JPWO2019191837A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2019191837A5
JPWO2019191837A5 JP2020545801A JP2020545801A JPWO2019191837A5 JP WO2019191837 A5 JPWO2019191837 A5 JP WO2019191837A5 JP 2020545801 A JP2020545801 A JP 2020545801A JP 2020545801 A JP2020545801 A JP 2020545801A JP WO2019191837 A5 JPWO2019191837 A5 JP WO2019191837A5
Authority
JP
Japan
Prior art keywords
lithium
precursor
metal
preparation step
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020545801A
Other languages
Japanese (ja)
Other versions
JP7480052B2 (en
JP2021517707A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/CA2019/050403 external-priority patent/WO2019191837A1/en
Publication of JP2021517707A publication Critical patent/JP2021517707A/en
Publication of JPWO2019191837A5 publication Critical patent/JPWO2019191837A5/ja
Priority to JP2024070402A priority Critical patent/JP2024105339A/en
Application granted granted Critical
Publication of JP7480052B2 publication Critical patent/JP7480052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

したがって、本発明によると、上述の目標、目的及び利点を完全に満たす、プロセス、製品及び電池が提供されることは明らかである。本発明の特定の態様を説明してきたが、その代替例、改変例及び変形例が当業者に示唆され得ること、並びに本明細書は、特許請求の範囲内に入るような代替例、改変例及び変形例を全て包含することを意図していることが理解される。
以下に、本願の出願当初の請求項を実施の態様として付記する。
[1] リチウムイオン電池の生産に使用するためのカソード活物質としてのリチウム混合金属酸化物を生産するプロセスであって、当該プロセスは、以下の2つの主要な工程、すなわち、前駆体調製工程及びリチウム化工程を含むプロセス、
A)前記前駆体調製工程では、固体状の金属を、好ましくは酸素、金属硝酸塩及び硝酸、又はこれらの組合せから選択される、少なくとも1つの酸化剤、及び必要に応じてシード混合金属水酸化物粒子を含有する水溶液が含まれる反応器である撹拌反応システムに添加して、前記金属の酸化をアルカリ条件下で行い、
全体の酸化反応は、以下の式:
xMe + yMe’(NO + zHNO + (0.25xm-2yn-2z)O + (0.5xm+2yn+z)H O → Me Me’ (OH) (xm+yn) + (yn+z)NH
(ここで、
Meはニッケル、マンガン、コバルト、アルミニウム及びマグネシウムからなる群より選択される少なくとも1つの金属を表し、
Me’はニッケル、マンガン、コバルト、アルミニウム、マグネシウム、ジルコニウム、イットリウム、チタン、バナジウム及びモリブデンからなる群より選択される少なくとも1つの金属のイオンを表し、
Me Me’ (OH) (xm+yn) は前駆体を表し、
x及びyはそれぞれMe及びMe’のモル分率であり、mは前記前駆体におけるMeのモル加重平均化学原子価であり、nは反応物におけるMe’のモル加重平均化学原子価であり、zは前記反応システムに導入されたHNO のモル分率であり、
xm≧8yn+8zであり、x+y=1であり、1≧x>0であり、y≧0、z≧0である)
によって表され、
前記酸化反応からの合成スラリーを前記反応器から取り出し、未反応金属を前記スラリーから除去して前記反応システムに再循環させ、その後、固液分離を行い、回収された固体は回収された前駆体として使用し、液体を好ましくはいかなる処理も行わずに直接前記反応システムに再循環させ、並びに
B)前記リチウム化工程では、前記回収された前駆体をリチウム含有化合物及び必要に応じて他のドーパントと混合して最終混合物を生成し、続いて前記最終混合物を焼成してカソード活物質を得る。
[2] 前記前駆体調製工程における反応条件は、反応中スラリーのpHを7.5~13とし、温度を20℃~前記スラリーの沸点とすることを含む、[1]に記載のカソード材を生産する方法。
[3] 前記溶液に、硫酸、硝酸若しくは酢酸から選択されるいずれかの酸を添加することによって、及び/又は、水酸化リチウム若しくは酸化リチウム、水酸化ナトリウム若しくは酸化ナトリウム、水酸化カリウム若しくは酸化カリウム、若しくはアンモニアから選択されるアルカリ性物質を添加することによって前記溶液の前記pHを調整する、[2]に記載のカソード材を生産する方法。
[4] 前記水溶液は導電性を増大させるために溶解塩も含有する、[1]に記載のカソード材を生産する方法。
[5] 前記溶解塩は、ナトリウム、リチウム、カリウム及びアンモニウムから選択される陽イオンとの、硫酸塩、酢酸塩、硝酸塩及び塩素酸塩から選択される、[4]に記載のカソード材を生産する方法。
[6] 前記水溶液は、前記水溶液中の前記金属イオンとキレートを形成する錯化剤も含有する、[1]に記載のカソード材を生産する方法。
[7] 前記錯化剤はアンモニア及びアンモニウムの混合物を含む、[6]に記載のカソード材を生産する方法。
[8] 前記酸化剤は、空気、酸素、金属硝酸塩若しくは硝酸、又は同時に使用される2つ以上の酸化剤の組合せである、[1]に記載のカソード材を生産する方法。
[9] 前記酸化剤は酸素である、[1]に記載のカソード材を生産する方法。
[10] 前記酸素は他のガスに含有されている、[9]に記載のカソード材を生産する方法。
[11] 前記前駆体調製工程における前記反応システムは少なくとも1つの攪拌タンクを含む、[1]に記載のカソード材を生産する方法。
[12] 前記固液分離工程からの液体を用いたミリング及び/又は洗浄によって前記未反応金属を再活性化する、[1]に記載のカソード材を生産する方法。
[13] 前記前駆体調製工程における反応を連続操作モードで定常状態条件下で操作する、[1]~[12]のいずれか1つに記載のカソード材を生産する方法。
[14] 前記金属を常時同じ比率で連続的に添加して各粒子中に均一な元素分布を有する前駆体を生産するか、又は前記金属を経時的に異なる比率で連続的に添加して各粒子中に不均一な元素分布を有する前駆体を生産する、[13]に記載のカソード材を生産する方法。
[15] 前記固液分離後に回収された液体の少なくとも90%を前記反応システムに直接再循環させる、[1]に記載のカソード材を生産する方法。
[16] 前記前駆体と同じか又は同様の組成を有するが前記前駆体よりも粒径の小さい固体粒子を、反応の始め及び/又は反応中に前記反応システムに導入する、[1]に記載のカソード材を生産する方法。
[17] 前記液体と同じ又は同様の組成を有する人工溶液を調製し、適切なろ液がろ過システムから生成されるまで反応の始動のために使用し、次いで前記反応システムに再循環させる、[1]に記載のカソード材を生産する方法。
[18] 前記固体を乾燥させて前記前駆体を得ること、前記前駆体をリチウム含有化合物と混合すること、この混合物を焼成すること、及びこれによりカソード活物質を得ることをさらに含む、[1]に記載のカソード材を生産する方法。
[19] 前記得られたカソード活物質をサイズ減少操作に供する、[18]に記載のカソード材を生産する方法。
[20] 前記リチウム含有化合物は結晶水を伴う又は伴わない水酸化リチウム、及び炭酸リチウムである、[1]に記載のカソード材を生産する方法。
[21] 前記最終混合物を600℃~1100℃で焼成する、[1]に記載のカソード材を生産する方法。
[22] カソード材を焼成後さらなる処理に供し、前記さらなる処理は、余分なリチウム及び不純物を除去するための洗浄、並びに電池生産中及び/又は電池使用中に前記カソード材の性能を向上させるための前記カソード材の被覆を含む、[1]に記載のカソード材を生産する方法。
[23] [1]~[22]のいずれか1つに記載のプロセスに従って製造された、リチウムイオン二次電池用カソード活物質として使用するためのリチウム混合金属酸化物。
