JPWO2019187620A1 - Graphite sheet and its manufacturing method - Google Patents

Graphite sheet and its manufacturing method Download PDF

Info

Publication number
JPWO2019187620A1
JPWO2019187620A1 JP2020510329A JP2020510329A JPWO2019187620A1 JP WO2019187620 A1 JPWO2019187620 A1 JP WO2019187620A1 JP 2020510329 A JP2020510329 A JP 2020510329A JP 2020510329 A JP2020510329 A JP 2020510329A JP WO2019187620 A1 JPWO2019187620 A1 JP WO2019187620A1
Authority
JP
Japan
Prior art keywords
graphite sheet
weight
polyimide film
film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020510329A
Other languages
Japanese (ja)
Inventor
幹明 小林
幹明 小林
啓介 稲葉
啓介 稲葉
正寛 小島
正寛 小島
西川 泰司
泰司 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2019187620A1 publication Critical patent/JPWO2019187620A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

熱拡散性及び柔軟性が良好なグラファイトシート及びその製造方法を提供する。リン酸塩の含有量が所定範囲内であるポリイミドフィルムを炭化して炭素質フィルムを得る炭化工程、及び、前記炭素質フィルムを、所定の昇温速度で、最高温度を2600℃以上で熱処理してグラファイトシートを得る黒鉛化工程、を含むリンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシートの製造方法。Provided is a graphite sheet having good thermal diffusivity and flexibility, and a method for producing the same. A carbonization step of carbonizing a polyimide film having a phosphate content within a predetermined range to obtain a carbonaceous film, and heat treatment of the carbonaceous film at a predetermined temperature rise rate and a maximum temperature of 2600 ° C. or higher. A method for producing a graphite sheet, which comprises a graphitization step of obtaining a graphite sheet, wherein the phosphorus content is 0.01% by weight or more and 0.10% by weight or less.

Description

本発明は、グラファイトシート及びその製造方法に関する。 The present invention relates to a graphite sheet and a method for producing the same.

グラファイトシートは、優れた放熱特性を有していることから、コンピュータなどの各種電子機器又は電気機器に搭載されている半導体素子、他の発熱部品などに放熱部品として用いられる。 Since the graphite sheet has excellent heat dissipation characteristics, it is used as a heat dissipation component in semiconductor elements, other heat generating components, etc. mounted on various electronic devices such as computers or electric devices.

このようなグラファイトシートは、ポリイミドフィルムを焼成して得ることができる。例えば、特許文献1には、無機粒子を含有したポリイミドフィルムを焼成してグラファイトシートを製造する技術が記載されている。 Such a graphite sheet can be obtained by firing a polyimide film. For example, Patent Document 1 describes a technique for producing a graphite sheet by firing a polyimide film containing inorganic particles.

特開2014−136721号公報Japanese Unexamined Patent Publication No. 2014-136721

従来、種々のグラファイトシートが知られているが、熱拡散性及び柔軟性が両立したグラファイトシートを得るためには、未だ改善の余地があった。 Conventionally, various graphite sheets have been known, but there is still room for improvement in order to obtain a graphite sheet having both thermal diffusivity and flexibility.

本発明の一態様は、熱拡散性及び柔軟性が良好なグラファイトシート及びその製造方法を提供することを目的とする。 One aspect of the present invention is to provide a graphite sheet having good thermal diffusivity and flexibility and a method for producing the same.

本発明者らは、上記の課題を解決するために鋭意検討した結果、リンの含有量が所定の範囲内であるグラファイトシートにつき、熱拡散性及び柔軟性がともに優れることを見出し、本発明を完成させた。本発明は、以下を包含する。
〔1〕リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシート。
〔2〕リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシートの製造方法であり、
リン酸塩の含有量が0.01重量%以上0.49重量%以下であるポリイミドフィルムを炭化して炭素質フィルムを得る炭化工程、及び、
前記炭素質フィルムを、昇温速度を0.01℃/min以上20℃/min未満とし、最高温度を2600℃以上で熱処理してグラファイトシートを得る黒鉛化工程、
を含むグラファイトシートの製造方法。
As a result of diligent studies to solve the above problems, the present inventors have found that a graphite sheet having a phosphorus content within a predetermined range is excellent in both thermal diffusivity and flexibility, and the present invention has been developed. It was completed. The present invention includes the following.
[1] A graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less.
[2] A method for producing a graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less.
A carbonization step of carbonizing a polyimide film having a phosphate content of 0.01% by weight or more and 0.49% by weight or less to obtain a carbonaceous film, and
A graphitization step in which the carbonaceous film is heat-treated at a heating rate of 0.01 ° C./min or more and less than 20 ° C./min and a maximum temperature of 2600 ° C. or higher to obtain a graphite sheet.
A method for manufacturing a graphite sheet including.

本発明の一態様によれば、熱拡散性及び柔軟性が良好なグラファイトシートを得ることができる。 According to one aspect of the present invention, a graphite sheet having good thermal diffusivity and flexibility can be obtained.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上B以下」を意図する。 An embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to the configurations described below, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments and examples can be used. Embodiments and examples obtained in appropriate combinations are also included in the technical scope of the present invention. In addition, all the academic documents and patent documents described in the present specification are incorporated as references in the present specification. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range is intended to be "A or more and B or less".

<1.グラファイトシートの製造方法>
本発明の一態様のグラファイトシートの製造方法は、リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシートの製造方法であり、リン酸塩の含有量が0.01重量%以上0.49重量%以下であるポリイミドフィルムを炭化して炭素質フィルムを得る炭化工程、及び、前記炭素質フィルムを、昇温速度を0.01℃/min以上20℃/min未満とし、最高温度を2600℃以上で熱処理してグラファイトシートを得る黒鉛化工程、を含むものであればよい。
<1. Graphite sheet manufacturing method>
The method for producing a graphite sheet according to one aspect of the present invention is a method for producing a graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less, and a phosphate content of 0.01. A carbonization step of carbonizing a polyimide film having a weight% or more and 0.49% by weight or less to obtain a carbonic film, and a heating rate of the carbonic film at 0.01 ° C./min or more and less than 20 ° C./min. Anything may include a graphitization step of obtaining a graphite sheet by heat-treating the maximum temperature at 2600 ° C. or higher.

本製造方法は、ポリイミドフィルムを不活性ガス雰囲気下や減圧下で熱処理する、いわゆる高分子熱分解法である。具体的には、ポリイミドフィルムを1000℃程度の温度まで予備加熱し、炭素質フィルムを得る炭化工程と、炭化工程で作製された炭素質フィルムを2600℃以上の温度まで加熱し、グラファイト化する黒鉛化工程と、これを圧縮する圧縮工程とを経て、グラファイトシートが得られる。なお、炭化工程と黒鉛化工程とは連続して行っても、炭化工程を終了させて、その後黒鉛化工程のみを単独で行っても構わない。また、本発明の一実施形態のグラファイトシートの製造方法において、圧縮工程は行っても、行わなくてもよい。 This production method is a so-called polymer pyrolysis method in which a polyimide film is heat-treated under an inert gas atmosphere or under reduced pressure. Specifically, the polyimide film is preheated to a temperature of about 1000 ° C. to obtain a carbonized film, and the carbonized film produced in the carbonization step is heated to a temperature of 2600 ° C. or higher to graphitize graphite. A graphite sheet is obtained through a carbonization step and a compression step of compressing the graphite sheet. The carbonization step and the graphitization step may be continuously performed, or the carbonization step may be completed and then only the graphitization step may be performed independently. Further, in the method for producing a graphite sheet according to an embodiment of the present invention, the compression step may or may not be performed.

