のカチオンを加えて浸透気化処理を行う場合の方が、浸透気化膜11の透過側での有機溶媒のリークをより抑えられ、分離係数をより向上できることが分かった。 From Table 2, when a non-ion exchange type zeolite membrane is used as the osmotic vaporization membrane 11 and NMP and water are separated from the mixed solution of NMP and water by osmotic vaporization treatment, potassium ion or cesium ion or the like is added to the mixed solution. It was found that by adding the monovalent cation of No. 1, the amount of NMP leaking from the permeation side of the permeation vaporizer 10 together with water was greatly reduced, and the separation coefficient in the permeation vaporization membrane 11 was improved. In particular, by comparing the results with Examples 1 to 10, the zeolite membrane was treated with a treatment liquid containing an organic solvent, water and a monovalent cation to obtain an ion exchange type zeolite membrane, and this ion exchange type zeolite membrane was obtained. The organic solvent on the osmotic side of the osmotic vaporizing film 11 is compared with the case where the osmotic vaporization treatment is performed by adding a monovalent cation to the mixed solution itself to be separated. It was found that the leakage of the solvent can be further suppressed and the separation coefficient can be further improved.
 10  浸透気化装置
 11  浸透気化膜
 12  ポンプ
 13,16  熱交換器
 14  凝縮器
 15  塩注入装置
 17  減圧蒸発缶
 
10 Osmotic vaporizer 11 Osmotic vaporizer 12 Pump 13, 16 Heat exchanger 14 Condenser 15 Salt injection device 17 Decompression evaporation can

Claims (12)

  1.  イオン交換型ゼオライト膜の製造方法であって、
     処理用有機溶媒と、水と、1価のカチオンと、を含む処理液によってゼオライト膜を処理する工程を有する、製造方法。
    A method for producing an ion exchange type zeolite membrane.
    A production method comprising a step of treating a zeolite membrane with a treatment liquid containing an organic solvent for treatment, water, and a monovalent cation.
  2.  前記ゼオライト膜を処理する工程は、前記処理液に前記ゼオライト膜を浸漬する工程、及び、前記ゼオライト膜によって前記処理液の浸透気化処理を行って前記1価のカチオンを前記ゼオライト膜中に拡散させる工程の少なくとも1つを有する、請求項1に記載の製造方法。 The step of treating the zeolite membrane includes a step of immersing the zeolite membrane in the treatment liquid and a permeation vaporization treatment of the treatment liquid by the zeolite membrane to diffuse the monovalent cation into the zeolite membrane. The production method according to claim 1, which comprises at least one of the steps.
  3.  前記1価のカチオンは、カリウムイオン、ルビジウムイオン及びセシウムイオンからなる群から選ばれた1以上のカチオンである、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the monovalent cation is one or more cations selected from the group consisting of potassium ion, rubidium ion and cesium ion.
  4.  前記処理液は前記処理用有機溶媒を50質量%以上99質量%以下含む、請求項1乃至3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the treatment liquid contains 50% by mass or more and 99% by mass or less of the organic solvent for treatment.
  5.  分離対象有機溶媒と水との混合液から前記分離対象有機溶媒と水とを分離する分離方法であって、
     前記混合液に対し、請求項1乃至5のいずれか1項に記載の製造方法によって製造されたイオン交換型ゼオライト膜を浸透気化膜として用いる浸透気化処理を行って、前記混合液から前記分離対象有機溶媒と水とを分離する、分離方法。
    A separation method for separating the organic solvent to be separated and water from a mixture of the organic solvent to be separated and water.
    The mixed solution is subjected to an osmotic vaporization treatment using an ion exchange type zeolite membrane produced by the production method according to any one of claims 1 to 5 as an osmotic vaporization film, and is separated from the mixed solution. A separation method that separates an organic solvent and water.
  6.  前記分離対象有機溶媒と前記処理用有機溶媒とが同じ有機溶媒である、請求項5に記載の分離方法。 The separation method according to claim 5, wherein the organic solvent to be separated and the organic solvent for treatment are the same organic solvent.
  7.  有機溶媒と水との混合液から前記有機溶媒と水とを分離する分離方法であって、
     前記混合液に対し、膜中のナトリウムイオンがナトリウムイオン以外の1価のカチオンに置換されているイオン交換型ゼオライト膜を浸透気化膜として用いる浸透気化処理を行って、前記混合液から前記有機溶媒と水とを分離する、分離方法。
    A separation method for separating the organic solvent and water from a mixture of an organic solvent and water.
    The mixed solution is subjected to a permeation vaporization treatment using an ion exchange type zeolite membrane in which sodium ions in the membrane are replaced with monovalent cations other than sodium ions as a permeation vaporization film, and the organic solvent is used from the mixture. Separation method that separates water and water.
  8.  有機溶媒と水との混合液から前記有機溶媒と水とを分離する分離方法であって、
     前記混合液に対して1価のカチオンを添加する工程と、
     前記1価のカチオンが添加された前記混合液に対し、ゼオライト膜を浸透気化膜として用いる浸透気化処理を行って、前記混合液から前記有機溶媒と水とを分離する工程と、
     を有する、分離方法。
    A separation method for separating the organic solvent and water from a mixture of an organic solvent and water.
    A step of adding a monovalent cation to the mixed solution and
    A step of performing a permeation vaporization treatment using a zeolite membrane as a permeation vaporization membrane on the mixture to which the monovalent cation is added to separate the organic solvent and water from the mixture.
    Separation method.
  9.  前記1価のカチオンは、カリウムイオン、ルビジウムイオン及びセシウムイオンからなる群から選ばれた1以上のカチオンである、請求項8に記載の分離方法。 The separation method according to claim 8, wherein the monovalent cation is one or more cations selected from the group consisting of potassium ion, rubidium ion and cesium ion.
  10.  有機溶媒と水との混合液から前記有機溶媒と水とを分離する分離システムであって、
     浸透気化膜を備え前記混合液が供給される浸透気化装置を有し、
     前記浸透気化膜は、ナトリウムイオンが他の1価のカチオンに置換されているイオン交換型ゼオライト膜である、分離システム。
    A separation system that separates the organic solvent and water from a mixture of the organic solvent and water.
    It has an osmotic vaporizer having a osmotic vaporizing membrane and a osmotic vaporizer to which the mixed solution is supplied.
    The osmotic vaporization membrane is an ion exchange type zeolite membrane in which sodium ions are replaced with other monovalent cations, a separation system.
  11.  有機溶媒と水との混合液から前記有機溶媒と水とを分離する分離システムであって、
     前記混合液に1価のカチオンを添加する添加手段と、
     前記添加手段の後段に設けられ、浸透気化膜としてゼオライト膜を備え、前記混合液が供給される浸透気化装置と、
     を有する分離システム。
    A separation system that separates the organic solvent and water from a mixture of the organic solvent and water.
    An addition means for adding a monovalent cation to the mixed solution, and
    An osmotic vaporizer provided after the addition means, provided with a zeolite membrane as an osmotic vaporizing membrane, and to which the mixed solution is supplied.
    Separation system with.
  12.  前記1価のカチオンは、カリウムイオン、ルビジウムイオン及びセシウムイオンからなる群から選ばれた1以上のカチオンである、請求項11に記載の分離システム。
     