[24] カソード材としてリチウム金属酸化物を含むリチウム二次電池であって、前記カソード材は[1]~[22]のいずれか1つに記載のプロセスに従って製造された混合金属酸化物であるリチウム二次電池。
Therefore, according to the present invention, it is clear that a process, product and battery that completely meets the above-mentioned goals, objectives and advantages will be provided. Although specific embodiments of the present invention have been described, alternatives, modifications and variations thereof can be suggested to those skilled in the art, and the present specification is examples of alternatives and modifications that fall within the scope of the claims. And it is understood that it is intended to include all modifications.
Hereinafter, the claims at the time of filing the application of the present application are added as embodiments.
[1] A process for producing a lithium mixed metal oxide as a cathode active material for use in the production of a lithium ion battery, which is the following two main steps, that is, a precursor preparation step and a precursor preparation step. Processes involving the lithiumization process,
A) In the precursor preparation step, the solid metal is preferably selected from oxygen, metal nitrate and nitrate, or a combination thereof, at least one oxidant, and optionally a seed mixed metal hydroxide. It is added to a stirring reaction system, which is a reactor containing an aqueous solution containing particles, to oxidize the metal under alkaline conditions.
The overall oxidation reaction is as follows:
xMe + yMe'(NO 3 ) n + zHNO 3 + (0.25xm-2yn-2z) O 2 + (0.5xm + 2yn + z) H 2 O → Me x Me'y ( OH) (xm + yn) + (yn + z) NH 3
(here,
Me represents at least one metal selected from the group consisting of nickel, manganese, cobalt, aluminum and magnesium.
Me'represents the ion of at least one metal selected from the group consisting of nickel, manganese, cobalt, aluminum, magnesium, zirconium, yttrium, titanium, vanadium and molybdenum.
Me x Me'y (OH) (xm + yn) represents a precursor and represents a precursor.
x and y are the mole fractions of Me and Me', respectively, m is the mole-weighted average chemical valence of Me in the precursor, and n is the mole-weighted average chemical valence of Me'in the reactants. z is the mole fraction of HNO 3 introduced into the reaction system .
xm ≧ 8 yn + 8z, x + y = 1, 1 ≧ x> 0, y ≧ 0, z ≧ 0)
Represented by
The synthetic slurry from the oxidation reaction is removed from the reactor, the unreacted metal is removed from the slurry and recirculated to the reaction system, followed by solid-liquid separation and the recovered solid is the recovered precursor. The liquid is preferably recirculated directly into the reaction system without any treatment, as well as
B) In the lithium conversion step, the recovered precursor is mixed with a lithium-containing compound and, if necessary, another dopant to form a final mixture, and then the final mixture is calcined to obtain a cathode active material. ..
[2] The cathode material according to [1], wherein the reaction conditions in the precursor preparation step include setting the pH of the slurry during the reaction to 7.5 to 13 and the temperature from 20 ° C to the boiling point of the slurry. How to produce.
[3] By adding any acid selected from sulfuric acid, nitric acid or acetic acid to the solution, and / or lithium hydroxide or lithium oxide, sodium hydroxide or sodium oxide, potassium hydroxide or potassium oxide. Or, the method for producing a cathode material according to [2], wherein the pH of the solution is adjusted by adding an alkaline substance selected from ammonia.
[4] The method for producing a cathode material according to [1], wherein the aqueous solution also contains a dissolved salt in order to increase conductivity.
[5] The dissolved salt produces the cathode material according to [4], which is selected from sulfates, acetates, nitrates and chlorates with cations selected from sodium, lithium, potassium and ammonium. how to.
