JPWO2019168117A1 - Hydrophilized polyvinylidene fluoride microporous membrane - Google Patents

Hydrophilized polyvinylidene fluoride microporous membrane Download PDF

Info

Publication number
JPWO2019168117A1
JPWO2019168117A1 JP2020503623A JP2020503623A JPWO2019168117A1 JP WO2019168117 A1 JPWO2019168117 A1 JP WO2019168117A1 JP 2020503623 A JP2020503623 A JP 2020503623A JP 2020503623 A JP2020503623 A JP 2020503623A JP WO2019168117 A1 JPWO2019168117 A1 JP WO2019168117A1
Authority
JP
Japan
Prior art keywords
microporous membrane
pvdf
film
water
polyvinylidene fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020503623A
Other languages
Japanese (ja)
Inventor
隆行 岩▲崎▼
隆行 岩▲崎▼
直 長迫
直 長迫
竜児 松元
竜児 松元
整 樫尾
整 樫尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Publication of JPWO2019168117A1 publication Critical patent/JPWO2019168117A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds

Abstract

要約
課題 ポリフッ化ビニリデン系微多孔膜の親水化。
解決手段 重合性モノマーとして以下の式(1)で表されるN,N-ジメチルアクリルアミドと以下の式(2)で表される3官能アクリレート化合物とを含む、ポリフッ化ビニリデン系微多孔膜の表面親水化に用いられるコーティング組成物、及びこのコーティング組成物を用いて製造した親水化ポリフッ化ビニリデン系微多孔膜。
[化1]

Figure 2019168117

[化2]
Figure 2019168117

選択図 なしSummary Task Hydrophilization of polyvinylidene fluoride-based microporous membranes.
SOLUTION: The surface of a polyvinylidene fluoride-based microporous membrane containing N, N-dimethylacrylamide represented by the following formula (1) and a trifunctional acrylate compound represented by the following formula (2) as a polymerizable monomer. A coating composition used for hydrophilization, and a hydrophilized polyvinylidene fluoride-based microporous membrane produced using this coating composition.
[Chemical 1]
Figure 2019168117

[Chemical 2]
Figure 2019168117

No selection diagram

Description

本発明はポリフッ化ビニリデン系微多孔膜の表面に適用するための新規な親水化剤と、この親水化剤によって親水化された新規なポリフッ化ビニリデン微多孔膜に関する。 The present invention relates to a novel hydrophilic agent for application to the surface of a polyvinylidene fluoride-based microporous membrane, and a novel polyvinylidene fluoride microporous membrane hydrophilized by the hydrophilic agent.

ポリフッ化ビニリデン(PVDF)を主体とする微多孔質膜(PVDF系微多孔膜)は耐薬品性、耐熱性に優れることから生化学物質の分離や固定、排水処理、ガス処理、粉塵処理、精密濾過などのための各種フィルターや電解質膜として使用されている。PVDFの微多孔質膜の製法としては、非溶媒誘起相分離法(ポリマーをその良溶媒に溶かした溶液を作製し、この溶液をガラス板などに薄く塗布したものを非溶媒に浸漬することで相分離を誘起し、微多孔質膜を得る方法)などがある。出願人は既に独自の方法によって比較的均一な細孔が形成された、非対称3次元構造を有するPVDF系微多孔膜の製造に成功している(特許文献1)。 Since the microporous membrane (PVDF-based microporous membrane) mainly composed of polyvinylidene fluoride (PVDF) has excellent chemical resistance and heat resistance, separation and fixation of biochemical substances, wastewater treatment, gas treatment, dust treatment, and precision It is used as various filters for filtration and as an electrolyte membrane. As a method for producing a microporous membrane of PVDF, a non-solvent-induced phase separation method (a solution in which a polymer is dissolved in a good solvent thereof is prepared, and this solution is thinly applied to a glass plate or the like and immersed in a non-solvent is used. A method of inducing phase separation to obtain a microporous membrane) and the like. The applicant has already succeeded in producing a PVDF-based microporous membrane having an asymmetric three-dimensional structure in which relatively uniform pores are formed by a unique method (Patent Document 1).

一方、疎水性のPVDFは水系流体や生体物質との親和性が低いため、液体用フィルターや生化学・医薬用分離膜、電解質膜としては、表面が親水化されたPVDF系微多孔質膜が用いられる。初期の親水化の手法としては、ポリビニルアルコール(PVA)による表面被覆、エタノールによる表面処理が用いられていたが、これらの手法には親水化表面の安定性や耐久性に問題があった。そこで出願人は特許文献2においてPVDF系微多孔質膜の表面をSiO ガラス層で被覆する方法を提案したが、この場合もガラス層とPVDF系微多孔膜との密着性などに問題があった。On the other hand, hydrophobic PVDF has a low affinity for aqueous fluids and biological substances, so PVDF-based microporous membranes with a hydrophilic surface are used as liquid filters, biochemical / pharmaceutical separation membranes, and electrolyte membranes. Used. As an initial method of hydrophilization, surface coating with polyvinyl alcohol (PVA) and surface treatment with ethanol were used, but these methods had problems in the stability and durability of the hydrophilic surface. Therefore, the applicant proposed in Patent Document 2 a method of coating the surface of the PVDF-based microporous film with a SiO 2 glass layer, but in this case as well, there is a problem in the adhesion between the glass layer and the PVDF-based microporous film. It was.

微多孔質膜の疎水性表面の別の親水化方法として、微多孔質膜表面を架橋ポリマーで被覆する方法が提案されている。このような架橋ポリマーとして、窒素含有架橋ポリマー(特許文献3)、アクリルアミド系ポリマー(特許文献4)、フッ素含有架橋ポリマー(特許文献5)など多数提案されている。しかしながら、これら架橋ポリマーからなる表面コーティングと個々の微多孔膜との相性にはばらつきがあり、特に出願人が考案した非対称3次元構造を有するPVDF系微多孔膜に対する相性は最適とは言い難かった。 As another method for hydrophilizing the hydrophobic surface of the microporous membrane, a method of coating the surface of the microporous membrane with a crosslinked polymer has been proposed. As such crosslinked polymers, a large number of nitrogen-containing crosslinked polymers (Patent Document 3), acrylamide-based polymers (Patent Document 4), fluorine-containing crosslinked polymers (Patent Document 5), and the like have been proposed. However, the compatibility between the surface coating made of these crosslinked polymers and the individual microporous membranes varies, and it is difficult to say that the compatibility with the PVDF-based microporous membranes having an asymmetric three-dimensional structure devised by the applicant in particular is optimal. ..

国際公開第2014/054658号パンフレットInternational Publication No. 2014/054658 Pamphlet 国際公開第2015/0133364号パンフレットInternational Publication No. 2015/01333364 Pamphlet 米国特許第5,629,084号公報U.S. Pat. No. 5,629,084 特表2004−532724号公報Special Table 2004-532724 特開2016−199733号公報Japanese Unexamined Patent Publication No. 2016-9733

本発明は、特に非対称3次元構造を有するPVDF系微多孔膜の親水化に適した表面コーティング剤を提供することを課題とする。 An object of the present invention is to provide a surface coating agent suitable for hydrophilization of a PVDF-based microporous membrane having an asymmetric three-dimensional structure.

本発明者らは膨大な原料候補から表面コーティングの原料として有効なモノマーをスクリーニングし、驚くべきことに、たった2種類のモノマーを架橋重合させて得られる表面コーティング剤が注目するPVDF系微多孔膜のための優れた親水化剤として機能することを発見した。すなわち本発明は以下のものである。 The present inventors screened an effective monomer as a raw material for surface coating from a huge number of raw material candidates, and surprisingly, a PVDF-based microporous membrane that is attracting attention as a surface coating agent obtained by cross-linking and polymerizing only two kinds of monomers. It has been found to function as an excellent hydrophilic agent for. That is, the present invention is as follows.

[発明1]重合性モノマー、光重合開始剤、および溶媒を含み、
上記重合性モノマーとして、0.75質量%を超え3.0質量%以下の下記式(1)で表されるN,N-ジメチルアクリルアミドと、0.25質量%を超え1.5質量%以下の下記式(2)で表される3官能アクリレート化合物とを含む、微多孔膜の親水化に用いられるコーティング組成物。
[Invention 1] Contains a polymerizable monomer, a photopolymerization initiator, and a solvent.
As the polymerizable monomer, N, N-dimethylacrylamide represented by the following formula (1), which is more than 0.75% by mass and 3.0% by mass or less, and more than 0.25% by mass and 1.5% by mass or less. A coating composition used for hydrophilizing a microporous film, which comprises a trifunctional acrylate compound represented by the following formula (2).

Figure 2019168117
Figure 2019168117

Figure 2019168117
Figure 2019168117

[発明2]微多孔膜がフルオロポリマー系微多孔膜である、[発明1]のコーティング組成物。 [Invention 2] The coating composition of [Invention 1], wherein the microporous membrane is a fluoropolymer-based microporous membrane.

[発明3]微多孔膜がポリフッ化ビニリデン系微多孔膜である、[発明1]のコーティング組成物。 [Invention 3] The coating composition of [Invention 1], wherein the microporous membrane is a polyvinylidene fluoride-based microporous membrane.

[発明4]ポリフッ化ビニリデン系微多孔膜が基材と微多孔膜層とからなり、
上記微多孔膜層はPVDF系樹脂からなる非対称膜であり、
上記非対称膜は、微孔が形成されたスキン層と、前記スキン層を構成する前記微孔よりも大きい空孔が形成された支持層とを備え、
上記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びており、隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成し、
上記ポリフッ化ビニリデン系微多孔膜の気体透過法によって測定した細孔径の最頻値(モード)Lm(μm)が(条件1):0.10≦Lm≦0.20を満たし、
上記ポリフッ化ビニリデン系微多孔膜の全細孔の95%以上が(条件2):(Lm×0.85)≦L≦(Lm×1.15)を満たす細孔径L(μm)を有する、
[発明3]のコーティング組成物。
[Invention 4] A polyvinylidene fluoride-based microporous membrane comprises a base material and a microporous membrane layer.
The microporous membrane layer is an asymmetric membrane made of PVDF resin, and is
The asymmetric film includes a skin layer in which micropores are formed and a support layer in which pores larger than the micropores constituting the skin layer are formed.
The skin layer has a plurality of spheres, and a plurality of linear binders extend in a three-dimensional direction from each of the spheres, and the adjacent spheres are connected to each other by the linear binders. To form a three-dimensional network structure with the spherical bodies as intersections.
The mode Lm (μm) of the pore diameter measured by the gas permeation method of the polyvinylidene fluoride-based microporous membrane satisfies (Condition 1): 0.10 ≦ Lm ≦ 0.20.
95% or more of the total pores of the polyvinylidene fluoride-based microporous membrane have a pore diameter L (μm) satisfying (Condition 2): (Lm × 0.85) ≦ L ≦ (Lm × 1.15).
The coating composition of [Invention 3].

[発明5]架橋ポリマー層と微多孔膜とからなる親水化微多孔膜であって、
上記架橋ポリマーが、以下の式(1)で表されるN,N-ジメチルアクリルアミドに由来する単位と以下の式(2)で表される3官能アクリレート化合物に由来する単位とからなり、
上記架橋ポリマー中に、上記3官能アクリレート化合物に由来する単位1モルに対して、上記N,N-ジメチルアクリルアミドに由来する単位が3.3モル以上79モル以下の範囲で存在し、上記微多孔膜が基材と微多孔膜層とからなる、
親水化微多孔膜。
[Invention 5] A hydrophilized microporous membrane composed of a crosslinked polymer layer and a microporous membrane.
The crosslinked polymer is composed of a unit derived from N, N-dimethylacrylamide represented by the following formula (1) and a unit derived from a trifunctional acrylate compound represented by the following formula (2).
In the crosslinked polymer, the unit derived from N, N-dimethylacrylamide is present in the range of 3.3 mol or more and 79 mol or less with respect to 1 mol of the unit derived from the trifunctional acrylate compound, and the microporous. The film consists of a base material and a microporous film layer,
Hydrophilized microporous membrane.

Figure 2019168117
Figure 2019168117

Figure 2019168117
Figure 2019168117

[発明6]微多孔膜がフルオロポリマー系微多孔膜である、[発明5]の親水化微多孔膜。 [Invention 6] The hydrophilized microporous membrane of [Invention 5], wherein the microporous membrane is a fluoropolymer-based microporous membrane.

[発明7]微多孔膜がポリフッ化ビニリデン系微多孔膜である、[発明5]の親水化微多孔膜。 [Invention 7] The hydrophilized microporous membrane of [Invention 5], wherein the microporous membrane is a polyvinylidene fluoride-based microporous membrane.

