JPWO2019151501A1 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JPWO2019151501A1
JPWO2019151501A1 JP2019569624A JP2019569624A JPWO2019151501A1 JP WO2019151501 A1 JPWO2019151501 A1 JP WO2019151501A1 JP 2019569624 A JP2019569624 A JP 2019569624A JP 2019569624 A JP2019569624 A JP 2019569624A JP WO2019151501 A1 JPWO2019151501 A1 JP WO2019151501A1
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
capacity
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019569624A
Other languages
Japanese (ja)
Inventor
敦史 飯島
敦史 飯島
奥村 壮文
壮文 奥村
純 川治
純 川治
明秀 田中
明秀 田中
篤 宇根本
篤 宇根本
克 上田
克 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2019151501A1 publication Critical patent/JPWO2019151501A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

正極活物質を含む正極と、電解質層と、負極活物質を含む負極と、を備え、電解質層が、イオン液体及び下記一般式(1)で表されるグライムの少なくとも一方と、リチウム塩と、を含み、負極活物質が、金属リチウム電位に対して1Vよりも貴な作動電位を有し、負極の容量が、正極の容量よりも大きい、リチウムイオン二次電池が開示される。R1O−(CH2CH2O)m−R2(1)[式(1)中、R1及びR2はそれぞれ独立に炭素数1〜4のアルキル基を示し、mは1〜6の整数を示す。]A positive electrode containing a positive electrode active material, an electrolyte layer, and a negative electrode containing a negative electrode active material are provided, and the electrolyte layer includes an ionic liquid, at least one of a glyme represented by the following general formula (1), a lithium salt, and the like. Disclosed is a lithium ion secondary battery in which the negative electrode active material has an operating potential nobler than 1 V with respect to the metallic lithium potential, and the capacity of the negative electrode is larger than the capacity of the positive electrode. R1O- (CH2CH2O) m-R2 (1) [In formula (1), R1 and R2 each independently represent an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 1 to 6. ]

Description

本発明は、リチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.

近年、リチウムイオン二次電池の開発が盛んに進められている。例えば、特許文献1には、正極活物質として作動電圧が4V(vs.Li/Li)以下であるオリビン系リン酸鉄リチウム(LiFePO)、負極活物質としてLiイオンの挿入・脱離が1.4〜1.7V(vs.Li/Li)付近で行われるチタン酸リチウム(LiTi12)を用い、非水電解液としてエーテル化合物とイオン導電性塩とを含むリチウムイオン二次電池が開示されている。このような非水電解液を用いたリチウムイオン二次電池では、異常事態に電池の温度が急上昇し、非水電解液が気化して内圧があがり、破裂するおそれがある。そのため、非水電解液で使用される成分を固体化する試みがなされている。In recent years, the development of lithium-ion secondary batteries has been actively promoted. For example, Patent Document 1 describes insertion / desorption of olivine-based lithium iron phosphate (LiFePO 4 ) having an operating voltage of 4 V (vs. Li / Li + ) or less as a positive electrode active material and Li ions as a negative electrode active material. Using lithium titanate (Li 4 Ti 5 O 12 ) performed near 1.4 to 1.7 V (vs. Li / Li + ), lithium ions containing an ether compound and an ionic conductive salt as a non-aqueous electrolytic solution. Secondary batteries are disclosed. In a lithium ion secondary battery using such a non-aqueous electrolyte solution, the temperature of the battery may suddenly rise in an abnormal situation, the non-aqueous electrolyte solution may vaporize, the internal pressure rises, and the battery may explode. Therefore, attempts have been made to solidify the components used in the non-aqueous electrolyte solution.

特開2010−277958号公報Japanese Unexamined Patent Publication No. 2010-277958

しかしながら、本発明者らの検討によると、非水電解液で使用される成分を固体化したリチウムイオン二次電池では、充電末期において、負極側でその成分(特に、エーテル化合物)の還元分解が発生し、充放電特性が低下してしまう場合があった。 However, according to the study by the present inventors, in a lithium ion secondary battery in which a component used in a non-aqueous electrolyte solution is solidified, the component (particularly, an ether compound) is reduced and decomposed on the negative electrode side at the end of charging. It may occur and the charge / discharge characteristics may deteriorate.

本発明は、このような実情に鑑みてなされたものであり、非水電解液で使用される成分を固体化した場合において、優れた充放電特性を有するリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a lithium ion secondary battery having excellent charge / discharge characteristics when the components used in the non-aqueous electrolytic solution are solidified. The purpose.

本発明者らが鋭意検討したところ、特定の構成を有するリチウムイオン二次電池において、正極の容量及び負極の容量を調整することによって、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of diligent studies by the present inventors, they have found that the above problems can be solved by adjusting the capacity of the positive electrode and the capacity of the negative electrode in a lithium ion secondary battery having a specific configuration, and have completed the present invention. It was.

本発明は、下記[1]〜[4]に示すリチウムイオン二次電池を提供する。 The present invention provides the lithium ion secondary batteries shown in the following [1] to [4].

[1]正極活物質を含む正極と、電解質層と、負極活物質を含む負極と、を備え、電解質層が、イオン液体及び下記一般式(1)で表されるグライムの少なくとも一方と、リチウム塩と、を含み、負極活物質が、金属リチウム電位に対して1Vよりも貴な作動電位を有し、負極の容量が、正極の容量よりも大きい、リチウムイオン二次電池。
O−(CHCHO)−R (1)
[式(1)中、R及びRはそれぞれ独立に炭素数1〜4のアルキル基を示し、mは1〜6の整数を示す。]
[2]負極活物質が、組成式LiTi12で表されるスピネル型チタン酸リチウムを含む、[1]に記載のリチウムイオン二次電池。
[3]電解質層が、テトラエチレングリコールジメチルエーテル及びリチウムビス(トリフルオロメタンスルホニル)イミドを含む、[1]又は[2]に記載のリチウムイオン二次電池。
[4]イオン液体のアニオンが、ビス(トリフルオロメタンスルホニル)イミドアニオンである、[1]〜[3]のいずれかに記載のリチウムイオン二次電池。
[1] A positive electrode containing a positive electrode active material, an electrolyte layer, and a negative electrode containing a negative electrode active material are provided, and the electrolyte layer includes at least one of an ionic liquid and a glyme represented by the following general formula (1), and lithium. A lithium ion secondary battery in which the negative electrode active material contains a salt and has an operating potential noble than 1 V with respect to the metallic lithium potential, and the capacity of the negative electrode is larger than the capacity of the positive electrode.
R 1 O- (CH 2 CH 2 O) m- R 2 (1)
[In the formula (1), R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 1 to 6. ]
[2] The lithium ion secondary battery according to [1], wherein the negative electrode active material contains a spinel-type lithium titanate represented by the composition formula Li 4 Ti 5 O 12 .
[3] The lithium ion secondary battery according to [1] or [2], wherein the electrolyte layer contains tetraethylene glycol dimethyl ether and lithium bis (trifluoromethanesulfonyl) imide.
[4] The lithium ion secondary battery according to any one of [1] to [3], wherein the anion of the ionic liquid is a bis (trifluoromethanesulfonyl) imide anion.

