WO2020075713A1 - Coating composition for hydrophilization of microporous film, and hydrophilic microporous film - Google Patents

Coating composition for hydrophilization of microporous film, and hydrophilic microporous film Download PDF

Info

Publication number
WO2020075713A1
WO2020075713A1 PCT/JP2019/039659 JP2019039659W WO2020075713A1 WO 2020075713 A1 WO2020075713 A1 WO 2020075713A1 JP 2019039659 W JP2019039659 W JP 2019039659W WO 2020075713 A1 WO2020075713 A1 WO 2020075713A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
coating composition
membrane
formula
hydrophilic
Prior art date
Application number
PCT/JP2019/039659
Other languages
French (fr)
Japanese (ja)
Inventor
竜児 松元
直 長迫
隆行 岩▲崎▼
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Publication of WO2020075713A1 publication Critical patent/WO2020075713A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds

Definitions

  • the present invention relates to a microporous membrane hydrophilized with a coating composition.
  • Microporous membranes made of fluorine-based resins such as polyvinylidene fluoride (PVDF) -based resins and polytetrafluoroethylene (PTFE) -based resins have excellent chemical resistance and heat resistance, and are therefore suitable for air filters, bag filters, and liquid filtration. Widely used for filters and the like (see Patent Document 1).
  • the microporous film made of a fluororesin is generally hydrophobic. Therefore, for example, when a microporous membrane made of PVDF resin (hereinafter referred to as PVDF microporous membrane or PVDF membrane) is used for filtration of an aqueous solution, the surface of the PVDF membrane is polyvinyl alcohol (PVA).
  • an object of the present invention is to provide a coating composition for hydrophilizing a hydrophobic microporous film, particularly a microporous film made of a fluororesin. Furthermore, it is an object of the present invention to provide a microporous membrane having permanent hydrophilicity without clogging of pores when the microporous membrane is made hydrophilic.
  • the present inventors have proceeded with the development for the purpose of providing a microporous membrane that is hydrophilized even in a dry state and can be used for filtering an aqueous solution.
  • the inventors have found a means for coating a microporous membrane with a combination of a hydrophilic monomer and a crosslinkable monomer, thereby making the microporous membrane hydrophilic without impairing the water permeability of the microporous membrane, and completed the present invention.
  • a trifunctional compound is more likely to clog the microporous membrane than a bifunctional compound, but even if a trifunctional compound is used, The present invention has been completed by finding that the porous membrane can be made hydrophilic without clogging.
  • the configuration of the present invention is as follows.
  • a coating composition for rendering a microporous membrane hydrophilic which comprises a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the formula (II). ... (I) ... (II) (In the formula, l + m + n is 9.)
  • the microporous film is a polyvinylidene fluoride-based resin or a polytetrafluoroethylene-based resin microporous film.
  • a method for making a microporous membrane hydrophilic Immersing the microporous membrane in a solution of a coating composition containing a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the formula (II); A step of deoxidizing the immersed microporous membrane, The deoxygenated microporous membrane is irradiated with ultraviolet rays to form a polymer derived from the salt of the acrylamide monomer compound represented by the formula (I) and the trifunctional acrylate compound represented by the formula (II). Coating the membrane, Including, methods. ... (I) ...
  • microporous film is a polyvinylidene fluoride-based resin or a polytetrafluoroethylene-based resin microporous film.
  • the microporous membrane by coating the microporous membrane with a combination of a hydrophilic monomer and a crosslinkable monomer, the microporous membrane can be hydrophilized without impeding the water permeability of the microporous membrane.
  • FIG. 1 is a diagram showing an example of a process for producing the hydrophilic microporous membrane of the present invention.
  • the coating composition of the present invention for hydrophilizing a microporous membrane comprises a salt of an acrylamide monomer compound represented by formula (I) and a trifunctional acrylate compound represented by formula (II).
  • formula (II) l + m + n is 9. ... (I) ... (II)
  • the microporous membrane is also called a microporous or microporous membrane and is a membrane having a large number of micropores inside, and these micropores have a connected structure, and one surface to the other surface.
  • the microporous membrane is particularly preferably a membrane having minute pores with a pore diameter of about 0.01 to 10 ⁇ m, which is less likely to cause uneven liquid permeability and is less likely to cause clogging.
  • the salt of the acrylamide monomer compound represented by the formula (I) is (3-acrylamidopropyl) trimethylammonium chloride (APTAC), which is available, for example, from Tokyo Chemical Industry Co., Ltd.
  • APITAC (3-acrylamidopropyl) trimethylammonium chloride
  • the trifunctional acrylate compound represented by the formula (II) is an ethoxylated glycerin triacrylate, and is available, for example, from Shin-Nakamura Chemical Co., Ltd.
  • the salt of the acrylamide monomer compound represented by formula (I) and the trifunctional acrylate compound represented by formula (II) coat the surface of the microporous membrane when polymerized.
  • it can be made hydrophilic, it is adjusted to a concentration at which polymerization is performed to the extent that it does not block the pores of the microporous membrane and hinder the water permeability of the microporous membrane.
  • the salt of the acrylamide monomer compound represented by the formula (I) can be, for example, 0.5 to 5% by mass in the coating composition of the present invention, preferably 0.75. It is from 3 to 3% by mass, more preferably from 1.0 to 1.5% by mass.
  • the trifunctional acrylate compound represented by the formula (II) can be contained in the coating composition of the present invention in an amount of 0.25 to 2.5% by mass, preferably 0.5 to 1.50% by mass. %, And more preferably 0.75 to 1.25 mass%.
  • the solvent is preferably water such as ultrapure water and alcohol such as isopropyl alcohol (IPA), methanol and ethanol.
  • IPA isopropyl alcohol
  • an aqueous solution containing alcohol in an arbitrary ratio can be used, and for example, it can be 10 to 100% by volume, preferably 15 to 80% by volume, more preferably 20 to 60% by volume. Is.
  • the coating composition of the present invention comprises 0.75 to 1.5% by mass of a salt of the acrylamide monomer compound represented by the formula (I) and 0.
  • the trifunctional acrylate compound represented by the formula (II) may be contained in an amount of 75 to 1.5% by mass.
  • the coating composition of the present invention may further contain a polymerization initiator.
  • the polymerization initiator is not particularly limited, but examples thereof include a photopolymerization initiator and a thermal polymerization initiator.
  • an IRGACURE (registered trademark) series initiator available from BASF can be used.
  • an alkylphenone-based photopolymerization initiator such as the product “IRGACURE 2959” can be used.
  • the coating composition of the present invention may further contain additives such as antioxidants and stabilizers. These additives can be contained in the concentrations usually used in the art.
  • the coating composition of the present invention can be prepared by mixing the salt of the acrylamide monomer compound, the trifunctional acrylate compound, the solvent, the polymerization initiator, and any additive in any method and order.
  • the coating composition of the present invention is prepared by adding a polymerization initiator and optionally an additive to a salt of an acrylamide monomer compound and a trifunctional acrylate compound dissolved in a solvent at a temperature of 15 to 35 ° C. and mixing them by stirring. It can be prepared by
  • the coating composition of the present invention comprises 0.75 to 1.5% by mass of a salt of the acrylamide monomer compound represented by the formula (I) in an amount of 15 to 30% by volume of isopropyl alcohol aqueous solution. It may contain 75 to 1.5% by mass of a trifunctional acrylate compound represented by the formula (II), and a photopolymerization initiator.
  • the present invention also provides a hydrophilic microporous membrane coated with a polymer derived from the above coating composition.
  • the microporous film used for the hydrophilic microporous film of the present invention is not particularly limited, and examples thereof include a microporous film of a fluorine-based resin such as PVDF-based resin and PTFE-based resin.
  • the microporous film of a fluororesin is a microporous film derived from a fluororesin called a fluoropolymer, and is a microporous film manufactured using a fluororesin as a material.
  • PVDF-based microporous membrane and the PTFE-based microporous membrane refer to microporous membranes made of PVDF-based resin and PTFE-based resin, respectively, but may be made of only the respective resins, or other The component may be included.
  • the fluororesin used in the present invention is a homopolymer of fluororesin and a copolymer of fluororesin.
  • the fluorine resin include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinyl fluoride (PVF), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA).
  • FEP Tetrafluoroethylene / hexafluororopropylene copolymer
  • ETFE tetrafluoroethylene / ethylene copolymer
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • the polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer.
  • the polyvinylidene fluoride resin may contain plural kinds of vinylidene fluoride homopolymers having different physical properties (viscosity, molecular weight, etc.). Further, the polyvinylidene fluoride resin may be a resin containing plural kinds of vinylidene fluoride copolymers.
  • the vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of vinylidene fluoride monomer and other fluorine-based monomer, such as vinyl fluoride and tetrafluoro It is a copolymer of one or more fluorine-based monomers selected from ethylene, hexafluoropropylene and ethylene trifluoride chloride and vinylidene fluoride monomer, but is not limited thereto.
  • the polytetrafluoroethylene-based resin is a resin containing a polytetrafluoroethylene homopolymer and / or a polytetrafluoroethylene copolymer.
  • the polytetrafluoroethylene-based resin may contain a plurality of types of polytetrafluoroethylene homopolymers having different physical properties (viscosity, molecular weight, etc.). Further, the polytetrafluoroethylene-based resin may be a resin containing a plurality of types of vinylidene fluoride copolymers.
  • the fine multi-layered film derived from a fluorine-based resin such as polyvinylidene fluoride-based resin used in the present invention is not limited to the above-mentioned fluorine-based resin alone, and may further include other components.
  • the microporous membrane including the fluororesin used in the present invention may be a microporous membrane composed of a composite material including the fluororesin and another material.
  • the microporous membrane used in the present invention may be a PVDF-based microporous membrane having an asymmetric three-dimensional structure developed by the applicant. This microporous membrane can be manufactured by the procedure described in, for example, WO 2014/054658 and WO 2015/0133364.
  • the product “Kyner (trade name) HSV900” manufactured by Arkema as a PVDF resin, dimethylacetamide as a solvent, polyethylene glycol having a weight average molecular weight of 400 as a porosifying agent, and ultrapure water are uniformly added.
  • a raw material liquid is manufactured by mixing.
  • a spunbond nonwoven fabric (“Eltus (trade name) P03050” manufactured by Asahi Kasei) is used as a base film, the base film is placed on a flat glass plate, and the above raw materials are placed on the base film surface using a baker applicator. The solution is applied to a thickness of 250 ⁇ m.
  • the above-mentioned film is put into a solidification tank containing ultrapure water, and the whole film is immersed in water and allowed to stand in the film solidification tank to proceed and complete the solidification of the raw material liquid adhering to the substrate film. Then, a PVDF-based microporous membrane having an asymmetric three-dimensional structure can be obtained through drying and washing steps.
  • the microporous membrane used in the present invention may be a commercially available product.
  • the microporous membrane derived from a fluororesin is, for example, a PVDF membrane available from Merck Millipore as a hydrophobic durapore (type: GVHP04700) or from Membrane Solutions as an MS PVDF hydrophobic membrane, or a W.D. L.
  • a PTFE membrane available from Gore and Associates can be used.
  • the coating composition of the present invention can make the microporous membrane hydrophilic by being coated on the surface of the microporous membrane.
  • the coating composition of the present invention is brought into contact with or immersed in the microporous membrane in a batch system or a continuous system to uniformly adhere the coating composition to the surface of the microporous membrane.
  • the coating composition of the present invention can be coated on the surface of a microporous film which is a substrate by the following procedure.
  • the microporous membrane is immersed in ultrapure water to replace isopropyl alcohol with ultrapure water.
  • the alcohol is not particularly limited as long as it can infiltrate the microporous membrane.
  • the microporous membrane is immersed in the coating composition for hydrophilizing the microporous membrane of the present invention.
  • the coating composition of the present invention is placed in a sealable bag such as Unipack and the microporous membrane is dipped. Immerse the coating composition in the microporous membrane until it has fully infiltrated.
  • the solvent of the coating composition is ultrapure water
  • the microporous membrane is immersed in the coating composition for several tens of minutes, so that the coating composition sufficiently infiltrates the microporous membrane.
  • the solvent of the coating composition contains an appropriate amount of isopropyl alcohol, the microporous membrane can be instantly infiltrated.
  • the coating composition contains a photopolymerization initiator and polymerization is initiated by ultraviolet irradiation (UV irradiation) or the like, nitrogen substitution may be performed in advance to remove oxygen that may inhibit the polymerization reaction.
  • UV irradiation ultraviolet irradiation
  • nitrogen substitution may be performed in advance to remove oxygen that may inhibit the polymerization reaction.
  • UV irradiation can initiate the polymerization of the salt of the acrylamide monomer compound of formula (I) and the trifunctional acrylate compound of formula (II).
  • the coating composition contains a thermal polymerization initiator, the polymerization is initiated by heating.
  • the microporous membrane is washed to remove unreacted materials.
  • the washing can be performed with warm water, warm ethanol, or the like. Moreover, you may dry by natural drying.
  • the present invention further provides a method of rendering a microporous membrane hydrophilic.
  • the method comprises the steps of immersing a microporous membrane in a solution of a coating composition containing a salt of an acrylamide monomer compound of formula (I) below and a trifunctional acrylate compound of formula (II): A step of deoxidizing the immersed microporous membrane, Irradiating the deoxidized microporous membrane with ultraviolet rays.
  • l + m + n is 9.
  • the step of immersing in the solution of the coating composition can be performed by the same procedure as the above-mentioned coating of the microporous membrane.
  • the step of deoxidizing the immersed microporous membrane can be deoxidized by any method.
  • the step of deoxidizing for example, the microporous film is allowed to stand in a nitrogen atmosphere and replaced with oxygen.
  • the substituting step can be performed, for example, in a batch system or a continuous system.
  • the microporous membrane is impregnated with the coating composition and then held by a support. Specifically, in a closed container having a transparent lid, a microporous membrane impregnated with the above coating composition was laid on a flat support (on the side of the lid), and then the laminate was left to stand. In the state, the inside of the closed container is replaced with nitrogen.
  • the step of irradiating the deoxygenated microporous membrane with ultraviolet rays is performed by irradiating the deoxygenated microporous membrane with ultraviolet rays to obtain a salt of the acrylamide monomer compound represented by the formula (I) and the formula (II).
  • the microporous membrane is coated with a polymer derived from a trifunctional acrylate compound. This step can also be carried out batchwise or continuously as in the step of substituting nitrogen. In the batch method, the surface of the microporous membrane is irradiated with ultraviolet rays from the outside of the container through a transparent lid in a state where the closed container is filled with nitrogen to complete the polymerization and crosslinking reaction of the polymerizable monomer.
  • ultraviolet rays are applied to a long microporous membrane infiltrated with the coating composition.
  • the microporous film carried out from the container of the coating composition is carried into the ultraviolet irradiation area and moved within this area for a certain period of time.
  • the microporous film is carried out from the ultraviolet irradiation area the polymerization and crosslinking reaction of the polymerizable monomer is completed on the surface of the microporous film.
  • microporous membrane whose surface is coated with a polymer is dried and washed to remove excess components. This step can also be carried out batchwise or continuously.
  • the method can further include a step of treating the obtained hydrophilic microporous membrane with an alkaline solution such as NaOH.
  • the alkaline solution treatment is carried out by immersing it in a 0.1 M NaOH solution for 2 hours.
  • the hydrophilic microporous membrane of the present invention has alkali resistance, and the contact angle of water does not increase even when treated with 0.1 M NaOH. That is, the hydrophilicity does not decrease.
  • a hydrophilized microporous membrane can be obtained.
  • This microporous membrane can be dried, wound, cut and packaged according to a standard method and, if necessary.
  • the PVDF microporous membrane used as the base material is a PVDF membrane manufactured through the following steps.
  • Arkema product “Kyner HSV900” as PVDF resin, dimethylacetamide as solvent, polyethylene glycol having a weight average molecular weight of 400 as a porosifying agent, and ultrapure water are shown in Table 1 in proportions (raw materials).
  • the raw material liquid was manufactured by uniformly mixing the mixture with the total amount of the liquid (% by mass).
  • Step 2 As the base film, a spunbond nonwoven fabric (Asahi Kasei “Eltas P03050”) cut into a square of 20 cm ⁇ 20 cm was used. This substrate film was placed on a flat glass plate, and the above raw material liquid was applied to the surface of the substrate film using a baker applicator so as to have a thickness of 250 ⁇ m. The raw material liquid was applied to the number of substrate films corresponding to the number of times of quantification under the above-mentioned conditions so that the amount of residual components described later could be quantified.
  • Step 3 A stainless steel vat containing 2 liters of ultrapure water was used as the solidification tank. Into this solidification tank, the film obtained in step 2 was placed so that the water surface was not ruffled, and the entire film was soaked in water, and allowed to stand in the film solidification tank for 2 minutes to adhere to the substrate film. Solidification was completed and completed.
  • Step 4-1 2.5 liters of ultrapure water was placed in a beaker with a ceramic air stone diffuser tube inserted, and dry air was supplied to the diffuser tube from an external tank to evenly dry it in ultrapure water. Bubbling air bubbles. This was used for the first washing tank. The film subjected to the step 3 was put in this first cleaning tank. The film was washed for 6 minutes while the entire surface of the film was uniformly in contact with water bubbles.
  • Step 4-2 2.5 liters of isopropanol was placed in a beaker with a ceramic air stone diffuser tube inserted, and dry air was supplied to the diffuser tube from an external tank to evenly dry air bubbles in the isopropanol. I made it gush out. This was used for the second washing tank.
  • the film obtained in step 4-1 was put into this second cleaning tank, and the film was washed in a state where the entire surface of the film was in uniform contact with isopropanol and air bubbles. After this the film was air dried.
  • the pore size of the PVDF microporous membrane thus obtained was measured by the gas permeation method.
  • a PMI palm porometer supplied by Seika Digital Image Co., Ltd. was used as a measuring instrument.
  • Table 1 shows the mode (mode) of the pore diameter of the obtained PVDF-based microporous membrane: Lm ( ⁇ m) and the proportion (%) of the pores having the pore diameter within Lm ⁇ 15%.
  • the trifunctional acrylate compound represented by the formula (II) (ethoxylated glycerin triacrylate) was obtained from Shin Nakamura Chemical Co., Ltd. as “NK Ester (registered trademark) A-GLY-9E”.
  • IRGACURE 2959 obtained from BASF Japan Ltd. was used as a photopolymerization initiator.
  • the coating composition was prepared as shown in Table 2 below to obtain a coating composition.
  • Step 5 The PVDF-based microporous membrane that had been subjected to Step 4-2 was immersed in isopropyl alcohol, replaced with ultrapure water, and immersed in the coating composition.
  • a non-woven fabric support and a PVDF-based microporous membrane impregnated with a coating composition were stacked in this order on the bottom surface of a stainless steel mesh of a nitrogen gas replacement box with a lid made of quartz glass. Nitrogen gas was circulated in the box for 2 minutes to fill the inside of the box with nitrogen gas. The box was kept closed after filling.
  • Step 6 Ultraviolet rays were irradiated from a light source (Light Hammer 10 (product name)) outside the box through the box lid to cure the coating composition.
  • a light source Light Hammer 10 (product name)
  • Step 7 The PVDF microporous membrane was taken out from the box, washed, and dried.
  • Step 8 Furthermore, as an optional step, the hydrophilic PVDF microporous membrane was immersed in a 0.1 M NaOH aqueous solution for 2 hours, washed, and dried.
  • the base material (PVDF membrane used in Example 1) had an initial water permeability of about 160.
  • the water-permeability of each of the substrates made hydrophilic with the coating composition of each amount ratio did not significantly change.
  • the contact angle was 119.2 ° in the base material, but the base material made hydrophilic with the coating composition decreased to 3.9 to 67.4 °, and the hydrophilicity increased in both cases. It was shown that.
  • the water permeability of the base material made hydrophilic with the coating composition did not decrease. Also, the contact angle was not increased by NaOH treatment in any coating, but rather decreased.
  • Examples 9-12 (Production of hydrophilic PVDF microporous membrane using IPA as solvent)
  • the coating composition was mixed with ultrapure water as a solvent to prepare a total amount of 100 (mass%) to obtain a coating composition. This eliminates the step of immersing the microporous membrane with isopropyl alcohol.
  • coating compositions were prepared by adjusting the composition as shown in Table 2 below.
  • the surface of the PVDF-based microporous membrane (base material) produced in Example 1 was coated with the coating composition produced in the proportions shown in Table 3.
  • the PVDF microporous membrane (base material) was coated on the surface in the same procedure as in Example 1.
  • the results are shown in Table 2.
  • the left column shows the coating state of the membrane
  • the substrate (PVDF membrane used in Example 1) column shows the membrane not treated with the coating composition
  • the column describing each reaction solution is the description.
  • 3 shows a film obtained by polymerizing a coating composition of the solvent thus prepared on a substrate.
  • the base material (PVDF membrane used in Example 1) had an initial water permeability of about 160. Further, the base material made hydrophilic with a coating composition using 20 vol% and 30 vol% isopropyl alcohol aqueous solution as a solvent has water permeability of 155.1, 136.9, 148.0 and 140.5, respectively. The water permeability was higher than that when ultrapure water was used as the solvent. On the other hand, the contact angle was 119.2 ° for the substrate (PVDF membrane used in Example 1), but the substrate made hydrophilic with the coating composition decreased to 42.2-46.2 °. It was shown that the hydrophilicity was increased in all cases.
  • the water permeability of the base material made hydrophilic with the coating composition did not decrease. Also, the contact angle was not increased by NaOH treatment in any coating, but rather decreased.
  • Example 13 (Production of hydrophilic PVDF porous membrane using PVDF membrane manufactured by Membrane Solutions)
  • the PVDF membrane of MS PVDF hydrophobic membrane available from Membrane Solutions was used as the substrate.
  • the composition was adjusted as shown in Table 3 below to prepare a coating composition.
  • the surface of a PVDF membrane from Membrane Solutions was coated with the coating composition.
  • the PVDF membrane was coated on the surface by the same procedure as in Example 2.
  • the results are shown in Table 3.
  • the left column shows the coating state of the membrane
  • the substrate (Membrane Solutions) column shows the membrane not treated with the coating composition
  • the MS-hydrophobic membrane hydrophilization column shows the coating composition.
  • Figure 3 shows a film polymerized on a substrate.
  • the base material (Membrane Solutions) had an initial water permeability of 44.7.
  • the water permeability of the substrate made hydrophilic with the coating composition was 40.9.
  • the contact angle was 113.9 ° in the base material (Membrane Solutions), but the base material made hydrophilic with the coating composition decreased to 46.5 °, and the hydrophilicity is increased.
  • Example 14 (Production of hydrophilic PVDF porous membrane using PVDF membrane manufactured by Merck Millipore)
  • a PVDF membrane of hydrophobic Durapore (type: GVHP04700) available from Merck Millipore was used as a substrate.
  • a coating composition was prepared by adjusting the composition as shown in Table 4 below. The surface of the PVDF membrane from Merck Millipore was coated with the coating composition. The PVDF membrane was coated on the surface by the same procedure as in Example 1.
  • the results are shown in Table 4.
  • the left column shows the coating state of the membrane
  • the substrate (Merck Millipore) column shows the membrane not treated with the coating composition
  • the hydrophilization column of M company-hydrophobic membrane shows the coating composition.
  • Figure 3 shows a film polymerized on a substrate.
  • the base material (Merck Millipore) had an initial water permeability of 37.0.
  • the substrate made hydrophilic with the coating composition had a water permeability of 15.6.
  • the contact angle was 118.9 ° in the base material (Membrane Solutions), but the base material made hydrophilic with the coating composition decreased to 56.5 °, and the hydrophilicity was increased. Was shown.
  • Example 15 Manufacture of hydrophilic PTFE porous membrane using PTFE membrane manufactured by Sumitomo Electric Industries, Ltd.
  • a PTFE membrane available from Sumitomo Electric Industries, Ltd. was used as the base material.
  • a coating composition was prepared by adjusting the composition as shown in Table 5 below. The surface of the Sumitomo Electric Industries, Ltd. PTFE membrane was coated with the coating composition. The procedure of Example 1 was followed to coat the surface of the PTFE membrane.
  • the results are shown in Table 5.
  • the left column shows the coating state of the membrane
  • the HP-020-30 column shows the membrane not treated with the coating composition
  • the HPW-020-30 hydrophilization column shows the coating composition as the base material. Shows a film polymerized to.
  • the base material (HP-020-30) had an initial water permeability of 37.0.
  • the water permeability of the substrate made hydrophilic with the coating composition was 22.7.
  • the contact angle could not be measured on the base material (HP-020-30), but the base material made hydrophilic with the coating composition was 123.8 °, showing that the hydrophilicity was increased. It was
  • the hydrophilic microporous membrane of the present invention can be widely used as an air filter, a bag filter, a liquid filtration filter, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The purpose of the present invention is to provide a microporous film having permanent hydrophilicity but free of clogging of fine pores caused during hydrophilization of the microporous film. A means was discovered for hydrophilization of a microporous film without hindering the water permeability of the microporous film, and the means involves coating a microporous film with a hydrophilic monomer and a crosslinking-agent monomer as a combination or each singly. The present invention provides: a coating composition that is for hydrophilization of a microporous film and that contains a trifunctional acrylate compound and a salt of an acrylamide monomer compound: and a hydrophilic microporous film coated with a polymer derived from said coating composition.