[6] The method for producing a cathode material according to [1], wherein the aqueous solution also contains a complexing agent that forms a chelate with the metal ions in the aqueous solution.
[7] The method for producing a cathode material according to [6], wherein the complexing agent contains a mixture of ammonia and ammonium.
[8] The method for producing a cathode material according to [1], wherein the oxidizing agent is air, oxygen, metal nitrate or nitric acid, or a combination of two or more oxidizing agents used at the same time.
[9] The method for producing a cathode material according to [1], wherein the oxidizing agent is oxygen.
[10] The method for producing a cathode material according to [9], wherein the oxygen is contained in another gas.
[11] The method for producing a cathode material according to [1], wherein the reaction system in the precursor preparation step includes at least one stirring tank.
[12] The method for producing a cathode material according to [1], wherein the unreacted metal is reactivated by milling and / or washing with a liquid from the solid-liquid separation step.
[13] The method for producing a cathode material according to any one of [1] to [12], wherein the reaction in the precursor preparation step is operated in a continuous operation mode under steady state conditions.
[14] The metal is always continuously added at the same ratio to produce a precursor having a uniform element distribution in each particle, or the metal is continuously added at different ratios over time. The method for producing a cathode material according to [13], which produces a precursor having a non-uniform element distribution in the particles.
[15] The method for producing a cathode material according to [1], wherein at least 90% of the liquid recovered after the solid-liquid separation is directly recirculated to the reaction system.
[16] The solid particles having the same or similar composition as the precursor but having a smaller particle size than the precursor are introduced into the reaction system at the beginning and / or during the reaction, according to [1]. How to produce cathode materials.
[17] An artificial solution having the same or similar composition as the liquid is prepared, used to initiate the reaction until a suitable filtrate is produced from the filtration system, and then recirculated to the reaction system [1]. ] The method for producing the cathode material according to the above.
[18] Further comprising drying the solid to obtain the precursor, mixing the precursor with a lithium-containing compound, firing the mixture, and thereby obtaining a cathode active material [1]. ] A method for producing the cathode material according to the above.
[19] The method for producing a cathode material according to [18], wherein the obtained cathode active material is subjected to a size reduction operation.
[20] The method for producing a cathode material according to [1], wherein the lithium-containing compound is lithium hydroxide with or without water of crystallization and lithium carbonate.
[21] The method for producing a cathode material according to [1], wherein the final mixture is calcined at 600 ° C to 1100 ° C.
[22] The cathode material is subjected to further treatment after firing, and the further treatment is for cleaning to remove excess lithium and impurities, and for improving the performance of the cathode material during battery production and / or battery use. The method for producing a cathode material according to [1], which comprises the coating of the cathode material according to the above.
[23] A lithium mixed metal oxide for use as a cathode active material for a lithium ion secondary battery, which is produced according to the process according to any one of [1] to [22].
[24] A lithium secondary battery containing a lithium metal oxide as a cathode material, wherein the cathode material is a mixed metal oxide produced according to the process according to any one of [1] to [22]. Lithium secondary battery.