本発明によれば、非水電解液で使用される成分を固体化した場合において、優れた充放電特性を有するリチウムイオン二次電池が提供される。 According to the present invention, there is provided a lithium ion secondary battery having excellent charge / discharge characteristics when the components used in the non-aqueous electrolytic solution are solidified.

一実施形態に係るリチウムイオン二次電池を示す模式断面図である。It is a schematic cross-sectional view which shows the lithium ion secondary battery which concerns on one Embodiment. 他の実施形態に係るリチウムイオン二次電池を示す模式断面図である。It is a schematic cross-sectional view which shows the lithium ion secondary battery which concerns on other embodiment.

以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including steps and the like) are not essential unless otherwise specified. The sizes of the components in each figure are conceptual, and the relative size relationships between the components are not limited to those shown in each figure.

本明細書における数値及びその範囲についても同様であり、本発明を制限するものではない。本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The same applies to the numerical values and their ranges in the present specification, and does not limit the present invention. In the present specification, the numerical range indicated by using "~" indicates a range including the numerical values before and after "~" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Good. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.

本明細書では、全固体二次電池としてリチウムイオン二次電池を例にして説明するが、本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用することができる。 In the present specification, a lithium ion secondary battery will be described as an example of the all-solid secondary battery, but the technical idea of the present invention is that the lithium ion secondary battery, the sodium ion secondary battery, and the magnesium ion secondary battery are used as an example. It can also be applied to batteries, aluminum ion secondary batteries, and the like.

[リチウムイオン二次電池]
図1は、リチウムイオン二次電池の一実施形態を示す模式断面図である。リチウムイオン二次電池100は、正極集電体10及び正極集電体10上に設けられた正極合剤層40を含む正極70と、電解質層50と、負極集電体20及び負極集電体20上に設けられた負極合剤層60を含む負極80と、を備える。また、リチウムイオン二次電池100は、正極70、電解質層50及び負極80を収容する外装体30をさらに備えていてもよい。
[Lithium-ion secondary battery]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a lithium ion secondary battery. The lithium ion secondary battery 100 includes a positive electrode 70 including a positive electrode current collector 10 and a positive electrode mixture layer 40 provided on the positive electrode current collector 10, an electrolyte layer 50, a negative electrode current collector 20, and a negative electrode current collector. A negative electrode 80 including a negative electrode mixture layer 60 provided on the 20 is provided. Further, the lithium ion secondary battery 100 may further include an exterior body 30 that houses a positive electrode 70, an electrolyte layer 50, and a negative electrode 80.

[正極]
正極70は、正極集電体10及び正極合剤層40を含む。正極合剤層40は、正極活物質、導電性付与のための正極導電材、及びこれらを結着するための正極バインダを含む。
[Positive electrode]
The positive electrode 70 includes a positive electrode current collector 10 and a positive electrode mixture layer 40. The positive electrode mixture layer 40 includes a positive electrode active material, a positive electrode conductive material for imparting conductivity, and a positive electrode binder for binding these.

正極70の容量は、負極80の容量よりも小さいのであれば特に制限されず、作製する電池の設計に合わせて適宜調整することができる。正極70の容量は、例えば、正極活物質の質量あたりの容量(mAh/g)を予め測定し、正極活物質の仕込み質量を増減させることによって調整することができる。なお、正極活物質の質量あたりの容量(mAh/g)は、対極にリチウム金属を用いた単極試験等によって求めることができる。 The capacity of the positive electrode 70 is not particularly limited as long as it is smaller than the capacity of the negative electrode 80, and can be appropriately adjusted according to the design of the battery to be manufactured. The capacity of the positive electrode 70 can be adjusted, for example, by measuring the capacity (mAh / g) per mass of the positive electrode active material in advance and increasing or decreasing the charged mass of the positive electrode active material. The capacity (mAh / g) per mass of the positive electrode active material can be determined by a unipolar test or the like using a lithium metal as the counter electrode.

正極70の容量は、作製する電池の設計に合わせて低くすることも高くすることも可能であり、例えば、0.01mAh〜100Ahの範囲で適宜調整することができる。正極70の容量は、0.1mAh以上、0.5mAh以上、又は1mAh以上であってもよく、90Ah以下、80Ah以下、60Ah以下、40Ah以下、20Ah以下、10Ah以下、5Ah以下、1Ah以下、又は0.1Ah以下であってもよい。 The capacity of the positive electrode 70 can be lowered or increased according to the design of the battery to be manufactured, and can be appropriately adjusted in the range of, for example, 0.01 mAh to 100 Ah. The capacity of the positive electrode 70 may be 0.1 mAh or more, 0.5 mAh or more, or 1 mAh or more, 90 Ah or less, 80 Ah or less, 60 Ah or less, 40 Ah or less, 20 Ah or less, 10 Ah or less, 5 Ah or less, 1 Ah or less, or It may be 0.1 Ah or less.

<正極集電体>
正極集電体10は、特に制限されず、一般に二次電池で用いられる正極集電体を使用することができる。正極集電体10は、二次電池製造プロセス中の加熱、二次電池の運転温度に耐えられる耐熱性を有する低抵抗導電体であることが好ましい。このような正極集電体10としては、例えば、金属箔(厚み10〜100μm)、穿孔金属箔(厚み10〜100μm、孔径0.1〜10mm)、エキスパンドメタル、発泡金属板、ガラス状炭素板等が挙げられる。また、金属種としては、例えば、アルミニウム、ステンレス鋼、チタン、貴金属(例えば、金、銀、白金)等が挙げられる。
<Positive current collector>
The positive electrode current collector 10 is not particularly limited, and a positive electrode current collector generally used in a secondary battery can be used. The positive electrode current collector 10 is preferably a low resistance conductor having heat resistance that can withstand heating during the secondary battery manufacturing process and the operating temperature of the secondary battery. Examples of such a positive current collector 10 include a metal foil (thickness 10 to 100 μm), a perforated metal foil (thickness 10 to 100 μm, pore diameter 0.1 to 10 mm), an expanded metal, a foamed metal plate, and a glassy carbon plate. And so on. Examples of the metal type include aluminum, stainless steel, titanium, precious metals (for example, gold, silver, platinum) and the like.

<正極合剤層>
正極合剤層40は、正極活物質、正極導電材、正極バインダ、分散媒等を混合して得られる正極合剤スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって正極集電体10へ塗布した後、分散媒を乾燥させ、ロールプレスによって加圧成形することによって作製することができる。また、塗布から乾燥までの工程を複数回行うことによって、正極合剤層40を正極集電体10に積層化させることも可能である。正極合剤層40の正極集電体10への片面塗布量は、後述の負極80の容量と正極70の容量との関係を満たすように、負極合剤層60の負極集電体20への片面塗布量に合わせて、適宜調整することができる。
<Positive electrode mixture layer>
The positive electrode mixture layer 40 transfers the positive electrode mixture slurry obtained by mixing the positive electrode active material, the positive electrode conductive material, the positive electrode binder, the dispersion medium, etc. to the positive electrode current collector 10 by a doctor blade method, a dipping method, a spray method, or the like. After coating, the dispersion medium is dried and can be produced by pressure molding with a roll press. Further, the positive electrode mixture layer 40 can be laminated on the positive electrode current collector 10 by performing the steps from application to drying a plurality of times. The single-sided coating amount of the positive electrode mixture layer 40 on the positive electrode current collector 10 is applied to the negative electrode current collector 20 of the negative electrode mixture layer 60 so as to satisfy the relationship between the capacity of the negative electrode 80 and the capacity of the positive electrode 70, which will be described later. It can be appropriately adjusted according to the amount of one-sided coating.