(炭化工程)
炭化工程は、ポリイミドフィルムを1000℃程度の温度まで熱処理し、ポリイミドフィルムを炭素化する工程である。例えば、最高温度は、700℃〜1800℃であることが好ましく、800℃〜1500℃であることがより好ましく、900℃〜1200℃であることがさらに好ましく、1000℃であることが特に好ましい。
(Carbonization process)
The carbonization step is a step of heat-treating the polyimide film to a temperature of about 1000 ° C. to carbonize the polyimide film. For example, the maximum temperature is preferably 700 ° C. to 1800 ° C., more preferably 800 ° C. to 1500 ° C., further preferably 900 ° C. to 1200 ° C., and particularly preferably 1000 ° C.

炭化工程における昇温速度は、0.01℃/min以上20℃/min未満であることが好ましく、0.1℃/min〜10℃/minであることがより好ましく、0.5℃/min〜5.0℃/min未満であることがさらに好ましい。昇温速度が前記の範囲内であれば、ポリイミドフィルム中のリンが好ましい程度残存し、熱拡散性及び柔軟性が良好なグラファイトシートを得ることができる。 The heating rate in the carbonization step is preferably 0.01 ° C./min or more and less than 20 ° C./min, more preferably 0.1 ° C./min to 10 ° C./min, and 0.5 ° C./min. It is more preferably less than ~ 5.0 ° C./min. When the heating rate is within the above range, phosphorus in the polyimide film remains to a preferable extent, and a graphite sheet having good thermal diffusivity and flexibility can be obtained.

炭化工程での保持時間(具体的には、炭化最高温度での保持時間)は、1分〜1時間であることが好ましく、5分〜30分であることがより好ましく、8分〜15分であることがさらに好ましい。保持時間が前記の範囲内であれば、ポリイミドフィルム中のリンが好ましい程度残存し、熱拡散性及び柔軟性が良好なグラファイトシートを得ることができる。 The holding time in the carbonization step (specifically, the holding time at the maximum carbonization temperature) is preferably 1 minute to 1 hour, more preferably 5 minutes to 30 minutes, and 8 minutes to 15 minutes. Is more preferable. When the holding time is within the above range, phosphorus in the polyimide film remains to a preferable extent, and a graphite sheet having good thermal diffusivity and flexibility can be obtained.

炭化工程では、長方形状のポリイミドフィルムを積層した積層ポリイミドフィルムを炭化してもよく、ロール状のポリイミドフィルムをロール状のまま炭化してもよく、ロール状ポリイミドフィルムからフィルムを繰り出して炭化してもよい。 In the carbonization step, the laminated polyimide film in which the rectangular polyimide film is laminated may be carbonized, the roll-shaped polyimide film may be carbonized in the roll shape, or the film is unwound from the roll-shaped polyimide film and carbonized. May be good.

(黒鉛化工程)
黒鉛化工程は、炭化工程で得た炭素質フィルムを2600℃以上の温度まで熱処理し、炭素質フィルムを黒鉛化する工程である。例えば、最高温度は、2600℃以上、2700℃以上、2800℃以上、2900℃以上、又は3000℃以上を好ましく例示できる。上限は特に限定されないが、3300℃以下であることが好ましく、3200℃以下であることがより好ましい。なお、黒鉛化工程は、減圧下もしくは不活性ガス中でおこなわれるが、不活性ガスとしてはアルゴン、または、ヘリウムが適当である。
(Graphitization process)
The graphitization step is a step of heat-treating the carbonaceous film obtained in the carbonization step to a temperature of 2600 ° C. or higher to graphitize the carbonic film. For example, the maximum temperature is preferably 2600 ° C. or higher, 2700 ° C. or higher, 2800 ° C. or higher, 2900 ° C. or higher, or 3000 ° C. or higher. The upper limit is not particularly limited, but is preferably 3300 ° C. or lower, and more preferably 3200 ° C. or lower. The graphitization step is carried out under reduced pressure or in an inert gas, and argon or helium is suitable as the inert gas.

黒鉛化工程における昇温速度は、例えば、0.01℃/min以上20℃/min未満、0.1℃/min〜10℃/min、0.2℃/min〜5.0℃/min、0.5℃/min〜2.0℃/minを好ましく例示できる。昇温速度が前記の範囲内であれば、ポリイミドフィルム中のリンが好ましい程度残存し、熱拡散性及び柔軟性が良好なグラファイトシートを得ることができる。 The rate of temperature rise in the graphitization step is, for example, 0.01 ° C./min or more and less than 20 ° C./min, 0.1 ° C./min to 10 ° C./min, 0.2 ° C./min to 5.0 ° C./min, A preferred example thereof is 0.5 ° C./min to 2.0 ° C./min. When the heating rate is within the above range, phosphorus in the polyimide film remains to a preferable extent, and a graphite sheet having good thermal diffusivity and flexibility can be obtained.

黒鉛化工程での保持時間(具体的には、黒鉛化最高温度での保持時間)は、1分〜1時間であることが好ましく、5分〜30分であることがより好ましく、8分〜15分であることがさらに好ましい。保持時間が前記の範囲内であれば、ポリイミドフィルム中のリンが好ましい程度残存し、熱拡散性及び柔軟性が良好なグラファイトシートを得ることができる。 The holding time in the graphitization step (specifically, the holding time at the maximum graphitization temperature) is preferably 1 minute to 1 hour, more preferably 5 minutes to 30 minutes, and 8 minutes to 30 minutes. It is more preferably 15 minutes. When the holding time is within the above range, phosphorus in the polyimide film remains to a preferable extent, and a graphite sheet having good thermal diffusivity and flexibility can be obtained.

黒鉛化工程では、長方形状の炭化フィルムを積層した積層炭化フィルムを黒鉛化してもよく、ロール状の炭化フィルムをロール状のまま黒鉛化してもよく、ロール状の炭化フィルムからフィルムを繰り出して黒鉛化してもよい。 In the graphitization step, the laminated carbonized film in which the rectangular carbonized films are laminated may be graphitized, the roll-shaped carbonized film may be graphitized in the roll shape, or the film is unwound from the roll-shaped carbonized film to be graphitized. It may be carbonized.

(圧縮工程)
黒鉛化後の炭素質フィルムに圧縮工程を施してもよい。圧縮工程を施すことによって、得られるグラファイトシートに柔軟性を付与することができる。圧縮工程は、面状に圧縮する方法や、金属ロールなどを用いて圧延する方法などを用いることができる。圧縮工程は室温で行っても、黒鉛化工程中に行ってもかまわない。
(Compression process)
The carbonaceous film after graphitization may be subjected to a compression step. By applying the compression step, flexibility can be imparted to the obtained graphite sheet. As the compression step, a method of compressing in a planar shape, a method of rolling using a metal roll or the like can be used. The compression step may be carried out at room temperature or during the graphitization step.