Claims (26)

リチウムイオン電池使用するためのリチウム混合金属酸化物のカソード活物質を生産する方法であって
駆体調製工程では、アルカリ条件下で、選択された金属の粒子を、前記金属の粒子水溶液及び少なくとも1つの酸化剤を含む混合物を含有する反応システムに添加して、前駆体及び未反応金属を含むスラリーを形成させ、ここで、前記選択された金属ニッケル、マンガン、コバルト、アルミニウム及びマグネシウムからなる群より選択され、
再循環工程では、前記未反応金属を前記スラリーから分離して第一の溶液を形成させ、前記前駆体を前記第一の溶液から分離して第二の溶液を形成させ前記未反応金属及び第二の溶液を直接前記反応システムに再循環させ、並び
チウム化工程では、前記回収された前駆体をリチウム含有化合物と混合して最終混合物を生成させ、前記最終混合物を焼成してリチウム混合金属酸化物のカソード活物質を得る
ことを含む方法
A method for producing a cathode active material of a lithium mixed metal oxide for use in a lithium ion battery .
In the precursor preparation step, under alkaline conditions, selected metal particles are added to a reaction system containing the metal particles , an aqueous solution and a mixture containing at least one oxidizing agent to add the precursor and the precursor. A slurry containing an unreacted metal is formed , wherein the selected metal is selected from the group consisting of nickel, manganese, cobalt, aluminum and magnesium .
In the recirculation step, the unreacted metal is separated from the slurry to form a first solution, the precursor is separated from the first solution to form a second solution, and the unreacted metal and The second solution is recirculated directly into the reaction system, as well as
In the lithium conversion step, the recovered precursor is mixed with a lithium-containing compound to form a final mixture, and the final mixture is calcined to obtain a cathode active material of a lithium mixed metal oxide .
How to include that .
前記前駆体調製工程は、pH7.5~13、度20℃~前記スラリーの沸点で行われる、請求項1に記載の方法。 The precursor preparation step is pH 7 . The method according to claim 1, wherein the method is carried out at a temperature of 5 to 13 and a temperature of 20 ° C. to the boiling point of the slurry. 前記前駆体調製工程は、硫酸、硝酸酸、水酸化リチウムは酸化リチウム、水酸化ナトリウムは酸化ナトリウム、水酸化カリウムは酸化カリウム、及びアンモニアの少なくとも1つを添加することをさらに含む、請求項2に記載の方法。 The precursor preparation step further comprises adding at least one of sulfuric acid, nitric acid , acetic acid, lithium hydroxide or lithium oxide, sodium hydroxide or sodium oxide, potassium hydroxide or potassium oxide, and ammonia. The method according to claim 2, including . 前記水溶液は溶解塩をさらに、請求項1に記載の方法。 The method according to claim 1, wherein the aqueous solution further contains a dissolved salt. 前記溶解塩は、ナトリウム、リチウム、カリウム及びアンモニウムから選択される陽イオンとの、硫酸塩、酢酸塩、硝酸塩及び塩素酸塩から選択される、請求項4に記載の方法。 The method of claim 4, wherein the dissolved salt is selected from sulfates, acetates, nitrates and chlorates with cations selected from sodium, lithium, potassium and ammonium. 前記水溶液は錯化剤をさらに、請求項1に記載の方法。 The method according to claim 1, wherein the aqueous solution further contains a complexing agent. 前記錯化剤はアンモニア及びアンモニウムの混合物を含む、請求項6に記載の方法。 The method of claim 6, wherein the complexing agent comprises a mixture of ammonia and ammonium. 前記酸化剤は、空気、酸素、金属硝酸塩若しくは硝酸、又はそれらの組合せである、請求項1に記載の方法。 The method according to claim 1, wherein the oxidizing agent is air, oxygen, metal nitrate or nitric acid, or a combination thereof . 前記酸化剤は酸素を含む、請求項1に記載の方法。 The method according to claim 1, wherein the oxidizing agent contains oxygen. 前記酸化剤は酸素である、請求項9に記載の方法。 The method of claim 9 , wherein the oxidizing agent is oxygen. 記反応システムは少なくとも1つの攪拌タンクを含む、請求項1に記載の方法。 The method of claim 1, wherein the reaction system comprises at least one stirring tank. 前記再循環工程は、ミリング及び/又は洗浄によって分離された前記未反応金属再活性化をさらに含む、請求項1に記載の方法。 The method of claim 1, wherein the recirculation step further comprises reactivation of the unreacted metal separated by milling and / or washing. 前記前駆体調製工程は、連続操作モードかつ定常状態条件下で行われる、請求項1~12のいずれか1項に記載の方法。 