(正極活物質)
正極活物質は、例えば、遷移金属を含むリチウム複合酸化物であってよい。リチウム複合酸化物としては、例えば、LiCoO、LiNiO、LiMn、LiMnO、LiMn、LiMnO、LiMn12、LiMnMO(M=Fe,Co,Ni,Cu,Zn)、Li1−xMn(M=Mg,B,Al,Fe,Co,Ni,Cr,Zn,Ca、x=0.01〜0.1)、LiMn2−x(M=Co,Ni,Fe,Cr,Zn,Ta、x=0.01〜0.2)、LiCo1−x(M=Ni,Fe,Mn、x=0.01〜0.2)、LiNi1−x(M=Mn,Fe,Co,Al,Ga,Ca,Mg、x=0.01〜0.2)、LiNi1−x−yMnCo(x=0.1〜0.8、y=0.1〜0.8、x+y=0.1〜0.9)、LiFeO、LiFePO、LiMnPO等が挙げられる。
(Positive electrode active material)
The positive electrode active material may be, for example, a lithium composite oxide containing a transition metal. Examples of the lithium composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , Li 4 Mn 5 O 12 , Li 2 Mn 3 MO 8 (M = Fe, Co). , Ni, Cu, Zn), Li 1-x M x Mn 2 O 4 (M = Mg, B, Al, Fe, Co, Ni, Cr, Zn, Ca, x = 0.01 to 0.1), LiMn 2-x M x O 2 (M = Co, Ni, Fe, Cr, Zn, Ta, x = 0.01 to 0.2), LiCo 1-x M x O 2 (M = Ni, Fe, Mn) , X = 0.01 to 0.2), LiNi 1-x M x O 2 (M = Mn, Fe, Co, Al, Ga, Ca, Mg, x = 0.01 to 0.2), LiNi 1 -x-y Mn x Co y O 2 (x = 0.1~0.8, y = 0.1~0.8, x + y = 0.1~0.9), LiFeO 2, LiFePO 4, LiMnPO 4 And so on.

(正極導電材)
正極導電材は、導電性繊維(例えば、気相成長炭素、カーボンナノチューブ、ピッチ(石油、石炭、コールタール等の副生成物)を原料として、高温で炭化して製造した繊維、アクリル繊維から製造した炭素繊維など)であってもよい。また、正極導電材は、正極活物質よりも電気抵抗率が低く、正極の充放電電位(通常、2.5〜4.5V)において、酸化溶解し難い材料であることが好ましい。このような材料としては、例えば、耐食性金属(チタン、金等)、炭化物(SiC、WC等)、窒化物(Si、BN等)などが挙げられる。さらに、正極導電材は、高比表面積の炭素材料(例えば、カーボンブラック、活性炭等)であってもよい。
(Positive electrode conductive material)
Positive positive conductive materials are manufactured from acrylic fibers and fibers produced by carbonizing conductive fibers (for example, by-products such as vapor-grown carbon, carbon nanotubes, and pitch (by-products of petroleum, coal, coal tar, etc.)) at high temperatures. It may be carbon fiber, etc.). Further, the positive electrode conductive material preferably has a lower electrical resistivity than the positive electrode active material and is difficult to oxidize and dissolve at the positive electrode charge / discharge potential (usually 2.5 to 4.5 V). As such a material, for example, corrosion resistant metal (titanium, gold, etc.), carbides (SiC, WC, etc.), nitrides (Si 3 N 4, BN, etc.) and the like. Further, the positive electrode conductive material may be a carbon material having a high specific surface area (for example, carbon black, activated carbon, etc.).

(正極バインダ)
正極バインダとしては、例えば、スチレン−ブタジエンゴム、カルボキシメチルセルロ−ス、ポリフッ化ビニリデン(PVDF);これらの混合物等が挙げられる。
(Positive binder)
Examples of the positive electrode binder include styrene-butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride (PVDF); and a mixture thereof.

(分散媒)
分散媒としては、例えば、水、1−メチル−2−ピロリドン等が挙げられる。
(Dispersion medium)
Examples of the dispersion medium include water, 1-methyl-2-pyrrolidone and the like.

[負極]
負極80は、負極集電体20及び負極合剤層60を含む。負極合剤層60は、負極活物質、導電性付与のための負極導電材、及びこれらを結着するための負極バインダを含む。
[Negative electrode]
The negative electrode 80 includes a negative electrode current collector 20 and a negative electrode mixture layer 60. The negative electrode mixture layer 60 includes a negative electrode active material, a negative electrode conductive material for imparting conductivity, and a negative electrode binder for binding these.

負極80の容量は、正極70の容量よりも大きいのであれば特に制限されず、作製する電池の設計に合わせて適宜調整することができる。負極80の容量は、例えば、正極70の場合と同様に、負極活物質の質量あたりの容量(mAh/g)を予め測定し、負極活物質の仕込み質量を増減させることによって調整することができる。なお、負極活物質の質量あたりの容量(mAh/g)は、対極にリチウム金属を用いた単極試験等によって求めることができる。 The capacity of the negative electrode 80 is not particularly limited as long as it is larger than the capacity of the positive electrode 70, and can be appropriately adjusted according to the design of the battery to be manufactured. The capacity of the negative electrode 80 can be adjusted, for example, by measuring the capacity per mass (mAh / g) of the negative electrode active material in advance and increasing or decreasing the charged mass of the negative electrode active material, as in the case of the positive electrode 70. .. The capacity (mAh / g) per mass of the negative electrode active material can be determined by a unipolar test or the like using a lithium metal as the counter electrode.

負極80の容量と正極70の容量との関係は、負極80の容量をN(mAh)、正極70の容量をP(mAh)としたとき、N/Pが1.00を超える。N/Pは、1.05以上、1.10以上、又は1.20以上であってよく、N/Pは2.00以下、1.80以下、又は1.50以下であってよい。負極80の容量を正極70の容量よりも大きくすることによって、リチウムイオン二次電池は、充放電特性に優れたものとなる。この理由は必ずしも定かではないが、後述の電解質層に含まれるグライム又はイオン液体の還元分解が抑制されるためであると考えられる。 Regarding the relationship between the capacity of the negative electrode 80 and the capacity of the positive electrode 70, when the capacity of the negative electrode 80 is N (mAh) and the capacity of the positive electrode 70 is P (mAh), N / P exceeds 1.00. The N / P may be 1.05 or more, 1.10 or more, or 1.20 or more, and the N / P may be 2.00 or less, 1.80 or less, or 1.50 or less. By making the capacity of the negative electrode 80 larger than the capacity of the positive electrode 70, the lithium ion secondary battery has excellent charge / discharge characteristics. The reason for this is not necessarily clear, but it is considered that the reduction decomposition of the grime or ionic liquid contained in the electrolyte layer described later is suppressed.