[発明8]ポリフッ化ビニリデン系微多孔膜が基材と微多孔膜層とからなり、
上記微多孔膜層はポリフッ化ビニリデン系樹脂からなる非対称膜であり、上記非対称膜は、微孔が形成されたスキン層と、前記スキン層を構成する前記微孔よりも大きい空孔が形成された支持層とを備え、
上記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びており、隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成し、
上記ポリフッ化ビニリデン系微多孔膜の気体透過法によって測定した細孔径の最頻値(モード)Lm(μm)が(条件1):0.10≦Lm≦0.20を満たし、
上記ポリフッ化ビニリデン系微多孔膜の全細孔の95%以上が(条件2):(Lm×0.85)≦L≦(Lm×1.15)を満たす細孔径L(μm)を有する、
[発明7]の親水化微多孔膜。
[Invention 8] A polyvinylidene fluoride-based microporous membrane comprises a base material and a microporous membrane layer.
The microporous membrane layer is an asymmetric membrane made of a polyvinylidene fluoride-based resin, and the asymmetric membrane has a skin layer in which micropores are formed and pores larger than the micropores constituting the skin layer. With a support layer
The skin layer has a plurality of spheres, and a plurality of linear binders extend in a three-dimensional direction from each of the spheres, and the adjacent spheres are connected to each other by the linear binders. To form a three-dimensional network structure with the spherical bodies as intersections.
The mode Lm (μm) of the pore diameter measured by the gas permeation method of the polyvinylidene fluoride-based microporous membrane satisfies (Condition 1): 0.10 ≦ Lm ≦ 0.20.
95% or more of the total pores of the polyvinylidene fluoride-based microporous membrane have a pore diameter L (μm) satisfying (Condition 2): (Lm × 0.85) ≦ L ≦ (Lm × 1.15).
The hydrophilized microporous membrane of [Invention 7].

本発明の親水化PVDF系微多孔膜は表面親水性と透過効率が高い、新規な工業材料である。 The hydrophilized PVDF-based microporous membrane of the present invention is a novel industrial material having high surface hydrophilicity and high permeation efficiency.

参考例で製造したPVDF系微多孔膜1の断面を示す。The cross section of the PVDF-based microporous membrane 1 manufactured in the reference example is shown. 本発明で用いるPVDF系微多孔膜の断面を模式的に示す。The cross section of the PVDF-based microporous membrane used in the present invention is schematically shown. 参考例で製造したPVDF系微多孔膜1のスキン層の走査型電子顕微鏡写真。A scanning electron micrograph of the skin layer of the PVDF-based microporous membrane 1 manufactured in the reference example. 参考例で製造したPVDF系微多孔膜1のスキン層の走査型電子顕微鏡写真。A scanning electron micrograph of the skin layer of the PVDF-based microporous membrane 1 manufactured in the reference example. 参考例のPVDF系微多孔膜2で用いた原料液についてその剪断速度(1/s)(x)とその粘度の逆数(1/mPa・s)(y)との関係を示す。The relationship between the shear rate (1 / s) (x) and the reciprocal of the viscosity (1 / mPa · s) (y) of the raw material liquid used in the PVDF-based microporous membrane 2 of the reference example is shown. 参考例のPVDF系微多孔膜2の細孔径分布を示すグラフ。The graph which shows the pore diameter distribution of PVDF-based microporous membrane 2 of a reference example.

[コーティング組成物]
本発明のコーティング組成物は、重合性モノマーとして以下の式(1)で表されるN,N-ジメチルアクリルアミドと以下の式(2)で表される3官能アクリレート化合物とを含む。
[Coating composition]
The coating composition of the present invention contains N, N-dimethylacrylamide represented by the following formula (1) and a trifunctional acrylate compound represented by the following formula (2) as a polymerizable monomer.

Figure 2019168117
Figure 2019168117

Figure 2019168117
Figure 2019168117

本発明のコーティング組成物に含まれる上記重合性モノマーの総濃度は、PVDF系微多孔膜の表面を十分に親水化でき、かつ、PVDF系微多孔膜の孔を塞がない範囲に調節される。このような重合モノマー濃度が達成されるように、上記N,N-ジメチルアクリルアミドと上記3官能アクリレート化合物とは溶媒で希釈された状態で本発明のコーティング組成物中に含まれる。好ましい溶媒は超純水である。 The total concentration of the polymerizable monomer contained in the coating composition of the present invention is adjusted within a range in which the surface of the PVDF-based microporous membrane can be sufficiently hydrophilized and the pores of the PVDF-based microporous membrane are not blocked. .. The N, N-dimethylacrylamide and the trifunctional acrylate compound are contained in the coating composition of the present invention in a state of being diluted with a solvent so that such a polymerization monomer concentration is achieved. The preferred solvent is ultrapure water.

すなわち、本発明のコーティング組成物中に、上記N,N-ジメチルアクリルアミドは0.75質量%を超え3.0質量%以下、好ましくは1.5質量%以上2.0質量%以下の濃度で存在し、上記3官能アクリレート化合物は0.25質量%を超え1.5質量%以下、好ましくは0.50質量%以上1.0質量%以下の濃度で存在する。 That is, in the coating composition of the present invention, the N, N-dimethylacrylamide is contained in a concentration of more than 0.75% by mass and 3.0% by mass or less, preferably 1.5% by mass or more and 2.0% by mass or less. The above trifunctional acrylate compound is present at a concentration of more than 0.25% by mass and 1.5% by mass or less, preferably 0.50% by mass or more and 1.0% by mass or less.

すなわち本発明のコーティング組成物には、1モルの上記3官能アクリレート化合物に対して、3.3モル以上79モル以下、好ましくは9.8モル以上26モル以下の上記N,N-ジメチルアクリルアミドが存在する。このような重合性モノマーの量比が本発明のコーティング組成物の光硬化で生成する架橋ポリマーの繰り返し単位比、すなわち、上記架橋ポリマーを構成するN,N-ジメチルアクリルアミドに由来する単位と上記3官能アクリレート化合物に由来する単位との割合を決定する。本発明のコーティング組成物に含まれる重合性モノマーの量比をこのように調節することによって、本発明のコーティング組成物の硬化で生成する架橋ポリマーがPVDF系微多孔膜の透過性を適度に維持した状態でPVDF系微多孔膜の表面を親水化することができる。 That is, the coating composition of the present invention contains 3.3 mol or more and 79 mol or less, preferably 9.8 mol or more and 26 mol or less of the above N, N-dimethylacrylamide with respect to 1 mol of the trifunctional acrylate compound. Exists. The amount ratio of such a polymerizable monomer is the repeating unit ratio of the crosslinked polymer produced by photocuring of the coating composition of the present invention, that is, the unit derived from N, N-dimethylacrylamide constituting the crosslinked polymer and the above 3 The ratio with the unit derived from the functional acrylate compound is determined. By adjusting the amount ratio of the polymerizable monomer contained in the coating composition of the present invention in this way, the crosslinked polymer produced by curing the coating composition of the present invention appropriately maintains the permeability of the PVDF-based microporous film. The surface of the PVDF-based microporous film can be made hydrophilic in this state.

本発明のコーティング組成物は上記重合性モノマーと溶媒に加えて、光重合開始剤を含む。光重合開始剤は特に制限されない。このような光重合開始剤としてBASF社が提供するIRGACURE(登録商標)シリーズを用いることができる。中でも好ましい光重合開始剤は商品「IRGACURE2959」などのアルキルフェノン系光重合開始剤である。 The coating composition of the present invention contains a photopolymerization initiator in addition to the above-mentioned polymerizable monomer and solvent. The photopolymerization initiator is not particularly limited. The IRGACURE® series provided by BASF can be used as such a photopolymerization initiator. Among them, the preferred photopolymerization initiator is an alkylphenone-based photopolymerization initiator such as the product "IRGACURE2959".

本発明のコーティング組成物はさらに酸化防止剤、安定剤などの添加剤を通常の濃度で含有することができる。 The coating composition of the present invention can further contain additives such as antioxidants and stabilizers in normal concentrations.

上記重合性モノマーと溶媒、光重合開始剤、任意の添加剤とを混合する方法は制限されない。通常、溶剤に溶解した重合性モノマー溶液に重合開始剤と任意の添加剤とを15℃以上35℃以下の温度下で添加し混合物を攪拌することによって本発明のコーティング組成物が得られる。 The method of mixing the polymerizable monomer with the solvent, the photopolymerization initiator, and any additive is not limited. Usually, the coating composition of the present invention is obtained by adding a polymerization initiator and an arbitrary additive to a polymerizable monomer solution dissolved in a solvent at a temperature of 15 ° C. or higher and 35 ° C. or lower and stirring the mixture.

[PVDF系微多孔膜]
上記コーティング組成物は微多孔膜の表面に塗布される。上記コーティング組成物は微多孔膜の表面で硬化し、生成した架橋ポリマーが微多孔膜の表面を親水化する。このような親水化は一般的な微多孔膜のいずれでも発現可能であるが、本発明のコーティング組成物の適用対象としては疎水性であり実用面では積極的な親水化が望ましくまた必要とされる微多孔膜を選択することができる。このような微多孔膜としては一般に「フルオロポリマー」と呼ばれるフッ素含有樹脂からなる微多孔膜層を有するもの(本発明では「フルオロポリマー系微多孔膜」という。)が好ましく、特にPVDF系微多孔膜が好ましい。
[PVDF-based microporous membrane]
The coating composition is applied to the surface of a microporous membrane. The coating composition is cured on the surface of the microporous membrane, and the crosslinked polymer produced makes the surface of the microporous membrane hydrophilic. Such hydrophilicity can be expressed by any of general microporous membranes, but it is hydrophobic as an application target of the coating composition of the present invention, and positive hydrophilicization is desirable and necessary in practical use. Microporous membrane can be selected. As such a microporous membrane, one having a microporous membrane layer made of a fluorine-containing resin generally called "fluoropolymer" (referred to as "fluoropolymer-based microporous membrane" in the present invention) is preferable, and PVDF-based microporous membrane is particularly preferable. Membranes are preferred.

本発明で用いる好ましいPVDF系微多孔膜は基材と微多孔膜層とからなり、上記微多孔膜層はPVDF系樹脂からなる非対称膜である。上記非対称膜は、微孔が形成されたスキン層と、前記スキン層を構成する前記微孔よりも大きい空孔が形成された支持層とを備える。上記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びている。隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成する。 The preferable PVDF-based microporous membrane used in the present invention is composed of a base material and a microporous membrane layer, and the microporous membrane layer is an asymmetric membrane made of a PVDF-based resin. The asymmetric film includes a skin layer in which micropores are formed and a support layer in which pores larger than the micropores constituting the skin layer are formed. The skin layer has a plurality of spheres, and a plurality of linear binders extend in a three-dimensional direction from each of the spheres. The adjacent spheres are connected to each other by the linear binder to form a three-dimensional network structure with the spheres as intersections.

「スキン層」とは微多孔膜の断面において表面からマクロボイドが発生するまでの厚みの層をいい、「支持層」とは、微多孔膜全体の厚みからスキン層の厚みを引いた値の厚みの層をいう。「マクロボイド」とは、微多孔膜の支持層に発生し、最小で数μm、最大で支持層の厚さとほぼ同じ大きさとなる巨大な空洞をいう。「球状体」とは、本発明の3次元網目構造の交点に形成された球状であって、完全な球状に限られず、ほぼ球状も含まれる。 The "skin layer" refers to a layer having a thickness from the surface to the generation of macrovoids in the cross section of the microporous membrane, and the "support layer" is a value obtained by subtracting the thickness of the skin layer from the thickness of the entire microporous membrane. A layer of thickness. "Macrovoid" refers to a huge cavity that occurs in the support layer of a microporous membrane and has a minimum size of several μm and a maximum size approximately the same as the thickness of the support layer. The "sphere" is a sphere formed at the intersection of the three-dimensional network structure of the present invention, and is not limited to a perfect sphere, but also includes a substantially sphere.

このような非対称な3次元構造の典型例は図面を参照して視覚的に理解することができる。 A typical example of such an asymmetric three-dimensional structure can be visually understood with reference to the drawings.

図1は参考例で製造したPVDF系微多孔膜1の断面を示す。図2は図1を模式的に表す。図1と図2に示されるように、基材3の表面に空孔を有する支持層2が形成されている。支持層2の表面にはさらに、支持層の空孔よりも小型の空孔を有するごく薄いスキン層1が形成されている。こうして基材3の表面にスキン層1と支持層2とからなる微多孔膜層が形成されている。本発明のPVDF系微多孔膜は、基材3と微多孔膜層とが一体化して成る薄膜である。 FIG. 1 shows a cross section of the PVDF-based microporous membrane 1 manufactured in the reference example. FIG. 2 schematically represents FIG. As shown in FIGS. 1 and 2, a support layer 2 having holes is formed on the surface of the base material 3. On the surface of the support layer 2, a very thin skin layer 1 having pores smaller than the pores of the support layer is further formed. In this way, a microporous film layer composed of the skin layer 1 and the support layer 2 is formed on the surface of the base material 3. The PVDF-based microporous membrane of the present invention is a thin film formed by integrating the base material 3 and the microporous membrane layer.