Description

微多孔膜を親水性にするためのコーティング組成物および親水性の微多孔膜Coating composition for making microporous membrane hydrophilic and hydrophilic microporous membrane
 本発明は、コーティング組成物によって親水化された微多孔膜に関する。 The present invention relates to a microporous membrane hydrophilized with a coating composition.
 ポリフッ化ビニリデン(PVDF)系樹脂やポリテトラフルオロエチレン(PTFE)系樹脂などのフッ素系樹脂からなる微多孔膜は、耐薬品性、耐熱性に優れることからエアフィルター、バグフィルター、および液濾過用フィルターなどに幅広く使用されている(特許文献1参照。)。
 しかしながら、フッ素系樹脂からなる微多孔膜は、一般に疎水性である。そのため、たとえばPVDF系樹脂からなる微多孔膜(以下、PVDF系微多孔膜またはPVDF膜という。)を、水溶性の溶液の濾過等に使用する場合には、PVDF膜の表面をポリビニルアルコール(PVA)等の親水化剤で被覆する方法や、エタノールなどのアルコールで置換する方法などで親水化処理を施す必要がある。しかし、これらの手法で得られる親水化されたPVDF膜の親水性は、その効果の持続性が乏しい。そのため、親水化に使用したアルコールが乾いてしまうと、再度親水化のためにアルコールで処理しなければならない。また、親水化に使用したPVAまたはエタノールが濾過に伴ってPVDF膜の表面から溶出していくことで、PVDF膜の親水化効果がなくなってしまう。また、親水化のために使用したPVAやエタノールが濾液中に混入したり、PVAによって細孔が目詰まりしたりするといった問題もある。
Microporous membranes made of fluorine-based resins such as polyvinylidene fluoride (PVDF) -based resins and polytetrafluoroethylene (PTFE) -based resins have excellent chemical resistance and heat resistance, and are therefore suitable for air filters, bag filters, and liquid filtration. Widely used for filters and the like (see Patent Document 1).
However, the microporous film made of a fluororesin is generally hydrophobic. Therefore, for example, when a microporous membrane made of PVDF resin (hereinafter referred to as PVDF microporous membrane or PVDF membrane) is used for filtration of an aqueous solution, the surface of the PVDF membrane is polyvinyl alcohol (PVA). ) Or the like, or a method of substituting with alcohol such as ethanol, etc. However, the hydrophilicity of the hydrophilized PVDF membrane obtained by these methods has a poor sustainability of the effect. Therefore, if the alcohol used for hydrophilization becomes dry, it must be treated with alcohol again for hydrophilization. Further, PVA or ethanol used for hydrophilization elutes from the surface of the PVDF membrane along with filtration, so that the hydrophilization effect of the PVDF membrane disappears. In addition, there are problems that PVA and ethanol used for hydrophilization are mixed in the filtrate, and pores are clogged with PVA.
国際公開第2014/054658号パンフレットInternational publication 2014/054658 pamphlet
 PVDF系樹脂やPTFE系樹脂などのフッ素系樹脂からなる微多孔膜を親水化するための従来の方法では、上記のような問題があった。そこで、本発明は、疎水性の微多孔膜、特にフッ素系樹脂からなる微多孔膜を親水化するためのコーティング組成物を提供することを目的とする。さらに、微多孔膜を親水化した際に細孔の目詰まりがなく、恒久的な親水性を有する微多孔膜を提供することを目的とする。 The conventional method for hydrophilizing a microporous membrane made of a fluorine resin such as PVDF resin or PTFE resin has the above problems. Therefore, an object of the present invention is to provide a coating composition for hydrophilizing a hydrophobic microporous film, particularly a microporous film made of a fluororesin. Furthermore, it is an object of the present invention to provide a microporous membrane having permanent hydrophilicity without clogging of pores when the microporous membrane is made hydrophilic.
 本発明者らは、乾燥状態においても親水化されており、水溶液を濾過するためなどに使用することができる微多孔膜を提供することを目的として、開発を進めた。 The present inventors have proceeded with the development for the purpose of providing a microporous membrane that is hydrophilized even in a dry state and can be used for filtering an aqueous solution.
 その結果、親水性のモノマーおよび架橋性モノマーを組み合わせて微多孔膜をコーティングすることにより、微多孔膜の透水性を阻害することなく親水化する手段を見出し、本発明を完成させた。 As a result, the inventors have found a means for coating a microporous membrane with a combination of a hydrophilic monomer and a crosslinkable monomer, thereby making the microporous membrane hydrophilic without impairing the water permeability of the microporous membrane, and completed the present invention.
 また、架橋モノマーをコーティング剤として使用する場合、通常は、2官能性の化合物よりも3官能性の化合物の方が微多孔膜を詰まりさせやすいが、3官能性の化合物を使用しても微多孔膜を目詰まりさせることなく親水化できることを見出し、本発明を完成させた。 When a crosslinking monomer is used as a coating agent, a trifunctional compound is more likely to clog the microporous membrane than a bifunctional compound, but even if a trifunctional compound is used, The present invention has been completed by finding that the porous membrane can be made hydrophilic without clogging.
 すなわち、本発明の構成は、以下の通りである。 That is, the configuration of the present invention is as follows.
[1] 以下の式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物を含む、微多孔膜を親水性にするためのコーティング組成物。

Figure JPOXMLDOC01-appb-I000007
                       ・・・(I)

Figure JPOXMLDOC01-appb-I000008
                       ・・・(II)
(式中、l+m+nは、9である。)
[2] 前記微多孔膜がポリフッ化ビニリデン系樹脂またはポリテトラフルオロエチレン系樹脂の微多孔膜である、[1]に記載のコーティング組成物。
[3] 以下の式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物に由来するポリマーでコーティングされた親水性の微多孔膜。

Figure JPOXMLDOC01-appb-I000009
                       ・・・(I)

Figure JPOXMLDOC01-appb-I000010
                       ・・・(II)
(式中、l+m+nは、9である。)
[4] 前記微多孔膜がポリフッ化ビニリデン系樹脂またはポリテトラフルオロエチレン系樹脂の微多孔膜である、[3]に記載の微多孔膜。
[5] 微多孔膜を親水性にする方法であって、
 前記微多孔膜を、以下の式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物を含有するコーティング組成物の溶液中に浸漬する工程と、
 前記浸漬した微多孔膜を、脱酸素する工程と、
 前記脱酸素した微多孔膜を、紫外線照射して、前記式(I)で表されるアクリルアミドモノマー化合物の塩および前記式(II)で表される3官能アクリレート化合物に由来するポリマーで前記微多孔膜をコーティングする工程と、
を含む、方法。

Figure JPOXMLDOC01-appb-I000011
                     ・・・(I)

Figure JPOXMLDOC01-appb-I000012
                     ・・・(II)
(式中、l+m+nは、9である。)
[6] 前記微多孔膜がポリフッ化ビニリデン系樹脂またはポリテトラフルオロエチレン系樹脂の微多孔膜である、[5]に記載の方法。
[1] A coating composition for rendering a microporous membrane hydrophilic, which comprises a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the formula (II).

Figure JPOXMLDOC01-appb-I000007
... (I)

Figure JPOXMLDOC01-appb-I000008
... (II)
(In the formula, l + m + n is 9.)
[2] The coating composition according to [1], wherein the microporous film is a polyvinylidene fluoride-based resin or a polytetrafluoroethylene-based resin microporous film.
[3] A hydrophilic microporous membrane coated with a polymer derived from a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the formula (II).

Figure JPOXMLDOC01-appb-I000009
... (I)

Figure JPOXMLDOC01-appb-I000010
... (II)
(In the formula, l + m + n is 9.)
[4] The microporous membrane according to [3], wherein the microporous membrane is a polyvinylidene fluoride resin or a polytetrafluoroethylene resin.
[5] A method for making a microporous membrane hydrophilic,
Immersing the microporous membrane in a solution of a coating composition containing a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the formula (II);
A step of deoxidizing the immersed microporous membrane,
The deoxygenated microporous membrane is irradiated with ultraviolet rays to form a polymer derived from the salt of the acrylamide monomer compound represented by the formula (I) and the trifunctional acrylate compound represented by the formula (II). Coating the membrane,
Including, methods.