<負極集電体>
負極集電体20は、特に制限されず、一般に二次電池で用いられる負極集電体を使用することができる。負極集電体20は、正極集電体10と同様に、二次電池製造プロセス中の加熱、二次電池の運転温度に耐えられる耐熱性を有する低抵抗導電体であることが好ましい。このような負極集電体20としては、例えば、金属箔(厚み10〜100μm)、穿孔金属箔(厚み10〜100μm、孔径0.1〜10mm)、エキスパンドメタル、発泡金属板、ガラス状炭素板等が挙げられる。また、金属種としては、例えば、アルミニウム、ステンレス鋼、チタン、貴金属(例えば、金、銀、白金)等が挙げられる。
<Negative electrode current collector>
The negative electrode current collector 20 is not particularly limited, and a negative electrode current collector generally used in a secondary battery can be used. Like the positive electrode current collector 10, the negative electrode current collector 20 is preferably a low resistance conductor having heat resistance that can withstand heating during the secondary battery manufacturing process and the operating temperature of the secondary battery. Examples of such a negative electrode current collector 20 include a metal foil (thickness 10 to 100 μm), a perforated metal foil (thickness 10 to 100 μm, pore diameter 0.1 to 10 mm), an expanded metal, a foamed metal plate, and a glassy carbon plate. And so on. Examples of the metal type include aluminum, stainless steel, titanium, precious metals (for example, gold, silver, platinum) and the like.

<負極合剤層>
負極合剤層60は、負極活物質、負極導電材、負極バインダ、分散媒等を混合して得られる負極合剤スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって負極集電体20へ塗布した後、分散媒を乾燥させ、ロールプレスによって加圧成形することによって作製することができる。また、塗布から乾燥までの工程を複数回行うことによって、負極合剤層60を負極集電体20に積層化させることも可能である。負極合剤層60の負極集電体20への片面塗布量は、エネルギー密度及び入出力特性の観点から、負極合剤層60の固形分として、10〜225g/m、50〜200g/m、又は80〜160g/mであってよい。
<Negative electrode mixture layer>
The negative electrode mixture layer 60 transfers a negative electrode mixture slurry obtained by mixing a negative electrode active material, a negative electrode conductive material, a negative electrode binder, a dispersion medium, etc. to the negative electrode current collector 20 by a doctor blade method, a dipping method, a spray method, or the like. After coating, the dispersion medium is dried and can be produced by pressure molding with a roll press. Further, the negative electrode mixture layer 60 can be laminated on the negative electrode current collector 20 by performing the steps from coating to drying a plurality of times. The amount of the negative electrode mixture layer 60 applied to the negative electrode current collector 20 on one side is 10 to 225 g / m 2 or 50 to 200 g / m as the solid content of the negative electrode mixture layer 60 from the viewpoint of energy density and input / output characteristics. 2, or a 80~160g / m 2.

(負極活物質)
負極活物質は、金属リチウム電位に対して1Vよりも貴な作動電位を有する。このような負極活物質としては、例えば、CuO、CuO、AgO、CuS、CuSO等の11族金属化合物、TiS、SiO、SnO等の4又は14族金属化合物、V、V12、VO、Nb、Bi、Sb等の5族金属化合物、CrO、Cr、MoO、MoS、WO、SeO等の6族金属化合物、MnO、Mn等の7族金属化合物、Fe、FeO、Fe、Ni、NiO、CoO、CoO等の8−10族金属化合物、組成式LiTiO、Li4+yTi12、Li4+yTi1120で表されるチタン酸リチウム(0≦y≦1)、導電性高分子材料(例えば、ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレン)、擬グラファイト構造炭素材等が挙げられる。これらの中でも、負極活物質は、金属リチウム電位に対して1.4〜1.6Vに平坦な電位を有し、リチウム電位に対して1.2V以上でほとんどのリチウムを吸蔵することが可能であることから、組成式LiTi12で表されるスピネル型チタン酸リチウムを含むことが好ましい。
(Negative electrode active material)
The negative electrode active material has an operating potential noble than 1 V with respect to the metallic lithium potential. Such negative electrode active material, for example, CuO, Cu 2 O, Ag 2 O, CuS, 11 metal compounds such as CuSO 4, TiS 2, SiO 2 , 4 or 14 metal compounds of SnO etc., V 2 Group 5 metal compounds such as O 5 , V 6 O 12 , VO x , Nb 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 , SeO group 6 metal compounds such as 2, MnO 2, Mn 2 O 7 group metal compounds such as 3, Fe 2 O 3, FeO , Fe 3 O 4, Ni 2 O 3, NiO, CoO 3, 8-10 of CoO etc. Group metal compounds, lithium titanate (0 ≦ y ≦ 1) represented by the composition formulas Li y TiO 2 , Li 4 + y Ti 5 O 12 , Li 4 + y Ti 11 O 20 , and conductive polymer materials (eg, polyacene, poly Paraphenylene, polyaniline, polyacetylene), pseudo-graphite structural carbon material and the like. Among these, the negative electrode active material has a flat potential of 1.4 to 1.6 V with respect to the metallic lithium potential, and can occlude most of lithium at 1.2 V or more with respect to the lithium potential. Therefore, it is preferable to contain a spinel-type lithium titanate represented by the composition formula Li 4 Ti 5 O 12 .

(負極導電材)
負極導電材は、正極導電材で例示したものと同様のものを使用できる。
(Negative electrode conductive material)
As the negative electrode conductive material, the same material as those exemplified for the positive electrode conductive material can be used.

(負極バインダ)
負極バインダは、正極バインダで例示したものと同様のものを使用できる。
(Negative electrode binder)
As the negative electrode binder, the same one as illustrated in the positive electrode binder can be used.

(分散媒)
分散媒としては、例えば、水、1−メチル−2−ピロリドン等が挙げられる。
(Dispersion medium)
Examples of the dispersion medium include water, 1-methyl-2-pyrrolidone and the like.

[電解質層]
電解質層50は、電解質成分及び電解質バインダを含む。電解質層50は、例えば、電解質成分に電解質バインダを添加し、混合することによって作製することができる。また、電解質層50は、電解質成分及び電解質バインダを分散媒に混合して得られる溶液を調製し、分散媒を留去することによっても作製することができる。
[Electrolyte layer]
The electrolyte layer 50 contains an electrolyte component and an electrolyte binder. The electrolyte layer 50 can be produced, for example, by adding an electrolyte binder to the electrolyte components and mixing them. The electrolyte layer 50 can also be produced by preparing a solution obtained by mixing an electrolyte component and an electrolyte binder with a dispersion medium and distilling off the dispersion medium.

<電解質成分>
電解質成分は、無機粒子及びイオン導電材から構成される。イオン導電材は無機粒子に担持されていてもよい。電解質成分は、例えば、無機粒子とイオン導電材とを特定の体積比率で混合し、メタノール等の分散媒を添加・混合して、電解質成分スラリーを調製する。その後、当該スラリーをシャーレに滴下し、分散媒を留去することによって、電解質成分を得ることができる。
<Electrolyte component>
The electrolyte component is composed of inorganic particles and an ionic conductive material. The ionic conductive material may be supported on inorganic particles. As the electrolyte component, for example, inorganic particles and an ionic conductive material are mixed at a specific volume ratio, and a dispersion medium such as methanol is added and mixed to prepare an electrolyte component slurry. After that, the slurry can be dropped onto a petri dish and the dispersion medium is distilled off to obtain an electrolyte component.