<2.グラファイトシート>
グラファイトシートは、リンの含有量が0.01重量%〜0.10重量%であり、0.02重量%〜0.08重量%であることがより好ましい。かかる範囲内であれば、グラファイトシートにおいて、熱拡散性及び柔軟性の双方の物性が優れる。
<2. Graphite sheet >
The graphite sheet has a phosphorus content of 0.01% by weight to 0.10% by weight, more preferably 0.02% by weight to 0.08% by weight. Within such a range, the graphite sheet is excellent in both thermal diffusivity and flexibility.

また、グラファイトシートの熱拡散率は、7.0cm/s以上であることが好ましく、7.3cm/s以上であることがより好ましく、8.0cm/s以上であることがさらに好ましい。The thermal diffusivity of the graphite sheet is preferably 7.0 cm 2 / s or more, more preferably 7.3 cm 2 / s or more, further preferably 8.0 cm 2 / s or more ..

また、グラファイトシートの柔軟性は、後述する実施例の柔軟性評価において、「C」以上であることが好ましく、「B」以上であることがより好ましく、「A」以上であることがさらに好ましい。 Further, the flexibility of the graphite sheet is preferably "C" or higher, more preferably "B" or higher, and even more preferably "A" or higher in the flexibility evaluation of Examples described later. ..

また、グラファイトシートの厚みは、5μm〜60μmであることが好ましく、10μm〜50μmであることがより好ましく、15μm〜40μmであることがさらに好ましい。 The thickness of the graphite sheet is preferably 5 μm to 60 μm, more preferably 10 μm to 50 μm, and even more preferably 15 μm to 40 μm.

グラファイトシートの密度は、1.0g/cm〜2.26g/cmが好ましく、1.3g/cm〜2.2g/cmであることがより好ましく、1.6g/cm〜2.18g/cmであることがさらに好ましい。The density of the graphite sheet is preferably from 1.0g / cm 3 ~2.26g / cm 3 , more preferably from 1.3g / cm 3 ~2.2g / cm 3 , 1.6g / cm 3 ~2 It is more preferably .18 g / cm 3 .

<3.グラファイトシート用のポリイミドフィルム>
以下、本発明の一実施形態に使用し得るポリイミドフィルムについて詳説する。前記製造方法に用いられるグラファイトシート用のポリイミドフィルムは、酸二無水物成分と、ジアミン成分とを原料とするポリイミドフィルムであり、所定量のリン酸塩を含有するものである。
<3. Polyimide film for graphite sheet>
Hereinafter, the polyimide film that can be used in one embodiment of the present invention will be described in detail. The polyimide film for a graphite sheet used in the production method is a polyimide film made from an acid dianhydride component and a diamine component as raw materials, and contains a predetermined amount of phosphate.

(リン酸塩)
ポリイミドフィルムは、リン酸塩の含有量が0.01重量%〜0.49重量%であることが好ましく、0.10重量%〜0.40重量%であることがより好ましく、0.12重量%〜0.35重量%であることがさらに好ましい。かかる範囲内であれば、最終的に得られるグラファイトシートの熱拡散性及び柔軟性の両方の物性が優れる。
(Phosphate)
The polyimide film preferably has a phosphate content of 0.01% by weight to 0.49% by weight, more preferably 0.10% by weight to 0.40% by weight, and 0.12% by weight. It is more preferably% to 0.35% by weight. Within such a range, both the thermal diffusivity and the flexibility of the finally obtained graphite sheet are excellent.

本発明の一実施形態において使用可能なリン酸塩としては、CaHPO、(NHHPOなどを挙げることができる。なかでもCaHPO及び(NHHPOは、ポリイミドフィルム内部から昇華するときに発生するガスにより良好な膨れが生じ、熱伝導性に優れた良好なグラファイトが得られるため、好ましく使用し得る。リン酸塩は、無機粒子(すなわち、フィラー)としてポリイミドフィルムに添加することができる。Examples of the phosphate that can be used in one embodiment of the present invention include CaHPO 4 , (NH 4 ) 2 HPO 4 . Among them, CaHPO 4 and (NH 4 ) 2 HPO 4 can be preferably used because good swelling is generated by the gas generated when sublimating from the inside of the polyimide film and good graphite having excellent thermal conductivity can be obtained. .. Phosphate can be added to the polyimide film as inorganic particles (ie, fillers).

(酸二無水物成分)
使用し得る酸二無水物成分は、ピロメリット酸二無水物、2,3,6,7,−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、1,1−(3,4−ジカルボキシフェニル)エタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物を挙げることができる。これらを任意の割合で混合することができる。なかでも、ピロメリット酸二無水物や3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を使用することが好ましい。かかる酸二無水物成分を使用することにより、最終的に得られるグラファイトシートの物性が良好なものとなる。
(Acid dianhydride component)
The acid dianhydride components that can be used are pyromellitic acid dianhydride, 2,3,6,7, -naphthalenetetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride. , 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic acid Dihydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 1,1- (3,4-dicarboxyphenyl) Phenyl) ethane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3) -Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, oxydiphthalic acid dianhydride, bis (3,4-dicarboxyphenyl) sulfonate dianhydride, p-phenylene bis (Trimeric acid monoesteric acid anhydride), ethylene bis (trimellitic acid monoesteric acid anhydride), bisphenol A bis (trimellitic acid monoesteric acid anhydride) and their analogs can be mentioned. These can be mixed in any proportion. Of these, it is preferable to use pyromellitic dianhydride or 3,3', 4,4'-biphenyltetracarboxylic dianhydride. By using such an acid dianhydride component, the physical properties of the finally obtained graphite sheet become good.

(ジアミン成分)
使用し得るジアミン成分は、4,4’−ジアミノジフェニルエーテル、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニルN−フェニルアミン、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン及びそれらの類似物を挙げることができる。これらを任意の割合で混合することができる。なかでも、4,4’−ジアミノジフェニルエーテルやp−フェニレンジアミンを使用することが好ましい。かかるジアミン成分を使用することにより、最終的に得られるグラファイトシートの物性が良好なものとなる。
(Diamine component)
The diamine components that can be used are 4,4'-diaminodiphenyl ether, p-phenylenediamine, 4,4'-diaminodiphenylmethane, benzene, 3,3'-dichlorobenzidine, 4,4'-diaminodiphenylsulfide, 3,3. ′ -Diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 1,5-diaminonaphthalene, 4,4′-diaminodiphenyldiphenylsilane, 4, 4'-diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenylN-methylamine, 4,4'-diaminodiphenylN-phenylamine, 1,3-diaminobenzene, 1 , 2-Diaminobenzene and their analogs can be mentioned. These can be mixed in any proportion. Of these, 4,4'-diaminodiphenyl ether and p-phenylenediamine are preferably used. By using such a diamine component, the physical properties of the finally obtained graphite sheet become good.