図3、図4は、参考例で製造したPVDF系微多孔膜1のスキン層1を拡大表示したものである。スキン層1は球状体4と、球状体4相互を連結する結合材5とで構成されている。一つの球状体4から複数の結合材5が3次元方向に延長し、それぞれの結合材5は他の球状体4に接続する。こうしてスキン層1は、3次元的に配置された多数の球状体4と結合材5とで形成されている。 3 and 4 are enlarged views of the skin layer 1 of the PVDF-based microporous membrane 1 manufactured in the reference example. The skin layer 1 is composed of a spherical body 4 and a binder 5 that connects the spherical bodies 4 to each other. A plurality of binders 5 extend from one sphere 4 in a three-dimensional direction, and each binder 5 is connected to another sphere 4. In this way, the skin layer 1 is formed of a large number of spherical bodies 4 arranged three-dimensionally and the binder 5.

本発明のPVDF系微多孔膜では、球状体と球状体の間の空隙が線状の結合材で仕切られた形となるため、球状体の無い従来の微多孔膜と比較して遥かに空隙の形状・大きさが揃った微多孔が存在し、透過性に優れたスキン層が形成されている。線状の結合材は球状体を架橋して球状体の脱落を妨げるから、濾液に濾材自体が混入するのを防ぐことができる。3次元網目構造の交点に存在する球状体は濾過時の流体の圧力による3次元網目構造の変形・破損を防ぐから、本発明のPVDF系微多孔膜の耐圧性が高い。 In the PVDF-based microporous membrane of the present invention, the voids between the spheres are partitioned by a linear binder, so that the voids are far greater than those of the conventional microporous membrane without spheres. There are micropores with the same shape and size, and a skin layer with excellent permeability is formed. Since the linear binder bridges the spheres and prevents the spheres from falling off, it is possible to prevent the filter medium itself from being mixed into the filtrate. Since the spheres existing at the intersections of the three-dimensional network structure prevent deformation and breakage of the three-dimensional network structure due to the pressure of the fluid during filtration, the PVDF-based microporous membrane of the present invention has high pressure resistance.

本発明のPVDF系微多孔膜では、好ましくは、前記球状体が0.05μm以上0.5μm以下の平均粒径を有する。本発明の微多孔膜の前記スキン層の厚みは好ましくは0.5μm以上10μm以下であり、本発明の微多孔膜の前記支持層の厚みは好ましくは20μm以上500μm以下である。 In the PVDF-based microporous membrane of the present invention, the spheres preferably have an average particle size of 0.05 μm or more and 0.5 μm or less. The thickness of the skin layer of the microporous membrane of the present invention is preferably 0.5 μm or more and 10 μm or less, and the thickness of the support layer of the microporous membrane of the present invention is preferably 20 μm or more and 500 μm or less.

本発明のPVDF系微多孔膜の主材料であるPVDF系樹脂は機械的、熱的、化学的に安定で濾過膜材料として好適な樹脂である。PVDF系樹脂は他のフッ素樹脂に比べて加工し易い点も有利である。PVDF系樹脂は一次加工後の切断や他素材との接着などの2次加工も容易である。 The PVDF-based resin, which is the main material of the PVDF-based microporous membrane of the present invention, is mechanically, thermally, and chemically stable and suitable as a filtration membrane material. The PVDF resin is also advantageous in that it is easier to process than other fluororesins. PVDF resin is easy to perform secondary processing such as cutting after primary processing and adhesion with other materials.

本発明のPVDF系微多孔膜として特にシャープな細孔径分布を有するものが好ましい。すなわち好ましいPVDF系微多孔膜は、気体透過法によって測定した細孔径の最頻値(モード)が(条件1):0.10≦Lm≦0.20を満たすLm(μm)であり、さらに、全細孔の95%以上が(条件2)(Lm×0.85)≦L≦(Lm×1.15)を満たす細孔径L(μm)を有する。 The PVDF-based microporous membrane of the present invention preferably has a particularly sharp pore size distribution. That is, in a preferable PVDF-based microporous membrane, the mode of the pore diameter measured by the gas permeation method is Lm (μm) satisfying (Condition 1): 0.10 ≦ Lm ≦ 0.20, and further. 95% or more of all pores have a pore diameter L (μm) satisfying (Condition 2) (Lm × 0.85) ≦ L ≦ (Lm × 1.15).

本発明のPVDF系微多孔膜がより好ましい細孔径分布を示す場合には、気体透過法によって測定した細孔径の最頻値(モード)Lm(μm)が(条件3):0.11≦Lm≦0.18を満たし、さらに、全細孔数の96%以上が(条件4):(Lm×0.85)≦L≦(Lm×1.15)を満たす。 When the PVDF-based microporous membrane of the present invention shows a more preferable pore size distribution, the mode Lm (μm) of the pore size measured by the gas permeation method is (Condition 3): 0.11 ≦ Lm. ≦ 0.18 is satisfied, and 96% or more of the total number of pores satisfies (Condition 4) :( Lm × 0.85) ≦ L ≦ (Lm × 1.15).

上記気体透過法(パームポロメトリー)は細孔径分布の測定方法として一般的なものの一つであり、細孔が貫通孔を形成する材料、例えばセラミックス、中空糸、セパレータ、不織布、膜フィルターなどの細孔径分布測定法として最も良く用いられている。この方法では、測定対象の貫通細孔を気体が通過する時に貫通細孔のネック部分(最も細い地点)で気体の流れが滞る現象を利用して、貫通細孔のサイズをネック口径として算出する。気体透過法に基づくいずれの測定機器(パームポロメーター)でも、濡れ易い有機溶媒で満たした空気をその圧力を徐々に高めながら測定対象の貫通細孔内に送り、流入空気の圧力と排出空気の流量の関係から細孔径分布を算出する。 The gas permeation method (palm poromometry) is one of the general methods for measuring the pore size distribution, and is used for materials in which pores form through holes, such as ceramics, hollow fibers, separators, non-woven fabrics, and membrane filters. It is most often used as a pore size distribution measurement method. In this method, the size of the penetrating pore is calculated as the neck diameter by utilizing the phenomenon that the gas flow is stagnant at the neck portion (the narrowest point) of the penetrating pore when the gas passes through the penetrating pore to be measured. .. In any measuring device (palm porometer) based on the gas permeation method, air filled with an organic solvent that is easy to get wet is sent into the through pores to be measured while gradually increasing its pressure, and the pressure of the inflow air and the exhaust air are measured. The pore size distribution is calculated from the relationship of the flow rate.

[PVDF系微多孔膜の製造方法]
このような本発明のPVDF系微多孔膜の製造方法は、PVDF系樹脂、溶媒、多孔化剤、水を含む原料液を調製する工程、上記原料液を基材フィルムに塗布し固化する工程、原料液の固化が終了したフィルムを洗浄する工程を含む。通常、上記溶媒としてはジメチルアセトアミドを、上記多孔化剤としてはポリエチレングリコールを使用する。
[Manufacturing method of PVDF-based microporous membrane]
Such a method for producing a PVDF-based microporous film of the present invention includes a step of preparing a raw material liquid containing a PVDF-based resin, a solvent, a porosifying agent, and water, and a step of applying the raw material liquid to a base film and solidifying it. The step of washing the film after the solidification of the raw material liquid is completed is included. Usually, dimethylacetamide is used as the solvent, and polyethylene glycol is used as the porosifying agent.

本発明のPVDF系微多孔膜の製造方法は基材上に塗布する原料液にPVDF系樹脂、溶媒、多孔化剤に加えて水を添加する点を特徴とする。このような原料液を用いることによってPVDF系微多孔膜により均一な細孔を形成することができる。 The method for producing a PVDF-based microporous membrane of the present invention is characterized in that water is added to a raw material liquid to be applied on a substrate in addition to a PVDF-based resin, a solvent, and a porosifying agent. By using such a raw material solution, uniform pores can be formed by the PVDF-based microporous membrane.

本発明のPVDF系微多孔膜に特有の上述の非対称な3次元構造を達成するためには上記PVDF系樹脂として適度な粘弾性を有するものが好ましい。 In order to achieve the above-mentioned asymmetric three-dimensional structure peculiar to the PVDF-based microporous membrane of the present invention, the PVDF-based resin having an appropriate viscoelasticity is preferable.

このような好適なPVDF系樹脂は、その良溶媒溶液のせん断速度と溶液粘度との関係で判定できる。この判定のために、PVDF系樹脂10重量部、ポリエチレングリコール10重量部、ジメチルアセトアミド80重量部からなる溶液について、そのせん断速度を横軸に、その溶液粘度の逆数を縦軸にプロットする。せん断速度40毎秒以下の領域を2次関数で近似した場合に、例えば図5に示すような、2次係数が−10−8より小さく上側に凸を有する弧を含む曲線が得られる場合、このPVDF系樹脂を本発明のPVDF系微多孔膜に好適と判定できる。Such a suitable PVDF-based resin can be determined by the relationship between the shear rate of the good solvent solution and the solution viscosity. For this determination, the shear rate of a solution consisting of 10 parts by weight of PVDF resin, 10 parts by weight of polyethylene glycol, and 80 parts by weight of dimethylacetamide is plotted on the horizontal axis and the reciprocal of the solution viscosity is plotted on the vertical axis. If in the case of the following areas shear rate of 40 per second is approximated by a quadratic function, for example, as shown in FIG. 5, curve a secondary factor comprises an arc having a convex upward less than -10 -8 is obtained, this It can be determined that the PVDF-based resin is suitable for the PVDF-based microporous film of the present invention.

[PVDF系微多孔膜の製造例1]
本発明のPVDF系微多孔膜の好ましい製造方法は、(工程1)PVDF系樹脂と、溶媒としてのジメチルアセトアミドと、多孔化剤としてのポリエチレングリコールと、水とを含む原料液を調製する工程、(工程2)工程1で得られた原料液を基材フィルムに塗布する工程、(工程3)工程2で得られたフィルムを水に浸漬して原料液を固化する工程、(工程4)工程3を経たフィルムを水で洗浄する工程、を有する。
[Production Example 1 of PVDF Microporous Membrane]
A preferred method for producing the PVDF-based microporous film of the present invention is (step 1) a step of preparing a raw material solution containing a PVDF-based resin, dimethylacetamide as a solvent, polyethylene glycol as a porosifying agent, and water. (Step 2) A step of applying the raw material liquid obtained in Step 1 to a base film, (Step 3) A step of immersing the film obtained in Step 2 in water to solidify the raw material liquid, (Step 4) Step. It has a step of washing the film that has passed through step 3 with water.

(工程1)
工程1は、PVDF系樹脂、溶媒、多孔化剤、水を含む原料液を調製する工程である。ここで用いるPVDF系樹脂は微多孔膜の素材である。工程1で用いるPVDF系樹脂として、1種以上のフッ化ビニリデン単独重合体、1種以上のフッ化ビニリデン共重合体、これらの混合物のいずれもが用いられる。フッ化ビニリデン共重合体としては一般的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上のフッ素系モノマーとフッ化ビニリデンとの共重合体が用いられる。工程1で用いるPVDF系樹脂として好ましい樹脂はフッ化ビニリデン単独重合体であり、フッ化ビニリデン単独重合体がPVDF系樹脂全体の50重量%を占めることが望ましい。また、粘度、分子量等が異なる複数種のフッ化ビニリデン単独重合体を用いることもできる。
(Step 1)
Step 1 is a step of preparing a raw material liquid containing a PVDF resin, a solvent, a porosifying agent, and water. The PVDF resin used here is a material for a microporous membrane. As the PVDF-based resin used in step 1, one or more kinds of vinylidene fluoride homopolymers, one or more kinds of vinylidene fluoride copolymers, and any mixture thereof are used. Generally, vinylidene fluoride copolymers are copolymers of vinylidene fluoride monomers and other fluoromonomers, such as vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride. A copolymer of one or more kinds of fluorine-based monomers selected from the above and vinylidene fluoride is used. The preferred resin as the PVDF-based resin used in step 1 is a vinylidene fluoride homopolymer, and it is desirable that the vinylidene fluoride homopolymer accounts for 50% by weight of the total PVDF-based resin. Further, a plurality of types of vinylidene fluoride homopolymers having different viscosities, molecular weights and the like can also be used.

後述の工程2において原料液が基材フィルムに吸収されず、しかも均一な原料液の塗膜を形成するためには、一般的には、このようなPVDF系樹脂として重量平均分子量(Mw)が60万〜120万のものが好ましい。 In order to form a uniform coating film of the raw material liquid in which the raw material liquid is not absorbed by the base film in step 2 described later, generally, the weight average molecular weight (Mw) of such a PVDF resin is high. Those of 600,000 to 1.2 million are preferable.