Figure JPOXMLDOC01-appb-I000011
... (I)

Figure JPOXMLDOC01-appb-I000012
... (II)
(In the formula, l + m + n is 9.)
[6] The method according to [5], wherein the microporous film is a polyvinylidene fluoride-based resin or a polytetrafluoroethylene-based resin microporous film.
 本発明によれば、親水性のモノマーおよび架橋性モノマーを組み合わせて微多孔膜をコーティングすることにより、微多孔膜の透水性を阻害することなく微多孔膜を親水化することができる。 According to the present invention, by coating the microporous membrane with a combination of a hydrophilic monomer and a crosslinkable monomer, the microporous membrane can be hydrophilized without impeding the water permeability of the microporous membrane.
図1は、本発明の親水性微多孔膜の製造工程の一例を示す図である。FIG. 1 is a diagram showing an example of a process for producing the hydrophilic microporous membrane of the present invention.
 微多孔膜を親水化するための本発明のコーティング組成物は、式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物を含む。式(II)中、l+m+nは、9である。
 
Figure JPOXMLDOC01-appb-I000013
                       ・・・(I)
Figure JPOXMLDOC01-appb-I000014
                       ・・・(II)
The coating composition of the present invention for hydrophilizing a microporous membrane comprises a salt of an acrylamide monomer compound represented by formula (I) and a trifunctional acrylate compound represented by formula (II). In the formula (II), l + m + n is 9.