(ポリイミドフィルムの厚み)
ポリイミドフィルムの厚みは、12.5μm〜125μm、好ましくは25μm〜100μm、より好ましくは35μm〜75μmである。前記範囲内であれば、厚み方向に均一に熱処理されるため、熱拡散性が向上する。
(Thickness of polyimide film)
The thickness of the polyimide film is 12.5 μm to 125 μm, preferably 25 μm to 100 μm, and more preferably 35 μm to 75 μm. If it is within the above range, the heat treatment is uniformly performed in the thickness direction, so that the heat diffusibility is improved.

(イミド化方法)
ポリイミドのイミド化方法には、前駆体であるポリアミド酸を加熱してイミド転化する熱キュア法、または、無水酢酸等の酸無水物に代表される脱水剤や、ピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類に代表されるイミド化促進剤を用いて、前駆体であるポリアミド酸をイミド転化するケミカルキュア法、のいずれを用いてもよい。ケミカルキュア法を用いる場合のイミド化促進剤としては、上で挙げた第3級アミン類が好ましい。
(Immidization method)
The imidization method of polyimide is a thermal cure method in which the precursor polyamic acid is heated to imidize, a dehydrating agent typified by an acid anhydride such as acetic anhydride, picolin, quinoline, isoquinolin, pyridine and the like. Any of the chemical cure method of imide-converting the polyimide polyamic acid as a precursor by using an imidization accelerator typified by the tertiary amines of the above may be used. As the imidization accelerator when the chemical cure method is used, the tertiary amines mentioned above are preferable.

特に、得られるポリイミドフィルムの線膨張係数が小さく、弾性率が高く、複屈折が大きくなりやすく、また比較的低温で迅速なグラファイト化が可能で、品質のよいグラファイトシートを得ることができるという観点から、ケミカルキュア法の方が好ましい。特に、脱水剤とイミド化促進剤とを併用することは、得られるポリイミドフィルムの線膨張係数が小さく、弾性率が大きく、複屈折が大きくなり得るので好ましい。また、ケミカルキュア法は、イミド化反応がより速く進行するので、加熱処理においてイミド化反応を短時間で完結させることができ、生産性に優れた工業的に有利な方法である。 In particular, from the viewpoint that the obtained polyimide film has a small coefficient of linear expansion, a high elastic modulus, birefringence tends to be large, and rapid graphitization is possible at a relatively low temperature, so that a high-quality graphite sheet can be obtained. Therefore, the chemical cure method is preferable. In particular, it is preferable to use a dehydrating agent and an imidization accelerator in combination because the linear expansion coefficient of the obtained polyimide film is small, the elastic modulus is large, and the birefringence can be large. Further, the chemical cure method is an industrially advantageous method having excellent productivity because the imidization reaction proceeds faster, so that the imidization reaction can be completed in a short time in the heat treatment.

(ポリアミド酸の製造方法)
ポリアミド酸の製造方法としては特に制限されないが、例えば、芳香族酸二無水物とジアミンとを実質的に等モル量で有機溶媒中に溶解し、この有機溶液を芳香族酸二無水物とジアミンとの重合が完了するまで制御された温度条件下で攪拌することによってポリアミド酸が製造され得る。重合方法としては特に制限されないが、例えば次のような重合方法(1)−(5)のいずれかが好ましい。なお、(1)−(5)では、芳香族酸二無水物として芳香族テトラカルボン酸二無水物を、ジアミンとして芳香族ジアミン化合物を用いた場合を例示している。
(Manufacturing method of polyamic acid)
The method for producing the polyamic acid is not particularly limited, but for example, aromatic dianhydride and diamine are dissolved in an organic solvent in substantially equal molar amounts, and this organic solution is dissolved in the organic solvent to aromatic dianhydride and diamine. Polyamic acid can be produced by stirring under controlled temperature conditions until the polymerization with and is completed. The polymerization method is not particularly limited, but for example, any of the following polymerization methods (1)-(5) is preferable. In addition, in (1)-(5), the case where the aromatic tetracarboxylic dianhydride is used as the aromatic acid dianhydride and the aromatic diamine compound is used as the diamine is illustrated.

(1)芳香族ジアミン化合物を有機極性溶媒中に溶解し、芳香族ジアミン化合物と、これと実質的に等モルの芳香族テトラカルボン酸二無水物とを反応させて重合する方法。 (1) A method in which an aromatic diamine compound is dissolved in an organic polar solvent, and the aromatic diamine compound is reacted with a substantially equimolar aromatic tetracarboxylic dianhydride to polymerize.

(2)芳香族テトラカルボン酸二無水物と、これに対して過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマを得る。続いて、このプレポリマに、芳香族テトラカルボン酸二無水物に対して実質的に等モルである芳香族ジアミン化合物を重合させる方法。 (2) Aromatic tetracarboxylic dianhydride is reacted with an aromatic diamine compound in a small molar amount in an organic polar solvent to obtain a prepolyma having an acid anhydride group at both ends. Subsequently, a method of polymerizing this prepolyma with an aromatic diamine compound which is substantially equimolar to the aromatic tetracarboxylic dianhydride.

上記(2)の方法の具体例は、ジアミンと酸二無水物とを用いて前記酸二無水物を両末端に有するプレポリマを合成し、前記プレポリマに、前記プレポリマの合成に使用したジアミンと同種のジアミンまたは異なる種類のジアミンを反応させてポリアミド酸を合成する方法と同様である。(2)の方法においても、プレポリマと反応させる芳香族ジアミン化合物は、前記プレポリマの合成に使用した芳香族ジアミン化合物と同種の芳香族ジアミン化合物または異なる種類の芳香族ジアミン化合物であってもよい。 In a specific example of the method (2) above, a prepolyamide having the acid dianhydride at both ends is synthesized using a diamine and an acid dianhydride, and the prepolyamide is the same as the diamine used for the synthesis of the prepolyma. It is the same as the method for synthesizing a polyamic acid by reacting the diamines of Also in the method (2), the aromatic diamine compound to be reacted with the prepolyma may be the same type of aromatic diamine compound as the aromatic diamine compound used in the synthesis of the prepolyma, or a different type of aromatic diamine compound.

(3)芳香族テトラカルボン酸二無水物と、これに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマを得る。続いて、このプレポリマに芳香族ジアミン化合物を追加添加後に、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とが実質的に等モルとなるように、プレポリマと芳香族テトラカルボン酸二無水物とを重合する方法。 (3) An aromatic tetracarboxylic dianhydride is reacted with an excess molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolyma having amino groups at both ends. Subsequently, after the aromatic diamine compound is additionally added to this prepolyma, the prepolyma and the aromatic tetracarboxylic dianhydride so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound have substantially the same molar amount A method of polymerizing with.

(4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解および/または分散させた後に、その酸二無水物に対して実質的に等モルになるように芳香族ジアミン化合物を加えて、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物とを重合させる方法。 (4) After dissolving and / or dispersing the aromatic tetracarboxylic dianhydride in an organic polar solvent, an aromatic diamine compound is added so as to be substantially equimolar to the acid dianhydride. , A method of polymerizing an aromatic tetracarboxylic dianhydride and an aromatic diamine compound.