(無機粒子)
無機粒子は、電気化学的安定性の観点から、絶縁性粒子であり、かつ後述の一般式(1)で表されるグライム又は融点が250℃以下である溶融塩に不溶であることが好ましい。このような無機粒子としては、例えば、シリカ(SiO)粒子、γ−アルミナ(Al)粒子、セリア(CeO)粒子、又はジルコニア(ZrO)粒子であってもよい。また、無機粒子は、他の公知の金属酸化物粒子であってもよい。
(Inorganic particles)
From the viewpoint of electrochemical stability, the inorganic particles are preferably insulating particles and are insoluble in grime represented by the general formula (1) described later or a molten salt having a melting point of 250 ° C. or lower. Such inorganic particles may be, for example, silica (SiO 2 ) particles, γ-alumina (Al 2 O 3 ) particles, ceria (CeO 2 ) particles, or zirconia (ZrO 2 ) particles. Further, the inorganic particles may be other known metal oxide particles.

イオン導電材の保持量は、無機粒子の比表面積に比例すると考えられる。無機粒子の一次粒子の平均粒径は、1nm〜10μmであってもよい。平均粒径が10μm以下であると、無機粒子がイオン導電材を充分な量保持することができ、電解質層を形成し易くなる傾向にある。平均粒径が1nm以上であると、粒子間の表面間力が大きくなり過ぎて粒子同士が凝集することを抑制することができ、電解質層を形成し易くなる傾向にある。また、金属酸化物粒子の一次粒子の平均粒径は、1〜50nm又は1〜10nmであってもよい。なお、一次粒子の平均粒径は、レーザー散乱法を利用した公知の粒径分布測定装置を用いて求めることができる。 The holding amount of the ionic conductive material is considered to be proportional to the specific surface area of the inorganic particles. The average particle size of the primary particles of the inorganic particles may be 1 nm to 10 μm. When the average particle size is 10 μm or less, the inorganic particles can hold a sufficient amount of the ionic conductive material, and tend to easily form an electrolyte layer. When the average particle size is 1 nm or more, the intersurface force between the particles becomes too large to prevent the particles from agglutinating with each other, and the electrolyte layer tends to be easily formed. Further, the average particle size of the primary particles of the metal oxide particles may be 1 to 50 nm or 1 to 10 nm. The average particle size of the primary particles can be determined by using a known particle size distribution measuring device using a laser scattering method.

無機粒子としてSiO粒子(平均粒径:7nm、ゼータ電位:約−20mV)を用いると、高耐熱性の電解質層が得られる傾向にある。When SiO 2 particles (average particle size: 7 nm, zeta potential: about -20 mV) are used as the inorganic particles, a highly heat-resistant electrolyte layer tends to be obtained.

無機粒子としてγ−Al粒子(平均粒径:5nm、ゼータ電位:約−5mV)を用いると、二次電池の充放電回数を延ばすことが可能となる傾向にある。このような効果が奏する理由は定かではないが、耐還元性の高いアルミナ粒子を用いることで充放電サイクル中の負極側でのリチウムデンドライト析出を抑制できるためと考えられる。When γ-Al 2 O 3 particles (average particle size: 5 nm, zeta potential: about -5 mV) are used as the inorganic particles, it tends to be possible to extend the number of charge / discharge cycles of the secondary battery. The reason why such an effect is exerted is not clear, but it is considered that the use of alumina particles having high reduction resistance can suppress the precipitation of lithium dendrite on the negative electrode side during the charge / discharge cycle.

無機粒子としてCeO粒子(ゼータ電位:約30mV)又はZrO粒子(ゼータ電位:約40mV)を用いると、高イオン伝導性の電解質層が得られる傾向にある。無機粒子としてゼータ電位が高い粒子を用いると、粒子表面へのイオン導電材の吸着が弱まり、イオン導電材が比較的自由に熱運動できるようになると考えられる。その結果、イオン導電材からリチウムイオンが移動し易くなり、リチウムイオン伝導が促進されると予測される。When CeO 2 particles (zeta potential: about 30 mV) or ZrO 2 particles (zeta potential: about 40 mV) are used as the inorganic particles, a highly ionic conductive electrolyte layer tends to be obtained. It is considered that when particles having a high zeta potential are used as the inorganic particles, the adsorption of the ionic conductive material on the particle surface is weakened, and the ionic conductive material can move relatively freely. As a result, it is predicted that lithium ions will easily move from the ionic conductive material and lithium ion conduction will be promoted.

無機粒子は、リチウムイオン伝導性の無機物質を用いることによって、イオン伝導性により優れる電解質層が得られる傾向にある。そのような無機物質としては、例えば、Li5+XLa(Zr、A2−X)O12(式中、AはSc、Ti、C、Y、Nb、Hf、Ta、Al、Si、Ga、Ge、Snからなる群より選ばれる1種類以上の元素、1.4≦X≦2)、Li1+YAlTi2−Y(PO(0≦Y≦1)、Li3ZLa2/3−ZTiO(0≦Z≦2/3)等が挙げられる。これらは、室温におけるイオン伝導度が高く、電気化学的安定性が高い傾向にある。As the inorganic particles, by using an inorganic substance having lithium ion conductivity, an electrolyte layer having more excellent ion conductivity tends to be obtained. Examples of such an inorganic substance include Li 5 + X La 3 (Zr X , A 2-X ) O 12 (in the formula, A is Sc, Ti, C, Y, Nb, Hf, Ta, Al, Si, Ga. , Ge, Sn One or more elements selected from the group, 1.4 ≤ X ≤ 2), Li 1 + Y Al Y Ti 2-Y (PO 4 ) 3 (0 ≤ Y ≤ 1), Li 3Z La 2 / 3-Z TiO 3 (0 ≦ Z ≦ 2/3) and the like can be mentioned. They tend to have high ionic conductivity at room temperature and high electrochemical stability.

(イオン導電材)
イオン伝導材は、イオン液体又は下記一般式(1)で表されるグライム、及び、リチウム塩を含む。
O−(CHCHO)−R (1)
(Ion conductive material)
The ionic conductive material contains an ionic liquid, a grime represented by the following general formula (1), and a lithium salt.
R 1 O- (CH 2 CH 2 O) m- R 2 (1)

式(1)中、R及びRはそれぞれ独立に炭素数1〜4のアルキル基を示し、mは1〜6の整数を示す。R及びRとしてのアルキル基は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基等であってもよい。これらの中でも、アルキル基は、メチル基又はエチル基であることが好ましい。In formula (1), R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 1 to 6. The alkyl group as R 1 and R 2 may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and the like. Among these, the alkyl group is preferably a methyl group or an ethyl group.

イオン液体は、特に制限されず、公知のイオン液体を使用することができる。イオン液体のアニオンは、イオン伝導性(導電性)の観点から、ビス(トリフルオロメタンスルホニル)イミドアニオンであることが好ましい。また、イオン液体は、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム−ビス(トリフルオロメタンスルホニル)イミド(「DEME−TFSI」ともいう。)又は1−ブチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(「BMI−TFSI」ともいう。)であることが好ましい。 The ionic liquid is not particularly limited, and known ionic liquids can be used. The anion of the ionic liquid is preferably a bis (trifluoromethanesulfonyl) imide anion from the viewpoint of ionic conductivity (conductivity). The ionic liquid is N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium-bis (trifluoromethanesulfonyl) imide (also referred to as "DEME-TFSI") or 1-butyl-3-3. Methylimidazolium bis (trifluoromethanesulfonyl) imide (also referred to as "BMI-TFSI") is preferred.