The method according to any one of claims 1 to 12, wherein the precursor preparation step is performed in a continuous operation mode and under steady state conditions. 前記選択された金属の各金属元素前記前駆体調製工程中に同じ比率で連続的に添加して、前記前駆体の各粒子中に均一な元素分布を有する前記前駆体を生産する、請求項13に記載の方法。 Claiming that each metal element of the selected metal is continuously added at the same ratio during the precursor preparation step to produce the precursor having a uniform element distribution in each particle of the precursor . Item 3. The method according to Item 13. 前記第二の溶液の少なくとも90%を前記反応システムに直接再循環させる、請求項1に記載の方法。 The method of claim 1, wherein at least 90% of the second solution is recirculated directly into the reaction system. 前記前駆体と同じか又は同様の組成を有し、前記前駆体よりも粒径の小さい固体粒子を、前記前駆体調製工程中に前記反応システムに導入する、請求項1に記載の方法。 The method of claim 1, wherein solid particles having the same or similar composition as the precursor and having a smaller particle size than the precursor are introduced into the reaction system during the precursor preparation step . 前記再循環工程で適切な第二の溶液が得られるまで、前記前駆体調製工程で前記水溶液と同じ又は同様の組成を有する人工溶液を使用し、前記反応システムに再循環させる、請求項1に記載の方法。 Claimed, until a suitable second solution is obtained in the recirculation step, an artificial solution having the same or similar composition as the aqueous solution is used in the precursor preparation step and recirculated in the reaction system. The method according to 1. 前記回収された前駆体を乾燥させるとをさらに含む、請求項1に記載の方法。 The method of claim 1 , further comprising drying the recovered precursor . 前記リチウム混合金属酸化物のカソード活物質をサイズ減少操作に供する、請求項18に記載の方法。 18. The method of claim 18, wherein the cathode active material of the lithium mixed metal oxide is subjected to a size reduction operation. 前記リチウム含有化合物は水酸化リチウム及び炭酸リチウムから選択される、請求項1に記載の方法。 The method according to claim 1, wherein the lithium-containing compound is selected from lithium hydroxide and lithium carbonate. 前記最終混合物を600℃~1100℃で焼成する、請求項1に記載の方法。 The method of claim 1, wherein the final mixture is calcined at 600 ° C to 1100 ° C. 前記リチウム混合金属酸化物のカソード物質、洗浄、被覆及びその組合せから選択されるさらなる処理に供する、請求項1に記載の方法。 The method of claim 1, wherein the cathode material of the lithium mixed metal oxide is subjected to a further treatment selected from cleaning, coating and a combination thereof . 前記前駆体調製工程の混合物はシード金属水酸化物粒子をさらに含む、請求項1に記載の方法。The method of claim 1, wherein the mixture in the precursor preparation step further comprises seed metal hydroxide particles. 前記シード金属水酸化物粒子は、ニッケル、マンガン、コバルト、アルミニウム、マグネシウム、ジルコニウム、イットリウム、チタン、バナジウム及びモリブデンからなる群より選択される少なくとも1つの金属のイオンを含む、請求項23に記載の方法。23. The seed metal hydroxide particle comprises an ion of at least one metal selected from the group consisting of nickel, manganese, cobalt, aluminum, magnesium, zirconium, yttrium, titanium, vanadium and molybdenum. Method. 請求項1~24のいずれか1項に記載の方法で製造された、リチウムイオン二次電池用カソード活物質として使用するためのリチウム混合金属酸化物。 A lithium mixed metal oxide for use as a cathode active material for a lithium ion secondary battery, which is produced by the method according to any one of claims 1 to 24 . カソード材としてリチウム金属酸化物を含むリチウム二次電池であって、前記カソード材は請求項1~24のいずれか1項に記載の方法で製造された混合金属酸化物であるリチウム二次電池。
A lithium secondary battery containing a lithium metal oxide as a cathode material, wherein the cathode material is a mixed metal oxide produced by the method according to any one of claims 1 to 24 .
JP2020545801A 2018-04-04 2019-04-03 Method for producing cathode material for lithium-ion batteries Active JP7480052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024070402A JP2024105339A (en) 2018-04-04 2024-04-24 Method for producing cathode material for lithium-ion batteries