Figure JPOXMLDOC01-appb-I000013
... (I)
Figure JPOXMLDOC01-appb-I000014
... (II)
 微多孔膜とは、微多孔質または微多孔質膜とも呼ばれ、内部に多数の微細孔を有する膜であり、これらの微細孔は、連結された構造をとり、一方の面から他方の面へ気体あるいは液体が通過可能となった膜をいう。微多孔膜は、特に液体の通液性のムラが少なく、目詰まりなど生じにくい孔径が0.01~10μm程度の微細孔を有する膜が好ましい。 The microporous membrane is also called a microporous or microporous membrane and is a membrane having a large number of micropores inside, and these micropores have a connected structure, and one surface to the other surface. A membrane that allows gas or liquid to pass through. The microporous membrane is particularly preferably a membrane having minute pores with a pore diameter of about 0.01 to 10 μm, which is less likely to cause uneven liquid permeability and is less likely to cause clogging.
 式(I)で表されるアクリルアミドモノマー化合物の塩は、(3-アクリルアミドプロピル)トリメチルアンモニウムクロライド(APTAC)であり、たとえば東京化成工業株式会社から入手可能である。 The salt of the acrylamide monomer compound represented by the formula (I) is (3-acrylamidopropyl) trimethylammonium chloride (APTAC), which is available, for example, from Tokyo Chemical Industry Co., Ltd.
 式(II)で表される3官能アクリレート化合物は、エトキシ化されたグリセリントリアクリレートであり、たとえば新中村化学工業株式会社から入手可能である。 The trifunctional acrylate compound represented by the formula (II) is an ethoxylated glycerin triacrylate, and is available, for example, from Shin-Nakamura Chemical Co., Ltd.
 本発明のコーティング組成物において、式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物は、重合させたときに微多孔膜の表面をコーティングして親水性にすることができるが、微多孔膜の細孔を塞いで微多孔膜の透水性を妨げることがない程度に重合する濃度に調整される。 In the coating composition of the present invention, the salt of the acrylamide monomer compound represented by formula (I) and the trifunctional acrylate compound represented by formula (II) coat the surface of the microporous membrane when polymerized. Although it can be made hydrophilic, it is adjusted to a concentration at which polymerization is performed to the extent that it does not block the pores of the microporous membrane and hinder the water permeability of the microporous membrane.
 本発明のコーティング組成物において、式(I)で表されるアクリルアミドモノマー化合物の塩は、たとえば本発明のコーティング組成物中に0.5~5質量%とすることができ、好ましくは0.75~3質量%であり、より好ましくは1.0~1.5質量%である。また、式(II)で表される3官能アクリレート化合物は、たとえば本発明のコーティング組成物中に0.25~2.5質量%とすることができ、好ましくは0.5~1.50質量%であり、より好ましくは0.75~1.25質量%である。 In the coating composition of the present invention, the salt of the acrylamide monomer compound represented by the formula (I) can be, for example, 0.5 to 5% by mass in the coating composition of the present invention, preferably 0.75. It is from 3 to 3% by mass, more preferably from 1.0 to 1.5% by mass. The trifunctional acrylate compound represented by the formula (II) can be contained in the coating composition of the present invention in an amount of 0.25 to 2.5% by mass, preferably 0.5 to 1.50% by mass. %, And more preferably 0.75 to 1.25 mass%.
 式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物を溶解することができ、かつ両化合物の重合反応を阻害しない任意の溶媒を使用することができる。溶媒は、たとえば超純水などの水、並びにイソプロピルアルコール(IPA)、メタノール、およびエタノールなどのアルコールであることが好ましい。また、溶媒は、任意の割合でアルコールを含む水溶液を使用することができ、たとえば10~100体積%とすることができ、好ましくは15~80体積%であり、より好ましくは20~60体積%である。 It is possible to use any solvent capable of dissolving the salt of the acrylamide monomer compound represented by the formula (I) and the trifunctional acrylate compound represented by the formula (II) and not inhibiting the polymerization reaction of both compounds. it can. The solvent is preferably water such as ultrapure water and alcohol such as isopropyl alcohol (IPA), methanol and ethanol. As the solvent, an aqueous solution containing alcohol in an arbitrary ratio can be used, and for example, it can be 10 to 100% by volume, preferably 15 to 80% by volume, more preferably 20 to 60% by volume. Is.
 具体的には、本発明のコーティング組成物は、15~30体積%のイソプロピルアルコール水溶液中に0.75~1.5質量%の式(I)で表されるアクリルアミドモノマー化合物の塩および0.75~1.5質量%の式(II)で表される3官能アクリレート化合物を含むことができる。 Specifically, the coating composition of the present invention comprises 0.75 to 1.5% by mass of a salt of the acrylamide monomer compound represented by the formula (I) and 0. The trifunctional acrylate compound represented by the formula (II) may be contained in an amount of 75 to 1.5% by mass.
 本発明のコーティング組成物は、さらに重合開始剤を含むことができる。重合開始剤は、特に限定されないが、たとえば光重合開始剤および熱重合開始剤である。光重合開始剤は、BASF社から入手可能なIRGACURE(登録商標)シリーズの開始剤などを使用することができる。たとえば光重合開始剤は、商品「IRGACURE2959」などのアルキルフェノン系光重合開始剤を使用することができる。 The coating composition of the present invention may further contain a polymerization initiator. The polymerization initiator is not particularly limited, but examples thereof include a photopolymerization initiator and a thermal polymerization initiator. As the photopolymerization initiator, an IRGACURE (registered trademark) series initiator available from BASF can be used. For example, as the photopolymerization initiator, an alkylphenone-based photopolymerization initiator such as the product “IRGACURE 2959” can be used.
 本発明のコーティング組成物は、さらに酸化防止剤および安定剤などの添加剤を含むことができる。これらの添加剤は、当該技術分野において通常使用される濃度で含有することができる。 The coating composition of the present invention may further contain additives such as antioxidants and stabilizers. These additives can be contained in the concentrations usually used in the art.
 本発明のコーティング組成物は、アクリルアミドモノマー化合物の塩、3官能アクリレート化合物、溶媒、重合開始剤、および任意の添加剤を任意の方法および順序で混合して調製することができる。たとえば、本発明のコーティング組成物は、15~35℃の温度において、溶剤に溶解したアクリルアミドモノマー化合物の塩および3官能アクリレート化合物に、重合開始剤および任意に添加剤を添加し、攪拌して混合することによって調製することができる。 The coating composition of the present invention can be prepared by mixing the salt of the acrylamide monomer compound, the trifunctional acrylate compound, the solvent, the polymerization initiator, and any additive in any method and order. For example, the coating composition of the present invention is prepared by adding a polymerization initiator and optionally an additive to a salt of an acrylamide monomer compound and a trifunctional acrylate compound dissolved in a solvent at a temperature of 15 to 35 ° C. and mixing them by stirring. It can be prepared by
 本発明のコーティング組成物は、具体的には、15~30体積%のイソプロピルアルコール水溶液中に0.75~1.5質量%の式(I)で表されるアクリルアミドモノマー化合物の塩、0.75~1.5質量%の式(II)で表される3官能アクリレート化合物、および光重合開始剤を含むことができる。 Specifically, the coating composition of the present invention comprises 0.75 to 1.5% by mass of a salt of the acrylamide monomer compound represented by the formula (I) in an amount of 15 to 30% by volume of isopropyl alcohol aqueous solution. It may contain 75 to 1.5% by mass of a trifunctional acrylate compound represented by the formula (II), and a photopolymerization initiator.
 また、本発明は、上記コーティング組成物に由来するポリマーでコーティングされた、親水性の微多孔膜を提供する。本発明の親水性の微多孔膜に使用される微多孔膜は、特に限定されないが、たとえばPVDF系樹脂およびPTFE系樹脂などのフッ素系樹脂の微多孔膜を挙げることができる。フッ素系樹脂の微多孔膜とは、フルオロポリマーと呼ばれるフッ素系樹脂に由来する微多孔膜であり、フッ素系樹脂を材料として製造された微多孔膜をいう。また、PVDF系微多孔膜およびPTFE系微多孔膜とは、それぞれPVDF系樹脂およびPTFE系樹脂を材料として製造される微多孔膜をいうが、それぞれの樹脂のみからなっていてもよいし、他の成分を含有していてもよい。 The present invention also provides a hydrophilic microporous membrane coated with a polymer derived from the above coating composition. The microporous film used for the hydrophilic microporous film of the present invention is not particularly limited, and examples thereof include a microporous film of a fluorine-based resin such as PVDF-based resin and PTFE-based resin. The microporous film of a fluororesin is a microporous film derived from a fluororesin called a fluoropolymer, and is a microporous film manufactured using a fluororesin as a material. Further, the PVDF-based microporous membrane and the PTFE-based microporous membrane refer to microporous membranes made of PVDF-based resin and PTFE-based resin, respectively, but may be made of only the respective resins, or other The component may be included.
 本発明に使用されるフッ素系樹脂は、フッ素系樹脂のホモポリマーおよびフッ素系樹脂の共重合体である。フッ素系樹脂は、たとえばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニル(PVF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)およびクロロトリフルオエチレン・エチレン共重合体(ECTFE)などであってもよいが、これらに限定されない。 The fluororesin used in the present invention is a homopolymer of fluororesin and a copolymer of fluororesin. Examples of the fluorine resin include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinyl fluoride (PVF), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA). ), Tetrafluoroethylene / hexafluororopropylene copolymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), and the like. Not limited.
 ポリフッ化ビニリデン系樹脂は、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂である。ポリフッ化ビニリデン系樹脂は、物性(粘度、分子量等)の異なる複数種類のフッ化ビニリデンホモポリマーを含有してもよい。また、ポリフッ化ビニリデン系樹脂は、複数の種類のフッ化ビニリデン共重合体を含有する樹脂であってもよい。フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体であり、たとえばフッ化ビニル、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化エチレンから選択される1種類以上のフッ素系モノマーとフッ化ビニリデンモノマーとの共重合体であるが、これらに限定されない。 The polyvinylidene fluoride resin is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. The polyvinylidene fluoride resin may contain plural kinds of vinylidene fluoride homopolymers having different physical properties (viscosity, molecular weight, etc.). Further, the polyvinylidene fluoride resin may be a resin containing plural kinds of vinylidene fluoride copolymers. The vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of vinylidene fluoride monomer and other fluorine-based monomer, such as vinyl fluoride and tetrafluoro It is a copolymer of one or more fluorine-based monomers selected from ethylene, hexafluoropropylene and ethylene trifluoride chloride and vinylidene fluoride monomer, but is not limited thereto.
 ポリテトラフルオロエチレン系樹脂は、ポリテトラフルオロエチレンホモポリマーおよび/またはポリテトラフルオロエチレン共重合体を含有する樹脂である。ポリテトラフルオロエチレン系樹脂は、物性(粘度、分子量等)の異なる複数種類のポリテトラフルオロエチレンホモポリマーを含有してもよい。また、ポリテトラフルオロエチレン系樹脂は、複数の種類のフッ化ビニリデン共重合体を含有する樹脂であってもよい。 The polytetrafluoroethylene-based resin is a resin containing a polytetrafluoroethylene homopolymer and / or a polytetrafluoroethylene copolymer. The polytetrafluoroethylene-based resin may contain a plurality of types of polytetrafluoroethylene homopolymers having different physical properties (viscosity, molecular weight, etc.). Further, the polytetrafluoroethylene-based resin may be a resin containing a plurality of types of vinylidene fluoride copolymers.