工程1で用いる溶媒は、上記PVDF系樹脂が該溶媒に溶解した状態で後述の工程2を行うことができる程度に上記PVDF系樹脂が溶解することができ、しかも、水と混和する有機溶媒を意味する。このような溶媒として、極性溶媒である、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等を用いることができる。これらの溶媒は混合して用いてもよく、本発明の効果を妨げない範囲で他の有機溶媒が含まれていてもよい。このような溶媒の中で、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドが好ましい。 The solvent used in step 1 is an organic solvent in which the PVDF resin can be dissolved to the extent that the PVDF resin can be dissolved in the solvent and the step 2 described later can be performed, and the solvent is mixed with water. means. Such solvents include polar solvents such as N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), methylethylketone, acetone, tetrahydrofuran. , Tetramethylurea, lower alkyl ketones such as trimethyl phosphate, esters, amides and the like can be used. These solvents may be mixed and used, and other organic solvents may be contained as long as the effects of the present invention are not impaired. Among such solvents, N-methyl-2-pyrrolidone, N, N-dimethylacetamide and N, N-dimethylformamide are preferable.

工程1で用いる多孔化剤は、上記溶媒に溶解し、かつ、水に溶解する有機媒体である。後述の工程3と工程4で、この多孔化剤と上記溶媒とは原料液から水に移行する。これに対して、PVDF系樹脂は水に溶解しないため、工程3と工程4を経て基材フィルム上に固体状で残留し、最終的に基材フィルム上に多孔層を形成する。 The porosifying agent used in step 1 is an organic medium that is soluble in the above solvent and soluble in water. In steps 3 and 4 described later, the porosifying agent and the solvent are transferred from the raw material liquid to water. On the other hand, since the PVDF resin is insoluble in water, it remains as a solid on the base film through steps 3 and 4, and finally forms a porous layer on the base film.

工程1で用いる多孔化剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアクリル酸などの水溶性ポリマーが用いられる。好ましい多孔化剤は、ポリエチレングリコールやポリビニルピロリドンであり、さらに好ましい多孔化剤はポリエチレングリコールであり、得られるフッ化ビニリデン微多孔膜の孔形状から見て、最も好ましい多孔化剤は重量平均分子量が200〜1000のポリエチレングリコールである。 As the porosifying agent used in step 1, a water-soluble polymer such as polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl acetate, polyvinylpyrrolidone, or polyacrylic acid is used. The preferred porosifying agent is polyethylene glycol or polyvinylpyrrolidone, and the more preferable porosifying agent is polyethylene glycol. The most preferable porosifying agent has a weight average molecular weight in view of the pore shape of the obtained vinylidene fluoride microporous membrane. 200-1000 polyethylene glycol.

上述のPVDF系樹脂、溶媒、多孔化剤の量比は、一般的には、これらの合計量100重量部に対して、PVDF系樹脂が5重量部〜20重量部、溶媒が70重量部〜90重量部、多孔化剤が0.5重量部〜40重量部を占めるように調節される。 The amount ratio of the PVDF resin, the solvent, and the porosifying agent described above is generally 5 parts by weight to 20 parts by weight for the PVDF resin and 70 parts by weight for the solvent with respect to 100 parts by weight of the total amount thereof. It is adjusted so that 90 parts by weight and the porosifying agent occupy 0.5 parts by weight to 40 parts by weight.

本発明では、工程1で原料液の原料として、上記PVDF系樹脂、溶媒、多孔化剤に加え、さらに水を用いることを必須の条件とする。工程1で用いる水としては純度の高いものが好ましく、一般に純水あるいは超純水として入手できる水が望ましい。原料液に添加する水の量は、原料液全量に対して一般的には6.5重量%以下、好ましくは2重量%〜6.5重量%、より好ましくは3重量%〜5重量%の範囲に調節される。 In the present invention, it is an essential condition that water is used as a raw material for the raw material liquid in step 1 in addition to the PVDF resin, the solvent, and the porosifying agent. The water used in step 1 is preferably high-purity water, and generally water that can be obtained as pure water or ultrapure water is desirable. The amount of water added to the raw material liquid is generally 6.5% by weight or less, preferably 2% by weight to 6.5% by weight, more preferably 3% by weight to 5% by weight, based on the total amount of the raw material liquid. Adjusted to range.

工程1で上記PVDF系樹脂、溶媒、多孔化剤、水の混合方法は特に制限されない。例えばこれらを混合する温度は、これらが液状で完全に混和する温度であればよく、一般的には室温以上100℃以下の温度である。こうして得られた原料液を以下の工程2で用いる。 The method of mixing the PVDF resin, solvent, porosifying agent, and water in step 1 is not particularly limited. For example, the temperature at which they are mixed may be any temperature as long as they are liquid and completely miscible, and is generally a temperature of room temperature or higher and 100 ° C. or lower. The raw material liquid thus obtained is used in the following step 2.

(工程2)
工程2は、工程1で得られた原料液を基材フィルムに塗布する工程である。上記基材フィルムには、後述の工程3における原料液内部の孔形成を促進し、さらに、得られたPVDF系微多孔膜を補強する機能が求められる。したがって基材フィルムとしては、化学的に安定で機械的強度があり、原料液、特にPVDF系樹脂との親和性や密着性に優れる素材であれば、制限なく使用することができる。このような基材フィルムとしては、例えば、抄紙、スパンボンド法やメルトブロー法などで得られた不織布、織布、多孔質板などを用いることができ、その素材としてはポリエステル、ポリオレフィン、セラミック、セルロースなどが使用される。これらの基材フィルムの中で、柔軟性、軽量性、強度、耐熱性などのバランスに優れることから、ポリプロピレン製スパンボンド不織布が好ましい。なお、不織布を用いる場合、その目付は15g/m以上150g/m以下の範囲が好ましく、30g/m以上70g/m以下の範囲がさらに好ましい。目付が15g/mを上回ると、基材層を設けた効果が十分に得られる。また、目付が150g/mを下回ると、折り曲げや熱接着などの後加工がし易くなる。
(Step 2)
Step 2 is a step of applying the raw material liquid obtained in Step 1 to the base film. The base film is required to have a function of promoting pore formation inside the raw material liquid in step 3 described later and further reinforcing the obtained PVDF-based microporous film. Therefore, as the base film, any material that is chemically stable, has mechanical strength, and has excellent affinity and adhesion to a raw material liquid, particularly a PVDF-based resin, can be used without limitation. As such a base film, for example, non-woven fabric, woven fabric, porous board or the like obtained by paper making, spunbond method, melt blow method or the like can be used, and the materials thereof are polyester, polyolefin, ceramic, cellulose and the like. Etc. are used. Among these base films, polypropylene spunbonded non-woven fabric is preferable because it has an excellent balance of flexibility, light weight, strength, heat resistance and the like. When a non-woven fabric is used, the basis weight is preferably in the range of 15 g / m 2 or more and 150 g / m 2 or less, and more preferably in the range of 30 g / m 2 or more and 70 g / m 2 or less. When the basis weight exceeds 15 g / m 2 , the effect of providing the base material layer can be sufficiently obtained. Further, when the basis weight is less than 150 g / m 2 , post-processing such as bending and heat bonding becomes easy.

基材フィルムへの原料液の塗布方法は、最終的に10μm以上500μm以下の厚みのPVDF系微多孔膜が生成する量の原料液を基材フィルム上に均一に塗布できる方法であれば制限はなく、例えば、ロールコーター、ダイコーター、リップコーターなど各種コーティング装置や、各種フィルムアプリケータが基材フィルムの面積や長さに応じて選択され使用される。工程2は一般的には室温で行う。 The method of applying the raw material liquid to the base film is limited as long as the raw material liquid can be uniformly applied onto the base film in an amount that finally produces a PVDF-based microporous film having a thickness of 10 μm or more and 500 μm or less. Instead, for example, various coating devices such as a roll coater, a die coater, and a lip coater, and various film applicators are selected and used according to the area and length of the base film. Step 2 is generally performed at room temperature.

基材フィルムが小片の場合には、平滑な塗布台の上に基材フィルムを置き、適当な道具で固定し、フィルム上に均一に原料液を塗布する。この場合、基材フィルム1枚ごとに原料液が塗布され、原料液が塗布された基材フィルムは直ちに後述の工程3を行う容器に移される。 When the base film is a small piece, place the base film on a smooth coating table, fix it with an appropriate tool, and apply the raw material solution uniformly on the film. In this case, the raw material liquid is applied to each base film, and the base film coated with the raw material liquid is immediately transferred to the container for which step 3 described later is performed.

基材フィルムが長尺で、典型的には、ロール状に巻き取られた形態をとる場合には、巻き取られた基材フィルムを端部から引き出して展開し、展開された基材フィルムをロールなどの搬送機構によって一定張力あるいは一定速度の下、工程2を行う場所に搬入する。塗布部は平坦に維持され、塗布部を連続的に通過する基材フィルムの表面に各種塗布装置によって原料液を均一に塗布する。塗布部から搬出された、原料液が塗布された基材フィルムは、直ちに後述の工程3を行う場所に搬送される。 When the base film is long and typically takes the form of being wound into a roll, the wound base film is pulled out from the end and unfolded, and the unfolded base film is obtained. It is carried into a place where step 2 is performed under a constant tension or a constant speed by a transport mechanism such as a roll. The coated portion is maintained flat, and the raw material liquid is uniformly coated on the surface of the base film that continuously passes through the coated portion by various coating devices. The base film coated with the raw material liquid, which is carried out from the coating portion, is immediately transported to a place where step 3 described later is performed.

(工程3)
工程3は、工程2で得られたフィルムを水に浸漬して原料液を固化する工程である。この固化反応は、工程2で得られたフィルム上の原料液が水に接することによって開始し、原料液中の水溶性の成分、すなわち、主に溶媒と多孔化剤からなる画分が水に移行することによって水不溶性のPVDF系樹脂が基材フィルム上に残留、固定することによって、完了する。上述の通り、原料液全量に対して一般的には6.5重量%以下、好ましくは2重量%以上6.5重量%以下、より好ましくは3重量%以上5重量%以下の範囲で原料液中に存在する水も、当然にフィルムの外に溶出する。溶媒と多孔化剤の水中移行に伴って、PVDF系樹脂は内部に空隙を形成しながら固化する。この工程3は、PVDF系微多孔膜の形成において、多孔化工程あるいは相転移工程と呼ぶこともできる。工程3で用いる水は、純度の高いものが好ましく、一般に純水あるいは超純水として入手できる水が望ましい。
(Step 3)
Step 3 is a step of immersing the film obtained in Step 2 in water to solidify the raw material liquid. This solidification reaction starts when the raw material liquid on the film obtained in step 2 comes into contact with water, and the water-soluble component in the raw material liquid, that is, the fraction mainly composed of the solvent and the porosifying agent becomes water. The transition completes the process by leaving and fixing the water-insoluble PVDF resin on the base film. As described above, the raw material liquid is generally 6.5% by weight or less, preferably 2% by weight or more and 6.5% by weight or less, and more preferably 3% by weight or more and 5% by weight or less with respect to the total amount of the raw material liquid. The water present inside also naturally elutes out of the film. With the transfer of the solvent and the porosifying agent into water, the PVDF-based resin solidifies while forming voids inside. This step 3 can also be called a porosity step or a phase transition step in the formation of the PVDF-based microporous membrane. The water used in step 3 is preferably of high purity, and generally water that can be obtained as pure water or ultrapure water is desirable.

このような工程3では、当然に、工程2で得られたフィルムと水とを接触させるために水が入った容器が必要であるが、本発明ではこのような水が入った容器を固化槽と呼ぶ。固化槽の中で固化が進行するに伴い、固化槽内の水には原料液から水溶性の成分、すなわち、主に先述の溶媒と多孔化剤からなる画分が移行する。このような水溶性の移行成分の濃度が高くなる、あるいは、急激に変動することは、工程3の固化反応を安定的に進行させて、再現性よく工程3を繰り返す上では支障となり得る。したがって、固化槽の規模あるいは固化槽内の水量に応じて、固化槽内の水の純度を維持する適当な手段を設けることが望ましい。 In such a step 3, naturally, a container containing water is required to bring the film obtained in the step 2 into contact with water, but in the present invention, such a container containing water is used as a solidification tank. Called. As the solidification progresses in the solidification tank, water-soluble components, that is, fractions mainly composed of the above-mentioned solvent and porosifying agent, are transferred from the raw material liquid to the water in the solidification tank. Such an increase in the concentration of the water-soluble transition component or a rapid fluctuation may hinder the stable progress of the solidification reaction in step 3 and the repetition of step 3 with good reproducibility. Therefore, it is desirable to provide an appropriate means for maintaining the purity of the water in the solidification tank according to the scale of the solidification tank or the amount of water in the solidification tank.