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862652516P 2018-04-04 2018-04-04
US62/652,516 2018-04-04
PCT/CA2019/050403 WO2019191837A1 (en) 2018-04-04 2019-04-03 Method to produce cathode materials for li-ion batteries

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024070402A Division JP2024105339A (en) 2018-04-04 2024-04-24 Method for producing cathode material for lithium-ion batteries

Publications (3)

Publication Number Publication Date
JP2021517707A JP2021517707A (en) 2021-07-26
JPWO2019191837A5 true JPWO2019191837A5 (en) 2022-04-07
JP7480052B2 JP7480052B2 (en) 2024-05-09

Family

ID=68101076

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020545801A Active JP7480052B2 (en) 2018-04-04 2019-04-03 Method for producing cathode material for lithium-ion batteries
JP2024070402A Pending JP2024105339A (en) 2018-04-04 2024-04-24 Method for producing cathode material for lithium-ion batteries

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024070402A Pending JP2024105339A (en) 2018-04-04 2024-04-24 Method for producing cathode material for lithium-ion batteries

Country Status (7)

Country Link
US (2) US11909041B2 (en)
EP (1) EP3776698A4 (en)
JP (2) JP7480052B2 (en)
KR (2) KR20240114783A (en)
CN (1) CN111971822A (en)
CA (1) CA3092269A1 (en)
WO (1) WO2019191837A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3225483A1 (en) 2021-07-16 2023-01-19 Thorsten BEIERLING Method for making precursors of cathode active materials for lithium ion batteries
JP2024534546A (en) 2021-09-21 2024-09-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing a precursor of a cathode active material for a lithium-ion battery
KR102430686B1 (en) * 2021-12-28 2022-08-10 (주)에코프로머티리얼즈 Hydrometallurgical recovery method of nickel sulfate
CN115465899B (en) * 2022-09-14 2023-09-15 陕西红马科技有限公司 Multi-crown multi-element spherical coating type precursor, preparation method thereof, chemical coating modified product and chemical coating modified method
EP4365137A1 (en) 2022-11-02 2024-05-08 Basf Se Process for making an oxide of manganese

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388808B1 (en) * 1989-03-20 1994-06-15 Inco Limited Nickel hydroxide
US5264201A (en) * 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
ES2108820T3 (en) * 1992-06-15 1998-01-01 Inco Ltd PROCEDURE FOR PRODUCING NICKEL HYDROXIDE.
US5824283A (en) * 1997-04-28 1998-10-20 Inco Limited Process for producing nickel hydroxide from elemental nickel
TW434187B (en) * 1997-05-07 2001-05-16 Fuji Chem Ind Co Ltd A process for preparing a spinel type of lithium manganese complex oxide
EP1247303B1 (en) * 1999-12-29 2017-06-21 Techelios, LLC Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
JP4592931B2 (en) 2000-11-30 2010-12-08 Jx日鉱日石金属株式会社 Positive electrode material for lithium secondary battery and method for producing the same
US7033555B2 (en) * 2003-05-06 2006-04-25 Inco Limited Low temperature lithiation of mixed hydroxides
US20060073091A1 (en) * 2004-10-01 2006-04-06 Feng Zou Process for producing lithium transition metal oxides
US20120028128A1 (en) * 2009-03-18 2012-02-02 Santoku Corporation All-solid-state lithium battery
JPWO2012020768A1 (en) 2010-08-10 2013-10-28 Agcセイミケミカル株式会社 Method for producing nickel-cobalt-containing composite compound
CN102219265A (en) 2011-03-29 2011-10-19 兰州金川新材料科技股份有限公司 Method for preparing nickel-cobalt-manganese composite oxide powder
JP5626382B2 (en) * 2013-01-30 2014-11-19 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide and method for producing the same
EP3218078B1 (en) 2014-11-13 2023-01-11 Basf Se Process for the preparation of particles
CN104409723B (en) 2014-12-25 2016-09-28 芜湖华欣诺电化学科技有限公司 A kind of electrochemical preparation method of tertiary cathode material
JP6611438B2 (en) 2015-01-30 2019-11-27 マクセルホールディングス株式会社 Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR101927295B1 (en) * 2015-11-30 2018-12-10 주식회사 엘지화학 Positive electrode active material for secondary battery and secondary battery comprising the same
JP6605390B2 (en) * 2016-04-27 2019-11-13 ユミコア Lithium metal composite oxide powder
JP6619302B2 (en) 2016-07-28 2019-12-11 ユミコア Method for producing composite metal hydroxide particles with high tap density
CN106384813A (en) * 2016-10-14 2017-02-08 中国科学院青岛生物能源与过程研究所 Fast synthesis method of positive electrode material for lithium ion battery

Similar Documents

Publication Publication Date Title
CN114057177B (en) Ferrous manganese phosphate and preparation method and application thereof
US20240213469A1 (en) Method to produce cathode materials for li-ion batteries
CN114597399B (en) Preparation method and application of sodium vanadium phosphate material
CN102745662B (en) Preparation method of amorphous iron phosphate
JP7283720B2 (en) Method for preparing battery grade Ni-Co-Mn mixture and battery grade Mn solution
CN108807881A (en) A kind of body mutually mixes the preparation method of aluminium cobaltosic oxide
CN108455686A (en) A kind of preparation method for mixing niobium tungsten tantalum cobaltosic oxide
CN113314707B (en) Modified nickel-cobalt lithium aluminate anode material and preparation method and application thereof
JPWO2019191837A5 (en)
JPH06127947A (en) Preparation of nickel hydroxide
CN110331297B (en) Method for preparing vanadium pentoxide from vanadium slag in short process
CN115626620B (en) Preparation method of manganese phosphate
CN114956189B (en) Preparation method of battery-grade manganese sulfate
CN114751390B (en) Multi-ion doped battery-level ferric phosphate material and preparation method thereof
CN111017900A (en) Preparation method of battery-grade iron phosphate
JP2001261343A (en) Super fine particle of trimanganese tetraoxide and method of producing the same
US20220274847A1 (en) Process to produce cathode materials for rechargeable li batteries
JP2004168560A (en) Method for producing vanadium compound, and method for producing vanadium electrolytic solution
CN115072787A (en) Preparation method of battery-grade manganese sulfate
JP4552324B2 (en) Method for producing cobalt oxide particles by neutralization method
CN115849452B (en) Preparation method of high-specific-surface and high-dispersity manganous oxide and product thereof
CN114572958B (en) Preparation method of fluorine-containing polyanion-type positive electrode material and fluorine-containing polyanion-type positive electrode material
JP2001076728A (en) Manufacture of positive electrode active material for lithium secondary battery
CN110697786A (en) Preparation method of mangano-manganic oxide
CN115849324A (en) Lithium iron manganese phosphate precursor and preparation method and application thereof