 本発明に使用されるポリフッ化ビニリデン系樹脂などのフッ素系樹脂に由来する微多質膜は、上記フッ素系樹脂のみで構成されるだけでなく、さらに他の成分を備えていてもよい。たとえば、本発明に使用されるフッ素系樹脂を備える微多孔膜は、フッ素系樹脂と他の材料からなる複合材料から構成される微多孔膜であってもよい。たとえば、本発明に使用される微多質膜は、本出願人によって開発された非対称3次元構造を有するPVDF系微多孔膜であってもよい。この微多孔膜は、たとえば国際公開第2014/054658号および国際公開第2015/0133364号に記載された手順によって製造することができる。一例として、簡潔には、PVDF系樹脂としてのアルケマ製商品「Kyner(商品名)HSV900」、溶媒としてのジメチルアセトアミド、多孔化剤としての重量平均分子量400のポリエチレングリコール、および超純水を均一に混合して原料液を製造する。次いで、基材フィルムとしてスパンボンド不織布(旭化成製「エルタス(商品名)P03050」)を使用し、平らなガラス板上にこの基材フィルムを置き、ベーカーアプリケーターを用いて基材フィルム表面に上記原料液を250μm厚になるように塗布する。次いで、超純水が入った固化槽に上記フィルムを入れ、フィルム全体が水に浸かった状態でフィルム固化槽内に静置して基材フィルムに付着した原料液の固化を進行、完了させる。次いで、乾燥および洗浄工程を経て非対称3次元構造を有するPVDF系微多孔膜を得ることができる。 The fine multi-layered film derived from a fluorine-based resin such as polyvinylidene fluoride-based resin used in the present invention is not limited to the above-mentioned fluorine-based resin alone, and may further include other components. For example, the microporous membrane including the fluororesin used in the present invention may be a microporous membrane composed of a composite material including the fluororesin and another material. For example, the microporous membrane used in the present invention may be a PVDF-based microporous membrane having an asymmetric three-dimensional structure developed by the applicant. This microporous membrane can be manufactured by the procedure described in, for example, WO 2014/054658 and WO 2015/0133364. As an example, briefly, the product “Kyner (trade name) HSV900” manufactured by Arkema as a PVDF resin, dimethylacetamide as a solvent, polyethylene glycol having a weight average molecular weight of 400 as a porosifying agent, and ultrapure water are uniformly added. A raw material liquid is manufactured by mixing. Then, a spunbond nonwoven fabric (“Eltus (trade name) P03050” manufactured by Asahi Kasei) is used as a base film, the base film is placed on a flat glass plate, and the above raw materials are placed on the base film surface using a baker applicator. The solution is applied to a thickness of 250 μm. Next, the above-mentioned film is put into a solidification tank containing ultrapure water, and the whole film is immersed in water and allowed to stand in the film solidification tank to proceed and complete the solidification of the raw material liquid adhering to the substrate film. Then, a PVDF-based microporous membrane having an asymmetric three-dimensional structure can be obtained through drying and washing steps.
 また、本発明に使用される微多孔膜は、市販の製品であってもよい。フッ素系樹脂に由来する微多孔膜は、たとえばMerck Millipore社から疎水性デュラポア(型式:GVHP04700)などとして、およびMembrane Solutions社からMS PVDF疎水性メンブレンなどとして入手可能なPVDF膜、並びにW.L.Gore and Associates社から入手可能なPTFE膜などを使用することができる。 The microporous membrane used in the present invention may be a commercially available product. The microporous membrane derived from a fluororesin is, for example, a PVDF membrane available from Merck Millipore as a hydrophobic durapore (type: GVHP04700) or from Membrane Solutions as an MS PVDF hydrophobic membrane, or a W.D. L. For example, a PTFE membrane available from Gore and Associates can be used.
 本発明のコーティング組成物は、微多孔膜の表面にコーティングされることによって微多孔膜を親水性にすることができる。本発明のコーティング組成物をバッチ式または連続式で微多孔膜に接触させ、または浸漬し、微多孔膜の表面に均一に上記コーティング組成物を付着させる。たとえば、本発明のコーティング組成物は、以下の手順で基材となる微多孔膜の表面にコーティングすることができる。 The coating composition of the present invention can make the microporous membrane hydrophilic by being coated on the surface of the microporous membrane. The coating composition of the present invention is brought into contact with or immersed in the microporous membrane in a batch system or a continuous system to uniformly adhere the coating composition to the surface of the microporous membrane. For example, the coating composition of the present invention can be coated on the surface of a microporous film which is a substrate by the following procedure.
 まず、微多孔膜をイソプロピルアルコールなどのアルコールで浸潤させる。次に、微多孔膜を超純水に浸漬させることでイソプロピルアルコールを超純水に置換させる。ここで、微多孔膜を浸潤させることができるアルコールであれば、特に限定されない。微多孔膜を親水化するためのコーティング組成物において、微多孔膜を浸潤することができるアルコール水溶液を使用するときは、浸潤と超純水への置換工程を省略することができる。 First, infiltrate the microporous membrane with an alcohol such as isopropyl alcohol. Next, the microporous membrane is immersed in ultrapure water to replace isopropyl alcohol with ultrapure water. Here, the alcohol is not particularly limited as long as it can infiltrate the microporous membrane. When an aqueous alcohol solution capable of infiltrating the microporous membrane is used in the coating composition for hydrophilizing the microporous membrane, the infiltration and ultrapure water substitution steps can be omitted.
 次いで、本発明の微多孔膜を親水化するためのコーティング組成物に、微多孔膜を浸漬する。たとえば、ユニパック等の密封可能な袋に本発明のコーティング組成物を入れ、微多孔膜を浸漬する。コーティング組成物が微多孔膜に十分に浸潤するまで浸漬させる。たとえば、コーティング組成物の溶媒が超純水である場合は、数十分間、コーティング組成物に微多孔膜を浸漬させることで、コーティング組成物は、微多孔膜に十分に浸潤する。また、コーティング組成物の溶媒が適量のイソプロピルアルコールを含む場合は、瞬時に微多孔膜を浸潤させることができる。 Next, the microporous membrane is immersed in the coating composition for hydrophilizing the microporous membrane of the present invention. For example, the coating composition of the present invention is placed in a sealable bag such as Unipack and the microporous membrane is dipped. Immerse the coating composition in the microporous membrane until it has fully infiltrated. For example, when the solvent of the coating composition is ultrapure water, the microporous membrane is immersed in the coating composition for several tens of minutes, so that the coating composition sufficiently infiltrates the microporous membrane. In addition, when the solvent of the coating composition contains an appropriate amount of isopropyl alcohol, the microporous membrane can be instantly infiltrated.
 次いで、浸漬した微多孔膜を取り出し、コーティング組成物の重合を開始させる。コーティング組成物が光重合開始剤を含み、紫外線照射(UV照射)などによって重合が開始される場合、あらかじめ窒素置換をして重合反応を阻害し得る酸素を除去しておいてもよい。 Next, take out the immersed microporous membrane and start the polymerization of the coating composition. When the coating composition contains a photopolymerization initiator and polymerization is initiated by ultraviolet irradiation (UV irradiation) or the like, nitrogen substitution may be performed in advance to remove oxygen that may inhibit the polymerization reaction.
 コーティング組成物が光重合開始剤を含有する場合、UV照射によって式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物の重合を開始することができる。また、コーティング組成物が熱重合開始剤を含有する場合、加熱によって重合を開始させる。 When the coating composition contains a photopolymerization initiator, UV irradiation can initiate the polymerization of the salt of the acrylamide monomer compound of formula (I) and the trifunctional acrylate compound of formula (II). . When the coating composition contains a thermal polymerization initiator, the polymerization is initiated by heating.
 次いで、微多孔膜を洗浄して未反応物を除去する。洗浄は、温水および温エタノールなどで洗浄することができる。また、乾燥は、自然乾燥によって実施してもよい。 Next, the microporous membrane is washed to remove unreacted materials. The washing can be performed with warm water, warm ethanol, or the like. Moreover, you may dry by natural drying.
 上記の手順によって、式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物に由来するポリマーでコーティングされた微多孔膜を得ることができる。 By the above procedure, a microporous membrane coated with a polymer derived from the salt of the acrylamide monomer compound represented by the formula (I) and the trifunctional acrylate compound represented by the formula (II) can be obtained.
 本発明は、さらに微多孔膜を親水性にする方法を提供する。
 本方法は、微多孔膜を、以下の式(I)のアクリルアミドモノマー化合物の塩および式(II)の3官能アクリレート化合物を含有するコーティング組成物の溶液中に浸漬する工程と、
 浸漬した微多孔膜を、脱酸素する工程と、
 脱酸素した微多孔膜を、紫外線照射する工程と
を含む。なお、式(II)中、l+m+nは、9である。
The present invention further provides a method of rendering a microporous membrane hydrophilic.
The method comprises the steps of immersing a microporous membrane in a solution of a coating composition containing a salt of an acrylamide monomer compound of formula (I) below and a trifunctional acrylate compound of formula (II):
A step of deoxidizing the immersed microporous membrane,
Irradiating the deoxidized microporous membrane with ultraviolet rays. In the formula (II), l + m + n is 9.
Figure JPOXMLDOC01-appb-I000015
                      ・・・(I)
Figure JPOXMLDOC01-appb-I000015
... (I)
Figure JPOXMLDOC01-appb-I000016
                      ・・・(II)
Figure JPOXMLDOC01-appb-I000016
... (II)
 コーティング組成物の溶液中に浸漬する工程は、上記の微多孔膜のコーティングと同様の手順で行うことができる。 The step of immersing in the solution of the coating composition can be performed by the same procedure as the above-mentioned coating of the microporous membrane.
 浸漬した微多孔膜を、脱酸素する工程は、任意の方法によって脱酸素することができる。脱酸素する工程は、たとえば、窒素雰囲気下に微多孔膜を静置して酸素と置換する。置換する工程は、たとえば、バッチ式あるいは連続式で実施することができる。バッチ式では、微多孔膜を上記コーティング組成物に含浸させた後、支持物で保持する。具体的には、透明な蓋を有する密閉容器内で平板状の支持物の上(上記蓋の側)に上記コーティング組成物を含浸させた微多孔膜を重ね、次に積層物が静置した状態で上記密閉容器内を窒素置換する。 The step of deoxidizing the immersed microporous membrane can be deoxidized by any method. In the step of deoxidizing, for example, the microporous film is allowed to stand in a nitrogen atmosphere and replaced with oxygen. The substituting step can be performed, for example, in a batch system or a continuous system. In the batch method, the microporous membrane is impregnated with the coating composition and then held by a support. Specifically, in a closed container having a transparent lid, a microporous membrane impregnated with the above coating composition was laid on a flat support (on the side of the lid), and then the laminate was left to stand. In the state, the inside of the closed container is replaced with nitrogen.
 脱酸素した微多孔膜を、紫外線照射する工程は、上記脱酸素した微多孔膜に紫外線を照射することで、式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物に由来するポリマーで微多孔膜をコーティングする。本工程も窒素置換する工程と同様にバッチ式あるいは連続式で行うことができる。バッチ式では、密閉容器が窒素で充填された状態で容器外から透明な蓋を介して微多孔膜の面に紫外線を照射し、重合性モノマーの重合架橋反応を完了する。連続式では、コーティング組成物が浸潤した微多孔膜の長尺物に紫外線を照射する。具体的には、コーティング組成物の容器から搬出された微多孔膜を紫外線照射区域に搬入し、この区域内で一定時間移動する。紫外線照射区域から微多孔膜が搬出されるまでに、微多孔膜表面で重合性モノマーの重合架橋反応が完了する。 The step of irradiating the deoxygenated microporous membrane with ultraviolet rays is performed by irradiating the deoxygenated microporous membrane with ultraviolet rays to obtain a salt of the acrylamide monomer compound represented by the formula (I) and the formula (II). The microporous membrane is coated with a polymer derived from a trifunctional acrylate compound. This step can also be carried out batchwise or continuously as in the step of substituting nitrogen. In the batch method, the surface of the microporous membrane is irradiated with ultraviolet rays from the outside of the container through a transparent lid in a state where the closed container is filled with nitrogen to complete the polymerization and crosslinking reaction of the polymerizable monomer. In the continuous method, ultraviolet rays are applied to a long microporous membrane infiltrated with the coating composition. Specifically, the microporous film carried out from the container of the coating composition is carried into the ultraviolet irradiation area and moved within this area for a certain period of time. By the time the microporous film is carried out from the ultraviolet irradiation area, the polymerization and crosslinking reaction of the polymerizable monomer is completed on the surface of the microporous film.