グライムは、イオン伝導性(導電性)の観点から、エチレングリコールジメチルエーテル(「モノグライム」ともいう。)、ジエチレングリコールジメチルエーテル(「ジグライム」ともいう。)、トリエチレングリコールジメチルエーテル(「トリグライム」ともいう。)、テトラエチレングリコールジメチルエーテル(「テトラグライム」ともいう。)、ペンタエチレングリコールジメチルエーテル(「ペンタグライム」ともいう。)、ヘキサエチレングリコールジメチルエーテル(「ヘキサグライム」ともいう。)等であってもよい。これらの中でも、グライムは、好ましくはトリグライム又はテトラグライム、より好ましくはテトラグライムである。 From the viewpoint of ionic conductivity (conductivity), ethylene glycol dimethyl ether (also referred to as "monoglyme"), diethylene glycol dimethyl ether (also referred to as "diglyme"), triethylene glycol dimethyl ether (also referred to as "triglime"), It may be tetraethylene glycol dimethyl ether (also referred to as "tetraglyme"), pentaethylene glycol dimethyl ether (also referred to as "pentaglyce"), hexaethylene glycol dimethyl ether (also referred to as "hexaglyme") or the like. Among these, the grime is preferably triglime or tetraglime, and more preferably tetraglime.

リチウム塩としては、例えば、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI))等が挙げられる。これらのリチウム塩は、1種を単独で、又は2種以上を組わせて用いてもよい。これらの中でも、リチウム塩は、好ましくはLiFSI又はLiTFSI、より好ましくはLiTFSIである。Examples of the lithium salt, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide (LiFSI), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI)) and the like can be mentioned. These lithium salts may be used individually by 1 type or in combination of 2 or more type. Among these, the lithium salt is preferably LiFSI or LiTFSI, and more preferably LiTFSI.

<電解質バインダ>
電解質バインダは、フッ素系の樹脂が好適に用いられる。フッ素系の樹脂としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。PVDF又はPTFEを用いることで、電解質層及び電極集電体の密着性が向上するため、電池性能が向上する傾向にある。
<Electrolyte binder>
A fluorine-based resin is preferably used as the electrolyte binder. Examples of the fluorine-based resin include polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). By using PVDF or PTFE, the adhesion between the electrolyte layer and the electrode current collector is improved, so that the battery performance tends to be improved.

[外装体]
外装体30は、正極70、電解質層50及び負極80を収容できる電池ケースである。外装体の材料は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等の耐食性を有するものであることが好ましい。
[Exterior body]
The exterior body 30 is a battery case that can accommodate the positive electrode 70, the electrolyte layer 50, and the negative electrode 80. The material of the exterior body is preferably one having corrosion resistance such as aluminum, stainless steel, and nickel-plated steel.

図2は、リチウムイオン二次電池の他の実施形態を示す模式断面図である。リチウムイオン二次電池200は、正極70と、電解質層50と、負極合剤層60と、インターコネクタ90と、正極合剤層40と、電解質層50と、負極合剤層60と、インターコネクタ90と、正極合剤層40と、電解質層50と、負極と、をこの順に備える。図2に示すとおり、リチウムイオン二次電池200は、正極合剤層40、電解質層50、及び負極合剤層60をこの順で有する電極群を、インターコネクタ90を介して、負極合剤層60と正極合剤層40とが隣り合うように複数備えている。複数の電極群のうち、最外の正極合剤層40は、正極集電体10と接続され、最外の負極合剤層60は、負極集電体20と接続される。 FIG. 2 is a schematic cross-sectional view showing another embodiment of the lithium ion secondary battery. The lithium ion secondary battery 200 includes a positive electrode 70, an electrolyte layer 50, a negative electrode mixture layer 60, an interconnector 90, a positive electrode mixture layer 40, an electrolyte layer 50, a negative electrode mixture layer 60, and an interconnector. 90, a positive electrode mixture layer 40, an electrolyte layer 50, and a negative electrode are provided in this order. As shown in FIG. 2, the lithium ion secondary battery 200 has an electrode group having a positive electrode mixture layer 40, an electrolyte layer 50, and a negative electrode mixture layer 60 in this order via an interconnector 90, and a negative electrode mixture layer. A plurality of the 60 and the positive electrode mixture layer 40 are provided so as to be adjacent to each other. Of the plurality of electrode groups, the outermost positive electrode mixture layer 40 is connected to the positive electrode current collector 10, and the outermost negative electrode mixture layer 60 is connected to the negative electrode current collector 20.

[インターコネクタ]
インターコネクタ90には、電子伝導性が高いこと、イオン伝導性がないこと、負極合剤層60と正極合剤層40に接触する面がそれぞれの電位によって酸化還元反応を示さないことが求められる。インターコネクタ90は、正極集電体10及び負極集電体20として用いられるものであってもよく、アルミニウム箔又はSUS箔であってもよい。
[Interconnector]
The interconnector 90 is required to have high electron conductivity, no ionic conductivity, and the surfaces in contact with the negative electrode mixture layer 60 and the positive electrode mixture layer 40 do not exhibit a redox reaction depending on their respective potentials. .. The interconnector 90 may be used as the positive electrode current collector 10 and the negative electrode current collector 20, and may be an aluminum foil or a SUS foil.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

(実施例1)
<正極の作製>
正極活物質として、LiFePOを使用した。LiFePO粉末と、ケッチェンブラック(正極導電材)とを混合し、これにポリフッ化ビニリデン(正極バインダ)を加えた。この混合物をN−メチル−2−ピロリドン(分散媒)に投入し、粘度を調整して正極合剤スラリーを得た。各成分は、質量比率で正極活物質:正極導電材:正極バインダ=90:5:5とした。アルミニウム箔(正極集電体)上に正極合剤スラリーを塗布し、80℃、2時間の熱処理に供した後、φ13mmで打ち抜くことで正極集電体上に正極合剤層を有する正極を得た。得られた正極の容量を単極で評価したところ、2.0mAhであった。
(Example 1)
<Preparation of positive electrode>
LiFePO 4 was used as the positive electrode active material. LiFePO 4 powder and Ketjen black (positive electrode conductive material) were mixed, and polyvinylidene fluoride (positive electrode binder) was added thereto. This mixture was put into N-methyl-2-pyrrolidone (dispersion medium), and the viscosity was adjusted to obtain a positive electrode mixture slurry. The mass ratio of each component was positive electrode active material: positive electrode conductive material: positive electrode binder = 90: 5: 5. A positive electrode mixture slurry is applied onto an aluminum foil (positive electrode current collector), subjected to heat treatment at 80 ° C. for 2 hours, and then punched at φ13 mm to obtain a positive electrode having a positive electrode mixture layer on the positive electrode current collector. It was. The capacity of the obtained positive electrode was evaluated as a single electrode and found to be 2.0 mAh.

