JPWO2019181726A1 - Crosslinked rubber composition and method for producing the same - Google Patents

Crosslinked rubber composition and method for producing the same Download PDF

Info

Publication number
JPWO2019181726A1
JPWO2019181726A1 JP2020508290A JP2020508290A JPWO2019181726A1 JP WO2019181726 A1 JPWO2019181726 A1 JP WO2019181726A1 JP 2020508290 A JP2020508290 A JP 2020508290A JP 2020508290 A JP2020508290 A JP 2020508290A JP WO2019181726 A1 JPWO2019181726 A1 JP WO2019181726A1
Authority
JP
Japan
Prior art keywords
rubber composition
crosslinked rubber
para
short fibers
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020508290A
Other languages
Japanese (ja)
Other versions
JP6812602B2 (en
Inventor
貴幸 大久保
貴幸 大久保
貴文 升田
貴文 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Publication of JPWO2019181726A1 publication Critical patent/JPWO2019181726A1/en
Application granted granted Critical
Publication of JP6812602B2 publication Critical patent/JP6812602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

架橋ゴム組成物は、ゴム成分と、前記ゴム成分に分散したパラ系アラミド短繊維とを含有する。前記パラ系アラミド短繊維の表面には、RFL被膜が付着しており、前記RFL被膜が、分子内に複数の二重結合を有する(メタ)アクリル酸エステルを含む。The crosslinked rubber composition contains a rubber component and para-aramid short fibers dispersed in the rubber component. An RFL coating is attached to the surface of the para-aramid short fibers, and the RFL coating contains a (meth)acrylic acid ester having a plurality of double bonds in the molecule.

Description

本発明は、架橋ゴム組成物及びその製造方法に関する。 The present invention relates to a crosslinked rubber composition and a method for producing the same.

各種のゴム製品において、パラ系アラミド短繊維を含有する架橋ゴム組成物が用いられている。例えば、特許文献1には、パラ系アラミド短繊維を含有するゴム組成物を用いた伝動ベルトが開示されている。特許文献2には、パラ系アラミド短繊維を含有するゴム組成物を用いたタイヤが開示されている。特許文献3には、パラ系アラミド短繊維を含有するゴム組成物を用いたホースが開示されている。 Crosslinked rubber compositions containing para-aramid short fibers are used in various rubber products. For example, Patent Document 1 discloses a transmission belt using a rubber composition containing para-aramid short fibers. Patent Document 2 discloses a tire using a rubber composition containing para-aramid short fibers. Patent Document 3 discloses a hose using a rubber composition containing para-aramid short fibers.

特開2013−108564号公報JP, 2013-108564, A 特開2013−18893号公報JP, 2013-18893, A 特開2005−200545号公報JP, 2005-200545, A

本発明は、ゴム成分と、前記ゴム成分に分散したパラ系アラミド短繊維とを含有する架橋ゴム組成物であって、前記パラ系アラミド短繊維の表面には、RFL被膜が付着しており、前記RFL被膜が、分子内に複数の二重結合を有する(メタ)アクリル酸エステルを含む。 The present invention is a crosslinked rubber composition containing a rubber component and para-aramid short fibers dispersed in the rubber component, wherein an RFL coating is attached to the surface of the para-aramid short fibers. The RFL coating contains a (meth)acrylic acid ester having a plurality of double bonds in the molecule.

本発明は、ゴム成分とパラ系アラミド短繊維とを混練する工程を含む架橋ゴム組成物の製造方法であって、前記混練前に、前記パラ系アラミド短繊維を、パラ系アラミド繊維のヤーンを、分子内に複数の二重結合を有する(メタ)アクリル酸エステルを含むRFL水溶液に浸漬して加熱した後、所定の繊維長に切断することにより調製するものである。
ものである。
The present invention is a method for producing a crosslinked rubber composition including a step of kneading a rubber component and a para-aramid short fiber, wherein, before the kneading, the para-aramid short fiber is a yarn of a para-aramid fiber. It is prepared by immersing in an RFL aqueous solution containing a (meth)acrylic acid ester having a plurality of double bonds in the molecule, heating and then cutting it into a predetermined fiber length.
It is a thing.

ポリパラフェニレンテレフタルアミド短繊維(PPTA短繊維)の含有量と貯蔵たて弾性係数との関係を示すグラフである。3 is a graph showing the relationship between the content of polyparaphenylene terephthalamide short fibers (PPTA short fibers) and the elastic modulus after storage. ポリパラフェニレンテレフタルアミド短繊維(PPTA短繊維)の含有量とムーニー粘度との関係を示すグラフである。3 is a graph showing the relationship between the content of polyparaphenylene terephthalamide short fibers (PPTA short fibers) and the Mooney viscosity.

以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.

実施形態に係る架橋ゴム組成物は、ゴム成分と、パラ系アラミド短繊維とを含有する。そして、パラ系アラミド短繊維の表面には、RFL被膜が付着しており、そのRFL被膜が、分子内に複数の二重結合を有する(メタ)アクリル酸エステルを含む。本出願における「(メタ)アクリル酸エステル」は、アクリル酸エステル又はメタクリル酸エステルを意味する。また、以下「分子内に複数の二重結合を有する(メタ)アクリル酸エステル」を「(メタ)アクリル酸エステルA」という。 The crosslinked rubber composition according to the embodiment contains a rubber component and para-aramid short fibers. Then, the RFL coating is attached to the surface of the para-aramid short fibers, and the RFL coating contains (meth)acrylic acid ester having a plurality of double bonds in the molecule. In the present application, “(meth)acrylic acid ester” means acrylic acid ester or methacrylic acid ester. In addition, hereinafter, “(meth)acrylic acid ester having a plurality of double bonds in the molecule” is referred to as “(meth)acrylic acid ester A”.