(5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物との混合物を、有機極性溶媒中で反応させて重合する方法。 (5) A method in which a mixture of a substantially equimolar aromatic tetracarboxylic dianhydride and an aromatic diamine compound is reacted in an organic polar solvent for polymerization.

なお、本発明は、以下のような構成とすることも可能である。
〔1〕リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシート。
〔2〕リンの含有量が0.02重量%以上0.08重量%以下である〔1〕に記載のグラファイトシート。
〔3〕リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシートの製造方法であり、
リン酸塩の含有量が0.01重量%以上0.49重量%以下であるポリイミドフィルムを炭化して炭素質フィルムを得る炭化工程、及び、
前記炭素質フィルムを、昇温速度を0.01℃/min以上20℃/min未満とし、最高温度を2600℃以上で熱処理してグラファイトシートを得る黒鉛化工程、
を含むグラファイトシートの製造方法。
The present invention can also have the following configuration.
[1] A graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less.
[2] The graphite sheet according to [1], wherein the phosphorus content is 0.02% by weight or more and 0.08% by weight or less.
[3] A method for producing a graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less.
A carbonization step of carbonizing a polyimide film having a phosphate content of 0.01% by weight or more and 0.49% by weight or less to obtain a carbonaceous film, and
A graphitization step in which the carbonaceous film is heat-treated at a heating rate of 0.01 ° C./min or more and less than 20 ° C./min and a maximum temperature of 2600 ° C. or higher to obtain a graphite sheet.
A method for manufacturing a graphite sheet including.

以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

<ポリイミドフィルムのリンの含有量>
ポリイミドフィルムのリンの含有量を、用いたリン酸塩の分子量とリンの原子量との比から計算して求めた。
<Phosphorus content of polyimide film>
The phosphorus content of the polyimide film was calculated from the ratio of the molecular weight of the phosphate used and the atomic weight of phosphorus.

<グラファイトシートのリンの含有量>
グラファイトシートのリンの含有量は、蛍光X線分析装置を用いて、測定対象のグラファイトフィルムのリンのピークと、リン濃度既知の物質のリンのピークとの比で求めた。また、蛍光X線分析装置として、株式会社リガク製のZSX PrimusIIを用い、リン濃度既知の物質として、リン濃度0.034重量%のポリイミドフィルムを用いて測定した。
<Phosphorus content of graphite sheet>
The phosphorus content of the graphite sheet was determined by using a fluorescent X-ray analyzer as a ratio between the phosphorus peak of the graphite film to be measured and the phosphorus peak of a substance having a known phosphorus concentration. Further, as a fluorescent X-ray analyzer, ZSX PrimusII manufactured by Rigaku Co., Ltd. was used, and as a substance having a known phosphorus concentration, a polyimide film having a phosphorus concentration of 0.034% by weight was used for measurement.

<MIT耐屈曲試験における折り曲げ回数の測定(柔軟性評価)>
後述の方法で得られたグラファイトシートのMIT耐屈曲試験における折り曲げ回数を測定し、柔軟性の評価方法とした。試験方法について、以下に示す。MIT耐屈曲試験では、東洋精機(株)社製MIT耐揉疲労試験機型式Dを用いた。試験条件は、R=2mm、左右の折り曲げ角度:135°、スプリング:φ14mmとした。
<Measurement of the number of bends in the MIT bending resistance test (flexibility evaluation)>
The number of times of bending of the graphite sheet obtained by the method described later in the MIT bending resistance test was measured and used as a method for evaluating flexibility. The test method is shown below. In the MIT bending resistance test, a MIT kneading fatigue resistance tester model D manufactured by Toyo Seiki Co., Ltd. was used. The test conditions were R = 2 mm, left and right bending angles: 135 °, and spring: φ14 mm.

耐屈曲試験における折り曲げ回数(MIT)は、回数が多いほど、グラファイトシートが柔軟であり、耐屈曲性に優れていることを意味する。そのためMITの回数が多いグラファイトシートを屈曲部分に使用しても破壊されにくくなる。 The number of times of bending (MIT) in the bending resistance test means that the greater the number of times, the more flexible the graphite sheet is and the more excellent the bending resistance is. Therefore, even if a graphite sheet having a large number of MITs is used for the bent portion, it is less likely to be broken.

なお、評価基準は以下のとおりとした。
A:折り曲げ回数が100000回以上
B:折り曲げ回数が10000回以上100000回未満
C:折り曲げ回数が1000回以上10000回未満
D:折り曲げ回数が100回以上1000回未満
E:折り曲げ回数が100回未満
<熱拡散性>
後述の方法で得られたグラファイトシートの熱拡散率を以下の方法で測定した。具体的には、光交流法に基づく熱拡散率測定装置(アルバック理工(株)社の「LaserPit」)を用い、4mm×40mmの形状に切り取られたグラファイトシートのサンプルについて、20℃の雰囲気下で10Hzの交流条件下で測定した。
The evaluation criteria are as follows.
A: Number of bends is 100,000 or more B: Number of bends is 10,000 or more and less than 100,000 C: Number of bends is 1000 or more and less than 10,000 D: Number of bends is 100 or more and less than 1000 E: Number of bends is less than 100 Thermal diffusivity>
The thermal diffusivity of the graphite sheet obtained by the method described later was measured by the following method. Specifically, using a thermal diffusivity measuring device (“LaserPit” manufactured by ULVAC Riko Co., Ltd.) based on the optical AC method, a sample of a graphite sheet cut into a shape of 4 mm × 40 mm was subjected to an atmosphere of 20 ° C. Was measured under AC conditions of 10 Hz.

<ポリイミドフィルムの作製方法>
(製造例1)
4,4’−ジアミノジフェニルエーテル(ODA)を溶解したジメチルホルムアミド溶液に、ピロメリット酸二無水物(PMDA)を、ODAとPMDAとが当モル量となるように溶解して、ポリアミド酸を18.5重量%含むポリアミド酸溶液を得た。得られたポリアミド酸溶液に、リン酸水素カルシウムの濃度がポリアミド酸の固形分に対して0.15重量%となるようにリン酸水素カルシウムを添加した。この溶液を冷却しながら、ポリアミド酸に含まれるカルボン酸基に対して、1当量の無水酢酸、1当量のイソキノリン、およびジメチルホルムアミドを含むイミド化触媒を添加し脱泡した。次にこの混合溶液が、乾燥後に厚さ50μmになるようにアルミ箔上に塗布し、混合溶液層を得た。アルミ箔上の混合溶液層は、熱風オーブン及び遠赤外線ヒーターを用いて乾燥した。
<Method of producing polyimide film>
(Manufacturing Example 1)
In a dimethylformamide solution in which 4,4'-diaminodiphenyl ether (ODA) was dissolved, pyromellitic dianhydride (PMDA) was dissolved so that the amount of ODA and PMDA was equivalent to that of 18. A polyacid solution containing 5% by weight was obtained. Calcium hydrogen phosphate was added to the obtained polyamic acid solution so that the concentration of calcium hydrogen phosphate was 0.15% by weight based on the solid content of the polyamic acid. While cooling this solution, an imidization catalyst containing 1 equivalent of acetic anhydride, 1 equivalent of isoquinoline, and dimethylformamide was added to the carboxylic acid group contained in the polyamic acid to defoam. Next, this mixed solution was applied onto an aluminum foil so as to have a thickness of 50 μm after drying to obtain a mixed solution layer. The mixed solution layer on the aluminum foil was dried using a hot air oven and a far infrared heater.

乾燥条件は以下のとおりである。まず、アルミ箔上の混合溶液層を、熱風オーブンで120℃において240秒乾燥して、自己支持性を有するゲルフィルムにした。そのゲルフィルムをアルミ箔から引き剥がし、フレームに固定した。さらに、ゲルフィルムを、熱風オーブンにて120℃で30秒、275℃で40秒、400℃で42秒、450℃で50秒、および遠赤外線ヒーターにて460℃で22秒と段階的に加熱して乾燥した。以上のようにして、リンの含有量0.034重量%、厚さ50μmのポリイミドフィルム(A−1)を作製した。 The drying conditions are as follows. First, the mixed solution layer on the aluminum foil was dried in a hot air oven at 120 ° C. for 240 seconds to obtain a self-supporting gel film. The gel film was peeled off from the aluminum foil and fixed to the frame. Further, the gel film is heated stepwise in a hot air oven at 120 ° C. for 30 seconds, 275 ° C. for 40 seconds, 400 ° C. for 42 seconds, 450 ° C. for 50 seconds, and a far-infrared heater at 460 ° C. for 22 seconds. And dried. As described above, a polyimide film (A-1) having a phosphorus content of 0.034% by weight and a thickness of 50 μm was prepared.

(製造例2)
得られたポリアミド酸溶液に、リン酸水素カルシウムの濃度がポリアミド酸の固形分に対して0.05重量%となるようにリン酸水素カルシウムを添加した以外は、製造例1と同様にして、リンの含有量0.011重量%、厚さ50μmのポリイミドフィルム(A−2)を作製した。
(Manufacturing Example 2)
The same as in Production Example 1 except that calcium hydrogen phosphate was added to the obtained polyamic acid solution so that the concentration of calcium hydrogen phosphate was 0.05% by weight based on the solid content of the polyamic acid. A polyimide film (A-2) having a phosphorus content of 0.011% by weight and a thickness of 50 μm was prepared.

(製造例3)
得られたポリアミド酸溶液に、リン酸水素カルシウムの濃度がポリアミド酸の固形分に対して0.01重量%となるようにリン酸水素カルシウムを添加した以外は、製造例1と同様にして、リンの含有量0.002重量%、厚さ50μmのポリイミドフィルム(A−3)を作製した。
(Manufacturing Example 3)
The same as in Production Example 1 except that calcium hydrogen phosphate was added to the obtained polyamic acid solution so that the concentration of calcium hydrogen phosphate was 0.01% by weight based on the solid content of the polyamic acid. A polyimide film (A-3) having a phosphorus content of 0.002% by weight and a thickness of 50 μm was prepared.

(製造例4)
得られたポリアミド酸溶液に、リン酸水素カルシウムの濃度がポリアミド酸の固形分に対して0.30重量%となるようにリン酸水素カルシウムを添加した以外は、製造例1と同様にして、リンの含有量0.068重量%、厚さ50μmのポリイミドフィルム(A−4)を作製した。
(Manufacturing Example 4)
The same as in Production Example 1 was carried out except that calcium hydrogen phosphate was added to the obtained polyamic acid solution so that the concentration of calcium hydrogen phosphate was 0.30% by weight based on the solid content of the polyamic acid. A polyimide film (A-4) having a phosphorus content of 0.068% by weight and a thickness of 50 μm was prepared.

(製造例5)
得られたポリアミド酸溶液に、リン酸水素二アンモニウムの濃度がポリアミド酸の固形分に対して0.15重量%となるようにリン酸水素二アンモニウムを添加した以外は、製造例1と同様にして、リンの含有量0.035重量%、厚さ50μmのポリイミドフィルム(A−5)を作製した。
(Manufacturing Example 5)
The same procedure as in Production Example 1 was carried out except that diammonium hydrogen phosphate was added to the obtained polyamic acid solution so that the concentration of diammonium hydrogen phosphate was 0.15% by weight based on the solid content of the polyamic acid. A polyimide film (A-5) having a phosphorus content of 0.035% by weight and a thickness of 50 μm was prepared.

(製造例6)
得られたポリアミド酸溶液に、フィラーを添加しなかった以外は、製造例1と同様にして、リンの含有量0重量%、厚さ50μmのポリイミドフィルム(A−6)を作製した。
(Manufacturing Example 6)
A polyimide film (A-6) having a phosphorus content of 0% by weight and a thickness of 50 μm was produced in the same manner as in Production Example 1 except that no filler was added to the obtained polyamic acid solution.

(製造例7)
得られたポリアミド酸溶液に、炭酸カルシウムの濃度がポリアミド酸の固形分に対して0.15重量%となるようにリン酸水素カルシウムの代わりに炭酸カルシウムを添加した以外は、製造例1と同様にして、リンの含有量0重量%、厚さ50μmのポリイミドフィルム(A−7)を作製した。
(Manufacturing Example 7)
Similar to Production Example 1 except that calcium carbonate was added to the obtained polyamic acid solution instead of calcium hydrogen phosphate so that the concentration of calcium carbonate was 0.15% by weight based on the solid content of the polyamic acid. A polyimide film (A-7) having a phosphorus content of 0% by weight and a thickness of 50 μm was prepared.

(製造例8)
得られたポリアミド酸溶液に、リン酸水素カルシウムを濃度がポリアミド酸の固形分に対して0.50重量%となるように添加した以外は、製造例1と同様にして、リンの含有量0.114重量%、厚さ50μmのポリイミドフィルム(A−8)を作製した。
(Manufacturing Example 8)
The phosphorus content was 0 in the same manner as in Production Example 1 except that calcium hydrogen phosphate was added to the obtained polyamic acid solution so that the concentration was 0.50% by weight based on the solid content of the polyamic acid. A polyimide film (A-8) having a thickness of .114% by weight and a thickness of 50 μm was prepared.

<グラファイトシートの製造方法>
(実施例1)
サイズ200mm×200mm、厚さ50μmのポリイミドフィルム(A−1)を、サイズ220mm×220mmの黒鉛シートで挟み(ポリイミドフィルム1枚と黒鉛シートとを交互に積層)、窒素雰囲気下で、0.5℃/minの昇温速度で1000℃まで昇温した後、1000℃で10分間熱処理して炭化した。
<Manufacturing method of graphite sheet>
(Example 1)
A polyimide film (A-1) having a size of 200 mm × 200 mm and a thickness of 50 μm is sandwiched between graphite sheets having a size of 220 mm × 220 mm (one polyimide film and a graphite sheet are alternately laminated), and 0.5 in a nitrogen atmosphere. After raising the temperature to 1000 ° C. at a heating rate of ° C./min, heat treatment was performed at 1000 ° C. for 10 minutes to carbonize.

その後、室温〜2200℃の温度領域では減圧下、2200℃よりも高い温度領域ではアルゴン雰囲気下で、昇温速度5.0℃/minで2800℃(黒鉛化最高温度)まで昇温した後、2800℃で10分保持してグラファイトシートを作製した。得られたグラファイトシート1枚を、サイズ200mm×200mm×厚み400μmのPETフィルムで挟み、圧縮成型機を用いて圧縮処理を実施した。加えた圧力は10MPaとした。圧縮後のグラファイトシートの厚みは25μm、密度は1.83g/cmであった。After that, the temperature was raised to 2800 ° C. (maximum graphitization temperature) at a heating rate of 5.0 ° C./min under reduced pressure in the temperature range of room temperature to 2200 ° C. and in an argon atmosphere in the temperature range higher than 2200 ° C. A graphite sheet was prepared by holding at 2800 ° C. for 10 minutes. One of the obtained graphite sheets was sandwiched between PET films having a size of 200 mm × 200 mm × thickness of 400 μm, and compression treatment was carried out using a compression molding machine. The applied pressure was 10 MPa. The thickness of the graphite sheet after compression was 25 μm, and the density was 1.83 g / cm 3 .

(実施例2)
昇温速度0.5℃/minで2800℃(黒鉛化最高温度)まで昇温した以外は、実施例1と同様にして、実施例2のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは24μm、密度は1.9g/cmであった。
(Example 2)
The graphite sheet of Example 2 was produced in the same manner as in Example 1 except that the temperature was raised to 2800 ° C. (maximum graphitization temperature) at a heating rate of 0.5 ° C./min. The thickness of the graphite sheet after compression was 24 μm, and the density was 1.9 g / cm 3 .

(実施例3)
昇温速度0.1℃/minで2800℃(黒鉛化最高温度)まで昇温した以外は、実施例1と同様にして、実施例3のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは23μm、密度は1.99g/cmであった。
(Example 3)
The graphite sheet of Example 3 was produced in the same manner as in Example 1 except that the temperature was raised to 2800 ° C. (maximum graphitization temperature) at a heating rate of 0.1 ° C./min. The thickness of the graphite sheet after compression was 23 μm, and the density was 1.99 g / cm 3 .

(実施例4)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−2)を用いた以外は、実施例1と同様にして、実施例4のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは23μm、密度は1.99g/cmであった。
(Example 4)
The graphite sheet of Example 4 was produced in the same manner as in Example 1 except that the polyimide film (A-2) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 23 μm, and the density was 1.99 g / cm 3 .

(実施例5)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−3)を用いた以外は、実施例1と同様にして、実施例5のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは22μm、密度は2.08g/cmであった。
(Example 5)
The graphite sheet of Example 5 was produced in the same manner as in Example 1 except that the polyimide film (A-3) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 22 μm, and the density was 2.08 g / cm 3 .

(実施例6)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−4)を用いた以外は、実施例3と同様にして、実施例6のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは26μm、密度は1.76g/cmであった。
(Example 6)
The graphite sheet of Example 6 was produced in the same manner as in Example 3 except that the polyimide film (A-4) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 26 μm, and the density was 1.76 g / cm 3 .

(実施例7)
昇温速度5.0℃/minで2600℃(黒鉛化最高温度)まで昇温した以外は、実施例1と同様にして、実施例7のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは27μm、密度は1.69g/cmであった。
(Example 7)
The graphite sheet of Example 7 was produced in the same manner as in Example 1 except that the temperature was raised to 2600 ° C. (maximum graphitization temperature) at a heating rate of 5.0 ° C./min. The thickness of the graphite sheet after compression was 27 μm, and the density was 1.69 g / cm 3 .

(実施例8)
昇温速度5.0℃/minで3000℃(黒鉛化最高温度)まで昇温した以外は、実施例1と同様にして、実施例7のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは21μm、密度は2.18g/cmであった。
(Example 8)
The graphite sheet of Example 7 was produced in the same manner as in Example 1 except that the temperature was raised to 3000 ° C. (maximum graphitization temperature) at a heating rate of 5.0 ° C./min. The thickness of the graphite sheet after compression was 21 μm, and the density was 2.18 g / cm 3 .

(実施例9)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−5)を用いた以外は、実施例1と同様にして、実施例9のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは25μm、密度は1.83g/cmであった。
(Example 9)
The graphite sheet of Example 9 was produced in the same manner as in Example 1 except that the polyimide film (A-5) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 25 μm, and the density was 1.83 g / cm 3 .

(比較例1)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−6)を用いた以外は、実施例1と同様にして、比較例1のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは22μm、密度は2.08g/cmであった。
(Comparative Example 1)
A graphite sheet of Comparative Example 1 was produced in the same manner as in Example 1 except that the polyimide film (A-6) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 22 μm, and the density was 2.08 g / cm 3 .

(比較例2)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−7)を用いた以外は、実施例1と同様にして、比較例2のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは22μm、密度は2.08g/cmであった。
(Comparative Example 2)
A graphite sheet of Comparative Example 2 was produced in the same manner as in Example 1 except that the polyimide film (A-7) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 22 μm, and the density was 2.08 g / cm 3 .

(比較例3)
昇温速度20℃/minで2800℃(黒鉛化最高温度)まで昇温した以外は、実施例1と同様にして、比較例3のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは29μm、密度は1.58g/cmであった。
(Comparative Example 3)
The graphite sheet of Comparative Example 3 was produced in the same manner as in Example 1 except that the temperature was raised to 2800 ° C. (maximum graphitization temperature) at a heating rate of 20 ° C./min. The thickness of the graphite sheet after compression was 29 μm, and the density was 1.58 g / cm 3 .

(比較例4)
ポリイミドフィルム(A−1)の代わりにポリイミドフィルム(A−8)を用いた以外は、実施例1と同様にして、比較例4のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは29μm、密度は1.58g/cmであった。
(Comparative Example 4)
A graphite sheet of Comparative Example 4 was produced in the same manner as in Example 1 except that the polyimide film (A-8) was used instead of the polyimide film (A-1). The thickness of the graphite sheet after compression was 29 μm, and the density was 1.58 g / cm 3 .

(比較例5)
昇温速度5.0℃/minで2400℃(黒鉛化最高温度)まで昇温した以外は、実施例1と同様にして、比較例5のグラファイトシートを作製した。圧縮後のグラファイトシートの厚みは31μm、密度は1.47g/cmであった。
(Comparative Example 5)
The graphite sheet of Comparative Example 5 was produced in the same manner as in Example 1 except that the temperature was raised to 2400 ° C. (maximum graphitization temperature) at a heating rate of 5.0 ° C./min. The thickness of the graphite sheet after compression was 31 μm, and the density was 1.47 g / cm 3 .

実施例1〜9および比較例1〜5のグラファイトシートの製造条件および物性を表1に示す。 Table 1 shows the production conditions and physical properties of the graphite sheets of Examples 1 to 9 and Comparative Examples 1 to 5.

Figure 2019187620
Figure 2019187620

実施例1〜9により、リンの含有量が0.01重量%〜0.10重量%であるグラファイトシートは、熱拡散性及び柔軟性の両方の物性が優れることがわかる。一方、比較例1および2により、リンの含有量が0.01重量%未満であるグラファイトシートは、熱拡散性は優れるものの、柔軟性に劣ることがわかる。また、比較例3〜5により、リンの含有量が0.10重量%を超えるグラファイトシートは、柔軟性は優れるものの、熱拡散性に劣ることがわかる。 According to Examples 1 to 9, it can be seen that the graphite sheet having a phosphorus content of 0.01% by weight to 0.10% by weight is excellent in both thermal diffusivity and flexibility. On the other hand, according to Comparative Examples 1 and 2, it can be seen that the graphite sheet having a phosphorus content of less than 0.01% by weight is excellent in thermal diffusivity but inferior in flexibility. Further, from Comparative Examples 3 to 5, it can be seen that the graphite sheet having a phosphorus content of more than 0.10% by weight is excellent in flexibility but inferior in thermal diffusivity.

本発明で得られるグラファイトシートは、例えば、良好な熱拡散性及び柔軟性を有するため電子機器の放熱部材として好適に利用することができる。 The graphite sheet obtained in the present invention has good heat diffusivity and flexibility, and can be suitably used as a heat radiating member for electronic devices.

Claims (3)

リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシート。 A graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less. リンの含有量が0.02重量%以上0.08重量%以下である請求項1に記載のグラファイトシート。 The graphite sheet according to claim 1, wherein the phosphorus content is 0.02% by weight or more and 0.08% by weight or less. リンの含有量が0.01重量%以上0.10重量%以下であるグラファイトシートの製造方法であり、
リン酸塩の含有量が0.01重量%以上0.49重量%以下であるポリイミドフィルムを炭化して炭素質フィルムを得る炭化工程、及び、
前記炭素質フィルムを、昇温速度を0.01℃/min以上20℃/min未満とし、最高温度を2600℃以上で熱処理してグラファイトシートを得る黒鉛化工程、
を含むグラファイトシートの製造方法。
A method for producing a graphite sheet having a phosphorus content of 0.01% by weight or more and 0.10% by weight or less.
A carbonization step of carbonizing a polyimide film having a phosphate content of 0.01% by weight or more and 0.49% by weight or less to obtain a carbonaceous film, and
A graphitization step in which the carbonaceous film is heat-treated at a heating rate of 0.01 ° C./min or more and less than 20 ° C./min and a maximum temperature of 2600 ° C. or higher to obtain a graphite sheet.
A method for manufacturing a graphite sheet including.
JP2020510329A 2018-03-29 2019-02-01 Graphite sheet and its manufacturing method Pending JPWO2019187620A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018065578 2018-03-29
JP2018065578 2018-03-29
PCT/JP2019/003602 WO2019187620A1 (en) 2018-03-29 2019-02-01 Graphite sheet and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2019187620A1 true JPWO2019187620A1 (en) 2021-01-14

Family

ID=68058762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510329A Pending JPWO2019187620A1 (en) 2018-03-29 2019-02-01 Graphite sheet and its manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2019187620A1 (en)
CN (1) CN111655617A (en)
WO (1) WO2019187620A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115768725A (en) 2020-07-09 2023-03-07 株式会社钟化 Method for producing graphite sheet and polyimide film for graphite sheet
WO2022009971A1 (en) * 2020-07-09 2022-01-13 株式会社カネカ Production method for graphite sheet, and polyimide film for graphite sheet
CN112574410B (en) * 2020-11-26 2023-12-19 浙江中科玖源新材料有限公司 Polyimide film for artificial graphite film, preparation method of polyimide film and artificial graphite film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123506A (en) * 2002-03-06 2004-04-22 Kanegafuchi Chem Ind Co Ltd Method of manufacturing film-like graphite
JP2013139390A (en) * 2013-04-24 2013-07-18 Kaneka Corp Method of producing graphite film
JP2013209288A (en) * 2010-08-25 2013-10-10 Kaneka Corp Method for producing graphite film
JP2014133669A (en) * 2013-01-08 2014-07-24 Kaneka Corp Thermal interface material and thermal interface method
JP2014136721A (en) * 2013-01-16 2014-07-28 Du Pont-Toray Co Ltd Polyimide film and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263545B1 (en) * 2007-05-17 2013-05-13 가부시키가이샤 가네카 Graphite film and graphite composite film
US9807878B2 (en) * 2013-09-26 2017-10-31 Kaneka Corporation Graphite sheet, method for producing same, laminated board for wiring, graphite wiring material, and process for producing wiring board
TWI641552B (en) * 2013-11-28 2018-11-21 鐘化股份有限公司 Method for producing graphite film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123506A (en) * 2002-03-06 2004-04-22 Kanegafuchi Chem Ind Co Ltd Method of manufacturing film-like graphite
JP2013209288A (en) * 2010-08-25 2013-10-10 Kaneka Corp Method for producing graphite film
JP2014133669A (en) * 2013-01-08 2014-07-24 Kaneka Corp Thermal interface material and thermal interface method
JP2014136721A (en) * 2013-01-16 2014-07-28 Du Pont-Toray Co Ltd Polyimide film and method for producing the same
JP2013139390A (en) * 2013-04-24 2013-07-18 Kaneka Corp Method of producing graphite film

Also Published As

Publication number Publication date
CN111655617A (en) 2020-09-11
WO2019187620A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7012828B2 (en) Graphite sheet manufacturing method and polyimide film for graphite sheet
CN103080005B (en) The manufacture method of graphite film and graphite film
JP6303046B2 (en) Method for producing graphite film
WO2005023713A1 (en) Filmy graphite and process for producing the same
JPWO2019187620A1 (en) Graphite sheet and its manufacturing method
CN109689745B (en) High-heat-dissipation graphene-polyimide composite film with insulating property and preparation method thereof
KR20180060867A (en) Fabrication of a graphite film based on a rolled polyimide film
WO2023008033A1 (en) Polyimide film for graphite sheet, graphite sheet, and method for manufacturing these
JP4684354B2 (en) Filmy graphite
JP2006232587A (en) Method for manufacturing graphite film
JP2012046368A (en) Method of manufacturing graphite film
JP6704463B2 (en) Graphite film manufacturing method
JP2004299919A (en) Graphite and method for producing the same
JP7367221B2 (en) Graphite sheet manufacturing method and polyimide film for graphite sheet
JP7367220B2 (en) Graphite sheet manufacturing method and polyimide film for graphite sheet
TWI549907B (en) Graphite film and manufacturing method thereof
JP4684353B2 (en) Filmy graphite
JP2006044999A (en) Method of producing graphite film
JP2013151429A (en) Method for producing film-like graphite
KR102668440B1 (en) LOW DIELECTRIC BLACK Polyimide film and manufacturing method thereof
WO2023162643A1 (en) Polyimide film for graphite sheet, graphite sheet, and production methods therefor
KR20240052429A (en) Graphite film applied with polyhydroxyimide and the method for producing the same
JP2011084470A (en) Method of producing highly oriented graphite

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201