<負極の作製>
負極活物質として、組成式LiTi12で表されるスピネル型チタン酸リチウムを使用した。LiTi12の作動電位は、1.4〜1.7V(vs.Li/Li)である。LiTi12粉末と、ケッチェンブラック(負極導電材)とを混合し、これにポリフッ化ビニリデン(負極バインダ)を加えた。この混合物をN−メチル−2−ピロリドン(分散媒)に投入し、粘度を調整して負極合剤スラリーを得た。各成分は、質量比率で負極活物質:負極導電材:負極バインダ=88:5:7とした。銅箔の負極集電体上に負極合剤スラリーを塗布し、80℃、2時間の熱処理に供した後、φ13mmで打ち抜くことで負極集電体上に負極合剤層を有する負極を得た。得られた負極の容量を単極で評価したところ、2.7mAhであった。
<Manufacturing of negative electrode>
As the negative electrode active material, spinel-type lithium titanate represented by the composition formula Li 4 Ti 5 O 12 was used. The operating potential of Li 4 Ti 5 O 12 is 1.4 to 1.7 V (vs. Li / Li + ). Li 4 Ti 5 O 12 powder and Ketjen black (negative electrode conductive material) were mixed, and polyvinylidene fluoride (negative electrode binder) was added thereto. This mixture was put into N-methyl-2-pyrrolidone (dispersion medium), and the viscosity was adjusted to obtain a negative electrode mixture slurry. Each component had a mass ratio of negative electrode active material: negative electrode conductive material: negative electrode binder = 88: 5: 7. A negative electrode mixture slurry was applied onto the negative electrode current collector of copper foil, subjected to heat treatment at 80 ° C. for 2 hours, and then punched at φ13 mm to obtain a negative electrode having a negative electrode mixture layer on the negative electrode current collector. .. The capacity of the obtained negative electrode was evaluated as a single electrode and found to be 2.7 mAh.

<電解質層用シートの作製>
テトラグライム(グライム)とLiTFSI(リチウム塩)とを混合し、スターラーを用いて室温で30分以上撹拌し、イオン導電材を調製した。次いで、調製したイオン導電材に、SiO粒子(無機粒子)を混合した。このとき、テトラグライムとSiO粒子との体積比を8:2とした。次に、得られた電解質成分スラリーをシャーレ上に移し、60℃のホットプレート上でメタノールを留去し、白色粉末の電解質成分を得た。作製した電解質成分に対して、5質量%となるようにポリテトラフルオロエチレン(PTFE、電解質バインダ)を添加し、めのう乳鉢で混合することで半透明の電解質層用シートを得た。
<Preparation of sheet for electrolyte layer>
Tetra grime (grime) and LiTFSI (lithium salt) were mixed and stirred at room temperature for 30 minutes or more using a stirrer to prepare an ionic conductive material. Next, SiO 2 particles (inorganic particles) were mixed with the prepared ionic conductive material. At this time, the volume ratio of tetraglime and SiO 2 particles was set to 8: 2. Next, the obtained electrolyte component slurry was transferred onto a petri dish, and methanol was distilled off on a hot plate at 60 ° C. to obtain an electrolyte component as a white powder. Polytetrafluoroethylene (PTFE, electrolyte binder) was added so as to be 5% by mass with respect to the prepared electrolyte component, and mixed in an agate mortar to obtain a translucent sheet for an electrolyte layer.

<電池の作製>
作製した正極、負極、及び電解質層用シートを100℃で2時間以上乾燥した後、アルゴンで充填したグローブボックス内に移した。負極、電解質層用シート、及び正極をこの順に重ね、コイン型セル部材(外装体)で覆い、封止することによってコインセル電池を作製した。
<Battery production>
The prepared positive electrode, negative electrode, and electrolyte layer sheet were dried at 100 ° C. for 2 hours or more, and then transferred into a glove box filled with argon. A coin cell battery was produced by stacking a negative electrode, an electrolyte layer sheet, and a positive electrode in this order, covering them with a coin-shaped cell member (exterior body), and sealing them.

<充放電特性の評価>
作製したコインセル電池を用いて、充放電レート0.05C、上限電圧2.8V、下限電圧1.0Vの条件で放電容量及びクーロン効率を測定し、充放電特性を評価した。結果を表1に示す。
<Evaluation of charge / discharge characteristics>
Using the produced coin cell battery, the discharge capacity and the Coulomb efficiency were measured under the conditions of a charge / discharge rate of 0.05 C, an upper limit voltage of 2.8 V, and a lower limit voltage of 1.0 V, and the charge / discharge characteristics were evaluated. The results are shown in Table 1.

(実施例2)
負極を容量2.6mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Example 2)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 2.6 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
負極を容量2.4mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Example 3)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 2.4 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
負極を容量2.2mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Example 4)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 2.2 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
負極を容量2.1mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Example 5)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 2.1 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
テトラグライムをDEME−TFSI(イオン液体)に変更した以外は、実施例1と同様にして、コインセル電池を作製した。正極の容量は2mAhであり、負極の容量は2.7mAhであった。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Example 6)
A coin cell battery was produced in the same manner as in Example 1 except that the tetraglime was changed to DEME-TFSI (ionic liquid). The capacity of the positive electrode was 2 mAh, and the capacity of the negative electrode was 2.7 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(実施例7)
負極を容量2.6mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Example 7)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 2.6 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(実施例8)
負極を容量2.4mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Example 8)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 2.4 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(実施例9)
負極を容量2.2mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Example 9)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 2.2 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(実施例10)
負極を容量2.1mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Example 10)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 2.1 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(実施例11)
テトラグライムをBMI−TFSI(イオン液体)に変更した以外は、実施例1と同様にして、コインセル電池を作製した。正極の容量は2mAhであり、負極の容量は2.7mAhであった。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Example 11)
A coin cell battery was produced in the same manner as in Example 1 except that the tetraglime was changed to BMI-TFSI (ionic liquid). The capacity of the positive electrode was 2 mAh, and the capacity of the negative electrode was 2.7 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(実施例12)
負極を容量2.6mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Example 12)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 2.6 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(実施例13)
負極を容量2.4mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Example 13)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 2.4 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(実施例14)
負極を容量2.2mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Example 14)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 2.2 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(実施例15)
負極を容量2.1mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Example 15)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 2.1 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(比較例1)
負極を容量1.9mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 1)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 1.9 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
負極を容量1.8mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 2)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 1.8 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
負極を容量1.7mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 3)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 1.7 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
負極を容量1.6mAhの負極に変更した以外は、実施例1と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表1に示す。
(Comparative Example 4)
A coin cell battery was produced in the same manner as in Example 1 except that the negative electrode was changed to a negative electrode having a capacity of 1.6 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例5)
負極を容量1.9mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Comparative Example 5)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 1.9 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(比較例6)
負極を容量1.8mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Comparative Example 6)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 1.8 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(比較例7)
負極を容量1.7mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Comparative Example 7)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 1.7 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(比較例8)
負極を容量1.6mAhの負極に変更した以外は、実施例6と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表2に示す。
(Comparative Example 8)
A coin cell battery was produced in the same manner as in Example 6 except that the negative electrode was changed to a negative electrode having a capacity of 1.6 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 2.

(比較例9)
負極を容量1.9mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Comparative Example 9)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 1.9 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(比較例10)
負極を容量1.8mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Comparative Example 10)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 1.8 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(比較例11)
負極を容量1.7mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Comparative Example 11)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 1.7 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

(比較例12)
負極を容量1.6mAhの負極に変更した以外は、実施例11と同様にして、コインセル電池を作製した。得られたコインセル電池の充放電特性を実施例1と同様にして評価した。結果を表3に示す。
(Comparative Example 12)
A coin cell battery was produced in the same manner as in Example 11 except that the negative electrode was changed to a negative electrode having a capacity of 1.6 mAh. The charge / discharge characteristics of the obtained coin cell battery were evaluated in the same manner as in Example 1. The results are shown in Table 3.

Figure 2019151501
Figure 2019151501

Figure 2019151501
Figure 2019151501

Figure 2019151501
Figure 2019151501

負極の容量が正極の容量よりも大きい実施例1〜15のリチウムイオン二次電池は、負極の容量が正極の容量よりも小さい比較例1〜12のリチウムイオン二次電池に比べて、高い放電容量及びクーロン効率を示した。これは、正極容量より負極容量の方が大きくすることによって、充電末期に負極電位が一定に保たれ、グライム又はイオン液体の還元分解が抑制されたためであると考えられる。これらの結果が、本発明のリチウムイオン二次電池が、電解液を用いない場合においても、優れた充放電特性を有することが確認された。 The lithium ion secondary batteries of Examples 1 to 15 in which the capacity of the negative electrode is larger than the capacity of the positive electrode have a higher discharge than the lithium ion secondary batteries of Comparative Examples 1 to 12 in which the capacity of the negative electrode is smaller than the capacity of the positive electrode. The capacity and Coulomb efficiency were shown. It is considered that this is because the negative electrode capacity is made larger than the positive electrode capacity, so that the negative electrode potential is kept constant at the end of charging and the reductive decomposition of the grime or the ionic liquid is suppressed. From these results, it was confirmed that the lithium ion secondary battery of the present invention has excellent charge / discharge characteristics even when no electrolytic solution is used.

10…正極集電体、20…負極集電体、30…外装体、40…正極合剤層、50…電解質層、60…負極合剤層、70…正極、80…負極、90…インターコネクタ、100、200…リチウムイオン二次電池。 10 ... Positive electrode current collector, 20 ... Negative electrode current collector, 30 ... Exterior body, 40 ... Positive electrode mixture layer, 50 ... Electrolyte layer, 60 ... Negative electrode mixture layer, 70 ... Positive electrode, 80 ... Negative electrode, 90 ... Interconnector , 100, 200 ... Lithium ion secondary battery.

Claims (4)

正極活物質を含む正極と、電解質層と、負極活物質を含む負極と、を備え、
前記電解質層が、イオン液体及び下記一般式(1)で表されるグライムの少なくとも一方と、リチウム塩と、を含み、
前記負極活物質が、金属リチウム電位に対して1Vよりも貴な作動電位を有し、
前記負極の容量が、前記正極の容量よりも大きい、リチウムイオン二次電池。
O−(CHCHO)−R (1)
[式(1)中、R及びRはそれぞれ独立に炭素数1〜4のアルキル基を示し、mは1〜6の整数を示す。]
A positive electrode containing a positive electrode active material, an electrolyte layer, and a negative electrode containing a negative electrode active material are provided.
The electrolyte layer contains an ionic liquid, at least one of grime represented by the following general formula (1), and a lithium salt.
The negative electrode active material has an operating potential nobler than 1 V with respect to the metallic lithium potential.
A lithium ion secondary battery in which the capacity of the negative electrode is larger than the capacity of the positive electrode.
R 1 O- (CH 2 CH 2 O) m- R 2 (1)
[In the formula (1), R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms, and m represents an integer of 1 to 6. ]
前記負極活物質が、組成式LiTi12で表されるスピネル型チタン酸リチウムを含む、請求項1に記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, wherein the negative electrode active material contains a spinel-type lithium titanate represented by the composition formula Li 4 Ti 5 O 12 . 前記電解質層が、テトラエチレングリコールジメチルエーテル及びリチウムビス(トリフルオロメタンスルホニル)イミドを含む、請求項1又は2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2, wherein the electrolyte layer contains tetraethylene glycol dimethyl ether and lithium bis (trifluoromethanesulfonyl) imide. 前記イオン液体のアニオンが、ビス(トリフルオロメタンスルホニル)イミドアニオンである、請求項1〜3のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the anion of the ionic liquid is a bis (trifluoromethanesulfonyl) imide anion.
JP2019569624A 2018-02-02 2019-02-01 Lithium ion secondary battery Pending JPWO2019151501A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018017405 2018-02-02
JP2018017405 2018-02-02
PCT/JP2019/003722 WO2019151501A1 (en) 2018-02-02 2019-02-01 Lithium-ion rechargeable battery

Publications (1)

Publication Number Publication Date
JPWO2019151501A1 true JPWO2019151501A1 (en) 2021-01-28

Family

ID=67479332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019569624A Pending JPWO2019151501A1 (en) 2018-02-02 2019-02-01 Lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JPWO2019151501A1 (en)
WO (1) WO2019151501A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293536A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery
JP5408702B2 (en) * 2009-01-23 2014-02-05 Necエナジーデバイス株式会社 Lithium ion battery
JP5487442B2 (en) * 2009-06-01 2014-05-07 日立化成株式会社 Lithium ion secondary battery
JP6112213B2 (en) * 2013-09-30 2017-04-12 日立化成株式会社 Lithium ion secondary battery
JP5765404B2 (en) * 2013-10-31 2015-08-19 株式会社豊田自動織機 Lithium ion secondary battery
JP2015201336A (en) * 2014-04-08 2015-11-12 日立化成株式会社 lithium ion secondary battery

Also Published As

Publication number Publication date
WO2019151501A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
KR101850901B1 (en) All solid lithium secondary battery comprising gel polymer electrolyte and method for manufacturing the same
KR102240980B1 (en) Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
JP5259078B2 (en) Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5333184B2 (en) All solid state secondary battery
JP5072110B2 (en) Positive electrode material used for lithium battery
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
KR20180099611A (en) Pseudo solid electrolyte and all-solid lithium secondary battery using thereof
JP2007194202A (en) Lithium ion secondary battery
JP2013214494A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR20190053111A (en) Positive electrode active material, methods for the manufacture thereof, and electrochemical cell comprising the positive electrode active material
KR20130033425A (en) Lithium secondary battery
KR20190106772A (en) Method for preparing negative electrode
EP3754763A1 (en) Negative electrode active material for lithium secondary battery, manufacturing method therefor, lithium secondary battery negative electrode comprising same, and lithium secondary battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
KR100485204B1 (en) Cathode for Lithium Secondary Battery
EP3128589B1 (en) Binder composition for use in secondary battery electrode, slurry composition for use in secondary battery electrode, secondary battery electrode, and secondary battery
EP3483951B1 (en) Method for manufacturing electrode for secondary battery suitable for long life
JP2023001306A (en) Electrode for lithium secondary battery
JP2018078030A (en) Electrolyte and all-solid-state secondary battery
KR20210126569A (en) Composition for electrolyte, non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN112055900A (en) Positive electrode for secondary battery and secondary battery comprising same
CN112154557A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
JP5565391B2 (en) Electrode active material, method for producing the electrode active material, and lithium secondary battery including the electrode active material
KR100897180B1 (en) Cathode Material Containing Ag Nano Particle as Conductive Material and Lithium Secondary Battery Comprising the Same
JP7412883B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same