    The separation system according to claim 11, wherein the monovalent cation is one or more cations selected from the group consisting of potassium ion, rubidium ion and cesium ion.
PCT/JP2021/005452 2020-02-14 2021-02-15 Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite WO2021162125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023633 2020-02-14
JP2020023633A JP2021126625A (en) 2020-02-14 2020-02-14 Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite

Publications (1)

Publication Number Publication Date
WO2021162125A1 true WO2021162125A1 (en) 2021-08-19

Family

ID=77292306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005452 WO2021162125A1 (en) 2020-02-14 2021-02-15 Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite

Country Status (2)

Country Link
JP (1) JP2021126625A (en)
WO (1) WO2021162125A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028333A (en) * 2012-07-31 2014-02-13 Mitsui Eng & Shipbuild Co Ltd Membrane separation method using zeolite membrane
JP2018161647A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Water separation method for alkaline water-containing organic compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014028333A (en) * 2012-07-31 2014-02-13 Mitsui Eng & Shipbuild Co Ltd Membrane separation method using zeolite membrane
JP2018161647A (en) * 2017-03-27 2018-10-18 三菱ケミカル株式会社 Water separation method for alkaline water-containing organic compound

Also Published As

Publication number Publication date
JP2021126625A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN106132516B (en) Organic solvent purification system and method
Jiang et al. Effective dye purification using tight ceramic ultrafiltration membrane
EP0158798B1 (en) Method and apparatus for recovering thermal energy
JP6088265B2 (en) NMP purification system and NMP purification method
JP5911228B2 (en) NMP purification system in electrode manufacturing process
JP6636111B2 (en) Organic solvent purification system and method
CN113856496B (en) Preparation method of nanofiltration membrane
CN108299266A (en) The preparation method of high purity N-methyl pyrrolidone
JP2010269229A (en) Hollow fiber carbon membrane incorporating metal ion, and dehydration method of alcoholic aqueous solution using the same
JP6415159B2 (en) Organic solvent purification system and method
CN106925132B (en) Reverse osmosis membrane repairing agent and repairing method
JP6088267B2 (en) NMP purification system
Duong et al. Membrane processes for the regeneration of liquid desiccant solution for air conditioning
JP2013018748A (en) Nmp purification system in electrode production process
JP2014144940A (en) NMP purification system
WO2021162125A1 (en) Method and system for separating water from organic solvent, and method for producing ion exchange type zeolite
JP2016205242A (en) Electric power generation/seawater desalination method and system
JP5762863B2 (en) Method and apparatus for purifying alcohol
CN110787654B (en) Method for preparing reverse osmosis membrane by using 1-methylimidazole as water phase additive
JP6970280B2 (en) Organic solvent purification system and method
JP6088266B2 (en) NMP purification system
CN111715078B (en) Sandwich graphene oxide hollow fiber membrane with fixed interlayer spacing and preparation method and application thereof
JP2020083870A (en) Method for purifying n-methyl-2-pyrolidone, purifier, recovery and purification method, and recovery and purification system
JP7328859B2 (en) Organic solvent purification method and purification system
CN107670507A (en) A kind of method separated using pervaporation method with concentrating ion liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753102

Country of ref document: EP

Kind code of ref document: A1