 次いで、表面がポリマーでコーティングされた微多孔膜を乾燥および洗浄して余分な成分を除去する。この工程も同様にバッチ式あるいは連続式で行うことができる。 Next, the microporous membrane whose surface is coated with a polymer is dried and washed to remove excess components. This step can also be carried out batchwise or continuously.
 さらに、得られた親水性の微多孔膜をNaOHなどのアルカリ性溶液で処理する工程をさらに含むことができる。アルカリ溶液処理は、0.1MのNaOH溶液中に2時間浸漬することにより実施する。本発明の親水性の微多孔膜は、耐アルカリ性を有し、0.1MのNaOHで処理しても水の接触角が高くなることはない。すなわち、親水性が低くなることはない。 Furthermore, the method can further include a step of treating the obtained hydrophilic microporous membrane with an alkaline solution such as NaOH. The alkaline solution treatment is carried out by immersing it in a 0.1 M NaOH solution for 2 hours. The hydrophilic microporous membrane of the present invention has alkali resistance, and the contact angle of water does not increase even when treated with 0.1 M NaOH. That is, the hydrophilicity does not decrease.
 上記の工程により、親水化された微多孔膜が得られる。この微多孔膜を、定法に従い、かつ必要に応じて、乾燥、巻き取り、裁断および梱包することができる。 By the above steps, a hydrophilized microporous membrane can be obtained. This microporous membrane can be dried, wound, cut and packaged according to a standard method and, if necessary.
実施例1~8
(PVDF系微多孔膜の製造)
 本発明において、基材となるPVDF系微多孔膜は、下記の工程を経て製造したPVDF膜を使用した。
Examples 1-8
(Production of PVDF microporous membrane)
In the present invention, the PVDF microporous membrane used as the base material is a PVDF membrane manufactured through the following steps.
 (工程1)PVDF系樹脂としてのアルケマ製商品「Kyner HSV900」、溶媒としてのジメチルアセトアミド、多孔化剤としての重量平均分子量400のポリエチレングリコール、超純水の比率を表1に示す量比(原料液全量に対する質量%)で均一に混合して原料液を製造した。 (Process 1) Arkema product “Kyner HSV900” as PVDF resin, dimethylacetamide as solvent, polyethylene glycol having a weight average molecular weight of 400 as a porosifying agent, and ultrapure water are shown in Table 1 in proportions (raw materials). The raw material liquid was manufactured by uniformly mixing the mixture with the total amount of the liquid (% by mass).
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 (工程2)基材フィルムとして、20cm×20cmの正方形に切断したスパンボンド不織布(旭化成製「エルタスP03050」)を使用した。平らなガラス板上にこの基材フィルムを置き、ベーカーアプリケーターを用いて基材フィルム表面に上記原料液を250μm厚になるように塗布した。後述の残留成分の定量ができるように、定量回数分に見合う枚数の基材フィルムに上述の条件で原料液を塗布した。 (Step 2) As the base film, a spunbond nonwoven fabric (Asahi Kasei “Eltas P03050”) cut into a square of 20 cm × 20 cm was used. This substrate film was placed on a flat glass plate, and the above raw material liquid was applied to the surface of the substrate film using a baker applicator so as to have a thickness of 250 μm. The raw material liquid was applied to the number of substrate films corresponding to the number of times of quantification under the above-mentioned conditions so that the amount of residual components described later could be quantified.
 (工程3)固化槽として、超純水2リットルが入ったステンレス製バットを使用した。この固化槽に、水面が波立たないように工程2で得られたフィルムを入れ、フィルム全体が水に浸かった状態でフィルム固化槽内に2分間静置して基材フィルムに付着した原料液の固化を進行、完了した。 (Step 3) A stainless steel vat containing 2 liters of ultrapure water was used as the solidification tank. Into this solidification tank, the film obtained in step 2 was placed so that the water surface was not ruffled, and the entire film was soaked in water, and allowed to stand in the film solidification tank for 2 minutes to adhere to the substrate film. Solidification was completed and completed.
 (工程4-1)セラミックエアストーン製散気管を挿入したビーカーに2.5リットルの超純水を入れ、外部のタンクから上記散気管に乾燥空気を供給し、超純水中に均一に乾燥空気の泡を噴出させた。これを第一洗浄槽に用いた。この第一洗浄槽に工程3を経たフィルムを入れた。フィルム全面が均一に水と気泡が接触する状態でフィルムを6分間洗浄した。 (Step 4-1) 2.5 liters of ultrapure water was placed in a beaker with a ceramic air stone diffuser tube inserted, and dry air was supplied to the diffuser tube from an external tank to evenly dry it in ultrapure water. Bubbling air bubbles. This was used for the first washing tank. The film subjected to the step 3 was put in this first cleaning tank. The film was washed for 6 minutes while the entire surface of the film was uniformly in contact with water bubbles.
 (工程4-2)セラミックエアストーン製散気管を挿入したビーカーに2.5リットルのイソプロパノールを入れ、外部のタンクから上記散気管に乾燥空気を供給し、イソプロパノール中に均一に乾燥空気の泡を噴出させた。これを第二洗浄槽に用いた。この第二洗浄槽に工程4-1を経たフィルムを入れて、フィルム全面が均一にイソプロパノールと気泡が接触する状態でフィルムを洗浄した。この後フィルムを自然乾燥した。 (Step 4-2) 2.5 liters of isopropanol was placed in a beaker with a ceramic air stone diffuser tube inserted, and dry air was supplied to the diffuser tube from an external tank to evenly dry air bubbles in the isopropanol. I made it gush out. This was used for the second washing tank. The film obtained in step 4-1 was put into this second cleaning tank, and the film was washed in a state where the entire surface of the film was in uniform contact with isopropanol and air bubbles. After this the film was air dried.
 こうして得られたPVDF系微多孔膜の細孔径を気体透過法によって測定した。測定機器として西華デジタルイメージ株式会社が供給するPMI製パームポロメーターを使用した。表1に、得られたPVDF系微多孔膜の細孔径の最頻値(モード):Lm(μm)と、Lm±15%内の細孔径を有する細孔数割合(%)を示す。 The pore size of the PVDF microporous membrane thus obtained was measured by the gas permeation method. A PMI palm porometer supplied by Seika Digital Image Co., Ltd. was used as a measuring instrument. Table 1 shows the mode (mode) of the pore diameter of the obtained PVDF-based microporous membrane: Lm (μm) and the proportion (%) of the pores having the pore diameter within Lm ± 15%.
(親水性のPVDF系微多孔膜の製造)
1.コーティング組成物の製造
 式(I)で表されるアクリルアミドモノマー化合物の塩((3-アクリルアミドプロピル)トリメチルアンモニウムクロライド(APTAC))は、東京化成工業株式会社から入手した。
(Production of hydrophilic PVDF microporous membrane)
1. Production of Coating Composition The salt of the acrylamide monomer compound represented by the formula (I) ((3-acrylamidopropyl) trimethylammonium chloride (APTAC)) was obtained from Tokyo Chemical Industry Co., Ltd.
 式(II)で表される3官能アクリレート化合物(エトキシ化されたグリセリントリアクリレート)は、新中村化学工業株式会社から「NKエステル(登録商標)A-GLY-9E」として入手した。 The trifunctional acrylate compound represented by the formula (II) (ethoxylated glycerin triacrylate) was obtained from Shin Nakamura Chemical Co., Ltd. as “NK Ester (registered trademark) A-GLY-9E”.
 光重合開始剤として、BASFジャパン株式会社から入手したIRGACURE2959を使用した。 IRGACURE 2959 obtained from BASF Japan Ltd. was used as a photopolymerization initiator.
 コーティング組成物は、下記表2に示した通りに組成を調製し、コーティング組成物とした。 The coating composition was prepared as shown in Table 2 below to obtain a coating composition.
2.親水性の微多孔膜の製造
 前記工程1~工程4-2において製造したPVDF系微多孔膜(基材)の表面を、表2に示した割合で製造したコーティング組成物を使用し、以下の方法によって被覆した。
2. Production of Hydrophilic Microporous Membrane Using the coating composition produced on the surface of the PVDF microporous membrane (base material) produced in the above steps 1 to 4-2 in the proportions shown in Table 2, Coated by method.
 (工程5)前記工程4-2を終えたPVDF系微多孔膜をイソプロピルアルコールに浸漬し、超純水に置換して、上記コーティング組成物に浸漬した。石英ガラス製蓋つき窒素ガス置換用ボックスのステンレスメッシュ底面に、不織布支持体、コーティング組成物が含浸されたPVDF系微多孔膜をこの順に積載した。窒素ガスをボックスに2分間循環しボックス内部に窒素ガスを充填した。充填後はボックスを密閉状態に維持した。 (Step 5) The PVDF-based microporous membrane that had been subjected to Step 4-2 was immersed in isopropyl alcohol, replaced with ultrapure water, and immersed in the coating composition. A non-woven fabric support and a PVDF-based microporous membrane impregnated with a coating composition were stacked in this order on the bottom surface of a stainless steel mesh of a nitrogen gas replacement box with a lid made of quartz glass. Nitrogen gas was circulated in the box for 2 minutes to fill the inside of the box with nitrogen gas. The box was kept closed after filling.
 (工程6)ボックス外部の光源(Light Hammer10(製品名))からボックスの蓋を通して紫外線を照射し、コーティング組成物を硬化した。 (Step 6) Ultraviolet rays were irradiated from a light source (Light Hammer 10 (product name)) outside the box through the box lid to cure the coating composition.
 (工程7)ボックスからPVDF系微多孔膜を取り出し洗浄、乾燥した。 (Step 7) The PVDF microporous membrane was taken out from the box, washed, and dried.
 (工程8)さらに、任意の工程として、親水性のPVDF系微多孔膜を0.1MのNaOH水溶液に2時間浸漬し、洗浄、乾燥した。 (Step 8) Furthermore, as an optional step, the hydrophilic PVDF microporous membrane was immersed in a 0.1 M NaOH aqueous solution for 2 hours, washed, and dried.
 こうして得られた親水化されたPVDF系微多孔膜(NaOH処理前および0.1MのNaOH処理後)について以下の性能を測定した。 The following performances were measured for the hydrophilized PVDF-based microporous membrane thus obtained (before NaOH treatment and after 0.1 M NaOH treatment).
 (水接触角)
 親水化効果を確認するため、得られた親水化されたPVDF系微多孔膜表面の水接触角(°)を測定した。約2.0μLの水滴を着液し、0.5秒後の接触角(°)を上記水接触角として測定した。
(Water contact angle)
In order to confirm the hydrophilization effect, the water contact angle (°) on the surface of the obtained hydrophilized PVDF-based microporous membrane was measured. Approximately 2.0 μL of water droplets were deposited, and the contact angle (°) after 0.5 seconds was measured as the water contact angle.
 (初期透水性)
 得られた微多孔膜から直径25mmの円形シートを切り取った。このシートを有効濾過面積3.5cmのフィルターシートホルダーにセットした。セットされたシートに5mLの超純水を濾過圧力50kPaで通過させ、超純水の通過開始から終了までの時間を計測した。以下の式により、透水性を求めた。
 なお、基材の非親水化PVDF系微多孔膜の透水性は、アルコールで湿潤した後に測定した値を用いた。透水性が大きいほど細孔の閉塞度が低く液体濾過効率が高いことを示す。 
 透水性(10-9/m/Pa/sec)=通水量(m)÷有効濾過面積(m)÷濾過圧力(Pa)÷時間(sec)。
(Initial water permeability)
A circular sheet having a diameter of 25 mm was cut out from the obtained microporous membrane. This sheet was set in a filter sheet holder having an effective filtration area of 3.5 cm 2 . 5 mL of ultrapure water was passed through the set sheet at a filtration pressure of 50 kPa, and the time from the start to the end of passage of ultrapure water was measured. The water permeability was determined by the following formula.
The water permeability of the non-hydrophilic PVDF-based microporous membrane of the substrate used was the value measured after wetting with alcohol. The larger the water permeability, the lower the degree of pore clogging and the higher the liquid filtration efficiency.
Water permeability (10 −9 m 3 / m 2 / Pa / sec) = water flow rate (m 3 ) / effective filtration area (m 2 ) ÷ filtration pressure (Pa) ÷ time (sec).
 結果を表2に示す。左欄は、微多孔膜のコーティング状態を示しており、基材(実施例1で使用したPVDF膜)は、コーティング組成物で処理していない膜を示し、各組成の記載された欄は、記載された量比のコーティング組成物を重合させた膜を示す。 The results are shown in Table 2. The left column shows the coating state of the microporous membrane, the substrate (PVDF membrane used in Example 1) shows the membrane not treated with the coating composition, and the columns in which each composition is described are: Figure 3 shows a film polymerized with the stated proportions of coating composition.