上述の基材フィルム上に10μm以上500μm以下の厚みのPVDF系微多孔膜を形成する場合には、原料液が塗布された基材フィルムの水への浸漬する時間(固化時間)は30秒以上、好ましくは1分以上10分以下、より好ましくは2分以上5分以下である。PVDF系樹脂内部にできるだけ均一な孔を生成するためには、水に浸漬する間、工程2で得られたフィルムの表面に及ぶ物理的刺激をできるだけ抑えることが望ましい。したがって、工程3は、固化槽内の水を撹拌する、あるいは泡立たせることは、好ましくない。工程3を行う時の水温は上記固化が進行する温度であればよく、一般的には室温である。 When a PVDF-based microporous film having a thickness of 10 μm or more and 500 μm or less is formed on the above-mentioned base film, the time (solidification time) for immersing the base film coated with the raw material liquid in water is 30 seconds or more. It is preferably 1 minute or more and 10 minutes or less, and more preferably 2 minutes or more and 5 minutes or less. In order to generate as uniform pores as possible inside the PVDF resin, it is desirable to suppress the physical irritation on the surface of the film obtained in step 2 as much as possible during immersion in water. Therefore, in step 3, it is not preferable to stir or foam the water in the solidification tank. The water temperature at the time of performing the step 3 may be any temperature at which the solidification proceeds, and is generally room temperature.

工程2で得られたフィルムが小片の場合には、工程3をバッチ式に行うことができる。具体的には、工程2で得られたフィルムを上記固化時間のあいだ、上記フィルムの全体が固化槽内の水に触れた状態で静置する。この場合に用いる固化槽は、上記フィルムの形状に応じて適宜選択すればよく、実験室レベルであればステンレス製バットやガラス製の平鉢が用いられる。原料液から移行する成分によって固化槽内の水の純度が大きく変動しないように固化操作のバッチごとに水を入れ替えれば、毎回の工程3で再現性よく固化することができる。 When the film obtained in step 2 is a small piece, step 3 can be performed in a batch manner. Specifically, the film obtained in step 2 is allowed to stand in a state where the entire film is in contact with water in the solidification tank during the solidification time. The solidifying tank used in this case may be appropriately selected according to the shape of the film, and at the laboratory level, a stainless steel vat or a flat glass bowl is used. If the water is replaced for each batch of the solidification operation so that the purity of the water in the solidification tank does not fluctuate significantly depending on the components transferred from the raw material liquid, solidification can be performed with good reproducibility in each step 3.

工程2で原料液を長尺の基材フィルムに塗布した場合、工程3では、ロールなどの搬送手段を用いて、まず工程2で得られたフィルムを固化槽に連続的に搬入し、次に上記固化時間のあいだ、上記フィルムが水に接触するようにこれを固化槽内の水中を通過させた後、これを固化槽から排出する。こうして工程2で得られた長尺のフィルムに塗布された原料液の固化が開始、進行、完了する。固化槽内の水の純度が大きく変動しないように固化水槽に適当な排水、給水機構を付けることができる。このような機構としては、化学プラントで通常用いられるセンサー、排水ポンプ、給水ポンプなどを適宜組み合わせたものを用いることができる。 When the raw material liquid is applied to a long base film in step 2, in step 3, the film obtained in step 2 is first continuously carried into a solidification tank using a transport means such as a roll, and then. During the solidification time, the film is passed through the water in the solidification tank so that the film comes into contact with water, and then the film is discharged from the solidification tank. In this way, solidification of the raw material liquid applied to the long film obtained in step 2 starts, progresses, and is completed. Appropriate drainage and water supply mechanisms can be attached to the solidification tank so that the purity of the water in the solidification tank does not fluctuate significantly. As such a mechanism, a sensor, a drainage pump, a water supply pump, or the like usually used in a chemical plant can be appropriately combined.

工程3で表面の原料液の固化が完了したフィルムは直ちに後述の工程4を行う場所に移される。 The film on which the surface raw material liquid has been solidified in step 3 is immediately transferred to a place where step 4 described later is performed.

(工程4)
工程4は、工程3を経たフィルムを水中で洗浄する工程である。ここで用いる水は、工程3と同様に純度の高いものが好ましく、一般に純水あるいは超純水として入手できる水が望ましい。
(Step 4)
Step 4 is a step of washing the film that has undergone step 3 in water. The water used here is preferably of high purity as in step 3, and generally water that can be obtained as pure water or ultrapure water is desirable.

このような工程4では、当然に、工程3を経たフィルムを導入するための水が満たされた容器が必要であるが、本発明ではこのような容器を洗浄槽と呼ぶ。洗浄効果を高めるために、本発明では複数の洗浄槽を用いる、あるいは、洗浄槽の水を入れ替えるなどして、複数回フィルムを洗浄することもできる。また本発明では洗浄槽に水流や気泡を発生させる装置を付属させて、適度な刺激を与えながらフィルムを洗浄することもできる。この場合の水流発生手段は公知の排水、給水機構や撹拌機構を適宜組み合わせて設計することができる。またこの場合の気泡発生装置は、洗浄槽の規模に応じて、一般に散気管と呼ばれる手段などから適宜選択される。上記水流や気泡の強度は、洗浄されるフィルム表面のPVDF系樹脂孔を変形させない程度の強度に調節される。水流の流路や気泡の密度は、洗浄槽内にあるフィルムに水流や気泡が均一に連続して接触するように調節される。工程4でも、洗浄効率を高めるために、洗浄槽の水の純度を維持する適当な手段を儲けることができる。 In such a step 4, naturally, a container filled with water for introducing the film that has undergone the step 3 is required, but in the present invention, such a container is called a washing tank. In order to enhance the cleaning effect, in the present invention, the film can be washed a plurality of times by using a plurality of washing tanks or by replacing the water in the washing tanks. Further, in the present invention, it is possible to attach a device for generating a water stream or air bubbles to the washing tank to wash the film while giving an appropriate stimulus. In this case, the water flow generating means can be designed by appropriately combining known drainage, water supply mechanism and stirring mechanism. Further, the bubble generator in this case is appropriately selected from means generally called an air diffuser or the like according to the scale of the washing tank. The strength of the water flow and bubbles is adjusted to such a strength that the PVDF resin pores on the surface of the film to be washed are not deformed. The flow path of the water flow and the density of the bubbles are adjusted so that the water flow and the bubbles come into uniform and continuous contact with the film in the washing tank. Also in step 4, in order to improve the cleaning efficiency, it is possible to make an appropriate means for maintaining the purity of the water in the cleaning tank.

工程4において、洗浄槽内の水の温度はフィルムに損傷を与えずに洗浄できる温度であればよく、一般的には室温である。 In step 4, the temperature of the water in the washing tank may be any temperature as long as it can be washed without damaging the film, and is generally room temperature.

工程4で小片のフィルムを処理する場合には、工程4をバッチ式で行うことができる。具体的には、工程3で得られたフィルムを上記洗浄時間のあいだ、上記フィルムの全体が洗浄槽内の水と気泡に触れた状態で静置する(気泡洗浄)。この場合に用いる洗浄槽は、上記フィルムの形状に応じて適宜選択すればよく、実験室レベルであればステンレス製バットやガラス製の平鉢が用いられる。フィルム表面から移行する成分によって洗浄槽内の水の純度が大きく変動しないように、洗浄のバッチごとに水を入れ替えれば、毎回の工程4で再現性よくフィルムを洗浄することができる。 When processing a small piece of film in step 4, step 4 can be performed in a batch manner. Specifically, the film obtained in step 3 is allowed to stand in contact with water and bubbles in the washing tank during the washing time (bubble washing). The washing tank used in this case may be appropriately selected according to the shape of the film, and at the laboratory level, a stainless steel vat or a glass flat bowl is used. If the water is replaced for each washing batch so that the purity of the water in the washing tank does not fluctuate significantly depending on the components transferred from the film surface, the film can be washed with good reproducibility in each step 4.

工程4で長尺のフィルムを処理する場合には、工程4では、ロールなどの搬送手段を用いて、まず工程3の固化槽から排出されたフィルムを洗浄槽に連続的に搬入し、次に上記洗浄時間のあいだ、上記フィルムが水と気泡に接触するようにこれを洗浄槽内の水中を通過させた後、これを洗浄槽から排出する(気泡洗浄)。こうして、工程3の過程で長尺のフィルムに残留していた水溶性の成分が効率よく除去される。洗浄槽内の水の純度が大きく変動しないように洗浄槽に適当な給排水機構を付けることができる。このような機構としては、化学プラントで通常用いられるセンサー、排水ポンプ、給水ポンプなどを適宜組み合わせたものを用いることができる。 When processing a long film in step 4, in step 4, the film discharged from the solidifying tank in step 3 is first continuously carried into the washing tank using a transport means such as a roll, and then. During the washing time, the film is passed through the water in the washing tank so that the film comes into contact with water and bubbles, and then the film is discharged from the washing tank (bubble washing). In this way, the water-soluble components remaining on the long film in the process of step 3 are efficiently removed. An appropriate water supply / drainage mechanism can be attached to the washing tank so that the purity of the water in the washing tank does not fluctuate significantly. As such a mechanism, a sensor, a drainage pump, a water supply pump, or the like usually used in a chemical plant can be appropriately combined.

工程4を終了したフィルムは、定法に従い、かつ、必要に応じて、乾燥、巻き取り、裁断、梱包される。こうして、濾過膜や分離膜として利用可能なPVDF系微多孔膜が完成する。 The film that has completed step 4 is dried, wound, cut, and packed according to a conventional method and, if necessary. In this way, a PVDF-based microporous membrane that can be used as a filtration membrane or a separation membrane is completed.

[PVDF系微多孔膜の製造例2]
上記製造例1の工程4の代わりに、(工程4−1)工程3を経たフィルムを水中で気泡洗浄する工程、(工程4−2)工程4−1を経たフィルムをアルコール中で気泡洗浄する工程をこの順に行ってもよい。
[Production Example 2 of PVDF Microporous Membrane]
Instead of the step 4 of the above-mentioned production example 1, the step of cleaning the film through the step (step 4-1) step 3 in water and the step of cleaning the film through the step (step 4-2) step 4-1 in alcohol. The steps may be performed in this order.

(工程4−1)
工程4−1は、工程3を経たフィルムを水中で気泡洗浄する工程である。工程4−1では基材フィルム上に残留する原料液中の水溶性成分、すなわち、主に溶媒と多孔化剤からなる画分を、水中で気泡刺激を加えて効率的に基材フィルムから除去する。ここで用いる水は、工程3と同様に純度の高いものが好ましく、一般に純水あるいは超純水として入手できる水が望ましい。
(Step 4-1)
Step 4-1 is a step of cleaning the film that has undergone step 3 with air bubbles in water. In step 4-1 the water-soluble component in the raw material liquid remaining on the base film, that is, the fraction mainly composed of the solvent and the porosifying agent, is efficiently removed from the base film by applying bubble stimulation in water. To do. The water used here is preferably of high purity as in step 3, and generally water that can be obtained as pure water or ultrapure water is desirable.

このような工程4−1では、当然に、工程3を経たフィルムを導入する気泡発生装置を備え水が満たされた容器が必要であるが、本発明ではこのような容器を第一洗浄槽と呼ぶ。第一洗浄槽に付属させる気泡発生装置は、第一洗浄槽の規模に応じて、一般に散気管と呼ばれる手段などから適宜選択される。気泡の強度は、洗浄されるフィルム表面のPVDF系樹脂孔を変形させない程度の強度に調節される。気泡の密度は、第一洗浄槽内にあるフィルムに気泡が均一に連続して接触するように調節される。工程4−1でも、洗浄効率を高めるために、第一洗浄槽の水の純度を維持する適当な手段を儲けることができる。 In such a step 4-1 naturally, a container provided with a bubble generator for introducing the film that has undergone the step 3 and filled with water is required, but in the present invention, such a container is referred to as a first washing tank. Call. The bubble generator attached to the first cleaning tank is appropriately selected from means generally called an air diffuser or the like according to the scale of the first cleaning tank. The strength of the bubbles is adjusted to such a strength that the PVDF resin pores on the surface of the film to be washed are not deformed. The density of the bubbles is adjusted so that the bubbles are in uniform and continuous contact with the film in the first washing tank. In step 4-1 as well, in order to improve the cleaning efficiency, it is possible to make a suitable means for maintaining the purity of the water in the first cleaning tank.

工程4−1において、第一洗浄槽内の水の温度はフィルムに損傷を与えずに洗浄できる温度であればよく、一般的には室温である。工程4−1の気泡洗浄に要する時間、すなわち、工程3を経たフィルムが第一洗浄槽内の水に接触する時間は、通常1分以上、好ましくは2分以上20分以下、さらに好ましくは4分以上10分以下である。 In step 4-1 the temperature of the water in the first washing tank may be any temperature as long as it can be washed without damaging the film, and is generally room temperature. The time required for bubble cleaning in step 4-1, that is, the time for the film that has undergone step 3 to come into contact with water in the first cleaning tank is usually 1 minute or more, preferably 2 minutes or more and 20 minutes or less, and more preferably 4 Minutes or more and 10 minutes or less.