パラ系アラミド短繊維を含有する架橋ゴム組成物では、パラ系アラミド短繊維の含有量を多くしても、僅かな補強効果の上昇しか得られないという問題がある。しかしながら、実施形態に係る架橋ゴム組成物によれば、パラ系アラミド短繊維の表面に付着したRFL被膜が、(メタ)アクリル酸エステルAを含むことにより、パラ系アラミド短繊維の高い補強効果を得ることができる。これは、パラ系アラミド短繊維の表面に付着したRFL被膜に含まれる(メタ)アクリル酸エステルAの作用により、パラ系アラミド短繊維の切断やフィブリル化が抑制され、それによってパラ系アラミド短繊維が本来有する補強効果が有効に発現されるためであると推測される。 The crosslinked rubber composition containing the para-aramid short fibers has a problem that even if the content of the para-aramid short fibers is increased, the reinforcing effect is only slightly increased. However, according to the crosslinked rubber composition according to the embodiment, the RFL coating adhered to the surface of the para-aramid short fibers contains the (meth)acrylic acid ester A, so that a high reinforcing effect of the para-aramid short fibers can be obtained. Obtainable. This is because the action of the (meth)acrylic acid ester A contained in the RFL coating adhered to the surface of the para-aramid short fibers suppresses the cutting and fibrillation of the para-aramid short fibers, and thereby the para-aramid short fibers. It is presumed that this is because the reinforcing effect originally possessed by is effectively expressed.

ここで、ゴム成分としては、例えば、エチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H−NBR)、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、ブチルゴム(IIR)等が挙げられる。ゴム成分は、これらのうちの1種又は2種以上を含むことが好ましく、伝動ベルト用としては、エチレン-α-オレフィンエラストマー、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム(CSM)、水素添加アクリロニトリルゴム(H−NBR)を含むことが好ましく、エチレン-α-オレフィンエラストマーを含むことがより好ましい。 Here, as the rubber component, for example, ethylene-α-olefin elastomer, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), hydrogenated acrylonitrile rubber (H-NBR), natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NBR), butyl rubber (IIR) and the like. The rubber component preferably contains one or more of these, and for a transmission belt, ethylene-α-olefin elastomer, chloroprene rubber (CR), chlorosulfonated polyethylene rubber (CSM), hydrogenated It is preferable to include an acrylonitrile rubber (H-NBR), and it is more preferable to include an ethylene-α-olefin elastomer.

エチレン-α-オレフィンエラストマーとしては、例えば、エチレンプロピレンジエンモノマー(以下「EPDM」という。)、エチレンプロピレンコポリマー(EPM)、エチレンブテンコポリマー(EBM)、エチレンオクテンコポリマー(EOM)等が挙げられる。エチレン-α-オレフィンエラストマーは、これらのうちの1種又は2種以上を含むことが好ましく、汎用性の観点から、EPDMを含むことがより好ましい。 Examples of the ethylene-α-olefin elastomer include ethylene propylene diene monomer (hereinafter referred to as “EPDM”), ethylene propylene copolymer (EPM), ethylene butene copolymer (EBM), ethylene octene copolymer (EOM), and the like. The ethylene-α-olefin elastomer preferably contains one or more of these, and more preferably contains EPDM from the viewpoint of versatility.

パラ系アラミド短繊維は、ポリパラフェニレンテレフタルアミド短繊維(PPTA短繊維)を含んでいても、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維を含んでいても、それらの両方を含んでいても、いずれでもよい。パラ系アラミド短繊維は、その高い補強効果を得る観点から、少なくともポリパラフェニレンテレフタルアミド短繊維(PPTA短繊維)を含むことが好ましい。 Para-aramid short fibers include both polyparaphenylene terephthalamide short fibers (PPTA short fibers) and copolyparaphenylene-3,4′-oxydiphenylene terephthalamide short fibers, both of them. May be included. The para-aramid short fibers preferably include at least polyparaphenylene terephthalamide short fibers (PPTA short fibers) from the viewpoint of obtaining a high reinforcing effect.

パラ系アラミド短繊維は、ゴム成分に分散している。パラ系アラミド短繊維は、一方向に配向していてもよい。実施形態に係る架橋ゴム組成物におけるパラ系アラミド短繊維の含有量は、パラ系アラミド短繊維の高い補強効果を得る観点から、ゴム成分100質量部に対して、好ましくは1質量部以上35質量部以下、より好ましくは3質量部以上30質量部以下、更に好ましくは5質量部以上25質量部以下である。 The para-aramid short fibers are dispersed in the rubber component. The para-aramid short fibers may be oriented in one direction. The content of the para-aramid short fibers in the crosslinked rubber composition according to the embodiment is preferably 1 part by mass or more and 35 parts by mass or more with respect to 100 parts by mass of the rubber component, from the viewpoint of obtaining a high reinforcing effect of the para-aramid short fibers. Parts by mass or less, more preferably 3 parts by mass or more and 30 parts by mass or less, and further preferably 5 parts by mass or more and 25 parts by mass or less.

パラ系アラミド短繊維のフィラメント繊度は、例えば1.5dtex以上5.0dtexである。パラ系アラミド短繊維は、フィラメント繊度が2.0dtex以上、好ましくは2.3dtex以上、より好ましくは2.5dtex以上、更に好ましくは3.0dtex以上の太径のものであってもよい。パラ系アラミド短繊維の繊維長は、パラ系アラミド短繊維の高い補強効果を得る観点から、好ましくは0.5mm以上10mm以下、より好ましくは1mm以上5mm以下、更に好ましくは2mm以上4mm以下である。 The filament fineness of the para-aramid short fibers is, for example, 1.5 dtex or more and 5.0 dtex. The para-aramid short fibers may have a filament diameter of 2.0 dtex or more, preferably 2.3 dtex or more, more preferably 2.5 dtex or more, further preferably 3.0 dtex or more. The fiber length of the para-aramid short fibers is preferably 0.5 mm or more and 10 mm or less, more preferably 1 mm or more and 5 mm or less, and further preferably 2 mm or more and 4 mm or less from the viewpoint of obtaining a high reinforcing effect of the para-aramid short fibers. ..