 NaOH処理前において、基材(実施例1で使用したPVDF膜)は、初期透水性が約160であった。また、各量比のコーティング組成物で親水性にした基材は、いずれも透水性に大きな変化はなかった。一方、接触角は、基材において119.2°であったが、コーティング組成物で親水性にした基材は、3.9~67.4°に減少しており、いずれも親水性が高まっていることが示された。 Before the NaOH treatment, the base material (PVDF membrane used in Example 1) had an initial water permeability of about 160. In addition, the water-permeability of each of the substrates made hydrophilic with the coating composition of each amount ratio did not significantly change. On the other hand, the contact angle was 119.2 ° in the base material, but the base material made hydrophilic with the coating composition decreased to 3.9 to 67.4 °, and the hydrophilicity increased in both cases. It was shown that.
 NaOH処理後においては、コーティング組成物で親水性にした基材は、いずれも透水性が減少することはなかった。また、接触角も、いずれのコーティングにおいてもNaOH処理によって増大することはなく、むしろ減少した。 After the NaOH treatment, the water permeability of the base material made hydrophilic with the coating composition did not decrease. Also, the contact angle was not increased by NaOH treatment in any coating, but rather decreased.
実施例9~12
(溶媒としてIPAを使用した親水性のPVDF微多孔膜の製造)
 実施例1では、コーティング組成物は、溶媒である超純水に混合して100(質量%)の総量に調製し、コーティング組成物とした。これにより、イソプロピルアルコールによる微多孔膜の浸潤工程が不要になる。
 実施例9~12では、下記表2に示した通りに組成を調整し、コーティング組成物を製造した。実施例1において製造したPVDF系微多孔膜(基材)の表面を、表3に示した割合で製造したコーティング組成物で被覆した。実施例1と同様の手順でPVDF系微多孔膜(基材)の表面に被覆した。
Examples 9-12
(Production of hydrophilic PVDF microporous membrane using IPA as solvent)
In Example 1, the coating composition was mixed with ultrapure water as a solvent to prepare a total amount of 100 (mass%) to obtain a coating composition. This eliminates the step of immersing the microporous membrane with isopropyl alcohol.
In Examples 9 to 12, coating compositions were prepared by adjusting the composition as shown in Table 2 below. The surface of the PVDF-based microporous membrane (base material) produced in Example 1 was coated with the coating composition produced in the proportions shown in Table 3. The PVDF microporous membrane (base material) was coated on the surface in the same procedure as in Example 1.
 結果を表2に示す。左欄は、膜のコーティング状態を示しており、基材(実施例1で使用したPVDF膜)欄は、コーティング組成物で処理していない膜を示し、各反応溶液を記載した欄は、記載された溶媒のコーティング組成物を基材に重合させた膜を示す。 The results are shown in Table 2. The left column shows the coating state of the membrane, the substrate (PVDF membrane used in Example 1) column shows the membrane not treated with the coating composition, and the column describing each reaction solution is the description. 3 shows a film obtained by polymerizing a coating composition of the solvent thus prepared on a substrate.
 NaOH処理前において、基材(実施例1で使用したPVDF膜)は、初期透水性が約160であった。また、溶媒として20体積%および30体積%のイソプロピルアルコール水溶液を溶媒とするコーティング組成物で親水性にした基材は、それぞれ透水性が155.1、136.9、148.0および140.5であり、超純水を溶媒として使用したときよりも透水性が増大した。一方、接触角は、基材(実施例1で使用したPVDF膜)において119.2°であったが、コーティング組成物で親水性にした基材は、42.2~46.2°に減少しており、いずれも親水性が高まっていることが示された。 Before the NaOH treatment, the base material (PVDF membrane used in Example 1) had an initial water permeability of about 160. Further, the base material made hydrophilic with a coating composition using 20 vol% and 30 vol% isopropyl alcohol aqueous solution as a solvent has water permeability of 155.1, 136.9, 148.0 and 140.5, respectively. The water permeability was higher than that when ultrapure water was used as the solvent. On the other hand, the contact angle was 119.2 ° for the substrate (PVDF membrane used in Example 1), but the substrate made hydrophilic with the coating composition decreased to 42.2-46.2 °. It was shown that the hydrophilicity was increased in all cases.
 NaOH処理後においては、コーティング組成物で親水性にした基材は、いずれも透水性が減少することはなかった。また、接触角も、いずれのコーティングにおいてもNaOH処理によって増大することはなく、むしろ減少した。 After the NaOH treatment, the water permeability of the base material made hydrophilic with the coating composition did not decrease. Also, the contact angle was not increased by NaOH treatment in any coating, but rather decreased.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
実施例13
(Membrane Solutions社のPVDF膜を使用した親水性PVDF多孔膜の製造)
 実施例13では、基材としてMembrane Solutions社から入手可能なMS PVDF疎水性メンブレンのPVDF膜を使用した。
 実施例13では、下記表3に示した通りに組成を調整し、コーティング組成物を製造した。Membrane Solutions社のPVDF膜の表面をコーティング組成物で被覆した。実施例2と同様の手順でPVDF膜の表面に被覆した。
Example 13
(Production of hydrophilic PVDF porous membrane using PVDF membrane manufactured by Membrane Solutions)
In Example 13, the PVDF membrane of MS PVDF hydrophobic membrane available from Membrane Solutions was used as the substrate.
In Example 13, the composition was adjusted as shown in Table 3 below to prepare a coating composition. The surface of a PVDF membrane from Membrane Solutions was coated with the coating composition. The PVDF membrane was coated on the surface by the same procedure as in Example 2.
 結果を表3に示す。左欄は、膜のコーティング状態を示しており、基材(Membrane Solutions社)欄は、コーティング組成物で処理していない膜を示し、MS社-疎水膜の親水化欄は、コーティング組成物を基材に重合させた膜を示す。 The results are shown in Table 3. The left column shows the coating state of the membrane, the substrate (Membrane Solutions) column shows the membrane not treated with the coating composition, and the MS-hydrophobic membrane hydrophilization column shows the coating composition. Figure 3 shows a film polymerized on a substrate.
 NaOH処理前において、基材(Membrane Solutions社)は、初期透水性が44.7であった。また、コーティング組成物で親水性にした基材は、透水性が40.9であった。一方、接触角は基材(Membrane Solutions社)において113.9°であったが、コーティング組成物で親水性にした基材は、46.5°に減少しており、親水性が高まっていることが示された。 Before the NaOH treatment, the base material (Membrane Solutions) had an initial water permeability of 44.7. The water permeability of the substrate made hydrophilic with the coating composition was 40.9. On the other hand, the contact angle was 113.9 ° in the base material (Membrane Solutions), but the base material made hydrophilic with the coating composition decreased to 46.5 °, and the hydrophilicity is increased. Was shown.
 NaOH処理後においては、コーティング組成物で親水性にした基材は、透水性が減少することはなかった。また、接触角は、NaOH処理による影響がないことが示された。 After the NaOH treatment, the water permeability of the substrate made hydrophilic with the coating composition did not decrease. It was also shown that the contact angle was not affected by the NaOH treatment.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
実施例14
(Merck Millipore社のPVDF膜を使用した親水性PVDF多孔膜の製造)
 実施例14では、基材としてMerck Millipore社から入手可能な疎水性デュラポア(型式:GVHP04700))のPVDF膜を使用した。
 実施例14では、下記表4に示した通りに組成を調整し、コーティング組成物を製造した。Merck Millipore社のPVDF膜の表面をコーティング組成物で被覆した。実施例1と同様の手順でPVDF膜の表面に被覆した。
Example 14
(Production of hydrophilic PVDF porous membrane using PVDF membrane manufactured by Merck Millipore)
In Example 14, a PVDF membrane of hydrophobic Durapore (type: GVHP04700) available from Merck Millipore was used as a substrate.
In Example 14, a coating composition was prepared by adjusting the composition as shown in Table 4 below. The surface of the PVDF membrane from Merck Millipore was coated with the coating composition. The PVDF membrane was coated on the surface by the same procedure as in Example 1.
 結果を表4に示す。左欄は、膜のコーティング状態を示しており、基材(Merck Millipore社)欄は、コーティング組成物で処理していない膜を示し、M社-疎水膜の親水化欄は、コーティング組成物を基材に重合させた膜を示す。 The results are shown in Table 4. The left column shows the coating state of the membrane, the substrate (Merck Millipore) column shows the membrane not treated with the coating composition, and the hydrophilization column of M company-hydrophobic membrane shows the coating composition. Figure 3 shows a film polymerized on a substrate.
 NaOH処理前において、基材(Merck Millipore社)は、初期透水性が37.0であった。また、コーティング組成物で親水性にした基材は、透水性が15.6あった。一方、接触角は基材(Membrane Solutions社)において118.9°であったが、コーティング組成物で親水性にした基材は、56.5°に減少しており、親水性が高まっていることが示された。 Before the NaOH treatment, the base material (Merck Millipore) had an initial water permeability of 37.0. The substrate made hydrophilic with the coating composition had a water permeability of 15.6. On the other hand, the contact angle was 118.9 ° in the base material (Membrane Solutions), but the base material made hydrophilic with the coating composition decreased to 56.5 °, and the hydrophilicity was increased. Was shown.
 NaOH処理後においては、コーティング組成物で親水性にした基材は、透水性が減少することはなかった。また、接触角は、NaOH処理による影響がないことが示された。 After the NaOH treatment, the water permeability of the substrate made hydrophilic with the coating composition did not decrease. It was also shown that the contact angle was not affected by the NaOH treatment.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
実施例15
(住友電気工業株式会社のPTFE膜を使用した親水性PTFE多孔膜の製造)
 実施例15では、基材として住友電気工業株式会社から入手可能なPTFE膜を使用した。
 実施例15では、下記表5に示した通りに組成を調整し、コーティング組成物を製造した。住友電気工業株式会社のPTFE膜の表面をコーティング組成物で被覆した。実施例1と同様の手順でPTFE膜の表面に被覆した。
Example 15
(Manufacture of hydrophilic PTFE porous membrane using PTFE membrane manufactured by Sumitomo Electric Industries, Ltd.)
In Example 15, a PTFE membrane available from Sumitomo Electric Industries, Ltd. was used as the base material.
In Example 15, a coating composition was prepared by adjusting the composition as shown in Table 5 below. The surface of the Sumitomo Electric Industries, Ltd. PTFE membrane was coated with the coating composition. The procedure of Example 1 was followed to coat the surface of the PTFE membrane.
 結果を表5に示す。左欄は、膜のコーティング状態を示しており、HP-020-30欄は、コーティング組成物で処理していない膜を示し、HPW-020-30親水化の欄は、コーティング組成物を基材に重合させた膜を示す。 The results are shown in Table 5. The left column shows the coating state of the membrane, the HP-020-30 column shows the membrane not treated with the coating composition, and the HPW-020-30 hydrophilization column shows the coating composition as the base material. Shows a film polymerized to.
 NaOH処理前において、基材(HP-020-30)は、初期透水性が37.0であった。また、コーティング組成物で親水性にした基材は、透水性が22.7であった。一方、接触角は基材(HP-020-30)において測定不能であったが、コーティング組成物で親水性にした基材は、123.8°となり、親水性が高まっていることが示された。 Before the NaOH treatment, the base material (HP-020-30) had an initial water permeability of 37.0. The water permeability of the substrate made hydrophilic with the coating composition was 22.7. On the other hand, the contact angle could not be measured on the base material (HP-020-30), but the base material made hydrophilic with the coating composition was 123.8 °, showing that the hydrophilicity was increased. It was
 NaOH処理後においては、コーティング組成物で親水性にした基材は、透水性が減少することはなかった。また、接触角は、NaOH処理による影響がないことが示された。 After the NaOH treatment, the water permeability of the substrate made hydrophilic with the coating composition did not decrease. It was also shown that the contact angle was not affected by the NaOH treatment.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 本発明の親水性の微多孔膜は、エアフィルター、バグフィルターおよび液濾過用フィルターなどとして幅広く使用することができる。 The hydrophilic microporous membrane of the present invention can be widely used as an air filter, a bag filter, a liquid filtration filter, and the like.