工程4−1で小片のフィルムを処理する場合には、工程4−1をバッチ式に行うことができる。具体的には、工程3で得られたフィルムを上記洗浄時間のあいだ、上記フィルムの全体が第一洗浄槽内の水と気泡に触れた状態で静置する。この場合に用いる第一洗浄槽は、上記フィルムの形状に応じて適宜選択すればよく、実験室レベルであればステンレス製バットやガラス製の平鉢が用いられる。フィルム表面から移行する成分によって第一洗浄槽内の水の純度が大きく変動しないように、洗浄のバッチごとに水を入れ替えれば、毎回の工程4−1で再現性よくフィルムを洗浄することができる。 When processing a small piece of film in step 4-1 the process 4-1 can be performed in a batch manner. Specifically, the film obtained in step 3 is allowed to stand in a state where the entire film is in contact with water and air bubbles in the first cleaning tank during the cleaning time. The first washing tank used in this case may be appropriately selected according to the shape of the film, and at the laboratory level, a stainless steel vat or a flat glass bowl is used. If the water is replaced for each washing batch so that the purity of the water in the first washing tank does not fluctuate significantly depending on the components transferred from the film surface, the film can be washed with good reproducibility in each step 4-1. ..

工程4−1で長尺のフィルムを処理する場合には、工程4−1では、ロールなどの搬送手段を用いて、まず工程3の固化槽から排出されたフィルムを第一洗浄槽に連続的に搬入し、次に上記洗浄時間のあいだ、上記フィルムが水と気泡に接触するようにこれを第一洗浄槽内の水中を通過させた後、これを第一洗浄槽から排出する。こうして、工程3の過程で長尺のフィルムに残留していた水溶性の成分が効率よく除去される。第一洗浄槽内の水の純度が大きく変動しないように第一洗浄槽に適当な給排水機構を付けることができる。このような機構としては、化学プラントで通常用いられるセンサー、排水ポンプ、給水ポンプなどを適宜組み合わせたものを用いることができる。 When processing a long film in step 4-1 in step 4-1, first, the film discharged from the solidifying tank in step 3 is continuously transferred to the first washing tank by using a transport means such as a roll. Then, during the cleaning time, the film is passed through the water in the first cleaning tank so that the film comes into contact with water and bubbles, and then the film is discharged from the first cleaning tank. In this way, the water-soluble components remaining on the long film in the process of step 3 are efficiently removed. An appropriate water supply / drainage mechanism can be attached to the first washing tank so that the purity of the water in the first washing tank does not fluctuate significantly. As such a mechanism, a sensor, a drainage pump, a water supply pump, or the like usually used in a chemical plant can be appropriately combined.

工程4−1で所定時間の洗浄を終えたフィルムは、直ちに後述の工程4−2を行う場所に移される。 The film that has been washed for a predetermined time in step 4-1 is immediately transferred to a place where step 4-2 described later is performed.

(工程4−2)
工程4−2は、工程4−1を経たフィルムをアルコール中で気泡洗浄する工程である。工程4−2では基材フィルム上に残留する原料液中のアルコール溶解性成分、すなわち、主に溶媒と多孔化剤からなる画分を、アルコール中で気泡刺激を加えて効率的に基材フィルムから除去する。ここで用いるアルコールとしては、一般的には室温で流動性が比較的高い液状の低級アルコール、好ましくはエタノール、プロパノール類、ブタノール類、最も好ましくはイソプロパノールが用いられる。
(Step 4-2)
Step 4-2 is a step of cleaning the film that has undergone step 4-1 with bubbles in alcohol. In step 4-2, the alcohol-soluble component in the raw material solution remaining on the base film, that is, the fraction mainly composed of the solvent and the porosifying agent, is efficiently stimulated with air bubbles in the base film. Remove from. As the alcohol used here, generally, a liquid lower alcohol having relatively high fluidity at room temperature, preferably ethanol, propanols, butanols, and most preferably isopropanol are used.

このような工程4−2では、当然に、工程4−1を経たフィルムを導入する気泡発生装置を備え上記アルコールが満たされた容器が必要であるが、本発明ではこのような容器を第二洗浄槽と呼ぶ。第二洗浄槽に付属させる気泡発生装置は、第二洗浄槽の規模に応じて、一般に散気管と呼ばれる手段などから適宜選択される。気泡の強度は、洗浄されるフィルム表面のPVDF系樹脂孔を変形させない程度の強度に調節される。気泡の密度は、第二洗浄槽内にあるフィルムに気泡が均一に連続して接触するように調節される。工程4−2でも、洗浄効率を高めるために、第二洗浄槽のアルコールの純度を維持する適当な手段を儲けることができる。 In such a step 4-2, of course, a container provided with a bubble generator for introducing the film that has undergone the step 4-1 and filled with the above alcohol is required, but in the present invention, such a container is used as a second container. It is called a washing tank. The bubble generator attached to the second cleaning tank is appropriately selected from means generally called an air diffuser or the like according to the scale of the second cleaning tank. The strength of the bubbles is adjusted to such a strength that the PVDF resin pores on the surface of the film to be washed are not deformed. The density of the bubbles is adjusted so that the bubbles are in uniform and continuous contact with the film in the second washing tank. In step 4-2 as well, in order to improve the cleaning efficiency, it is possible to make a suitable means for maintaining the purity of alcohol in the second cleaning tank.

工程4−2において、第二洗浄槽内のアルコールの温度はフィルムに損傷を与えずに洗浄できる温度であればよく、一般的には室温である。工程4−2の気泡洗浄に要する時間、すなわち、工程3を経たフィルムが第二洗浄槽内のアルコールに接触する時間は、通常1分以上、好ましくは5分以上120分以下、さらに好ましくは5分以上60分以下である。 In step 4-2, the temperature of the alcohol in the second washing tank may be a temperature that can be washed without damaging the film, and is generally room temperature. The time required for bubble cleaning in step 4-2, that is, the time for the film that has undergone step 3 to come into contact with alcohol in the second cleaning tank is usually 1 minute or more, preferably 5 minutes or more and 120 minutes or less, and more preferably 5. Minutes or more and 60 minutes or less.

工程4−2で小片のフィルムを処理する場合には、工程4−2をバッチ式に行うことができる。具体的には、工程4−1で得られたフィルムを上記洗浄時間のあいだ、上記フィルムの全体が第二洗浄槽内のアルコールと気泡に触れた状態で静置する。この場合に用いる第二洗浄槽は、上記フィルムの形状に応じて適宜選択すればよく、実験室レベルであればステンレス製バットやガラス製の平鉢が用いられる。フィルム表面から移行する成分によって第二洗浄槽内のアルコールの純度が大きく変動しないように、洗浄のバッチごとにアルコールを入れ替えれば、毎回の工程4−2で再現性よくフィルムを洗浄することができる。 When processing a small piece of film in step 4-2, step 4-2 can be performed in a batch manner. Specifically, the film obtained in step 4-1 is allowed to stand in a state where the entire film is in contact with alcohol and air bubbles in the second washing tank during the washing time. The second washing tank used in this case may be appropriately selected according to the shape of the film, and at the laboratory level, a stainless steel vat or a flat glass bowl is used. If the alcohol is replaced for each washing batch so that the purity of the alcohol in the second washing tank does not fluctuate significantly depending on the components transferred from the film surface, the film can be washed with good reproducibility in each step 4-2. ..

工程4−2で長尺のフィルムを処理する場合には、工程4−2では、ロールなどの搬送手段を用いて、まず工程4−1の第一洗浄槽から排出されたフィルムを第二洗浄槽に連続的に搬入し、次に上記洗浄時間のあいだ、上記フィルムがアルコールと気泡に接触するようにこれを第二洗浄槽内のアルコール中を通過させた後、これを第二洗浄槽から排出する。こうして、工程4−1の終了時に長尺のフィルムに残留していたアルコール溶解性の成分が効率よく除去される。第二洗浄槽内のアルコールの純度が大きく変動しないように第二洗浄槽に適当な給排液機構を付けることができる。このような機構としては、化学プラントで通常用いられるセンサー、排水ポンプ、給水ポンプなどを適宜組み合わせたものを用いることができる。 When processing a long film in step 4-2, in step 4-2, first, the film discharged from the first washing tank in step 4-1 is second-washed by using a conveying means such as a roll. It is continuously carried into the tank, and then, during the washing time, the film is passed through the alcohol in the second washing tank so that the film comes into contact with the alcohol and bubbles, and then this is passed from the second washing tank. Discharge. In this way, the alcohol-soluble component remaining on the long film at the end of step 4-1 is efficiently removed. An appropriate water supply / drainage mechanism can be attached to the second washing tank so that the purity of alcohol in the second washing tank does not fluctuate significantly. As such a mechanism, a sensor, a drainage pump, a water supply pump, or the like usually used in a chemical plant can be appropriately combined.

工程4−2を終了したフィルムは、定法に従い、かつ、必要に応じて、乾燥、巻き取り、裁断、梱包される。 The film that has completed step 4-2 is dried, wound, cut, and packed according to a conventional method and, if necessary.

[PVDF系微多孔膜の親水化]
本発明の親水化PVDF系微多孔膜は以下の工程5〜7を順に行って製造される。
(工程5)上記PVDF系微多孔膜の表面に上記コーティング組成物を密着させる工程である。PVDF系微多孔膜をバッチ式あるいは連続式で上記コーティング組成物に接触もしくは浸漬し、PVDF系微多孔膜の表面に均一に上記コーティング組成物を付着させる。
[Hydrophilicization of PVDF-based microporous membrane]
The hydrophilized PVDF-based microporous membrane of the present invention is produced by sequentially performing the following steps 5 to 7.
(Step 5) This is a step of bringing the coating composition into close contact with the surface of the PVDF-based microporous membrane. The PVDF-based microporous membrane is contacted or immersed in the coating composition in a batch or continuous manner, and the coating composition is uniformly adhered to the surface of the PVDF-based microporous membrane.

バッチ式では、上記PVDF系微多孔膜を上記コーティング組成物に含浸させた後、支持物で保持する。具体的には、透明な蓋を有する密閉容器内で平板状の支持物の上(上記蓋の側)に上記コーティング組成物を含浸させた上記PVDF系微多孔膜を重ね、次に積層物が静置した状態で上記密閉容器内を窒素置換する。 In the batch method, the PVDF-based microporous membrane is impregnated with the coating composition and then held by a support. Specifically, the PVDF-based microporous membrane impregnated with the coating composition is overlaid on a flat support (on the side of the lid) in a closed container having a transparent lid, and then the laminate is formed. The inside of the closed container is replaced with nitrogen in a stationary state.

連続式では上記PVDF系微多孔膜の長尺物を順次上記コーティング組成物に接触させる。具体的には、一連のロールなどからなる搬送機構によって、上記PVDF系微多孔膜を上記コーティング組成物が封入された容器に搬入し、上記PVDF系微多孔膜が上記コーティング組成物に浸漬した状態で上記PVDF系微多孔膜を一定時間移動させ、その後に上記PVDF系微多孔膜を上記容器外に搬出する。 In the continuous method, the long PVDF-based microporous membrane is sequentially brought into contact with the coating composition. Specifically, a state in which the PVDF-based microporous membrane is carried into a container in which the coating composition is sealed by a transport mechanism including a series of rolls, and the PVDF-based microporous membrane is immersed in the coating composition. The PVDF microporous membrane is moved for a certain period of time, and then the PVDF microporous membrane is carried out of the container.

(工程6)上記PVDF系微多孔膜の表面で上記コーティング組成物に光照射し、上記PVDF系微多孔膜の表面に上記重合性モノマーに由来する単位からなる架橋ポリマーの層を形成する工程である。工程6も工程5と同様にバッチ式あるいは連続式で行うことができる。 (Step 6) In a step of irradiating the coating composition with light on the surface of the PVDF-based microporous membrane to form a layer of a crosslinked polymer composed of units derived from the polymerizable monomer on the surface of the PVDF-based microporous membrane. is there. Step 6 can also be performed in batch or continuous manner as in step 5.

バッチ式では、支持物上の上記PVDF系微多孔膜に紫外線を照射する。具体的には密閉容器が窒素で充填された状態で容器外から透明な蓋を通して上記PVDF系微多孔膜の面に紫外線を照射し、上記重合性モノマーの重合架橋反応を完了する。 In the batch method, the PVDF-based microporous membrane on the support is irradiated with ultraviolet rays. Specifically, in a state where the closed container is filled with nitrogen, the surface of the PVDF-based microporous film is irradiated with ultraviolet rays from the outside of the container through a transparent lid to complete the polymerization cross-linking reaction of the polymerizable monomer.

連続式では、上記コーティング組成物が密着した上記PVDF系微多孔膜の長尺物に紫外線照射する。具体的には、コーティング組成物の容器から搬出された上記PVDF系微多孔膜を、紫外線照射区域に搬入し、この区域内で一定時間移動する。紫外線照射区域から上記PVDF系微多孔膜が搬出されるまでに、上記PVDF系微多孔膜表面で上記重合性モノマーの重合架橋反応が完了する。 In the continuous method, the long object of the PVDF-based microporous membrane to which the coating composition is in close contact is irradiated with ultraviolet rays. Specifically, the PVDF-based microporous membrane carried out from the container of the coating composition is carried into an ultraviolet irradiation area and moved in this area for a certain period of time. By the time the PVDF microporous membrane is carried out from the ultraviolet irradiation area, the polymerization cross-linking reaction of the polymerizable monomer is completed on the surface of the PVDF microporous membrane.

(工程7)上記工程6を経たPVDF系微多孔膜の表面を乾燥・洗浄して余分な成分を除去する工程である。工程7も工程5、工程6と同様にバッチ式あるいは連続式で行うことができる。 (Step 7) This is a step of drying and cleaning the surface of the PVDF-based microporous membrane that has undergone the above step 6 to remove excess components. The step 7 can also be performed in a batch system or a continuous system in the same manner as in the steps 5 and 6.

こうして架橋ポリマー層とPVDF系微多孔膜とからなる親水化されたPVDF系微多孔膜(本発明のPVDF系微多孔膜)が得られる。このPVDF系微多孔膜を、定法に従い、かつ、必要に応じて、乾燥、巻き取り、裁断、梱包する。 In this way, a hydrophilized PVDF-based microporous membrane composed of a crosslinked polymer layer and a PVDF-based microporous membrane (PVDF-based microporous membrane of the present invention) can be obtained. This PVDF-based microporous membrane is dried, wound, cut, and packed according to a conventional method and as necessary.

[参考例:PVDF系微多孔膜の製造]
以下の工程を経てPVDF系微多孔膜を製造した。
(工程1)PVDF系樹脂としてのアルケマ製商品「Kyner HSV900」、溶媒としてのジメチルアセトアミド、多孔化剤としての重量平均分子量400のポリエチレングリコール、超純水の比率を表1に示す量比(原料液全量に対する重量%)で均一に混合して原料液を製造した。
[Reference example: Production of PVDF-based microporous membrane]
A PVDF-based microporous membrane was produced through the following steps.
(Step 1) The ratios of Alchema product "Kyner HSV900" as a PVDF resin, dimethylacetamide as a solvent, polyethylene glycol having a weight average molecular weight of 400 as a porosifying agent, and ultrapure water are shown in Table 1 (raw materials). The raw material liquid was produced by uniformly mixing with (% by weight based on the total amount of the liquid).

Figure 2019168117
Figure 2019168117

(工程2)基材フィルムとして、20cm×20cmの正方形に切断したスパンボンド不織布(旭化成製「エルタスP03050」)を使用した。平らなガラス板上にこの基材フィルムを置き、ベーカーアプリケーターを用いて基材フィルム表面に上記原料液を250μm厚になるように塗布した。 (Step 2) As the base film, a spunbonded non-woven fabric (“Eltus P03050” manufactured by Asahi Kasei Corporation) cut into a square of 20 cm × 20 cm was used. This base film was placed on a flat glass plate, and the raw material liquid was applied to the surface of the base film using a baker applicator so as to have a thickness of 250 μm.

(工程3)固化槽として、超純水2リットルが入ったステンレス製バットを用いた。この固化槽に、水面が波立たないように工程2で得られたフィルムを入れ、フィルム全体が水に浸かった状態でフィルム固化槽内に2分間静置して基材フィルムに付着した原料液の固化を進行、完了した。 (Step 3) As a solidification tank, a stainless steel vat containing 2 liters of ultrapure water was used. The film obtained in step 2 was placed in this solidification tank so that the water surface did not undulate, and the raw material liquid adhered to the base film was allowed to stand in the film solidification tank for 2 minutes while the entire film was immersed in water. The solidification of the film progressed and was completed.

(工程4−1)セラミックエアストーン製散気管を挿入したビーカーに2.5リットルの超純水を入れ、外部のタンクから上記散気管に乾燥空気を供給し、超純水中に均一に乾燥空気の泡を噴出させた。これを第一洗浄槽に用いた。この第一洗浄槽に工程3を経たフィルムを入れた。フィルム全面が均一に水と気泡が接触する状態でフィルムを6分間洗浄した。 (Step 4-1) 2.5 liters of ultrapure water is put into a beaker into which a ceramic air stone air diffuser is inserted, dry air is supplied from an external tank to the air diffuser, and the water is uniformly dried in the ultrapure water. A bubble of air was ejected. This was used for the first washing tank. The film that had undergone step 3 was placed in this first washing tank. The film was washed for 6 minutes with the entire surface of the film in uniform contact with water and air bubbles.

(工程4−2)セラミックエアストーン製散気管を挿入したビーカーに2.5リットルのイソプロパノールを入れ、外部のタンクから上記散気管に乾燥空気を供給し、イソプロパノール中に均一に乾燥空気の泡を噴出させた。これを第二洗浄槽に用いた。この第二洗浄槽に工程4-1を経たフィルムを入れて、フィルム全面が均一にイソプロパノールと気泡が接触する状態でフィルムを洗浄した。この後フィルムを自然乾燥した。 (Step 4-2) Put 2.5 liters of isopropanol in a beaker into which a ceramic air stone air diffuser is inserted, supply dry air to the air diffuser from an external tank, and uniformly create bubbles of dry air in the isopropanol. It spouted. This was used for the second washing tank. The film that had undergone step 4-1 was placed in this second washing tank, and the film was washed with isopropanol and bubbles in uniform contact with the entire surface of the film. After this, the film was air-dried.

こうして得られたPVDF系微多孔膜の細孔径を気体透過法によって測定した。測定機器として西華デジタルイメージ株式会社が供給するPMI製パームポロメーターを使用した。表1に、得られたPVDF系微多孔膜の細孔径の最頻値(モード):Lm(μm)と、Lm±15%内の細孔径を有する細孔数割合(%)を示す。図6は表1に示すPVDF系微多孔膜2の細孔径分布を示す。 The pore diameter of the PVDF-based microporous membrane thus obtained was measured by a gas permeation method. A PMI palm polo meter supplied by Seihwa Digital Image Co., Ltd. was used as the measuring device. Table 1 shows the mode of the pore diameter of the obtained PVDF-based microporous membrane: Lm (μm) and the percentage of pores having a lumen diameter within Lm ± 15% (%). FIG. 6 shows the pore size distribution of the PVDF-based microporous membrane 2 shown in Table 1.

[コーティング組成物の製造]
先述の式(2)で表される3官能アクリレート化合物として新中村化学工業社製「NKエステル(登録商標)A-GLY-9E」を用いた。光重合開始剤としてIRGACURE2959を用いた。対照用コーティング組成物のためのモノマーとしてN-イソプロピルアクリルアミド、N,N’-メチレンビスアクリルアミドを用いた。表2に示す材料を混合し、コーティング組成物を製造した。表2に示すコーティング組成物B、C、Dは本発明品であり、コーティング組成物A、E、F、Gは対照品である。
[Manufacturing of coating composition]
As the trifunctional acrylate compound represented by the above formula (2), "NK ester (registered trademark) A-GLY-9E" manufactured by Shin-Nakamura Chemical Industry Co., Ltd. was used. IRGACURE2959 was used as the photopolymerization initiator. N-Isopropylacrylamide and N, N'-methylenebisacrylamide were used as the monomers for the control coating composition. The materials shown in Table 2 were mixed to prepare a coating composition. The coating compositions B, C, and D shown in Table 2 are products of the present invention, and the coating compositions A, E, F, and G are control products.

Figure 2019168117
Figure 2019168117

[PVDF系微多孔膜の製造(PVDF系微多孔膜の親水化)]
コーティング組成物とPVDF系微多孔膜とを表3に示す組み合わせで選択した。以下の方法によりPVDF系微多孔膜の表面を架橋ポリマー層で被覆した。
(工程5)上記工程4−2を終えたPVDF系微多孔膜を上記コーティング組成物に浸漬した。石英ガラス製蓋つき窒素ガス置換用ボックスのステンレスメッシュ底面に、不織布支持体、コーティング組成物が含浸されたPVDF系微多孔膜をこの順に積載した。窒素ガスをボックスに2分間循環しボックス内部に窒素ガスを充填した。充填後はボックスを密閉状態に維持した。
[Manufacture of PVDF-based microporous membrane (hydrophilization of PVDF-based microporous membrane)]
The coating composition and the PVDF-based microporous membrane were selected in the combinations shown in Table 3. The surface of the PVDF-based microporous membrane was coated with a crosslinked polymer layer by the following method.
(Step 5) The PVDF-based microporous membrane completed in Step 4-2 was immersed in the coating composition. A PVDF-based microporous film impregnated with a non-woven fabric support and a coating composition was loaded on the bottom surface of the stainless mesh of a nitrogen gas replacement box with a quartz glass lid in this order. Nitrogen gas was circulated in the box for 2 minutes, and the inside of the box was filled with nitrogen gas. The box was kept sealed after filling.

(工程6)ボックス外部の光源(Light Hammer10(製品名))からボックスの蓋を通して紫外線を照射し、コーティング組成物を硬化した。 (Step 6) The coating composition was cured by irradiating ultraviolet rays from a light source (Light Hammer 10 (product name)) outside the box through the lid of the box.

(工程7)ボックスからPVDF系微多孔膜を取り出し洗浄、乾燥した。 (Step 7) The PVDF-based microporous membrane was taken out from the box, washed, and dried.

こうして得られた親水化PVDF系微多孔膜について以下の性能を測定した。結果を表3に示す。
(水接触角)
親水化効果を確認するため、得られた親水化PVDF系微多孔膜表面の水接触角(°)を測定した。約2.0μLの水滴を着液し、0.5秒後の接触角(°)を上記水接触角として測定した。
The following performance was measured for the hydrophilized PVDF-based microporous membrane thus obtained. The results are shown in Table 3.
(Water contact angle)
In order to confirm the hydrophilization effect, the water contact angle (°) of the surface of the obtained hydrophilic PVDF-based microporous membrane was measured. About 2.0 μL of water droplets were applied, and the contact angle (°) 0.5 seconds later was measured as the water contact angle.

(透水量)
得られた微多孔膜から直径25mmの円形シートを切り取った。このシートを有効濾過面積3.5cmのフィルターシートホルダーにセットした。セットされたシートに5mLの超純水を濾過圧力50kPaで通過させ、超純水の通過開始から終了までの時間を計測した。以下の式により、シートの濾過面積当たりの流量(透水量)を求めた。結果を表2に示す。透水量が大きいほど細孔の閉塞度が低く液体濾過効率が高いことを示す。
(Water permeability)
A circular sheet having a diameter of 25 mm was cut out from the obtained microporous membrane. This sheet was set in a filter sheet holder having an effective filtration area of 3.5 cm 2. 5 mL of ultrapure water was passed through the set sheet at a filtration pressure of 50 kPa, and the time from the start to the end of the passage of the ultrapure water was measured. The flow rate (water permeation amount) per filtration area of the sheet was determined by the following formula. The results are shown in Table 2. The larger the amount of water permeation, the lower the degree of closure of the pores and the higher the liquid filtration efficiency.

透水量(10−9/m/Pa/sec)=通水量(m)÷有効濾過面積(m)÷濾過圧力(Pa)÷時間(sec)Permeability ( 10-9 m 3 / m 2 / Pa / sec) = Water flow (m 3 ) ÷ Effective filtration area (m 2 ) ÷ Filtration pressure (Pa) ÷ Time (sec)

(透水量の変化)
親水化に伴う透水量の変化を評価した。以下の式で定義される透水量変化率(%)を算出した。非親水化PVDF系微多孔膜の透水量は、表1に示すPVDF系微多孔膜1または2をアルコールで湿潤して測定した値を用いた。
(Change in permeability)
The change in water permeability due to hydrophilicity was evaluated. The rate of change in hydraulic conductivity (%) defined by the following formula was calculated. As the water permeability of the non-hydrophilic PVDF-based microporous membrane, the value measured by moistening the PVDF-based microporous membrane 1 or 2 shown in Table 1 with alcohol was used.

透水量変化率(%)=|(非親水化PVDF系微多孔膜の透水量)−(得られた微多孔膜の透水量)|÷(非親水化PVDF系微多孔膜の透水量)×100 Permeability rate of change (%) = | (Water permeability of non-hydrophilic PVDF microporous membrane)-(Water permeability of obtained microporous membrane) | ÷ (Water permeability of non-hydrophilic PVDF microporous membrane) × 100

水接触角値が示す親水性と、透水量および透水量変化率が示す流体濾過性とのバランスを判定した。表3にはその結果を「−」(いずれかが特に劣り、バランスが悪い。)と「+」(両方を適度に備え、バランスが良い)で示す。 The balance between the hydrophilicity indicated by the water contact angle value and the fluid permeability indicated by the water permeability and the rate of change in the water permeability was determined. Table 3 shows the results by "-" (one of them is particularly inferior and unbalanced) and "+" (both are moderately prepared and well-balanced).

Figure 2019168117
Figure 2019168117

表3に示されるように、本発明のコーティング組成物B,C,Dを用いた例(例2、3、4)では、透水性が大きく損なわれずにPVDF系微多孔膜が親水化された。例2、3、4のような本発明の親水化PVDF系微多孔膜は特殊な架橋ポリマー層を有する点で新規であり、かつ親水性と流体濾過性をバランス良く備える。 As shown in Table 3, in the examples using the coating compositions B, C, and D of the present invention (Examples 2, 3, and 4), the PVDF-based microporous membrane was hydrophilized without significantly impairing the water permeability. .. The hydrophilized PVDF-based microporous membranes of the present invention as in Examples 2, 3 and 4 are novel in that they have a special crosslinked polymer layer, and have a good balance of hydrophilicity and fluid filterability.

本発明の親水化PVDF系微多孔膜は、水系流体や生体物質を扱う濾過膜や分離膜として有用である。さらに本発明の親水化PVDF系微多孔膜は、絆創膏などに使う薬液保持材、衛生材料の表面材、電池用セパレータ、表面積が大きく構成要素の脱落が無いポリフッ化ビニリデンシート等にも用いることもできる。本発明のPVDF系微多孔膜は特に高い濾過物選択性が求められる用途に有効である。 The hydrophilized PVDF-based microporous membrane of the present invention is useful as a filtration membrane or a separation membrane for handling aqueous fluids and biological substances. Further, the hydrophilized PVDF-based microporous membrane of the present invention can also be used for a chemical holding material used for adhesive plasters, a surface material for sanitary materials, a separator for a battery, a polyvinylidene fluoride sheet having a large surface area and no components falling off, and the like. it can. The PVDF-based microporous membrane of the present invention is effective for applications requiring particularly high filter selectivity.

1 スキン層
2 支持層
3 基材フィルム
4 球状体
5 結合材
1 Skin layer 2 Support layer 3 Base film 4 Spherical body 5 Bonding material

Claims (8)

重合性モノマー、光重合開始剤、および溶媒を含み、
上記重合性モノマーとして、0.75質量%を超え3.0質量%以下の下記式(1)で表されるN,N-ジメチルアクリルアミドと、0.25質量%を超え1.5質量%以下の下記式(2)で表される3官能アクリレート化合物とを含む、微多孔膜の親水化に用いられるコーティング組成物。
Figure 2019168117

Figure 2019168117
Contains polymerizable monomers, photopolymerization initiators, and solvents
As the polymerizable monomer, N, N-dimethylacrylamide represented by the following formula (1), which is more than 0.75% by mass and 3.0% by mass or less, and more than 0.25% by mass and 1.5% by mass or less. A coating composition used for hydrophilizing a microporous film, which comprises a trifunctional acrylate compound represented by the following formula (2).
Figure 2019168117

Figure 2019168117
微多孔膜がフルオロポリマー系微多孔膜である、請求項1に記載のコーティング組成物。 The coating composition according to claim 1, wherein the microporous membrane is a fluoropolymer-based microporous membrane. 微多孔膜がポリフッ化ビニリデン系微多孔膜である、請求項1に記載のコーティング組成物。 The coating composition according to claim 1, wherein the microporous membrane is a polyvinylidene fluoride-based microporous membrane. ポリフッ化ビニリデン系微多孔膜が基材と微多孔膜層とからなり、
上記微多孔膜層はPVDF系樹脂からなる非対称膜であり、
上記非対称膜は、微孔が形成されたスキン層と、前記スキン層を構成する前記微孔よりも大きい空孔が形成された支持層とを備え、
上記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びており、隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成し、
上記ポリフッ化ビニリデン系微多孔膜の気体透過法によって測定した細孔径の最頻値(モード)Lm(μm)が(条件1):0.10≦Lm≦0.20を満たし、
上記ポリフッ化ビニリデン系微多孔膜の全細孔の95%以上が(条件2):(Lm×0.85)≦L≦(Lm×1.15)を満たす細孔径L(μm)を有する、
請求項3に記載のコーティング組成物。
The polyvinylidene fluoride-based microporous membrane consists of a base material and a microporous membrane layer.
The microporous membrane layer is an asymmetric membrane made of PVDF resin, and is
The asymmetric film includes a skin layer in which micropores are formed and a support layer in which pores larger than the micropores constituting the skin layer are formed.
The skin layer has a plurality of spheres, and a plurality of linear binders extend in a three-dimensional direction from each of the spheres, and the adjacent spheres are connected to each other by the linear binders. To form a three-dimensional network structure with the spherical bodies as intersections.
The mode Lm (μm) of the pore diameter measured by the gas permeation method of the polyvinylidene fluoride-based microporous membrane satisfies (Condition 1): 0.10 ≦ Lm ≦ 0.20.
95% or more of the total pores of the polyvinylidene fluoride-based microporous membrane have a pore diameter L (μm) satisfying (Condition 2): (Lm × 0.85) ≦ L ≦ (Lm × 1.15).
The coating composition according to claim 3.
架橋ポリマー層と微多孔膜とからなる親水化微多孔膜であって、
上記架橋ポリマーが、以下の式(1)で表されるN,N-ジメチルアクリルアミドに由来する単位と以下の式(2)で表される3官能アクリレート化合物に由来する単位とからなり、
上記架橋ポリマー中に、上記3官能アクリレート化合物に由来する単位1モルに対して、上記N,N-ジメチルアクリルアミドに由来する単位が3.3モル以上79モル以下の範囲で存在し、
Figure 2019168117

Figure 2019168117

上記微多孔膜が基材と微多孔膜層とからなる、
親水化微多孔膜。
A hydrophilized microporous membrane composed of a crosslinked polymer layer and a microporous membrane.
The crosslinked polymer is composed of a unit derived from N, N-dimethylacrylamide represented by the following formula (1) and a unit derived from a trifunctional acrylate compound represented by the following formula (2).
In the crosslinked polymer, the unit derived from N, N-dimethylacrylamide is present in the range of 3.3 mol or more and 79 mol or less with respect to 1 mol of the unit derived from the trifunctional acrylate compound.
Figure 2019168117

Figure 2019168117

The microporous membrane is composed of a base material and a microporous membrane layer.
Hydrophilized microporous membrane.
微多孔膜がフルオロポリマー系微多孔膜である、請求項5に記載の親水化微多孔膜。 The hydrophilic microporous membrane according to claim 5, wherein the microporous membrane is a fluoropolymer-based microporous membrane. 微多孔膜がポリフッ化ビニリデン系微多孔膜である、請求項5に記載の親水化微多孔膜。 The hydrophilic microporous membrane according to claim 5, wherein the microporous membrane is a polyvinylidene fluoride-based microporous membrane. ポリフッ化ビニリデン系微多孔膜が基材と微多孔膜層とからなり、
上記微多孔膜層はポリフッ化ビニリデン系樹脂からなる非対称膜であり、上記非対称膜は、微孔が形成されたスキン層と、前記スキン層を構成する前記微孔よりも大きい空孔が形成された支持層とを備え、
上記スキン層は複数の球状体を有し、それぞれの前記球状体から複数の線状の結合材が3次元方向に伸びており、隣接する前記球状体は、前記線状の結合材により互いに接続され、前記球状体を交点とした3次元網目構造を形成し、
上記ポリフッ化ビニリデン系微多孔膜の気体透過法によって測定した細孔径の最頻値(モード)Lm(μm)が(条件1):0.10≦Lm≦0.20を満たし、
上記ポリフッ化ビニリデン系微多孔膜の全細孔の95%以上が(条件2):(Lm×0.85)≦L≦(Lm×1.15)を満たす細孔径L(μm)を有する、
請求項7に記載の親水化微多孔膜。
The polyvinylidene fluoride-based microporous membrane consists of a base material and a microporous membrane layer.
The microporous membrane layer is an asymmetric membrane made of a polyvinylidene fluoride-based resin, and the asymmetric membrane has a skin layer in which micropores are formed and pores larger than the micropores constituting the skin layer. With a support layer
The skin layer has a plurality of spheres, and a plurality of linear binders extend in a three-dimensional direction from each of the spheres, and the adjacent spheres are connected to each other by the linear binders. To form a three-dimensional network structure with the spherical bodies as intersections.
The mode Lm (μm) of the pore diameter measured by the gas permeation method of the polyvinylidene fluoride-based microporous membrane satisfies (Condition 1): 0.10 ≦ Lm ≦ 0.20.
95% or more of the total pores of the polyvinylidene fluoride-based microporous membrane have a pore diameter L (μm) satisfying (Condition 2): (Lm × 0.85) ≦ L ≦ (Lm × 1.15).
The hydrophilized microporous membrane according to claim 7.
JP2020503623A 2018-03-01 2019-02-28 Hydrophilized polyvinylidene fluoride microporous membrane Pending JPWO2019168117A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018036247 2018-03-01
JP2018036247 2018-03-01
PCT/JP2019/007906 WO2019168117A1 (en) 2018-03-01 2019-02-28 Hydrophilized polyvinylidene fluoride-based microporous membrane

Publications (1)

Publication Number Publication Date
JPWO2019168117A1 true JPWO2019168117A1 (en) 2021-03-11

Family

ID=67806252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020503623A Pending JPWO2019168117A1 (en) 2018-03-01 2019-02-28 Hydrophilized polyvinylidene fluoride microporous membrane

Country Status (3)

Country Link
JP (1) JPWO2019168117A1 (en)
TW (1) TW201938703A (en)
WO (1) WO2019168117A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116920634A (en) * 2023-07-05 2023-10-24 广东宏瑞能源科技股份有限公司 Hydrophilic modification method of polytetrafluoroethylene microporous membrane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199606A (en) * 1987-10-08 1989-04-18 Mitsubishi Rayon Co Ltd Porous membrane
JPH05131124A (en) * 1991-11-11 1993-05-28 Nitto Denko Corp Production of hydrophilic fluoroplastic porous membrane
JP4192091B2 (en) * 2001-04-27 2008-12-03 ミリポア・コーポレーシヨン Cross-linked multipolymer coating
JP6394389B2 (en) * 2013-03-29 2018-09-26 三菱ケミカル株式会社 Article
JP6377322B2 (en) * 2013-05-30 2018-08-22 住友化学株式会社 Optical film laminate and composite polarizing plate using the same
JP2015160185A (en) * 2014-02-28 2015-09-07 Jnc株式会社 membrane bioreactor

Also Published As

Publication number Publication date
WO2019168117A1 (en) 2019-09-06
TW201938703A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
Nayak et al. Molecular grafting and zwitterionization based antifouling and underwater superoleophobic PVDF membranes for oil/water separation
KR101930147B1 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
CN101678279A (en) Modified porous membranes, methods of membrane pore modification, and methods of use thereof
JP5292705B2 (en) Composite separation membrane and method for producing the same
CN110461454B (en) Porous membrane, membrane module, water treatment device, and method for producing porous membrane
WO2005002712A1 (en) Membrane post treatment
KR101763610B1 (en) A polymer membrane prepared using block copolymer and metallic salt as additive agents, and a method for preparing the polymer membrane
Susanti et al. A new strategy for ultralow biofouling membranes: Uniform and ultrathin hydrophilic coatings using liquid carbon dioxide
JPWO2019189180A1 (en) Hydrophilized polyvinylidene fluoride microporous membrane
JPWO2019189181A1 (en) Hydrophilized polyvinylidene fluoride microporous membrane
KR20130113184A (en) Asymmetric composite membrane of silicone polymer and preparing method of the same
JPWO2019168117A1 (en) Hydrophilized polyvinylidene fluoride microporous membrane
CN104248915B (en) A kind of preparation method improving hydrophilic enhancement mode plate compounding microporous barrier
JP6866635B2 (en) Porous Membrane and Method for Producing Porous Membrane
WO2018181579A1 (en) Microporous film
JPWO2019172368A1 (en) Polyvinylidene fluoride microporous membrane
JP2015160185A (en) membrane bioreactor
JP2010075851A (en) Porous film and method for manufacturing the same
WO2020075710A1 (en) Coating composition for making a microporous membrane hydrophilic, and hydrophilic microporous membrane
WO2020075713A1 (en) Coating composition for hydrophilization of microporous film, and hydrophilic microporous film
WO2020075712A1 (en) Coating composition for making a microporous membrane hydrophilic, and hydrophilic microporous membrane
JP7004079B2 (en) Polyvinylidene Fluoridene-based Porous Separation Membrane Hydrophilization Method
JP6855786B2 (en) Porous Membrane and Method for Producing Porous Membrane
JP2022015599A (en) Production method of hydrophilic polymer microporous film
KR101778683B1 (en) Method for pore formation in polymer film with organic solvent and water-pressure