RFL被膜は、パラ系アラミド短繊維の高い補強効果を得る観点から、パラ系アラミド短繊維の表面を被覆するように付着していることが好ましい。RFL被膜は、レゾルシン及びホルムアルデヒドの縮合物と、主成分がゴムであるラテックス由来固形分と、(メタ)アクリル酸エステルAとを含む。 From the viewpoint of obtaining a high reinforcing effect of the para-aramid short fibers, the RFL coating is preferably attached so as to cover the surface of the para-aramid short fibers. The RFL film contains a condensate of resorcinol and formaldehyde, a latex-derived solid component whose main component is rubber, and a (meth)acrylic acid ester A.

(メタ)アクリル酸エステルAとしては、例えば、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジアクリレート、1,9−ノナンジオールジメタクリレート;ジエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート;ジエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート等が挙げられる。(メタ)アクリル酸エステルAは、これらのうちの1種又は2種以上を含むことが好ましく、パラ系アラミド短繊維の高い補強効果を得る観点から、ポリエチレングリコールジメタクリレートを含むことがより好ましい。ポリエチレングリコールジメタクリレートにおけるエチレングリコール単量体の重合度は、パラ系アラミド短繊維の高い補強効果を得る観点から、好ましくは20以下、より好ましくは15以下である。RFL被膜における(メタ)アクリル酸エステルAの含有量は、パラ系アラミド短繊維の高い補強効果を得る観点から、ラテックス由来固形分100質量部に対して、好ましくは2質量部以上20質量部以下、より好ましくは5質量部以上15質量部以下、更に好ましくは8質量部以上12質量部以下である。 Examples of the (meth)acrylic acid ester A include ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol diacrylate, 1,9-nonanediol dimethacrylate; diethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate; diethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, etc. To be The (meth)acrylic acid ester A preferably contains one or more of these, and more preferably contains polyethylene glycol dimethacrylate from the viewpoint of obtaining a high reinforcing effect of the para-aramid short fibers. The degree of polymerization of the ethylene glycol monomer in polyethylene glycol dimethacrylate is preferably 20 or less, more preferably 15 or less, from the viewpoint of obtaining a high reinforcing effect of the para-aramid short fiber. The content of the (meth)acrylic ester A in the RFL coating is preferably 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the latex-derived solid content, from the viewpoint of obtaining a high reinforcing effect of the para-aramid short fibers. , More preferably 5 parts by mass or more and 15 parts by mass or less, still more preferably 8 parts by mass or more and 12 parts by mass or less.

実施形態に係る架橋ゴム組成物は、ゴム成分が架橋している。このゴム成分は、有機過酸化物が架橋剤とされて架橋されていても、また、硫黄が架橋剤とされて架橋されていても、さらに、有機過酸化物及び硫黄の両方が架橋剤とされて架橋されていても、いずれでもよいが、少なくとも有機過酸化物が架橋剤とされて架橋されていることが好ましい。 In the crosslinked rubber composition according to the embodiment, the rubber component is crosslinked. In this rubber component, even if the organic peroxide is used as a cross-linking agent and cross-linked, or if the sulfur is used as a cross-linking agent and cross-linked, both the organic peroxide and the sulfur are used as the cross-linking agent. It may be either crosslinked and crosslinked, but it is preferable that at least the organic peroxide serves as a crosslinking agent and is crosslinked.

架橋剤の有機過酸化物としては、例えば、ジクミルパーオキサイド、1,3-ビス(t-ブチルペロキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルペロキシ)ヘキサン等が挙げられる。有機過酸化物は、これらのうちの1種又は2種以上を含有することが好ましく、高い圧縮弾性率を得る観点から、ジクミルパーオキサイドを含有することが好ましい。架橋前の未架橋ゴム組成物における有機過酸化物の配合量は、高い圧縮弾性率を得る観点から、ゴム成分100質量部に対して、好ましくは1質量部以上7質量部以下、より好ましくは2質量部以上5質量部以下である。 Examples of the organic peroxide of the cross-linking agent include dicumyl peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane and the like. Are listed. The organic peroxide preferably contains one or more of these, and preferably contains dicumyl peroxide from the viewpoint of obtaining a high compression modulus. The blending amount of the organic peroxide in the uncrosslinked rubber composition before crosslinking is preferably 1 part by mass or more and 7 parts by mass or less, and more preferably 100 parts by mass of the rubber component from the viewpoint of obtaining a high compression modulus. It is 2 parts by mass or more and 5 parts by mass or less.

実施形態に係る架橋ゴム組成物は、その他に、必要に応じて、カーボンブラックやシリカなどの補強材、機能性充填材、軟化剤、加硫促進剤、加硫促進助剤、加工助剤、老化防止剤等のゴム配合物を含有していてもよい。また、実施形態に係る架橋ゴム組成物は、ナイロン短繊維等のパラ系アラミド短繊維以外の短繊維を含有していてもよい。 The crosslinked rubber composition according to the embodiment, in addition, if necessary, a reinforcing material such as carbon black or silica, a functional filler, a softening agent, a vulcanization accelerator, a vulcanization acceleration aid, a processing aid, It may contain a rubber compound such as an antioxidant. Further, the crosslinked rubber composition according to the embodiment may contain short fibers other than para-aramid short fibers such as nylon short fibers.

次に、実施形態に係る架橋ゴム組成物の製造方法について説明する。 Next, a method for producing the crosslinked rubber composition according to the embodiment will be described.

実施形態に係る架橋ゴム組成物の製造方法は、混練工程と架橋工程とを含む。 The method for producing a crosslinked rubber composition according to the embodiment includes a kneading step and a crosslinking step.

混練工程では、ゴム成分とパラ系アラミド短繊維及び架橋剤を含むゴム配合物とを、ゴム混練機を用いて混練して未架橋ゴム組成物を得る。ゴム混練機としては、例えば、密閉式のニーダーやバンバリーミキサー、開放式のオープンロールが挙げられる。 In the kneading step, the rubber component and the rubber compound containing the para-aramid short fibers and the crosslinking agent are kneaded using a rubber kneader to obtain an uncrosslinked rubber composition. Examples of the rubber kneader include a closed kneader, a Banbury mixer, and an open type open roll.

ここで、パラ系アラミド短繊維は、混練前に、パラ系アラミド繊維のヤーンを、(メタ)アクリル酸エステルAを含むRFL水溶液に浸漬して加熱するRFL処理を施した後、所定の繊維長に切断することにより調製することができる。 Here, the para-aramid short fiber is subjected to RFL treatment in which the yarn of the para-aramid fiber is immersed in an RFL aqueous solution containing a (meth)acrylic acid ester A and heated before kneading, and then a predetermined fiber length is obtained. It can be prepared by cutting into pieces.

RFL水溶液は、レゾルシン及びホルムアルデヒドの初期縮合物と、ラテックスと、(メタ)アクリル酸エステルAとを混合した水溶液である。ラテックスとしては、例えば、ビニルピリジン・スチレン・ブタジエンゴムラテックス(Vp・SBR)、スチレン・ブタジエンゴムラテックス(SBR)、天然ゴムラテックス(NR)、クロロプレンゴムラテックス(CR)、クロロスルホン化ポリエチレンゴムラテックス(CSM)、2,3−ジクロロブタジエンゴムラテックス(2,3−DCB)、水素化ニトリルゴムラテックス(H−NBR)、カルボキシル化水素化ニトリルゴムラテックス、ブタジエンゴムラテックス(BR)、ニトリルゴムラテックス(NBR)等が挙げられる。ラテックスは、これらのうちの1種又は2種以上を含むことが好ましい。 The RFL aqueous solution is an aqueous solution in which an initial condensate of resorcin and formaldehyde, a latex, and a (meth)acrylic acid ester A are mixed. Examples of the latex include vinyl pyridine/styrene/butadiene rubber latex (Vp/SBR), styrene/butadiene rubber latex (SBR), natural rubber latex (NR), chloroprene rubber latex (CR), chlorosulfonated polyethylene rubber latex ( CSM), 2,3-dichlorobutadiene rubber latex (2,3-DCB), hydrogenated nitrile rubber latex (H-NBR), carboxylated hydrogenated nitrile rubber latex, butadiene rubber latex (BR), nitrile rubber latex (NBR) ) And the like. The latex preferably contains one or more of these.

RFL水溶液におけるレゾルシン及びホルムアルデヒドの初期縮合物の含有量と、ラテックス由来固形分の含有量とを合わせた固形分濃度は、例えば10質量%以上30質量%以下である。RFL水溶液における(メタ)アクリル酸エステルAの含有量は、上述の通り、ラテックス由来固形分100質量部に対して、好ましくは2質量部以上20質量部以下、より好ましくは5質量部以上15質量部以下、更に好ましくは8質量部以上12質量部以下である。 The solid content concentration obtained by combining the content of the initial condensate of resorcin and formaldehyde in the RFL aqueous solution and the content of the latex-derived solid content is, for example, 10% by mass or more and 30% by mass or less. The content of the (meth)acrylic acid ester A in the RFL aqueous solution is, as described above, preferably 2 parts by mass or more and 20 parts by mass or less, more preferably 5 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the latex-derived solid content. Parts by mass or less, more preferably 8 parts by mass or more and 12 parts by mass or less.

RFL水溶液中のレゾルシン(R)及びホルムアルデヒド(F)の初期縮合物(RF)について、レゾルシン(R)のホルマリン(F)に対するモル比(R/F)は、例えば1/0.5以上1/2以下である。RFL水溶液中のレゾルシン(R)及びホルムアルデヒド(F)の初期縮合物(RF)のラテックス由来固形分(L)に対する質量比(RF/L)は、例えば1/2以上1/10以下であり、好ましくは1/6前後である。 Regarding the initial condensate (RF) of resorcin (R) and formaldehyde (F) in the RFL aqueous solution, the molar ratio (R/F) of resorcin (R) to formalin (F) is, for example, 1/0.5 or more 1/ It is 2 or less. The mass ratio (RF/L) of the initial condensate (RF) of resorcin (R) and formaldehyde (F) to the latex-derived solid content (L) in the RFL aqueous solution is, for example, 1/2 or more and 1/10 or less, It is preferably about 1/6.

なお、パラ系アラミド繊維のヤーンには、RFL処理前に、エポキシやイソシアネート(ブロックイソシアネート)をトルエン等の溶剤に溶解させた、或いは、水に分散させたプライマー溶液に浸漬して加熱する下地処理を施してもよい。 It should be noted that the para-aramid fiber yarn is subjected to a base treatment in which epoxy or isocyanate (blocked isocyanate) is dissolved in a solvent such as toluene or immersed in a primer solution dispersed in water and heated before RFL treatment. May be given.

ところで、一般に、架橋前の未架橋ゴム組成物では、パラ系アラミド短繊維の含有量を多くすると、ムーニー粘度が上昇して混練加工性が低下し、そのためにパラ系アラミド短繊維の含有量の上限が制約を受けることとなる。しかしながら、実施形態に係る架橋ゴム組成物では、(メタ)アクリル酸エステルAを含むRFL被膜が表面に付着したパラ系アラミド短繊維を用いていることにより、パラ系アラミド短繊維の含有量が多くなっても、架橋前の未架橋ゴム組成物のムーニー粘度の上昇を抑制することができる。そのため、パラ系アラミド短繊維の含有量が多くても、架橋前の未架橋ゴム組成物の良好な混練加工性を得ることができるので、パラ系アラミド短繊維の含有量を、例えばゴム成分100質量部に対して15質量部以上、或いは、20質量部以上と多くすることができる。これも、RFL被膜に含まれる(メタ)アクリル酸エステルAの作用により、パラ系アラミド短繊維の切断やフィブリル化が抑制されるためであると推測される。 By the way, generally, in the uncrosslinked rubber composition before crosslinking, when the content of the para-aramid short fibers is increased, the Mooney viscosity is increased and the kneading processability is lowered, and therefore the content of the para-aramid short fibers is increased. The upper limit will be constrained. However, in the crosslinked rubber composition according to the embodiment, since the para-aramid short fibers having the RFL coating containing the (meth)acrylic acid ester A attached to the surface are used, the content of the para-aramid short fibers is high. Even then, it is possible to suppress an increase in the Mooney viscosity of the uncrosslinked rubber composition before crosslinking. Therefore, even if the content of the para-aramid short fibers is large, the good kneadability of the uncrosslinked rubber composition before crosslinking can be obtained. The amount can be increased to 15 parts by mass or more, or 20 parts by mass or more with respect to parts by mass. It is speculated that this is also because the action of the (meth)acrylic acid ester A contained in the RFL coating suppresses the cutting and fibrillation of the para-aramid short fibers.

架橋工程では、混練工程で得られた未架橋ゴム組成物をゴム製品に対応した加工方法により加熱及び加圧してゴム成分を架橋させる。 In the crosslinking step, the uncrosslinked rubber composition obtained in the kneading step is heated and pressed by a processing method corresponding to the rubber product to crosslink the rubber component.

実施形態に係る架橋ゴム組成物は、例えば、伝動ベルト、タイヤ、ホース等のゴム製品に適用することができ、特に使用時に激しい変形を受ける伝動ベルトへの適用が好適である。 The crosslinked rubber composition according to the embodiment can be applied to rubber products such as power transmission belts, tires and hoses, and is particularly preferably applied to power transmission belts that undergo severe deformation during use.

(架橋ゴム組成物)
<実施例>
レゾルシン及びホルムアルデヒドの初期縮合物と、ラテックスと、ポリエチレングリコールジメタクリレート(ライトエステル14EG 共栄社化学社製、重合度≒14)とを混合したRFL水溶液Xを作製した。なお、ラテックスには、Vp・SBRラテックス(PYRATEX 日本エイアンドエル社製)とSBRラテックス(J9049 日本エイアンドエル社製)との混合ラテックスを用いた。RFL水溶液Xにおけるレゾルシン及びホルムアルデヒドの初期縮合物の含有量と、ラテックス由来固形分の含有量とを合わせた固形分濃度は16.1質量%とした。RFL水溶液Xにおけるポリエチレングリコールジメタクリレートの含有量は、ラテックス由来固形分100質量部に対して10質量部とした。レゾルシン(R)のホルマリン(F)に対するモル比(R/F)は1/1.4とした。レゾルシン(R)及びホルムアルデヒド(F)の初期縮合物(RF)のラテックス由来固形分(L)に対する質量比(RF/L)は1/6とした。
(Crosslinked rubber composition)
<Example>
An RFL aqueous solution X was prepared by mixing an initial condensate of resorcin and formaldehyde, latex, and polyethylene glycol dimethacrylate (light ester 14EG, manufactured by Kyoeisha Chemical Co., Ltd., degree of polymerization ≈14). As the latex, a mixed latex of Vp.SBR latex (PYRATEX manufactured by A&L Japan) and SBR latex (J9049 manufactured by A&L Japan) was used. The solid content concentration of the content of the initial condensate of resorcin and formaldehyde in the RFL aqueous solution X and the content of the latex-derived solid content was 16.1% by mass. The content of polyethylene glycol dimethacrylate in the RFL aqueous solution X was 10 parts by mass based on 100 parts by mass of the latex-derived solid content. The molar ratio (R/F) of resorcin (R) to formalin (F) was 1/1.4. The mass ratio (RF/L) of the initial condensate (RF) of resorcin (R) and formaldehyde (F) to the latex-derived solid content (L) was set to 1/6.

次いで、PPTA繊維のヤーン(ケブラー 東レ・デュポン社製、フィラメント繊度:1.7dtex)を、上記RFL水溶液Xに浸漬して加熱した後、3mmの繊維長に切断することにより、RFL水溶液XでRFL処理したパラ系アラミド短繊維のPPTA短繊維を調製した。 Then, a yarn of PPTA fiber (Kevlar Toray-Dupont, filament fineness: 1.7 dtex) is immersed in the RFL aqueous solution X and heated, and then cut into a fiber length of 3 mm to form the RFL aqueous solution X with RFL. PPTA short fibers of the treated para-aramid short fibers were prepared.

続いて、ゴム成分をEPDM(JSR T7241 JSR社製)とし、このゴム成分100質量部に対して、補強材のFEFカーボンブラック(シーストSO 東海カーボン社製)45質量部、機能性充填材の粉状の超高分子量ポリエチレン樹脂(ハイゼックスミリオン240S 三井化学社製)10質量部、軟化剤のオイル(サンパー2280 日本サン石油社製)10質量部、加硫促進助剤の酸化亜鉛(酸化亜鉛3種 堺化学工業社製)5質量部、加工助剤のステアリン酸(ルナック 花王社製)1質量部、共架橋剤(バルノックPM 大内新興化学社製)4質量部、架橋剤の有機過酸化物(ペロキシモンF40(純度40質量%) 日油社製)7質量部(有効成分:2.8質量部)、並びにナイロン短繊維(レオナ66 旭化成社製、フィラメント繊度:6.7dtex、繊維長:3mm)、及びRFL水溶液XでRFL処理したPPTA短繊維5質量部を添加して混練した未架橋ゴム組成物を作製した。 Subsequently, EPDM (manufactured by JSR T7241 JSR Co.) was used as a rubber component, and 45 parts by mass of FEF carbon black (manufactured by Seast SO Tokai Carbon Co., Ltd.) as a reinforcing material and 100 parts by mass of the functional filler were added to 100 parts by mass of the rubber component. -Shaped ultra-high molecular weight polyethylene resin (Hi-Zex Million 240S manufactured by Mitsui Chemicals, Inc.) 10 parts by mass, oil as a softening agent (Samper 2280 manufactured by Nippon San Oil Co., Ltd.), and zinc oxide (3 types of zinc oxide) as a vulcanization accelerator. 5 parts by mass of Sakai Chemical Industry Co., Ltd., 1 part by mass of processing aid stearic acid (manufactured by LUNAC Kao Co.), 4 parts by mass of co-crosslinking agent (manufactured by Barnock PM Ouchi Shinko Chemical Co., Ltd.), organic peroxide of crosslinking agent. (Peroximon F40 (purity: 40% by mass), manufactured by NOF CORPORATION) 7 parts by mass (active ingredient: 2.8 parts by mass), and nylon short fibers (Leona 66 manufactured by Asahi Kasei Corporation, filament fineness: 6.7 dtex, fiber length: 3 mm) ), and 5 parts by mass of PPTA short fibers RFL-treated with the RFL aqueous solution X were added and kneaded to prepare an uncrosslinked rubber composition.

そして、この未架橋ゴム組成物を加熱及び加圧して長さ方向が列理方向に一致する試験用の短冊状の架橋ゴム組成物の試験片を得た。 Then, this uncrosslinked rubber composition was heated and pressed to obtain a strip-shaped test piece of the crosslinked rubber composition for testing, the length direction of which coincided with the grain direction.

同様に、RFL水溶液XでRFL処理したPPTA短繊維の含有量を、ゴム成分100質量部に対して10質量部、15質量部、及び20質量部とした未架橋ゴム組成物を作製し、これを加熱及び加圧して長さ方向が列理方向に一致する試験用の短冊状の架橋ゴム組成物の試験片を得た。 Similarly, the content of the PPTA short fibers RFL-treated with the RFL aqueous solution X was 10 parts by mass, 15 parts by mass, and 20 parts by mass with respect to 100 parts by mass of the rubber component to prepare an uncrosslinked rubber composition. Was heated and pressed to obtain a strip-shaped cross-linked rubber composition test piece for a test whose lengthwise direction coincides with the grain direction.

<比較例>
ポリエチレングリコールジメタクリレートを含有しないことを除いてRFL水溶液Xと同一組成のRFL水溶液Yを作製し、これを用いて、実施例と同様、RFL水溶液YでRFL処理したPPTA短繊維の含有量が、ゴム成分100質量部に対して5質量部、10質量部、15質量部、及び20質量部である長さ方向が列理方向に一致する試験用の短冊状の架橋ゴム組成物の試験片を得た。
<Comparative example>
An RFL aqueous solution Y having the same composition as the RFL aqueous solution X except that it does not contain polyethylene glycol dimethacrylate was prepared, and using this, the content of the PPTA short fibers RFL-treated with the RFL aqueous solution Y was the same as in the example. 5 parts by mass, 10 parts by mass, 15 parts by mass, and 20 parts by mass with respect to 100 parts by mass of the rubber component were used. Obtained.

(試験方法)
実施例及び比較例のそれぞれについて、JIS K6394:2007に基づき、短冊状の架橋ゴム組成物の試験片から、動的粘弾性試験機を用い、試験温度100℃、試験動歪0.1%、及び試験周波数10Hzとして、列理方向の100℃における貯蔵たて弾性係数E’を測定した。
(Test method)
For each of the examples and comparative examples, based on JIS K6394:2007, from a test piece of a strip-shaped crosslinked rubber composition, using a dynamic viscoelasticity tester, a test temperature of 100° C., a test dynamic strain of 0.1%, Also, the storage elastic modulus E′ at 100° C. in the grain direction was measured at a test frequency of 10 Hz.

また、実施例及び比較例のそれぞれについて、JISK6300に基づき、各PPTA短繊維の含有量での未架橋ゴム組成物の125℃におけるムーニー粘度を測定した。 In addition, for each of the examples and the comparative examples, the Mooney viscosity at 125° C. of the uncrosslinked rubber composition with the content of each PPTA short fiber was measured based on JISK6300.

(試験結果)
図1は、PPTA短繊維の含有量と貯蔵たて弾性係数E’との関係を示す。図2は、PPTA短繊維の含有量とムーニー粘度との関係を示す。また、試験結果を表1に示す。
(Test results)
FIG. 1 shows the relationship between the content of short PPTA fibers and the elastic modulus of storage E′. FIG. 2 shows the relationship between the content of PPTA short fibers and the Mooney viscosity. The test results are shown in Table 1.

Figure 2019181726
Figure 2019181726

図1及び表1によれば、PPTA短繊維の表面に付着したRFL被膜がエチレングリコールジメタクリレートを含む実施例は、RFL被膜がエチレングリコールジメタクリレートを含まない比較例と対比して、各PPTA短繊維の含有量において、貯蔵たて弾性係数E’が高く、また、PPTA短繊維の含有量が多くなることによる貯蔵たて弾性係数E’の上昇率も高く、したがって、高い補強効果が得られることが分かる。 According to FIG. 1 and Table 1, the examples in which the RFL coating attached to the surface of the PPTA short fibers contained ethylene glycol dimethacrylate were compared with the comparative examples in which the RFL coating did not contain ethylene glycol dimethacrylate. With respect to the fiber content, the freshly-stored elastic modulus E′ is high, and the increase rate of the freshly-stored elastic modulus E′ due to the increased content of the PPTA short fiber is also high, so that a high reinforcing effect is obtained. I understand.

図2及び表1によれば、実施例は、比較例と対比して、各PPTA短繊維の含有量において、未架橋ゴム組成物のムーニー粘度が低いことが分かる。 From FIG. 2 and Table 1, it can be seen that in Examples, in comparison with Comparative Examples, the Mooney viscosity of the uncrosslinked rubber composition is low in the content of each PPTA short fiber.

本発明は、架橋ゴム組成物及びその製造方法の技術分野について有用である。 INDUSTRIAL APPLICABILITY The present invention is useful in the technical field of a crosslinked rubber composition and a method for producing the same.

Claims (11)

ゴム成分と、前記ゴム成分に分散したパラ系アラミド短繊維と、を含有する架橋ゴム組成物であって、
前記パラ系アラミド短繊維の表面には、RFL被膜が付着しており、前記RFL被膜が、分子内に複数の二重結合を有する(メタ)アクリル酸エステルを含む架橋ゴム組成物。
A crosslinked rubber composition containing a rubber component and para-aramid short fibers dispersed in the rubber component,
An RFL coating is attached to the surface of the para-aramid short fibers, and the RFL coating contains a (meth)acrylic ester having a plurality of double bonds in the molecule.
請求項1に記載された架橋ゴム組成物において、
前記パラ系アラミド短繊維がポリパラフェニレンテレフタルアミド短繊維を含む架橋ゴム組成物。
The crosslinked rubber composition according to claim 1,
A crosslinked rubber composition in which the para-aramid short fibers include polyparaphenylene terephthalamide short fibers.
請求項1又は2に記載された架橋ゴム組成物において、
前記パラ系アラミド短繊維の含有量が、前記ゴム成分100質量部に対して、1質量部以上35質量部以下である架橋ゴム組成物。
The crosslinked rubber composition according to claim 1 or 2,
A crosslinked rubber composition in which the content of the para-aramid short fibers is 1 part by mass or more and 35 parts by mass or less based on 100 parts by mass of the rubber component.
請求項1乃至3のいずれかに記載された架橋ゴム組成物において、
前記パラ系アラミド短繊維のフィラメント繊度が1.5dtex以上5.0dtexである架橋ゴム組成物。
The crosslinked rubber composition according to any one of claims 1 to 3,
A crosslinked rubber composition in which the filament size of the para-aramid short fibers is 1.5 dtex or more and 5.0 dtex or more.
請求項1乃至4のいずれかに記載された架橋ゴム組成物において、
前記パラ系アラミド短繊維の繊維長が0.5mm以上10mm以下である架橋ゴム組成物。
The crosslinked rubber composition according to any one of claims 1 to 4,
A crosslinked rubber composition in which the fiber length of the para-aramid short fibers is 0.5 mm or more and 10 mm or less.
請求項1乃至5のいずれかに記載された架橋ゴム組成物において、
前記分子内に複数の二重結合を有する(メタ)アクリル酸エステルがポリエチレングリコールジメタクリレートを含む架橋ゴム組成物。
The crosslinked rubber composition according to any one of claims 1 to 5,
A crosslinked rubber composition in which the (meth)acrylic acid ester having a plurality of double bonds in the molecule contains polyethylene glycol dimethacrylate.
請求項6に記載された架橋ゴム組成物において、
前記ポリエチレングリコールジメタクリレートにおけるエチレングリコール単量体の重合度が20以下である架橋ゴム組成物。
The crosslinked rubber composition according to claim 6,
A crosslinked rubber composition in which the degree of polymerization of the ethylene glycol monomer in the polyethylene glycol dimethacrylate is 20 or less.
請求項1乃至7のいずれかに記載された架橋ゴム組成物において、
前記RFL被膜における前記分子内に複数の二重結合を有する(メタ)アクリル酸エステルの含有量が、前記RFL被膜のラテックス由来固形分100質量部に対して2質量部以上20質量部以下である架橋ゴム組成物。
The crosslinked rubber composition according to any one of claims 1 to 7,
The content of the (meth)acrylic acid ester having a plurality of double bonds in the molecule in the RFL coating is 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the latex-derived solid content of the RFL film. Crosslinked rubber composition.
請求項1乃至8のいずれかに記載された架橋ゴム組成物において、
前記ゴム成分がエチレン−α−オレフィンエラストマーを含む架橋ゴム組成物。
The crosslinked rubber composition according to any one of claims 1 to 8,
A crosslinked rubber composition in which the rubber component contains an ethylene-α-olefin elastomer.
請求項1乃至9のいずれかに記載された架橋ゴム組成物において、
前記ゴム成分は、有機過酸化物が架橋剤とされて架橋されている架橋ゴム組成物。
The crosslinked rubber composition according to any one of claims 1 to 9,
The rubber component is a crosslinked rubber composition in which an organic peroxide serves as a crosslinking agent and is crosslinked.
ゴム成分と、パラ系アラミド短繊維と、を混練する工程を含む架橋ゴム組成物の製造方法であって、
前記混練前に、前記パラ系アラミド短繊維を、パラ系アラミド繊維のヤーンを、分子内に複数の二重結合を有する(メタ)アクリル酸エステルを含むRFL水溶液に浸漬して加熱した後、所定の繊維長に切断することにより調製する架橋ゴム組成物の製造方法。
A method for producing a crosslinked rubber composition, which comprises a step of kneading a rubber component and a para-aramid short fiber,
Before the kneading, the para-aramid short fibers are heated by immersing the para-aramid fiber yarn in an RFL aqueous solution containing a (meth)acrylic acid ester having a plurality of double bonds in the molecule, and then heating the mixture. A method for producing a crosslinked rubber composition, which is prepared by cutting the fiber length.
JP2020508290A 2018-03-23 2019-03-14 Crosslinked rubber composition and its manufacturing method Active JP6812602B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018056238 2018-03-23
JP2018056238 2018-03-23
PCT/JP2019/010530 WO2019181726A1 (en) 2018-03-23 2019-03-14 Crosslinked rubber composition and production method for same

Publications (2)

Publication Number Publication Date
JPWO2019181726A1 true JPWO2019181726A1 (en) 2020-07-16
JP6812602B2 JP6812602B2 (en) 2021-01-13

Family

ID=67986222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020508290A Active JP6812602B2 (en) 2018-03-23 2019-03-14 Crosslinked rubber composition and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6812602B2 (en)
CN (1) CN111868161B (en)
WO (1) WO2019181726A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310732B2 (en) * 1982-08-09 1988-03-09 Yokohama Rubber Co Ltd
JPH03285928A (en) * 1990-03-12 1991-12-17 Sumitomo Chem Co Ltd Rubber composition
JPH08337694A (en) * 1995-06-13 1996-12-24 Mitsui Petrochem Ind Ltd Vulcanizable rubber composition
JP2001040105A (en) * 1999-08-02 2001-02-13 Bando Chem Ind Ltd Treating process for bonding rubber composition and textile material
JP2009299756A (en) * 2008-06-12 2009-12-24 Bando Chem Ind Ltd Transmission belt
JP2010121081A (en) * 2008-11-21 2010-06-03 Two-One:Kk Endless printing belt for rotary rubber stamp
JP2011122719A (en) * 2009-11-13 2011-06-23 Mitsuboshi Belting Ltd Rubber toothed belt and rubber composition for toothed belt
JP2017082377A (en) * 2015-10-29 2017-05-18 三ツ星ベルト株式会社 Method for manufacturing core wire for transmission belt, treatment agent and treatment kit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68929346T2 (en) * 1988-12-23 2002-08-08 Bando Chemical Industries Ltd., Kobe Process for gluing aromatic polyamide fiber to rubber compounds
JP2008291205A (en) * 2007-01-30 2008-12-04 Mitsuboshi Belting Ltd Rubber composition for belt, rubber belt, and toothed belt for driving motorcycle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310732B2 (en) * 1982-08-09 1988-03-09 Yokohama Rubber Co Ltd
JPH03285928A (en) * 1990-03-12 1991-12-17 Sumitomo Chem Co Ltd Rubber composition
JPH08337694A (en) * 1995-06-13 1996-12-24 Mitsui Petrochem Ind Ltd Vulcanizable rubber composition
JP2001040105A (en) * 1999-08-02 2001-02-13 Bando Chem Ind Ltd Treating process for bonding rubber composition and textile material
JP2009299756A (en) * 2008-06-12 2009-12-24 Bando Chem Ind Ltd Transmission belt
JP2010121081A (en) * 2008-11-21 2010-06-03 Two-One:Kk Endless printing belt for rotary rubber stamp
JP2011122719A (en) * 2009-11-13 2011-06-23 Mitsuboshi Belting Ltd Rubber toothed belt and rubber composition for toothed belt
JP2017082377A (en) * 2015-10-29 2017-05-18 三ツ星ベルト株式会社 Method for manufacturing core wire for transmission belt, treatment agent and treatment kit

Also Published As

Publication number Publication date
CN111868161B (en) 2023-03-17
WO2019181726A1 (en) 2019-09-26
JP6812602B2 (en) 2021-01-13
CN111868161A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN108350644B (en) Method for producing core wire for transmission belt, treating agent, and jacket for treatment
JP6348231B1 (en) Rubber composition and power transmission belt using the same
US20090081473A1 (en) Friction transmission belt and process for producing the same
EP2000702A2 (en) Transmission belt
CN107868349B (en) Rubber composition for transmission belt and transmission belt using the same
WO2016013486A1 (en) Rubber composition for heat-resistant conveyor belts and heat-resistant conveyor belt
EP3822310A1 (en) Ageing-resistant rubber composition and processing method therefor and use thereof
JP6739657B2 (en) Friction transmission belt
JPH0742448B2 (en) Method of bonding rubber compound and fiber
JPWO2019181726A1 (en) Crosslinked rubber composition and method for producing the same
JPH04348146A (en) Rubber composition having good curing and bonding property to fiber material
WO2017073647A1 (en) Method for manufacturing core wire for transmission belt, treatment agent, and kit for treatment
US11566124B2 (en) Crosslinked rubber composition
US20170137675A1 (en) Method for bonding and bonding mixture
WO2015170668A1 (en) Ethylene acrylic rubber composition, ethylene acrylic rubber, rubber-metal composite, and bonded piston seal
JP6520418B2 (en) Latex composition and RFL adhesive comprising the same
JPH1095963A (en) Rubber adhesive good in vulcanizing and bonding to textile material and bonding
JP7146040B2 (en) Raw edge V belt
JP7457593B2 (en) Rubber Fiber Composite
JP6849850B1 (en) Rubber composition and friction transmission belt
JP2023043417A (en) Rubber-fiber composite and production method thereof, as well as conveyor belts including the same
JP2016150993A (en) Assistant for hardly curable adhesive, rfl adhesive and rubber composition-fiber composite
JPH09207273A (en) Transmission belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200324

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200324

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150