Claims (6)

  1.  以下の式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物を含む、微多孔膜を親水性にするためのコーティング組成物。

    Figure JPOXMLDOC01-appb-I000001
                           ・・・(I)

    Figure JPOXMLDOC01-appb-I000002
                           ・・・(II)
    (式中、l+m+nは、9である。)
    A coating composition for rendering a microporous membrane hydrophilic, comprising a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the following formula (II).

    Figure JPOXMLDOC01-appb-I000001
    ... (I)

    Figure JPOXMLDOC01-appb-I000002
    ... (II)
    (In the formula, l + m + n is 9.)
  2.  前記微多孔膜がポリフッ化ビニリデン系樹脂またはポリテトラフルオロエチレン系樹脂の微多孔膜である、請求項1に記載のコーティング組成物。 The coating composition according to claim 1, wherein the microporous membrane is a polyvinylidene fluoride-based resin or a polytetrafluoroethylene-based resin microporous membrane.
  3.  以下の式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物に由来するポリマーでコーティングされた親水性の微多孔膜。

    Figure JPOXMLDOC01-appb-I000003
                           ・・・(I)

    Figure JPOXMLDOC01-appb-I000004
                           ・・・(II)
    (式中、l+m+nは、9である。)
    A hydrophilic microporous membrane coated with a polymer derived from a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the following formula (II).

    Figure JPOXMLDOC01-appb-I000003
    ... (I)

    Figure JPOXMLDOC01-appb-I000004
    ... (II)
    (In the formula, l + m + n is 9.)
  4.  前記微多孔膜がポリフッ化ビニリデン系樹脂またはポリテトラフルオロエチレン系樹脂の微多孔膜である、請求項3に記載の微多孔膜。 The microporous film according to claim 3, wherein the microporous film is a polyvinylidene fluoride resin or a polytetrafluoroethylene resin.
  5.  微多孔膜を親水性にする方法であって、
     前記微多孔膜を、以下の式(I)で表されるアクリルアミドモノマー化合物の塩および式(II)で表される3官能アクリレート化合物を含有するコーティング組成物の溶液中に浸漬する工程と、
     前記浸漬した微多孔膜を、脱酸素する工程と、
     前記脱酸素した微多孔膜を、紫外線照射して、前記式(I)で表されるアクリルアミドモノマー化合物の塩および前記式(II)で表される3官能アクリレート化合物に由来するポリマーで前記微多孔膜をコーティングする工程と、
    を含む、方法。

    Figure JPOXMLDOC01-appb-I000005
                           ・・・(I)

    Figure JPOXMLDOC01-appb-I000006
                           ・・・(II)
    (式中、l+m+nは、9である。)
    A method for making a microporous membrane hydrophilic,
    Immersing the microporous membrane in a solution of a coating composition containing a salt of an acrylamide monomer compound represented by the following formula (I) and a trifunctional acrylate compound represented by the formula (II);
    A step of deoxidizing the immersed microporous membrane,
    The deoxygenated microporous membrane is irradiated with ultraviolet rays to form a polymer derived from the salt of the acrylamide monomer compound represented by the formula (I) and the trifunctional acrylate compound represented by the formula (II). Coating the membrane,
    Including, methods.

    Figure JPOXMLDOC01-appb-I000005
    ... (I)

    Figure JPOXMLDOC01-appb-I000006
    ... (II)
    (In the formula, l + m + n is 9.)
  6.  前記微多孔膜がポリフッ化ビニリデン系樹脂またはポリテトラフルオロエチレン系樹脂の微多孔膜である、請求項5に記載の方法。 The method according to claim 5, wherein the microporous membrane is a polyvinylidene fluoride-based resin or a polytetrafluoroethylene-based resin microporous membrane.
PCT/JP2019/039659 2018-10-09 2019-10-08 Coating composition for hydrophilization of microporous film, and hydrophilic microporous film WO2020075713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-191067 2018-10-09
JP2018191067 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020075713A1 true WO2020075713A1 (en) 2020-04-16

Family

ID=70164999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039659 WO2020075713A1 (en) 2018-10-09 2019-10-08 Coating composition for hydrophilization of microporous film, and hydrophilic microporous film

Country Status (1)

Country Link
WO (1) WO2020075713A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034999A (en) * 2001-04-27 2009-02-19 Millipore Corp Cross-linked multipolymer coating
JP2009522405A (en) * 2005-12-30 2009-06-11 スリーエム イノベイティブ プロパティズ カンパニー Method for making a functionalized substrate
WO2014041940A1 (en) * 2012-09-14 2014-03-20 富士フイルム株式会社 Curable composition and image-forming method
JP2016511288A (en) * 2012-12-17 2016-04-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Membrane with improved flux and method for producing said membrane
JP2016137455A (en) * 2015-01-28 2016-08-04 富士フイルム株式会社 Composite ion-exchange membrane and method for producing the same, ion-exchange membrane module and ion exchange apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034999A (en) * 2001-04-27 2009-02-19 Millipore Corp Cross-linked multipolymer coating
JP2009522405A (en) * 2005-12-30 2009-06-11 スリーエム イノベイティブ プロパティズ カンパニー Method for making a functionalized substrate
WO2014041940A1 (en) * 2012-09-14 2014-03-20 富士フイルム株式会社 Curable composition and image-forming method
JP2016511288A (en) * 2012-12-17 2016-04-14 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Membrane with improved flux and method for producing said membrane
JP2016137455A (en) * 2015-01-28 2016-08-04 富士フイルム株式会社 Composite ion-exchange membrane and method for producing the same, ion-exchange membrane module and ion exchange apparatus

Similar Documents

Publication Publication Date Title
US6884375B2 (en) Hydrophobic membrane materials for filter venting applications
EP1545739B1 (en) Porous composite membrane and method for making the same
KR101580702B1 (en) Composite separation membrane
AU2012294783B2 (en) Polymer blend membranes
CN101678279A (en) Modified porous membranes, methods of membrane pore modification, and methods of use thereof
KR20190010630A (en) Coated porous polymer membrane
JP6896642B2 (en) How to remove water from asymmetric composite membranes and feed streams
JP2017536232A (en) Grafted ultrahigh molecular weight polyethylene microporous membrane
KR101763610B1 (en) A polymer membrane prepared using block copolymer and metallic salt as additive agents, and a method for preparing the polymer membrane
JP6145982B2 (en) Method for producing composite semipermeable membrane and composite semipermeable membrane
EP3130394B1 (en) Coated ptfe membrane
WO2019189180A1 (en) Hydrophilized microporous polyvinylidene fluoride film
WO2020075713A1 (en) Coating composition for hydrophilization of microporous film, and hydrophilic microporous film
WO2019189181A1 (en) Hydrophilized polyvinylidene fluoride microporous membrane
WO2020075712A1 (en) Coating composition for making a microporous membrane hydrophilic, and hydrophilic microporous membrane
WO2020075710A1 (en) Coating composition for making a microporous membrane hydrophilic, and hydrophilic microporous membrane
TW201836699A (en) Microporous film
JP2009183804A (en) Manufacturing method of hydrophilic fine porous membrane
WO2019168117A1 (en) Hydrophilized polyvinylidene fluoride-based microporous membrane
KR101243939B1 (en) Fabrication method of hydrophilic polysulfone membrane and the polysulfone membrane thereby
CN107441965B (en) Preparation method of porous membrane
JP2013000633A (en) Method for manufacturing porous membrane
WO2019151272A1 (en) Method for producing hydrophilic porous membrane
JP2019130481A (en) Hydrophilic porous membrane manufacturing method
JP2012005967A (en) Porous support and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19871765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP