JPWO2019117015A1 - Manufacturing method of three-dimensional model and powder material used for it - Google Patents

Manufacturing method of three-dimensional model and powder material used for it Download PDF

Info

Publication number
JPWO2019117015A1
JPWO2019117015A1 JP2019559592A JP2019559592A JPWO2019117015A1 JP WO2019117015 A1 JPWO2019117015 A1 JP WO2019117015A1 JP 2019559592 A JP2019559592 A JP 2019559592A JP 2019559592 A JP2019559592 A JP 2019559592A JP WO2019117015 A1 JPWO2019117015 A1 JP WO2019117015A1
Authority
JP
Japan
Prior art keywords
fluid
thin layer
infrared light
powder material
dimensional model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019559592A
Other languages
Japanese (ja)
Other versions
JP7205492B2 (en
Inventor
和也 磯部
和也 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2019117015A1 publication Critical patent/JPWO2019117015A1/en
Application granted granted Critical
Publication of JP7205492B2 publication Critical patent/JP7205492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/291Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)

Abstract

赤外光照射によって効率よく硬化させることが可能であり、強度が高く寸法精度の高い立体造形物を作製可能な粉末材料、およびこれを用いた立体造形物の製造方法を提供することを課題とする。上記課題解決のため、粉末材料を含む薄層の形成と、前記薄層に対する結合用流体の塗布と、前記薄層への赤外光照射と、を含む立体造形物の製造方法に使用される粉末材料である。粉末材料は、熱可塑性樹脂と、熱伝導率が2W/mK以上であり、かつバンドギャップが1.59eV以上である無機材料と、を含む、造形用粒子を含有する。An object of the present invention is to provide a powder material that can be efficiently cured by infrared light irradiation and can produce a three-dimensional model having high strength and high dimensional accuracy, and a method for producing the three-dimensional model using the powder material. To do. In order to solve the above problems, it is used in a method for manufacturing a three-dimensional model including forming a thin layer containing a powder material, applying a binding fluid to the thin layer, and irradiating the thin layer with infrared light. It is a powder material. The powder material contains molding particles including a thermoplastic resin and an inorganic material having a thermal conductivity of 2 W / mK or more and a band gap of 1.59 eV or more.

Description

本発明は、立体造形物の製造方法、およびそれに用いる粉末材料に関する。 The present invention relates to a method for producing a three-dimensional model and a powder material used therein.

近年、複雑な形状の立体造形物を比較的容易に製造できる様々な方法が開発されており、このような手法を利用したラピッドプロトタイピングやラピッドマニュファクチュアリングが注目されている。 In recent years, various methods have been developed that can relatively easily produce three-dimensional objects having complicated shapes, and rapid prototyping and rapid manufacturing using such methods are attracting attention.

このような立体造形物の製造方法の一つとして、熱可塑性樹脂を含む樹脂粒子からなる薄層を形成し、所望の領域の樹脂粒子どうしを焼結もしくは溶融結合(以下、単に「溶融結合」とも称する)させて、立体造形物を得る方法が提案されている。例えば、樹脂粒子どうしを溶融結合させる領域(以下、「硬化領域」とも称する)と、それ以外の領域(以下、「非硬化領域」とも称する)とで、エネルギーの吸収度合いが異なるように各種処理を行った後、薄層全面にエネルギーを照射することが提案されている(特許文献1)。当該方法によれば、エネルギーの照射を一括して行うことができるため、立体造形物を従来の方法より格段に速く形成できる、との利点がある。なお、下記特許文献1には、硬化領域のエネルギーの吸収度合いを非硬化領域のエネルギーの吸収度合いより高める方法として、硬化領域のみにエネルギー吸収剤を塗布することが記載されている。 As one of the methods for producing such a three-dimensional model, a thin layer made of resin particles containing a thermoplastic resin is formed, and the resin particles in a desired region are sintered or melt-bonded (hereinafter, simply "melt-bonded"). (Also referred to as), a method of obtaining a three-dimensional model has been proposed. For example, various treatments are performed so that the degree of energy absorption differs between the region where the resin particles are melt-bonded (hereinafter, also referred to as “cured region”) and the other region (hereinafter, also referred to as “non-cured region”). It has been proposed to irradiate the entire surface of the thin layer with energy after performing the above (Patent Document 1). According to this method, since energy irradiation can be performed collectively, there is an advantage that a three-dimensional model can be formed much faster than the conventional method. In addition, Patent Document 1 below describes that an energy absorber is applied only to the cured region as a method of increasing the degree of energy absorption in the cured region to be higher than the degree of energy absorption in the non-cured region.

特表2007−533480号公報Special Table 2007-533480

近年、上記特許文献1に記載の立体造形物の製造方法において、硬化領域に赤外光吸収剤を含む結合用流体を塗布し、非硬化領域には必要に応じてエネルギー吸収性の低い剥離用流体を塗布することが検討されている(以下、当該方式を「MJF方式」とも称する)。当該MJF方式において、上記結合用流体および剥離用流体の塗布後、赤外光を全面に照射すると、硬化領域中の赤外光吸収剤が赤外光を吸収し、発熱する。これにより、硬化領域における樹脂粒子の温度が高まり、樹脂粒子どうしが溶融結合する。しかしながら、当該方法では、樹脂粒子の内部まで熱が伝わるまでに時間がかかる。したがって、より効率よく熱可塑性樹脂を溶融させる方法が求められていた。 In recent years, in the method for producing a three-dimensional model described in Patent Document 1, a binding fluid containing an infrared light absorber is applied to a cured region, and a non-cured region is used for peeling with low energy absorption as necessary. It is being considered to apply a fluid (hereinafter, the method is also referred to as "MJF method"). In the MJF method, when the entire surface is irradiated with infrared light after the coupling fluid and the peeling fluid are applied, the infrared light absorber in the cured region absorbs the infrared light and generates heat. As a result, the temperature of the resin particles in the cured region rises, and the resin particles are melt-bonded to each other. However, in this method, it takes time for heat to be transferred to the inside of the resin particles. Therefore, there has been a demand for a method for melting the thermoplastic resin more efficiently.

本発明は、上記課題を鑑みてなされたものである。すなわち本発明は、赤外光照射によって効率よく硬化させることが可能であり、強度が高くかつ寸法精度の高い立体造形物を作製可能な粉末材料、およびこれを用いた立体造形物の製造方法を提供する。 The present invention has been made in view of the above problems. That is, the present invention provides a powder material that can be efficiently cured by infrared light irradiation and can produce a three-dimensional model having high strength and high dimensional accuracy, and a method for producing the three-dimensional model using the powder material. provide.

本発明の第1は、粉末材料にある。
[1]粉末材料を含む薄層の形成と、前記薄層に対する結合用流体の塗布と、前記薄層への赤外光照射と、を含む立体造形物の製造方法に使用される粉末材料であって、熱可塑性樹脂と、熱伝導率が2W/mK以上であり、かつバンドギャップが1.59eV以上である無機材料と、を含む、造形用粒子を含有する、粉末材料。
The first of the present invention lies in the powder material.
[1] A powder material used in a method for producing a three-dimensional model including the formation of a thin layer containing a powder material, the application of a binding fluid to the thin layer, and the irradiation of the thin layer with infrared light. A powder material containing molding particles, which comprises a thermoplastic resin and an inorganic material having a thermal conductivity of 2 W / mK or more and a band gap of 1.59 eV or more.

[2]前記無機材料の平均粒子径が0.01〜50μmである、[1]に記載の粉末材料。
[3]前記無機材料が、鱗片状である、[1]または[2]に記載の粉末材料。
[2] The powder material according to [1], wherein the inorganic material has an average particle size of 0.01 to 50 μm.
[3] The powder material according to [1] or [2], wherein the inorganic material is scaly.

本発明の第2は、以下の立体造形物の製造方法にある。
[4]上記[1]〜[3]のいずれか一項に記載の粉末材料を含む薄層を形成する薄層形成工程と、赤外光吸収剤を含む結合用流体を、前記薄層の特定の領域に塗布する流体塗布工程と、前記流体塗布工程後の前記薄層に赤外光を照射し、前記結合用流体を塗布した領域の前記造形用粒子中の前記熱可塑性樹脂を溶融させて造形物層を形成する赤外光照射工程と、を含む、立体造形物の製造方法。
The second aspect of the present invention is the following method for manufacturing a three-dimensional model.
[4] A thin layer forming step of forming a thin layer containing the powder material according to any one of the above [1] to [3] and a binding fluid containing an infrared light absorber are applied to the thin layer. The fluid coating step of applying to a specific region and the thin layer after the fluid coating step are irradiated with infrared light to melt the thermoplastic resin in the molding particles of the region to which the binding fluid is applied. A method for manufacturing a three-dimensional model, including an infrared light irradiation step of forming a model layer.

[5]前記薄層形成工程、前記流体塗布工程、および前記赤外光照射工程を、複数回繰り返すことで、前記造形物層を積層し、立体造形物を形成する、[4]に記載の立体造形物の製造方法。
[6]前記流体塗布工程で、前記結合用流体より赤外光吸収の少ない剥離用流体を、前記結合用流体の塗布領域と隣接する領域に塗布する、[4]または[5]に記載の立体造形物の製造方法。
[7]前記流体塗布工程で、前記結合用流体および前記剥離用流体をインクジェット法で塗布する、[6]に記載の立体造形物の製造方法。
[5] The step according to [4], wherein the thin layer forming step, the fluid coating step, and the infrared light irradiation step are repeated a plurality of times to stack the shaped object layers to form a three-dimensional shaped object. A method for manufacturing a three-dimensional model.
[6] The method according to [4] or [5], wherein in the fluid coating step, a peeling fluid having less infrared light absorption than the coupling fluid is applied to a region adjacent to the coating region of the coupling fluid. A method for manufacturing a three-dimensional model.
[7] The method for producing a three-dimensional model according to [6], wherein in the fluid coating step, the bonding fluid and the peeling fluid are coated by an inkjet method.

本発明の粉末材料は、赤外光照射によって効率よく硬化させることが可能である。また本発明の粉末材料によれば、強度が高く、かつ寸法精度の高い立体造形物が得られる。 The powder material of the present invention can be efficiently cured by infrared light irradiation. Further, according to the powder material of the present invention, a three-dimensional model having high strength and high dimensional accuracy can be obtained.

図1は本発明の一実施形態における立体造形装置の構成を概略的に示す側面図である。FIG. 1 is a side view schematically showing a configuration of a three-dimensional modeling apparatus according to an embodiment of the present invention. 図2は本発明の一実施形態における立体造形装置の制御系の主要部を示す図である。FIG. 2 is a diagram showing a main part of a control system of a three-dimensional modeling apparatus according to an embodiment of the present invention.

本発明の粉末材料は、前述のMJF方式に適用される材料である。前述のように、MJF方法では、樹脂粒子を含む薄層に、赤外光吸収剤を含む結合用流体、および必要に応じて結合用流体より赤外光吸収の少ない剥離用流体を塗布する。そして、赤外光を全面に照射することで、結合用流体を塗布した領域の温度のみを上昇させて、樹脂粒子を溶融結合させる。しかしながら、従来の樹脂粒子では、赤外光照射時に内部まで熱が伝わり難く、十分に溶融させるために時間がかかる等の課題があった。 The powder material of the present invention is a material applied to the above-mentioned MJF method. As described above, in the MJF method, a binding fluid containing an infrared light absorber and, if necessary, a peeling fluid having less infrared light absorption than the binding fluid are applied to the thin layer containing the resin particles. Then, by irradiating the entire surface with infrared light, only the temperature of the region to which the bonding fluid is applied is raised, and the resin particles are melt-bonded. However, the conventional resin particles have a problem that heat is not easily transferred to the inside when irradiated with infrared light, and it takes time to sufficiently melt the resin particles.

これに対し、本発明の粉末材料に含まれる造形用粒子には、熱可塑性樹脂と共に、熱伝導率が2W/mK以上、かつバンドギャップが1.59eV以上である無機材料が含まれる。造形用粒子に熱伝導性の比較的高い無機材料が含まれると、発熱した赤外光吸収剤からの熱が、無機材料を介して熱可塑性樹脂に伝わる。つまり、造形用粒子内部まで、熱が伝わることで、熱可塑性樹脂が効率よく溶融する。また、上記無機材料は、バンドギャップが十分に大きく、赤外光を殆ど吸収しない。したがって、立体造形物を作製する際、硬化領域の表面だけでなく、内部まで赤外光を照射することができ、造形用粒子を十分に溶融結合させることができる。また、無機材料が赤外光を吸収しないことから、全面に赤外光が照射されたとしても、非硬化領域が発熱せず、硬化領域のみの粉末材料を硬化させることができる。以下、粉末材料について先に説明し、その後、当該粉末材料を用いた立体造形物の製造方法を説明する。 On the other hand, the molding particles contained in the powder material of the present invention include an inorganic material having a thermal conductivity of 2 W / mK or more and a band gap of 1.59 eV or more, together with a thermoplastic resin. When the molding particles contain an inorganic material having relatively high thermal conductivity, the heat from the generated infrared light absorber is transferred to the thermoplastic resin via the inorganic material. That is, the thermoplastic resin is efficiently melted by transferring heat to the inside of the molding particles. In addition, the inorganic material has a sufficiently large bandgap and hardly absorbs infrared light. Therefore, when producing a three-dimensional model, infrared light can be irradiated not only to the surface of the cured region but also to the inside, and the particles for modeling can be sufficiently melt-bonded. Further, since the inorganic material does not absorb infrared light, even if the entire surface is irradiated with infrared light, the non-cured region does not generate heat, and the powder material only in the cured region can be cured. Hereinafter, the powder material will be described first, and then a method for manufacturing a three-dimensional model using the powder material will be described.

1.粉末材料について
本発明の粉末材料には、少なくとも造形用粒子が含まれる。粉末材料には、必要に応じて各種添加剤や、フローエージェント、充填材等が含まれていてもよい。
1. 1. About powder material The powder material of the present invention includes at least molding particles. The powder material may contain various additives, a flow agent, a filler, and the like, if necessary.

造形用粒子は、熱可塑性樹脂と無機材料とを含む粒子である。造形用粒子の形状は特に制限されず、球状や角柱状等、いずれの形状であってもよい。ただし、粉末材料の流動性を良好にし、かつ寸法精度よく立体造形物を作製するとの観点から、球状であることが好ましい。また、造形用粒子の一部のみ、例えば表面側にのみ無機材料が含まれていてもよいが、熱伝導性の観点から、造形用粒子内に均一に無機材料が含まれていることが好ましい。 The molding particles are particles containing a thermoplastic resin and an inorganic material. The shape of the molding particles is not particularly limited, and may be any shape such as spherical or prismatic. However, from the viewpoint of improving the fluidity of the powder material and producing a three-dimensional model with high dimensional accuracy, it is preferable that the powder material has a spherical shape. Further, the inorganic material may be contained only in a part of the modeling particles, for example, only on the surface side, but from the viewpoint of thermal conductivity, it is preferable that the modeling particles uniformly contain the inorganic material. ..

ここで、造形用粒子の平均粒子径は特に制限されないが、2μm以上210μm以下であることが好ましく、10μm以上80μm以下であることがより好ましい。造形用粒子の平均粒子径が2μm以上であると、後述の立体造形物の製造方法で作製する造形物層の厚みが十分に厚くなりやすく、効率良く立体造形物を製造することが可能となる。一方、造形用粒子の平均粒子径が210μm以下であると、複雑な形状の立体造形物も作製することが可能となる。 Here, the average particle size of the modeling particles is not particularly limited, but is preferably 2 μm or more and 210 μm or less, and more preferably 10 μm or more and 80 μm or less. When the average particle size of the modeling particles is 2 μm or more, the thickness of the modeled object layer produced by the method for producing a three-dimensional object described later tends to be sufficiently thick, and it becomes possible to efficiently produce a three-dimensional object. .. On the other hand, when the average particle size of the modeling particles is 210 μm or less, it is possible to produce a three-dimensional model having a complicated shape.

造形用粒子の平均粒子径は、動的光散乱法により測定した体積平均粒子径とする。体積平均粒子径は、湿式分散機を備えたレーザ回折式粒度分布測定装置(マイクロトラックベル社製、MT3300EXII)により測定することができる。 The average particle size of the modeling particles shall be the volume average particle size measured by the dynamic light scattering method. The volume average particle size can be measured by a laser diffraction type particle size distribution measuring device (MT3300EXII manufactured by Microtrac Bell) equipped with a wet disperser.

造形用粒子に含まれる無機材料の熱伝導率は、2W/mK以上であり、2〜250W/mKであることがより好ましく、4〜250W/mKであることがさらに好ましい。無機材料の熱伝導率が、上記範囲であると、赤外光吸収剤から無機材料に熱が伝わりやすく、さらには無機材料から熱可塑性樹脂に効率よく熱が伝わりやすくなる。上記熱伝導率は、C−THERM社製熱伝導率測定装置TCi等を用い、MTPS(非定常平面熱源)メソッドを用いて測定される。 The thermal conductivity of the inorganic material contained in the molding particles is 2 W / mK or more, more preferably 2 to 250 W / mK, and further preferably 4 to 250 W / mK. When the thermal conductivity of the inorganic material is within the above range, heat is easily transferred from the infrared light absorber to the inorganic material, and further, heat is easily transferred from the inorganic material to the thermoplastic resin. The thermal conductivity is measured by using the MTPS (Unsteady Plane Heat Source) method using a thermal conductivity measuring device TCi or the like manufactured by C-THERM.

一方、無機材料のバンドギャップは、1.59eV以上であり、2〜10eVであることがより好ましく、5〜10eVであることがさらに好ましい。無機材料が赤外光によって励起されないようなバンドギャップを有することで、赤外光を受けても発熱しなくなる。本明細書でいう「赤外光」とは780nm〜3000nmの光である。したがって、バンドギャップが1.59eV以上であれば、赤外光照射によって無機材料が赤外光を吸収し難い。上記無機材料のバンドギャップは、理研計器社製AC3等を用い、照射する紫外光のエネルギーに対応する光電子の放出を観測することで測定される。 On the other hand, the band gap of the inorganic material is 1.59 eV or more, more preferably 2 to 10 eV, and even more preferably 5 to 10 eV. Since the inorganic material has a band gap that is not excited by infrared light, it does not generate heat even when it receives infrared light. The "infrared light" referred to in the present specification is light having a diameter of 780 nm to 3000 nm. Therefore, when the band gap is 1.59 eV or more, it is difficult for the inorganic material to absorb infrared light by infrared light irradiation. The band gap of the inorganic material is measured by observing the emission of photoelectrons corresponding to the energy of the ultraviolet light to be irradiated using AC3 or the like manufactured by RIKEN Keiki Co., Ltd.

造形用粒子に含まれる無機材料は、上記熱伝導率およびバンドギャップを有するものであればその形状は特に制限されず、例えば粒子状であってもよく、繊維状であってもよく、鱗片状であってもよい。熱伝導性の観点からは、鱗片状であることが特に好ましい。なお、本明細書において、「鱗片状」とは、平ら、もしくは湾曲した板状であることをいう。 The shape of the inorganic material contained in the molding particles is not particularly limited as long as it has the above-mentioned thermal conductivity and band gap, and may be, for example, particulate, fibrous, or scaly. It may be. From the viewpoint of thermal conductivity, it is particularly preferable that it is scaly. In addition, in this specification, "scaly" means a flat or curved plate shape.

上記無機材料の平均粒子径は、上記熱伝導性を発現可能であれば特に制限されないが、0.01〜50μmであることが好ましく、0.01〜30μmであることがより好ましく、0.01〜20μmであることがさらに好ましい。無機材料の平均粒子径が0.01μm以上であると、造形用粒子内で効率よく熱を伝えることが可能となる。一方、平均粒子径が50μm以下であると、熱可塑性樹脂が溶融して、造形用粒子どうしが結合する際の結合を阻害し難く、強度の高い立体造形物が得られやすくなる。無機材料の平均粒子径は、体積平均粒子径であり、造形用粒子中の熱可塑性樹脂を溶媒等によって除去した後、上記レーザ回折式粒度分布測定装置等にて測定することで特定できる。 The average particle size of the inorganic material is not particularly limited as long as the thermal conductivity can be exhibited, but is preferably 0.01 to 50 μm, more preferably 0.01 to 30 μm, and 0.01. It is more preferably ~ 20 μm. When the average particle size of the inorganic material is 0.01 μm or more, heat can be efficiently transferred in the molding particles. On the other hand, when the average particle diameter is 50 μm or less, the thermoplastic resin melts, and it is difficult to hinder the bonding when the modeling particles are bonded to each other, and it becomes easy to obtain a high-strength three-dimensional model. The average particle size of the inorganic material is the volume average particle size, and can be specified by removing the thermoplastic resin in the molding particles with a solvent or the like and then measuring with the laser diffraction type particle size distribution measuring device or the like.

また、上記無機材料が鱗片状である場合、無機材料を平面視したときの形状は特に制限されず、円形状であってもよく、楕円状であってもよく、多角形状等であってもよい。このとき、厚みと長径との比(長径/厚み)は、2〜100であることが好ましく、5〜100であることがより好ましい。また、厚みは、0.1〜10μmであることが好ましく、0.1〜5μmであることがより好ましい。厚みが10μm以下であると、無機材料の表面積が大きくなりやすく、無機材料によって効率よく熱を伝えやすくなる。一方、無機材料が繊維状である場合、その繊維長は、0.1〜100μmであることが好ましく、0.1〜50μmであることがより好ましい。また、繊維径は、0.02〜5μmであることが好ましく、0.02〜3μmであることがより好ましい。 When the inorganic material is scaly, the shape of the inorganic material when viewed in a plane is not particularly limited, and may be circular, elliptical, polygonal, or the like. Good. At this time, the ratio of the thickness to the major axis (major axis / thickness) is preferably 2 to 100, and more preferably 5 to 100. The thickness is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm. When the thickness is 10 μm or less, the surface area of the inorganic material tends to be large, and the inorganic material facilitates efficient heat transfer. On the other hand, when the inorganic material is fibrous, the fiber length is preferably 0.1 to 100 μm, more preferably 0.1 to 50 μm. The fiber diameter is preferably 0.02 to 5 μm, more preferably 0.02 to 3 μm.

上記無機材料を構成する材料は、上記熱伝導率およびバンドギャップを満たすものであれば特に制限されず、その例には、酸化アルミニウムや酸化マグネシウム、タルク等の金属酸化物;炭化ケイ素や窒化ホウ素や窒化アルミニウム等の半金属または金属の炭化物や窒化物等が含まれる。造形用粒子には、無機材料が一種のみ含まれていてもよく、二種以上含まれていてもよい。これらの中でも、赤外光を吸収し難いとの観点から白色系の無機材料であることが好ましい。また、酸化マグネシウム、タルク、窒化ホウ素、または窒化アルミニウムがより好ましく、窒化ホウ素であることが特に好ましい。 The material constituting the inorganic material is not particularly limited as long as it satisfies the thermal conductivity and the band gap, and examples thereof include metal oxides such as aluminum oxide, magnesium oxide, and talc; silicon carbide and boron nitride. And semi-metals such as aluminum nitride and carbides of metals and nitrides are included. The molding particles may contain only one kind of inorganic material, or may contain two or more kinds of inorganic materials. Among these, a white inorganic material is preferable from the viewpoint that it is difficult to absorb infrared light. Further, magnesium oxide, talc, boron nitride, or aluminum nitride is more preferable, and boron nitride is particularly preferable.

上記無機材料は、造形用粒子に対して1〜60質量%含まれていることが好ましく、3〜60質量%含まれていることがより好ましく、5〜60質量%含まれていることがさらに好ましい。造形用粒子中に1質量%以上無機材料が含まれると、立体造形物作製の際に、造形用粒子内で熱が伝わりやすくなる。一方、造形用粒子中の無機材料の量が60質量%以下であると、相対的に熱可塑性樹脂の量が十分となり、強度の高い立体造形物が得られやすくなる。 The inorganic material is preferably contained in an amount of 1 to 60% by mass, more preferably 3 to 60% by mass, and further preferably 5 to 60% by mass with respect to the molding particles. preferable. When 1% by mass or more of an inorganic material is contained in the modeling particles, heat is easily transferred in the modeling particles when producing a three-dimensional modeled object. On the other hand, when the amount of the inorganic material in the molding particles is 60% by mass or less, the amount of the thermoplastic resin is relatively sufficient, and it becomes easy to obtain a three-dimensional model having high strength.

一方、造形用粒子に含まれる熱可塑性樹脂は、立体造形物の形成方法に応じて適宜選択される。当該熱可塑性樹脂としては、一般的なMJF方式用の樹脂粒子に含まれる樹脂と同様のものを用いることができる。造形用粒子には、熱可塑性樹脂が一種のみ含まれていてもよく、二種以上含まれていてもよい。 On the other hand, the thermoplastic resin contained in the molding particles is appropriately selected according to the method for forming the three-dimensional model. As the thermoplastic resin, the same resin as that contained in the resin particles for a general MJF method can be used. The molding particles may contain only one type of thermoplastic resin, or may contain two or more types of thermoplastic resin.

ただし、熱可塑性樹脂の溶融温度が高すぎると、立体造形物の作製時に、造形用粒子を溶融させるために赤外光を長時間照射する必要が生じ、立体造形物の作製に時間がかかったりすること等がある。そこで、熱可塑性樹脂の溶融温度は、300℃以下であることが好ましく、230℃以下であることがより好ましい。一方、得られる立体造形物の耐熱性等の観点から、熱可塑性樹脂の溶融温度は100℃以上であることが好ましく、150℃以上であることがより好ましい。溶融温度は、熱可塑性樹脂の種類等によって調整することができる。 However, if the melting temperature of the thermoplastic resin is too high, it will be necessary to irradiate infrared light for a long time in order to melt the modeling particles when producing the three-dimensional model, and it will take time to produce the three-dimensional model. There are things to do. Therefore, the melting temperature of the thermoplastic resin is preferably 300 ° C. or lower, more preferably 230 ° C. or lower. On the other hand, from the viewpoint of heat resistance of the obtained three-dimensional model, the melting temperature of the thermoplastic resin is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. The melting temperature can be adjusted depending on the type of thermoplastic resin and the like.

ここで、熱可塑性樹脂は結晶性の樹脂であってもよく、非晶性の樹脂であってもよい。熱可塑性樹脂の例には、ポリアミド12、ポリアミド6、ポリカーボネート、ポリオキシメチレン、ポリメチルメタクリレート、ポリエチレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリサルホン、ポリアクリロニトリル、ポリ2−エチルヘキシルメタクリレート、ポリフェニレンサルファイド等が含まれる。これらの中でも、汎用性や取り扱い性等の観点からポリアミド12またはポリプロピレンが好ましい。 Here, the thermoplastic resin may be a crystalline resin or an amorphous resin. Examples of thermoplastic resins include polyamide 12, polyamide 6, polycarbonate, polyoxymethylene, polymethylmethacrylate, polyethylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polysulfone, polyacrylonitrile, poly2-ethylhexyl. Includes methacrylate, polyphenylene sulfide and the like. Among these, polyamide 12 or polypropylene is preferable from the viewpoint of versatility and handleability.

ここで、熱可塑性樹脂は、造形用粒子に対して、40〜99質量%含まれることが好ましく、40〜97質量%含まれることがより好ましい。熱可塑性樹脂が40質量%含まれると、強度の高い立体造形物が得られやすくなる。一方、熱可塑性樹脂の量が97質量%以下であると、相対的に無機材料の量が多くなり、効率よく熱可塑性樹脂を溶融させることが可能となる。 Here, the thermoplastic resin is preferably contained in an amount of 40 to 99% by mass, more preferably 40 to 97% by mass, based on the molding particles. When 40% by mass of the thermoplastic resin is contained, it becomes easy to obtain a three-dimensional model having high strength. On the other hand, when the amount of the thermoplastic resin is 97% by mass or less, the amount of the inorganic material is relatively large, and the thermoplastic resin can be efficiently melted.

また、粉末材料には、本発明の目的および効果を損なわない範囲で、造形用粒子以外の成分が含まれていてもよく、例えば各種添加剤が含まれていてもよい。各種添加剤の例には、酸化防止剤、酸性化合物及びその誘導体、滑剤、紫外線吸収剤、光安定剤、核剤、難燃剤、衝撃改良剤、発泡剤、着色剤、有機過酸化物、展着剤、粘着剤等が含まれる。粉末材料には、これらが一種のみ含まれていてもよく、二種以上含まれていてもよい。 Further, the powder material may contain components other than the molding particles as long as the object and effect of the present invention are not impaired, and for example, various additives may be contained. Examples of various additives include antioxidants, acidic compounds and derivatives thereof, lubricants, UV absorbers, light stabilizers, nucleating agents, flame retardants, impact improvers, foaming agents, colorants, organic peroxides, and exhibitions. Includes adhesives, adhesives, etc. The powder material may contain only one kind of these, or may contain two or more kinds of these.

さらに、粉末材料には、本発明の目的および効果を損なわない範囲で、充填材が含まれていてもよい。充填材の例には、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、ガラスカットファイバー、ガラスミルドファイバー、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、石膏、石膏ウィスカー、焼成カオリン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウィスカー、金属粉、セラミックウィスカー、チタン酸カリウム、窒化ホウ素、グラファイト、炭素繊維等の無機充填材;多糖類のナノファイバー;各種ポリマー等が含まれる。粉末材料には、これらが一種のみ含まれていてもよく、二種以上含まれていてもよい。 Further, the powder material may contain a filler as long as the object and effect of the present invention are not impaired. Examples of fillers are talc, calcium carbonate, zinc carbonate, wallastonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, glass cut. Fiber, glass milled fiber, glass flakes, glass powder, silicon carbide, silicon nitride, gypsum, gypsum whiskers, calcined kaolin, carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fibers, metal whiskers, metal powder , Ceramic whiskers, potassium titanate, boron nitride, graphite, carbon fibers and other inorganic fillers; polysaccharide nanofibers; various polymers and the like. The powder material may contain only one kind of these, or may contain two or more kinds of these.

また、粉末材料には、本発明の目的および効果を損なわない範囲で、フローエージェントが含まれていてもよい。フローエージェントは、摩擦係数が小さく、自己潤滑性を有する材料であればよい。このようなフローエージェントの例には、二酸化ケイ素および窒化ホウ素が含まれる。これらのフローエージェントは、一種のみ含まれていてもよく、双方が含まれていてもよい。フローエージェントの量は、粉末材料の流動性が向上し、かつ粉末材料の溶融結合が十分に生じる範囲で適宜設定することができ、たとえば、粉末材料の全質量に対して、0質量%より多く2質量%未満とすることができる。 In addition, the powder material may contain a flow agent as long as the object and effect of the present invention are not impaired. The flow agent may be a material having a small coefficient of friction and self-lubricating property. Examples of such flow agents include silicon dioxide and boron nitride. Only one of these flow agents may be included, or both may be included. The amount of the flow agent can be appropriately set within a range in which the fluidity of the powder material is improved and the melt bond of the powder material is sufficiently generated, for example, more than 0% by mass with respect to the total mass of the powder material. It can be less than 2% by mass.

上記粉末材料の調製方法は特に制限されず、例えば以下の方法とすることができる。まず、熱可塑性樹脂および無機材料を準備する。熱可塑性樹脂は、熱可塑性樹脂を調製してもよく、市販品を用いてもよい。また、無機材料は平均粒子径を揃えるため、必要に応じて機械的粉砕や分級等を行ってもよい。そして、熱可塑性樹脂および無機材料を加熱混合する。加熱温度は、熱可塑性樹脂の種類に応じて適宜選択され、例えば熱可塑性樹脂が溶融する温度以上であることが好ましい。そして混合物を冷却した後、所望の大きさになるまで粉砕し、粉末材料とする。このとき、必要に応じて分級等を行ってもよい。 The method for preparing the powder material is not particularly limited, and for example, the following method can be used. First, a thermoplastic resin and an inorganic material are prepared. As the thermoplastic resin, a thermoplastic resin may be prepared, or a commercially available product may be used. Further, since the inorganic materials have the same average particle size, they may be mechanically pulverized or classified as necessary. Then, the thermoplastic resin and the inorganic material are heated and mixed. The heating temperature is appropriately selected according to the type of the thermoplastic resin, and is preferably at least the temperature at which the thermoplastic resin melts, for example. Then, after cooling the mixture, it is pulverized to a desired size to obtain a powder material. At this time, classification or the like may be performed as necessary.

2.立体造形物の製造方法
次に、上記粉末材料を用いた立体造形物の製造方法について説明する。当該立体造形物の製造方法では、(1)上記粉末材料を含む薄層を形成する薄層形成工程と、(2)赤外光吸収剤を含む結合用流体を前記薄層の特定の領域に塗布する流体塗布工程と、(3)前記流体塗布工程後の前記薄層に赤外光を照射し、前記結合用流体を塗布した領域の前記造形用粒子中の前記熱可塑性樹脂を溶融させて造形物層を形成する赤外光照射工程と、を少なくとも行う。上記流体塗布工程で、必要に応じて、結合用流体の塗布領域と隣接する領域に、結合用流体より赤外光吸収の少ない剥離用流体を塗布してもよい。
2. 2. Method for manufacturing a three-dimensional model Next, a method for manufacturing a three-dimensional model using the above powder material will be described. In the method for producing the three-dimensional model, (1) a thin layer forming step of forming a thin layer containing the powder material, and (2) a binding fluid containing an infrared light absorber are applied to a specific region of the thin layer. The fluid coating step of coating and (3) the thin layer after the fluid coating step are irradiated with infrared light to melt the thermoplastic resin in the modeling particles in the region to which the binding fluid is applied. At least the infrared light irradiation step of forming the modeled object layer is performed. In the above-mentioned fluid coating step, if necessary, a peeling fluid having less infrared light absorption than the coupling fluid may be coated on the region adjacent to the coating region of the coupling fluid.

前述のように、上記粉末材料に含まれる造形用粒子は、赤外光吸収剤が発する熱を効率よく伝えることができる。したがって、赤外光照射によって、結合用流体を塗布した領域の粉末材料を効率よく硬化させることができる。また、当該粉末材料の造形用粒子を用いることで、上記薄層の表面だけでなく、内部まで赤外光を照射することができ、硬化領域において、熱可塑性樹脂どうしを十分に結合させることができる。その結果、強度が高く、かつ寸法精度に優れた立体造形物が得られる。以下、当該立体造形物の製造方法について、詳しく説明する。 As described above, the molding particles contained in the powder material can efficiently transfer the heat generated by the infrared light absorber. Therefore, the powder material in the region coated with the bonding fluid can be efficiently cured by infrared light irradiation. Further, by using the molding particles of the powder material, infrared light can be irradiated not only to the surface of the thin layer but also to the inside, and the thermoplastic resins can be sufficiently bonded to each other in the cured region. it can. As a result, a three-dimensional model having high strength and excellent dimensional accuracy can be obtained. Hereinafter, a method for manufacturing the three-dimensional model will be described in detail.

(1)薄層形成工程
薄層形成工程では、上述の粉末材料を主に含む薄層を形成する。薄層の形成方法は、所望の厚みの層を形成可能であれば特に制限されない。例えば、本工程は、立体造形装置の粉末供給部から供給された粉末材料を、リコータによって造形ステージ上に平らに敷き詰める工程とすることができる。薄層は、造形ステージ上に直接形成してもよいし、すでに敷き詰められている粉末材料またはすでに形成されている造形物層の上に接するように形成してもよい。
(1) Thin layer forming step In the thin layer forming step, a thin layer mainly containing the above-mentioned powder material is formed. The method for forming the thin layer is not particularly limited as long as a layer having a desired thickness can be formed. For example, this step can be a step of laying the powder material supplied from the powder supply unit of the three-dimensional modeling apparatus flat on the modeling stage by a recorder. The thin layer may be formed directly on the modeling stage or may be formed so as to be in contact with the already spread powder material or the already formed modeling layer.

薄層の厚さは、所望の造形物層の厚さと同じとする。薄層の厚さは、製造しようとする立体造形物の精度に応じて任意に設定することができるが、通常、0.01mm以上0.30mm以下である。薄層の厚さを0.01mm以上とすることで、新たな造形物層を形成するための赤外光照射(後述の赤外光照射工程における赤外光照射)によって、既に作製した造形物層が溶融することを防ぐことができる。また、薄層の厚さが0.01mm以上であると、粉末材料を均一に敷き詰めやすくなる。また、薄層の厚さを0.30mm以下とすることで、後述の赤外光照射工程において、赤外光を薄層の下部まで照射することが可能となり、硬化領域の熱可塑性樹脂を厚み方向の全体にわたって溶融させることが可能となる。前記観点からは、薄層の厚さは0.01mm以上0.20mm以下であることがより好ましい。 The thickness of the thin layer is the same as the thickness of the desired model layer. The thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional model to be manufactured, but is usually 0.01 mm or more and 0.30 mm or less. By setting the thickness of the thin layer to 0.01 mm or more, the modeled object already produced by infrared light irradiation (infrared light irradiation in the infrared light irradiation step described later) for forming a new modeled object layer. It is possible to prevent the layer from melting. Further, when the thickness of the thin layer is 0.01 mm or more, it becomes easy to spread the powder material uniformly. Further, by setting the thickness of the thin layer to 0.30 mm or less, it is possible to irradiate the lower part of the thin layer with infrared light in the infrared light irradiation step described later, and the thermoplastic resin in the cured region is thickened. It is possible to melt in the entire direction. From the above viewpoint, the thickness of the thin layer is more preferably 0.01 mm or more and 0.20 mm or less.

薄層の形成後、もしくは薄層を形成する前に、必要に応じて粉末材料を加熱する予備加熱を行ってもよい。予備加熱を行うと、赤外光照射工程において粉末材料(熱可塑性樹脂)の溶融に必要なエネルギー量が少なくなり、赤外光照射工程で照射する光量を少なくしたり、時間を短くしたりすることが可能となる。予備加熱温度は、造形用粒子に含まれる熱可塑性樹脂が溶融する温度より低い温度であり、さらに後述の流体塗布工程で塗布する結合用流体や剥離用流体が含む溶媒の沸点より低い温度であることが好ましい。具体的には、熱可塑性樹脂の融点、ならびに結合用流体および剥離用流体が含む溶媒の沸点のうちの一番低い温度をT(℃)としたとき、(T−50)℃以上(T−5)℃以下であることが好ましく、(T−30)℃以上(T−5)℃以下であることがより好ましい。またこのとき、加熱時間は1〜60秒とすることが好ましく、3〜20秒とすることがより好ましい。加熱温度および加熱時間を上記範囲とすることで、赤外光照射工程における赤外光照射量を低減することができる。 Preheating may be performed, if necessary, to heat the powder material after the formation of the thin layer or before the formation of the thin layer. When preheating is performed, the amount of energy required for melting the powder material (thermoplastic resin) in the infrared light irradiation step is reduced, and the amount of light irradiated in the infrared light irradiation step is reduced or the time is shortened. It becomes possible. The preheating temperature is a temperature lower than the temperature at which the thermoplastic resin contained in the molding particles melts, and is lower than the boiling point of the solvent contained in the bonding fluid or the peeling fluid to be applied in the fluid coating step described later. Is preferable. Specifically, when T (° C.) is the lowest temperature of the melting point of the thermoplastic resin and the boiling point of the solvent contained in the bonding fluid and the stripping fluid, (T-50) ° C. or higher (T-). 5) The temperature is preferably 1 ° C. or lower, and more preferably (T-30) ° C. or higher and (T-5) ° C. or lower. At this time, the heating time is preferably 1 to 60 seconds, more preferably 3 to 20 seconds. By setting the heating temperature and the heating time within the above ranges, the amount of infrared light irradiation in the infrared light irradiation step can be reduced.

(2)流体塗布工程
流体塗布工程では、上記薄層形成工程で形成した薄層の特定の領域に、結合用流体を塗布する。また上述のように、必要に応じて、結合用流体の塗布領域と隣接する領域に、剥離用流体を塗布してもよい。例えば、造形物層を形成すべき領域(硬化領域)に選択的に結合用流体を塗布し、造形物層を形成しない領域(非硬化領域)には、剥離用流体を塗布することができる。結合用流体および剥離用流体は、どちらを先に塗布してもよいが、得られる立体造形物の寸法精度の観点から、結合用流体を先に塗布することが好ましい。
(2) Fluid coating step In the fluid coating step, the binding fluid is applied to a specific region of the thin layer formed in the thin layer forming step. Further, as described above, the peeling fluid may be applied to the region adjacent to the coating region of the coupling fluid, if necessary. For example, the bonding fluid can be selectively applied to the region where the modeled object layer should be formed (cured region), and the peeling fluid can be applied to the region where the modeled product layer is not formed (non-cured region). Either the binding fluid or the peeling fluid may be applied first, but from the viewpoint of the dimensional accuracy of the obtained three-dimensional model, it is preferable to apply the bonding fluid first.

結合用流体および剥離用流体の塗布方法は特に制限されず、例えばディスペンサーによる塗布や、インクジェット法による塗布、スプレー塗布等とすることができるが、高速で所望の領域に結合用流体および剥離用流体を塗布可能であるとの観点から少なくとも一方を、インクジェット法で塗布することが好ましく、両方をインクジェット法で塗布することがより好ましい。 The method of applying the binding fluid and the peeling fluid is not particularly limited, and for example, coating by a dispenser, coating by an inkjet method, spray coating, or the like can be performed, but the bonding fluid and the peeling fluid can be applied to a desired region at high speed. From the viewpoint that the above can be applied, it is preferable to apply at least one of them by an inkjet method, and it is more preferable to apply both by an inkjet method.

結合用流体および剥離用流体の塗布量は、それぞれ薄層1mm当たり、0.1〜50μLであることが好ましく、0.2〜40μLであることがより好ましい。結合用流体および剥離用流体の塗布量が当該範囲であると、硬化領域、および非硬化領域の粉末材料に、それぞれ結合用流体および剥離用流体を十分に含浸させることができ、寸法精度の良好な立体造形物を形成することができる。The coating amounts of the binding fluid and the peeling fluid are preferably 0.1 to 50 μL, and more preferably 0.2 to 40 μL, respectively, per 1 mm 3 of the thin layer. When the coating amounts of the binding fluid and the peeling fluid are within the above range, the powder material in the cured region and the non-cured region can be sufficiently impregnated with the binding fluid and the peeling fluid, respectively, and the dimensional accuracy is good. It is possible to form a three-dimensional model.

本工程で塗布する結合用流体には、赤外光吸収剤と、溶媒と、が少なくとも含まれる。結合用流体には、必要に応じて公知の分散剤等が含まれていてもよい。 The binding fluid applied in this step contains at least an infrared light absorber and a solvent. The binding fluid may contain a known dispersant or the like, if necessary.

赤外光吸収剤は、後述する赤外光照射工程において照射される赤外光を吸収し、結合用流体が塗布された領域の温度を効率的に高めることが可能なものであれば特に制限されない。赤外光吸収剤の具体例には、カーボンブラック、ITO(スズ酸化インジウム)、ATO(アンチモン酸化スズ)等の赤外光吸収剤;シアニン色素;アルミニウムや亜鉛を中心に持つフタロシアニン色素;各種ナフタロシアニン化合物;平面四配位構造を有するニッケルジチオレン錯体;スクアリウム色素;キノン系化合物;ジインモニウム化合物;アゾ化合物等の赤外光吸収色素が含まれる。これらの中でも、汎用性や結合用流体が塗布された領域の温度を効率的に高めることができるとの観点から、カーボンブラックであることがさらに好ましい。 The infrared light absorber is particularly limited as long as it can absorb the infrared light irradiated in the infrared light irradiation step described later and can efficiently raise the temperature of the region to which the coupling fluid is applied. Not done. Specific examples of infrared light absorbers include infrared light absorbers such as carbon black, ITO (indium tin oxide), and ATO (antimony tin oxide); cyanine pigments; phthalocyanine pigments mainly composed of aluminum and zinc; Phthalocyanine compounds; nickel dithiolene complexes having a planar tetracoordinate structure; squalium dyes; quinone compounds; diynemonium compounds; infrared light absorbing dyes such as azo compounds are included. Among these, carbon black is more preferable from the viewpoint of versatility and the ability to efficiently increase the temperature of the region to which the bonding fluid is applied.

赤外光吸収剤の形状は特に制限されないが、粒子状であることが好ましい。また、その平均粒子径は0.1〜1.0μmであることが好ましく、0.1〜0.5μmであることがより好ましい。赤外光吸収剤の平均粒子径が過度に大きいと、結合用流体を薄層上に塗布した際、赤外光吸収剤が造形用粒子の隙間に入り込み難くなる。これに対し、平均粒子径が1.0μm以下であれば、赤外光吸収剤が、造形用粒子どうしの間に入り込みやすくなる。一方、赤外光吸収剤の平均粒子径が0.1μm以上であると、後述する赤外光照射工程で、効率良く造形用粒子(熱可塑性樹脂や無機材料)に熱を伝えることができ、造形用粒子を溶融結合させることが可能となる。 The shape of the infrared light absorber is not particularly limited, but it is preferably in the form of particles. The average particle size is preferably 0.1 to 1.0 μm, more preferably 0.1 to 0.5 μm. If the average particle size of the infrared light absorber is excessively large, it becomes difficult for the infrared light absorber to enter the gaps between the molding particles when the bonding fluid is applied onto the thin layer. On the other hand, when the average particle size is 1.0 μm or less, the infrared light absorber easily enters between the modeling particles. On the other hand, when the average particle size of the infrared light absorber is 0.1 μm or more, heat can be efficiently transferred to the molding particles (thermoplastic resin or inorganic material) in the infrared light irradiation step described later. It becomes possible to melt-bond the molding particles.

結合用流体には、赤外光吸収剤が0.1〜10.0質量%含まれることが好ましく、1.0〜5.0質量%含まれることがより好ましい。赤外光吸収剤の量が0.1質量%以上であると、後述の赤外光照射工程で、結合用流体が塗布された領域の温度を十分に高めることが可能となる。一方、赤外光吸収剤の量が10.0質量%以下であると、結合用流体内で赤外光吸収剤が凝集すること等が少なく、結合用流体の塗布安定性が高まりやすくなる。 The binding fluid preferably contains an infrared light absorber in an amount of 0.1 to 10.0% by mass, more preferably 1.0 to 5.0% by mass. When the amount of the infrared light absorber is 0.1% by mass or more, it is possible to sufficiently raise the temperature of the region to which the bonding fluid is applied in the infrared light irradiation step described later. On the other hand, when the amount of the infrared light absorber is 10.0% by mass or less, the infrared light absorber is less likely to aggregate in the binding fluid, and the coating stability of the binding fluid is likely to be improved.

一方、溶媒は赤外光吸収剤を分散可能であり、さらに造形用粒子中の成分を溶解し難い溶媒であれば特に制限されず、例えば水系溶媒とすることができる。本明細書において、「水系溶媒」とは、水または水と混和する有機溶媒をいう。水と混和する有機溶媒の例には、メタノール、エタノールおよびプロパノール、イソプロピルアルコール、トリエチレングリコール等のアルコール系溶媒;、アセトニトリル等のニトリルアルコール系溶媒;アセトン等のケトンアルコール系溶媒;1,4−ジオキサンおよびテトラヒドロフラン(THF)等のエーテルアルコール系溶媒;ジメチルホルムアミド(DMF)等のアミドアルコール系溶媒等が含まれる。結合用流体には、これらが一種のみ含まれていてもよく、二種以上含まれていてもよい。また、これらの中でも水およびトリエチレングリコールの混合液であることが特に好ましい。 On the other hand, the solvent is not particularly limited as long as it can disperse the infrared light absorber and further dissolves the components in the molding particles, and can be, for example, an aqueous solvent. As used herein, the term "aqueous solvent" refers to water or an organic solvent miscible with water. Examples of organic solvents to be mixed with water include alcohol solvents such as methanol, ethanol and propanol, isopropyl alcohol and triethylene glycol; nitrile alcohol solvents such as acetonitrile; ketone alcohol solvents such as acetone; 1,4- Ether alcohol solvents such as dioxane and tetrahydrofuran (THF); amide alcohol solvents such as dimethylformamide (DMF) and the like are included. The binding fluid may contain only one of these, or may contain two or more of them. Further, among these, a mixed solution of water and triethylene glycol is particularly preferable.

結合用流体には、溶媒が90.0〜99.9質量%含まれることが好ましく、95.0〜99.0質量%含まれることがより好ましい。結合用流体中の溶媒量が90.0質量%以上であると、結合用流体の流動性が高くなり、例えばインクジェット法等で塗布しやすくなる。 The binding fluid preferably contains 90.0 to 99.9% by mass of the solvent, more preferably 95.0 to 99.0% by mass. When the amount of the solvent in the binding fluid is 90.0% by mass or more, the fluidity of the binding fluid becomes high, and it becomes easy to apply by, for example, an inkjet method.

結合用流体の粘度は、0.5〜50.0mPa・sであることが好ましく、1.0〜20.0mPa・sであることがより好ましい。結合用流体の粘度が0.5mPa・s以上であると、結合用流体を薄層に塗布した際の拡散がさらに抑制されやすくなる。一方で、結合用流体の粘度が50.0mPa・s以下であると、結合用流体の塗布安定性が高まりやすくなる。 The viscosity of the binding fluid is preferably 0.5 to 50.0 mPa · s, more preferably 1.0 to 20.0 mPa · s. When the viscosity of the binding fluid is 0.5 mPa · s or more, diffusion when the binding fluid is applied to the thin layer is more likely to be suppressed. On the other hand, when the viscosity of the binding fluid is 50.0 mPa · s or less, the coating stability of the binding fluid tends to increase.

一方、本工程で塗布する剥離用流体は、結合用流体より赤外光の吸収が少ない流体であればよく、例えば水系溶媒を主成分とする流体等とすることができる。剥離用流体には、これらが一種のみ含まれていてもよく、二種以上含まれていてもよい。また、剥離用流体は、水およびトリエチレングリコールの混合液であることが特に好ましい。 On the other hand, the peeling fluid applied in this step may be a fluid that absorbs infrared light less than the coupling fluid, and may be, for example, a fluid containing an aqueous solvent as a main component. The peeling fluid may contain only one kind of these, or may contain two or more kinds of them. Further, the peeling fluid is particularly preferably a mixed solution of water and triethylene glycol.

剥離用流体は、溶媒を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。剥離用流体中の溶媒の量が90質量%以上であると、例えばインクジェット法等で塗布しやすくなる。 The stripping fluid preferably contains 90% by mass or more of the solvent, and more preferably 95% by mass or more. When the amount of the solvent in the peeling fluid is 90% by mass or more, it becomes easy to apply by, for example, an inkjet method.

また、剥離用流体の粘度は、0.5〜50.0mPa・sであることが好ましく、1.0〜20.0mPa・sであることがより好ましい。剥離用流体の粘度が0.5mPa・s以上であると、剥離用流体を薄層に塗布した際の拡散が適度に抑制されやすくなる。一方で、剥離用流体の粘度が50.0mPa・s以下であると、剥離用流体の塗布安定性が高まりやすくなる。 The viscosity of the peeling fluid is preferably 0.5 to 50.0 mPa · s, more preferably 1.0 to 20.0 mPa · s. When the viscosity of the peeling fluid is 0.5 mPa · s or more, diffusion when the peeling fluid is applied to the thin layer is likely to be appropriately suppressed. On the other hand, when the viscosity of the peeling fluid is 50.0 mPa · s or less, the coating stability of the peeling fluid tends to increase.

(3)赤外光照射工程
赤外光照射工程では、上記流体塗布工程後の薄層、すなわち結合用流体(および剥離用流体)が塗布された薄層に、赤外光を一括照射する。このとき、結合用流体が塗布された領域では、赤外光吸収剤が赤外光を吸収し、当該領域の温度が上昇する。そして、当該領域の造形用粒子中の熱可塑性樹脂が溶融し、造形物層が形成される。
(3) Infrared light irradiation step In the infrared light irradiation step, infrared light is collectively irradiated to the thin layer after the fluid coating step, that is, the thin layer coated with the binding fluid (and the exfoliating fluid). At this time, in the region where the binding fluid is applied, the infrared light absorber absorbs the infrared light, and the temperature of the region rises. Then, the thermoplastic resin in the modeling particles in the region is melted to form a modeling object layer.

本工程で照射する赤外光は、波長780〜3000nmの光であればよく、波長800〜2500nmの光であることがより好ましい。 The infrared light irradiated in this step may be light having a wavelength of 780 to 3000 nm, and more preferably light having a wavelength of 800 to 2500 nm.

また、本工程で赤外光を照射する時間は、粉末材料に含まれる熱可塑性樹脂の種類に応じて適宜選択されるが、通常、5〜60秒であることが好ましく、10〜30秒であることがより好ましい。赤外光照射時間を5秒以上とすることで、十分に熱可塑性樹脂を溶融させて、隣り合う造形用粒子を結合させることが可能となる。一方で、60秒以下とすることで、効率よく立体造形物を製造することが可能となる。 The time for irradiating infrared light in this step is appropriately selected according to the type of the thermoplastic resin contained in the powder material, but is usually preferably 5 to 60 seconds, preferably 10 to 30 seconds. More preferably. By setting the infrared light irradiation time to 5 seconds or more, it is possible to sufficiently melt the thermoplastic resin and bond adjacent molding particles. On the other hand, if the time is 60 seconds or less, it becomes possible to efficiently manufacture a three-dimensional model.

3.立体造形装置
上記立体造形物の製造方法に使用可能な立体造形装置について説明する。立体造形装置は、公知の立体造形装置と同様の構成とすることができる。立体造形装置は、図1の概略側面図に示すように、開口内に位置する造形ステージ210、粉末材料からなる薄層を形成するための薄層形成部220、薄層を予備加熱するための予備加熱部230、薄層に結合用流体(および剥離用流体)を塗布するための流体塗布部300、薄層に赤外光を照射するための赤外照射部240、鉛直方向の位置を可変に造形ステージ210を支持するステージ支持部250、および上記各部を支持するベース290を備える。
3. 3. Three-dimensional modeling device A three-dimensional modeling device that can be used in the method for manufacturing a three-dimensional model will be described. The three-dimensional modeling apparatus can have the same configuration as a known three-dimensional modeling apparatus. As shown in the schematic side view of FIG. 1, the three-dimensional modeling apparatus includes a modeling stage 210 located in the opening, a thin layer forming portion 220 for forming a thin layer made of a powder material, and a thin layer for preheating the thin layer. Preheating unit 230, fluid coating unit 300 for applying binding fluid (and exfoliating fluid) to the thin layer, infrared irradiation unit 240 for irradiating the thin layer with infrared light, and variable vertical position A stage support portion 250 that supports the modeling stage 210 and a base 290 that supports each of the above portions are provided.

一方、立体造形装置200の制御系の主要部を図2に示す。図2に示すように、立体造形装置200は、薄層形成部220、予備加熱部230、流体塗布部300、赤外光照射部240、およびステージ支持部250を制御して、造形物の形成および積層を行う制御部260、各種情報を表示するための表示部270、ユーザーからの指示を受け付けるためのポインティングデバイス等を含む操作部275、制御部260の実行する制御プログラムを含む各種の情報を記憶する記憶部280、ならびに外部機器との間で立体造形データ等の各種情報を送受信するためのインターフェース等を含むデータ入力部285を備えてもよい。また、立体造形装置200は、造形ステージ210上に形成された薄層の表面温度を測定する温度測定器235を備えてもよい。また立体造形装置200には、立体造形用のデータを生成するためのコンピュータ装置310が接続されてもよい。 On the other hand, the main part of the control system of the three-dimensional modeling apparatus 200 is shown in FIG. As shown in FIG. 2, the three-dimensional modeling apparatus 200 controls a thin layer forming unit 220, a preheating unit 230, a fluid coating unit 300, an infrared light irradiation unit 240, and a stage support unit 250 to form a modeled object. The control unit 260 for stacking, the display unit 270 for displaying various information, the operation unit 275 including a pointing device for receiving instructions from the user, and various information including the control program executed by the control unit 260. A storage unit 280 for storing and a data input unit 285 including an interface for transmitting and receiving various information such as three-dimensional modeling data to and from an external device may be provided. Further, the three-dimensional modeling apparatus 200 may include a temperature measuring device 235 for measuring the surface temperature of the thin layer formed on the modeling stage 210. Further, a computer device 310 for generating data for three-dimensional modeling may be connected to the three-dimensional modeling device 200.

造形ステージ210は、昇降可能に制御され、当該造形ステージ210上で、薄層形成部220による薄層の形成、予備加熱部230による薄層の予備加熱、流体塗布部300による結合用流体(および剥離用流体)の塗布、および赤外光照射部240による赤外光の照射が行われる。そして、これらによって形成された造形物が積層されて、立体造形物が形成される。 The modeling stage 210 is controlled so as to be able to move up and down, and the thin layer forming unit 220 forms a thin layer, the preheating unit 230 preheats the thin layer, and the fluid coating unit 300 joins the fluid (and) on the modeling stage 210. The peeling fluid) is applied, and the infrared light irradiation unit 240 irradiates the infrared light. Then, the shaped objects formed by these are laminated to form a three-dimensional shaped object.

薄層形成部220は、粉末材料を収納する粉末材料収納部221aと、粉末材料収納部221aの底部に設けられ開口内を昇降する供給ピストン221bとを備える粉末供給部221、および粉末供給部221から供給された粉末材料を造形ステージ210上に平らに敷き詰めて、粉末材料の薄層を形成するリコータ222aを備えた構成とすることができる。当該装置では、粉末材料収納部221aの開口部の上面が、造形ステージ210を昇降させる(立体造形物を形成するための)開口部の上面と、ほぼ同一平面上に配置される。 The thin layer forming unit 220 includes a powder material storage unit 221a for storing the powder material, a powder supply unit 221 provided at the bottom of the powder material storage unit 221a and a supply piston 221b for moving up and down in the opening, and a powder supply unit 221. The powder material supplied from the above can be spread flat on the molding stage 210 to include a recorder 222a for forming a thin layer of the powder material. In the device, the upper surface of the opening of the powder material storage portion 221a is arranged on substantially the same plane as the upper surface of the opening for raising and lowering the modeling stage 210 (for forming a three-dimensional model).

なお、粉末供給部221は、造形ステージ210に対して鉛直方向上方に設けられた粉末材料収納部(不図示)と、当該粉末材料収納部に収納された粉末材料を、所望の量ずつ吐出するためのノズル(不図示)と、を備える構成としてもよい。この場合、ノズルから造形ステージ210上に、均一に粉末材料を吐出することで、薄層を形成することが可能となる。 The powder supply unit 221 discharges a powder material storage unit (not shown) provided vertically above the modeling stage 210 and a powder material stored in the powder material storage unit in desired amounts. A nozzle (not shown) for the purpose may be provided. In this case, a thin layer can be formed by uniformly discharging the powder material from the nozzle onto the modeling stage 210.

予備加熱部230は、薄層の表面のうち、造形物層を形成すべき領域を加熱し、その温度を維持できるものであればよい。当該装置では、予備加熱部230が、造形ステージ210上に形成された薄層の表面を加熱可能な第1のヒータ231と、造形ステージ上に供給される前の粉末材料を加熱する第2のヒータ232とを備えるが、これらはいずれか一方のみであってもよい。また、予備加熱部230は、上記造形物層を形成すべき領域を選択的に加熱する構成であってもよい。また、装置内の全体を予め加熱しておいて、上記薄層の表面を所定の温度に調温する構成であってもよい。 The preheating unit 230 may be any one that can heat the region of the surface of the thin layer on which the modeled object layer should be formed and maintain the temperature. In the apparatus, the preheating unit 230 heats the first heater 231 capable of heating the surface of the thin layer formed on the modeling stage 210 and the second heater 231 capable of heating the powder material before being supplied onto the modeling stage. It includes a heater 232, but these may be only one of them. Further, the preheating unit 230 may be configured to selectively heat the region where the modeled object layer should be formed. Further, the entire inside of the apparatus may be preheated so that the surface of the thin layer is adjusted to a predetermined temperature.

温度測定器235は、薄層の表面温度、特に造形物層を形成すべき領域の表面温度を非接触で測定できるものであればよく、たとえば、赤外光センサまたは光高温計とすることができる。 The temperature measuring device 235 may be any one capable of measuring the surface temperature of the thin layer, particularly the surface temperature of the region where the modeled object layer should be formed, in a non-contact manner, and may be, for example, an infrared photosensor or an optical thermometer. it can.

流体塗布部300は、結合用流体塗布部301および剥離用流体塗布部302を備える。なお、結合用流体のみ塗布する場合には、剥離用流体塗布部302はなくてもよい。結合用流体塗布部301および剥離用流体塗布部302は、それぞれ結合用流体または剥離用流体を貯留するための貯留部(不図示)と、これに接続されたインクジェットノズル(不図示)とを備えるものとすることができる。 The fluid coating unit 300 includes a coupling fluid coating unit 301 and a peeling fluid coating unit 302. When only the coupling fluid is applied, the peeling fluid application unit 302 may not be provided. The coupling fluid coating unit 301 and the peeling fluid coating unit 302 each include a storage unit (not shown) for storing the coupling fluid or the peeling fluid, and an inkjet nozzle (not shown) connected thereto. Can be.

赤外光照射部240は、赤外ランプを含む構成とすることができる。赤外ランプは所望のタイミングで赤外光を照射可能な光源であればよい。 The infrared light irradiation unit 240 can be configured to include an infrared lamp. The infrared lamp may be a light source capable of irradiating infrared light at a desired timing.

ステージ支持部250は、造形ステージ210の鉛直方向の位置を可変に支持するものであればよい。すなわち、造形ステージ210は、ステージ支持部250によって鉛直方向に精密に移動可能に構成されている。ステージ支持部250としては、種々の構成を採用できるが、例えば、造形ステージ210を保持する保持部材と、この保持部材を鉛直方向に案内するガイド部材と、ガイド部材に設けられたねじ孔に係合するボールねじ等で構成することができる。 The stage support portion 250 may variably support the vertical position of the modeling stage 210. That is, the modeling stage 210 is configured to be precisely movable in the vertical direction by the stage support portion 250. Various configurations can be adopted for the stage support portion 250. For example, the stage support portion 250 is engaged with a holding member for holding the modeling stage 210, a guide member for guiding the holding member in the vertical direction, and a screw hole provided in the guide member. It can be configured with a matching ball screw or the like.

制御部260は、中央処理装置等のハードウェアプロセッサを含んでおり、立体造形物の造形動作中、立体造形装置200全体の動作を制御する。 The control unit 260 includes a hardware processor such as a central processing unit, and controls the operation of the entire three-dimensional modeling device 200 during the modeling operation of the three-dimensional modeled object.

また、制御部260は、たとえばデータ入力部285がコンピュータ装置310から取得した立体造形データを、造形物層の積層方向について薄く切った複数のスライスデータに変換するよう構成されてもよい。スライスデータは、立体造形物を造形するための各造形物層の造形データである。スライスデータの厚み、すなわち造形物層の厚みは、造形物層の一層分の厚さに応じた距離(積層ピッチ)と一致する。 Further, the control unit 260 may be configured to convert, for example, the three-dimensional modeling data acquired from the computer device 310 by the data input unit 285 into a plurality of slice data sliced in the stacking direction of the modeling object layer. Slice data is modeling data of each modeling object layer for modeling a three-dimensional model. The thickness of the slice data, that is, the thickness of the modeled object layer corresponds to the distance (stacking pitch) corresponding to the thickness of one layer of the modeled object layer.

表示部270は、たとえば液晶ディスプレイ、モニタとすることができる。 The display unit 270 can be, for example, a liquid crystal display or a monitor.

操作部275は、たとえばキーボードやマウスなどのポインティングデバイスを含むものとすることができ、テンキー、実行キー、スタートキー等の各種操作キーを備えてもよい。 The operation unit 275 may include a pointing device such as a keyboard or a mouse, and may include various operation keys such as a numeric keypad, an execution key, and a start key.

記憶部280は、たとえばROM、RAM、磁気ディスク、HDD、SSD等の各種の記憶媒体を含むものとすることができる。 The storage unit 280 may include various storage media such as ROM, RAM, magnetic disk, HDD, and SSD.

立体造形装置200は、制御部260の制御を受けて、装置内を減圧する、減圧ポンプなどの減圧部(不図示)、または、制御部260の制御を受けて、不活性ガスを装置内に供給する、不活性ガス供給部(不図示)を備えていてもよい。 The three-dimensional modeling apparatus 200 receives the control of the control unit 260 to decompress the inside of the apparatus, a decompression unit such as a decompression pump (not shown), or the control unit 260 to inject an inert gas into the apparatus. It may be provided with an inert gas supply unit (not shown) for supplying.

ここで、当該立体造形装置200を用いた立体造形方法について、具体的に説明する。制御部260は、データ入力部285がコンピュータ装置310から取得した立体造形データを、造形物層の積層方向について薄く切った複数のスライスデータに変換する。その後、制御部260は、立体造形装置200における以下の動作の制御を行う。 Here, a three-dimensional modeling method using the three-dimensional modeling apparatus 200 will be specifically described. The control unit 260 converts the three-dimensional modeling data acquired from the computer device 310 by the data input unit 285 into a plurality of slice data sliced in the stacking direction of the modeling object layers. After that, the control unit 260 controls the following operations in the three-dimensional modeling apparatus 200.

粉末供給部221は、制御部260から出力された供給情報に従って、モーターおよび駆動機構(いずれも不図示)を駆動し、供給ピストンを鉛直方向上方(図1の矢印方向)に移動させ、前記造形ステージと水平方向同一平面上に、粉末材料を押し出す。 The powder supply unit 221 drives a motor and a drive mechanism (both not shown) according to the supply information output from the control unit 260, moves the supply piston upward in the vertical direction (in the direction of the arrow in FIG. 1), and forms the above-mentioned modeling. Extrude the powder material on the same plane horizontally as the stage.

その後、リコータ駆動部222は、制御部260から出力された薄層形成情報に従って水平方向(図中矢印方向)にリコータ222aを移動させて、粉末材料を造形ステージ210に運搬し、かつ、薄層の厚さが造形物層の1層分の厚さとなるように粉末材料を押圧する。 After that, the recorder drive unit 222 moves the recorder 222a in the horizontal direction (in the direction of the arrow in the figure) according to the thin layer formation information output from the control unit 260, transports the powder material to the modeling stage 210, and makes the thin layer. The powder material is pressed so that the thickness of is one layer of the modeled object layer.

予備加熱部230は、制御部260から出力された温度情報に従って形成された薄層の表面または装置内の全体を加熱する。予備加熱部230は、薄層が形成された後に加熱を開始してもよいし、薄層が形成される前から形成されるべき薄層の表面に該当する箇所または装置内の加熱を行っていてもよい。 The preheating unit 230 heats the surface of the thin layer formed according to the temperature information output from the control unit 260 or the entire inside of the apparatus. The preheating unit 230 may start heating after the thin layer is formed, or heats a portion corresponding to the surface of the thin layer to be formed before the thin layer is formed or the inside of the apparatus. You may.

その後、流体塗布部240が、制御部260から出力された流体塗布情報に従って、各スライスデータにおける立体造形物を構成する領域の薄層上に結合用流体塗布部30薄層1から結合用流体を塗布する。一方、立体造形物を構成しない領域の薄層には、必要に応じて剥離用流体塗布部302から剥離用流体を塗布する。 After that, the fluid coating unit 240 applies the coupling fluid from the coupling fluid coating unit 30 thin layer 1 on the thin layer of the region constituting the three-dimensional model in each slice data according to the fluid coating information output from the control unit 260. Apply. On the other hand, the peeling fluid is applied from the peeling fluid coating unit 302 to the thin layer in the region that does not form the three-dimensional model, if necessary.

その後、赤外光照射部240が、制御部260から出力された赤外光照射情報に従って、薄層全体に赤外光を照射する。赤外光の照射によって結合用流体が塗布された領域の温度が部分的に大きく上昇し、粉末材料に含まれる熱可塑性樹脂が溶融する。これにより、造形物層が形成される。 After that, the infrared light irradiation unit 240 irradiates the entire thin layer with infrared light according to the infrared light irradiation information output from the control unit 260. The temperature of the region where the binding fluid is applied rises partially due to the irradiation of infrared light, and the thermoplastic resin contained in the powder material melts. As a result, a model layer is formed.

その後、ステージ支持部250は、制御部260から出力された位置制御情報に従って、モーターおよび駆動機構(いずれも不図示)を駆動し、造形ステージ210を、積層ピッチだけ鉛直方向下方(図中矢印方向)に移動する。 After that, the stage support unit 250 drives the motor and the drive mechanism (both not shown) according to the position control information output from the control unit 260, and the modeling stage 210 is moved downward by the stacking pitch in the vertical direction (arrow direction in the drawing). ).

表示部270は、必要に応じて、制御部260の制御を受けて、ユーザーに認識させるべき各種の情報やメッセージを表示する。操作部275は、ユーザーによる各種入力操作を受け付けて、その入力操作に応じた操作信号を制御部260に出力する。たとえば、形成される仮想の立体造形物を表示部270に表示して所望の形状が形成されるか否かを確認し、所望の形状が形成されない場合は、操作部275から修正を加えてもよい。 The display unit 270 is controlled by the control unit 260 as necessary, and displays various information and messages to be recognized by the user. The operation unit 275 receives various input operations by the user and outputs an operation signal corresponding to the input operation to the control unit 260. For example, the virtual three-dimensional model to be formed is displayed on the display unit 270 to check whether or not the desired shape is formed, and if the desired shape is not formed, the operation unit 275 may make corrections. Good.

制御部260は、必要に応じて、記憶部280へのデータの格納または記憶部280からのデータの引き出しを行う。 The control unit 260 stores the data in the storage unit 280 or retrieves the data from the storage unit 280, if necessary.

これらの動作を繰り返すことで、造形物層が積層され、立体造形物が製造される。 By repeating these operations, the modeled object layers are laminated to produce a three-dimensional modeled object.

以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, specific examples of the present invention will be described. It should be noted that these examples do not limit the scope of the present invention.

1.材料の準備
(無機材料の準備)
無機材料は、以下の表1に示すものを用いた。熱伝導率はC−THERM社製熱伝導率測定装置TCiを用い、MTPSメソッドを用いて測定した。一方、バンドギャップは、理研計器社製AC3を用い、照射する紫外光のエネルギーに対応する光電子の放出を観測することで測定した。さらに、平均粒子径D50は、マイクロトラック・ベル社製MT−3000IIを用い、レーザー回折式測定法により測定した。
1. 1. Material preparation (preparation of inorganic material)
As the inorganic material, those shown in Table 1 below were used. The thermal conductivity was measured using the MTPS method using a thermal conductivity measuring device TCi manufactured by C-THERM. On the other hand, the band gap was measured by observing the emission of photoelectrons corresponding to the energy of the ultraviolet light to be irradiated using AC3 manufactured by RIKEN KEIKI. Further, the average particle size D 50 was measured by a laser diffraction type measurement method using MT-3000II manufactured by Microtrac Bell.

Figure 2019117015
Figure 2019117015

(熱可塑性樹脂の準備)
熱可塑性樹脂は、以下のものを用いた。
・PA12(ポリアミド12) ダイセル・エボニック社製 ダイアミドL1600
・PP(ポリプロピレン) 住友化学社製 FLX80E4
(Preparation of thermoplastic resin)
The following thermoplastic resins were used.
-PA12 (Polyamide 12) Daicel Evonik's Daiamide L1600
・ PP (polypropylene) FLX80E4 manufactured by Sumitomo Chemical Co., Ltd.

2.粉末材料の調製
(比較例1および4)
ポリアミド12(PA12)またはポリプロピレン(PP)からなる粒子を日本ニューマチック工業(株)製ラボジェットにて粉砕し、粉末材料として用いた。平均粒子径D50は、マイクロトラック・ベル社製MT−3000IIを用い、レーザー回折式測定法により測定した。
2. 2. Preparation of powder material (Comparative Examples 1 and 4)
Particles made of polyamide 12 (PA12) or polypropylene (PP) were pulverized by a lab jet manufactured by Nippon Pneumatic Industries Co., Ltd. and used as a powder material. The average particle size D 50 was measured by a laser diffraction measurement method using MT-3000II manufactured by Microtrac Bell.

(比較例2および3、ならびに実施例1〜11)
Xplore Instruments社製小型混練機に、表2に示す無機材料と熱可塑性樹脂とを、無機材料の割合が粉末材料全量に対して表2に示す割合となるように混合して投入し、180℃、100rpmで加熱混合した。前記混合物を冷却後、日本ニューマチック工業(株)製ラボジェットを用いて粉砕し、表2に示す平均粒子径を有する造形用粒子を含む粉末材料を得た。なお、平均粒子径はマイクロトラック・ベル社製MT−3000IIを用い、レーザー回折式測定法により測定した。
(Comparative Examples 2 and 3 and Examples 1 to 11)
The inorganic material and the thermoplastic resin shown in Table 2 are mixed and charged into a small kneader manufactured by Xplore Instruments so that the ratio of the inorganic material to the total amount of the powder material is as shown in Table 2, and the temperature is 180 ° C. , Heated and mixed at 100 rpm. After cooling the mixture, it was pulverized using a lab jet manufactured by Nippon Pneumatic Industries Co., Ltd. to obtain a powder material containing molding particles having an average particle size shown in Table 2. The average particle size was measured by a laser diffraction measurement method using MT-3000II manufactured by Microtrac Bell.

3.立体造形物の作製
上記実施例1〜11、および比較例1〜4で作製した粉末材料を、ホットプレート上に設置した造形ステージ上に敷き詰めて厚さ0.1mmの薄層を形成し、160℃に予備加熱を行った。この薄層に、ISO527−2−1BAの試験片形状(最大長さ:75mm、最大幅:10mm)に結合用流体をインクジェット法にて塗布した。結合用流体は、トリエチレングリコール15質量部と、赤外光吸収剤(カーボンブラック(キャボット社製Mogul−L))5質量部、水80質量部とを含むものを用いた。結合用流体の塗布量は、1mm当たり、30μLとした。次いで、当該結合用流体を塗布した以外の領域に剥離用流体をインクジェット法にて塗布した。剥離用流体は、トリエチレングリコール15質量部と、水85質量部とを含むものを用いた。また、剥離用流体の塗布量は、1mm当たり、30μLとした。その後、薄層に赤外ランプから赤外光を照射して、結合用流体を塗布した領域の表面温度が220℃になるまで加熱した。これにより、結合用流体を塗布した領域の粉末材料が溶融結合し、造形物層が作製された。そして、当該工程を10回繰り返し、造形物層が10層積層された立体造形物を製造した。
3. 3. Preparation of three-dimensional model The powder materials prepared in Examples 1 to 11 and Comparative Examples 1 to 4 are spread on a modeling stage installed on a hot plate to form a thin layer having a thickness of 0.1 mm. Preheating was performed at ° C. A binding fluid was applied to this thin layer by an inkjet method in the shape of a test piece of ISO5272-1BA (maximum length: 75 mm, maximum width: 10 mm). As the binding fluid, a fluid containing 15 parts by mass of triethylene glycol, 5 parts by mass of an infrared light absorber (carbon black (Mogul-L manufactured by Cabot Corporation)), and 80 parts by mass of water was used. The coating amount of the coupling fluid, 1 mm 3 per set to 30 [mu] L. Next, the peeling fluid was applied to the area other than the area where the bonding fluid was applied by an inkjet method. As the stripping fluid, a fluid containing 15 parts by mass of triethylene glycol and 85 parts by mass of water was used. The coating amount of the stripping fluid, 1 mm 3 per set to 30 [mu] L. Then, the thin layer was irradiated with infrared light from an infrared lamp and heated until the surface temperature of the region coated with the coupling fluid reached 220 ° C. As a result, the powder material in the region coated with the binding fluid was melt-bonded to form a model layer. Then, the process was repeated 10 times to produce a three-dimensional model in which 10 layers of the model were laminated.

4.評価
各立体造形物について、精度および強度を以下の方法で評価した。結果を表2に示す。
4. Evaluation The accuracy and strength of each three-dimensional model were evaluated by the following methods. The results are shown in Table 2.

(立体造形物における精度の評価)
各立体造形物について、デジタルノギス(株式会社ミツトヨ製、スーパキャリパCD67−S PS/PM、「スーパキャリパ」は同社の登録商標))で長さ方向の寸法を測定した。製造しようとした寸法(最大長さ75mm)と、作製した立体造形物の寸法との差を平均して、造形精度のずれとした。このとき、評価は以下の基準で行った。
○:基準長75mmに対して誤差±0.15mm未満
△:基準長75mmに対して誤差±0.15mm以上〜±0.3mm未満
×:基準長75mmに対して誤差±0.3mm以上
(Evaluation of accuracy in 3D objects)
The dimensions of each three-dimensional model were measured in the length direction with a digital caliper (manufactured by Mitutoyo Co., Ltd., Super Caliper CD67-S PS / PM, "Super Caliper" is a registered trademark of the same company). The difference between the dimensions to be manufactured (maximum length 75 mm) and the dimensions of the manufactured three-dimensional model was averaged to obtain a deviation in modeling accuracy. At this time, the evaluation was performed according to the following criteria.
◯: Error less than ± 0.15 mm with respect to the reference length 75 mm Δ: Error ± 0.15 mm or more to less than ± 0.3 mm with respect to the reference length 75 mm ×: Error ± 0.3 mm or more with respect to the reference length 75 mm

(立体造形物における強度評価)
上記方法で作製した立体造形物、および同様の形状に作製した射出成形品について、インスロン社製万能試験機model−5582を用い、引張速度1mm/min、掴み具距離60mm、試験温度23℃の条件にて引張強度を測定した。射出成形品の強度を基準として、得られた立体造形物の強度を以下の基準で評価した。
◎:射出成形品の引張強度に対して90%以上
○:射出成形品の引張強度に対して80%以上90%未満
×:射出成形品の引張強度に対して80%未満
(Strength evaluation in three-dimensional model)
The three-dimensional model produced by the above method and the injection-molded product produced in the same shape are subjected to the conditions of a tensile speed of 1 mm / min, a gripping distance of 60 mm, and a test temperature of 23 ° C. using a universal testing machine model-5582 manufactured by Inslon. The tensile strength was measured at. Based on the strength of the injection-molded product, the strength of the obtained three-dimensional model was evaluated according to the following criteria.
⊚: 90% or more with respect to the tensile strength of the injection-molded product ○: 80% or more and less than 90% with respect to the tensile strength of the injection-molded product ×: Less than 80% with respect to the tensile strength of the injection-molded product

Figure 2019117015
Figure 2019117015

上記表2に示されるように、熱可塑性樹脂からなる造形用粒子を用いた場合、得られた立体造形物の強度が十分ではなかった(比較例1および4)。熱可塑性樹脂の溶融が十分でなく、造形用粒子どうしの結合力が弱かったと考えられる。 As shown in Table 2 above, when the molding particles made of a thermoplastic resin were used, the strength of the obtained three-dimensional model was not sufficient (Comparative Examples 1 and 4). It is probable that the thermoplastic resin was not sufficiently melted and the bonding force between the molding particles was weak.

これに対し、熱伝導率が2W/mK以上、かつバンドギャップが1.59eV以上である無機材料を熱可塑性樹脂と共に含む造形用粒子を用いた場合、立体造形物の強度および寸法精度がいずれも良好であった(実施例1〜11)。無機材料によって造形用粒子の内部まで熱が十分に伝わり、硬化領域の造形用粒子を十分に結合させることができたと考えられる。また特に鱗片状であったり、熱伝導率の高い無機材料を用いた場合には(例えば、実施例4〜7、9、10、11)、硬化領域で熱が伝わりやすく、強度が高くなったと考えられる。 On the other hand, when modeling particles containing an inorganic material having a thermal conductivity of 2 W / mK or more and a band gap of 1.59 eV or more together with a thermoplastic resin are used, the strength and dimensional accuracy of the three-dimensional model are both. It was good (Examples 1 to 11). It is considered that the inorganic material sufficiently transferred heat to the inside of the modeling particles, and the modeling particles in the cured region could be sufficiently bonded. Further, especially when an inorganic material having a scaly shape or a high thermal conductivity was used (for example, Examples 4 to 7, 9, 10, 11), heat was easily transferred in the cured region and the strength was increased. Conceivable.

一方、熱可塑性樹脂と共に無機材料を含んでいたとしても、無機材料の熱伝導率が低い場合には、無機材料を添加しない場合と同様の結果となった(比較例2)。また熱伝導率が高い無機材料を含んでいたとしても、バンドギャップが小さすぎる場合には、造形精度が低下した(比較例3)。赤外光の照射によって、無機材料が発熱し、非硬化領域においても造形用粒子どうしが結着してしまったと考えられる。 On the other hand, even if the inorganic material is contained together with the thermoplastic resin, when the thermal conductivity of the inorganic material is low, the result is the same as when the inorganic material is not added (Comparative Example 2). Further, even if an inorganic material having high thermal conductivity is contained, if the band gap is too small, the molding accuracy is lowered (Comparative Example 3). It is considered that the inorganic material generated heat due to the irradiation with infrared light, and the molding particles were bound to each other even in the uncured region.

本出願は、2017年12月13日出願の特願2017−238749号に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority under Japanese Patent Application No. 2017-238749 filed on December 13, 2017. All the contents described in the application specification and drawings are incorporated herein by reference.

本発明の粉末材料は、赤外光照射によって効率よく硬化させることが可能である。また当該粉末材料によれば、強度が高く、かつ寸法精度の高い立体造形物が得られる。したがって、本発明は、立体造形法のさらなる普及に寄与するものと思われる。 The powder material of the present invention can be efficiently cured by infrared light irradiation. Further, according to the powder material, a three-dimensional model having high strength and high dimensional accuracy can be obtained. Therefore, the present invention is considered to contribute to the further spread of the three-dimensional modeling method.

200 立体造形装置
210 造形ステージ
220 薄層形成部
221 粉末供給部
222 リコータ駆動部
222a リコータ
230 予備加熱部
231 第1のヒータ
232 第2のヒータ
235 温度測定器
240 赤外光照射部
250 ステージ支持部
260 制御部
270 表示部
275 操作部
280 記憶部
285 データ入力部
290 ベース
300 流体塗布部
301 結合用流体塗布部
302 剥離用流体塗布部
310 コンピュータ装置
200 Three-dimensional modeling device 210 Modeling stage 220 Thin layer forming unit 221 Powder supply unit 222 Recoater drive unit 222a Recoater 230 Preheating unit 231 First heater 232 Second heater 235 Temperature measuring device 240 Infrared light irradiation unit 250 Stage support unit 260 Control unit 270 Display unit 275 Operation unit 280 Storage unit 285 Data input unit 290 Base 300 Fluid coating unit 301 Coupling fluid coating unit 302 Peeling fluid coating unit 310 Computer device

Claims (7)

粉末材料を含む薄層の形成と、前記薄層に対する結合用流体の塗布と、前記薄層への赤外光照射と、を含む立体造形物の製造方法に使用される粉末材料であって、
熱可塑性樹脂と、熱伝導率が2W/mK以上であり、かつバンドギャップが1.59eV以上である無機材料と、を含む、造形用粒子を含有する、
粉末材料。
A powder material used in a method for producing a three-dimensional model including the formation of a thin layer containing a powder material, the application of a binding fluid to the thin layer, and the irradiation of the thin layer with infrared light.
Contains molding particles, including a thermoplastic resin and an inorganic material having a thermal conductivity of 2 W / mK or more and a bandgap of 1.59 eV or more.
Powder material.
前記無機材料の平均粒子径が0.01〜50μmである、
請求項1に記載の粉末材料。
The average particle size of the inorganic material is 0.01 to 50 μm.
The powder material according to claim 1.
前記無機材料が、鱗片状である、
請求項1または2に記載の粉末材料。
The inorganic material is scaly,
The powder material according to claim 1 or 2.
請求項1〜3のいずれか一項に記載の粉末材料を含む薄層を形成する薄層形成工程と、
赤外光吸収剤を含む結合用流体を、前記薄層の特定の領域に塗布する流体塗布工程と、
前記流体塗布工程後の前記薄層に赤外光を照射し、前記結合用流体を塗布した領域の前記造形用粒子中の前記熱可塑性樹脂を溶融させて造形物層を形成する赤外光照射工程と、
を含む、立体造形物の製造方法。
A thin layer forming step of forming a thin layer containing the powder material according to any one of claims 1 to 3.
A fluid coating step of applying a binding fluid containing an infrared light absorber to a specific region of the thin layer, and
Infrared light irradiation is performed on the thin layer after the fluid coating step, and the thermoplastic resin in the molding particles in the region to which the binding fluid is applied is melted to form a shaped object layer. Process and
A method for manufacturing a three-dimensional object, including.
前記薄層形成工程、前記流体塗布工程、および前記赤外光照射工程を、複数回繰り返すことで、前記造形物層を積層し、立体造形物を形成する、
請求項4に記載の立体造形物の製造方法。
By repeating the thin layer forming step, the fluid coating step, and the infrared light irradiation step a plurality of times, the shaped object layers are laminated to form a three-dimensional shaped object.
The method for manufacturing a three-dimensional model according to claim 4.
前記流体塗布工程で、前記結合用流体より赤外光吸収の少ない剥離用流体を、前記結合用流体の塗布領域と隣接する領域に塗布する、
請求項4または5に記載の立体造形物の製造方法。
In the fluid coating step, a peeling fluid having less infrared light absorption than the coupling fluid is applied to a region adjacent to the coating region of the coupling fluid.
The method for manufacturing a three-dimensional model according to claim 4 or 5.
前記流体塗布工程で、前記結合用流体および前記剥離用流体をインクジェット法で塗布する、
請求項6に記載の立体造形物の製造方法。
In the fluid coating step, the bonding fluid and the peeling fluid are coated by an inkjet method.
The method for manufacturing a three-dimensional model according to claim 6.
JP2019559592A 2017-12-13 2018-12-06 3D object manufacturing method and powder material used therefor Active JP7205492B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017238749 2017-12-13
JP2017238749 2017-12-13
PCT/JP2018/044956 WO2019117015A1 (en) 2017-12-13 2018-12-06 Method for producing three-dimensional molded object, and powder material used therein

Publications (2)

Publication Number Publication Date
JPWO2019117015A1 true JPWO2019117015A1 (en) 2020-12-24
JP7205492B2 JP7205492B2 (en) 2023-01-17

Family

ID=66819011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019559592A Active JP7205492B2 (en) 2017-12-13 2018-12-06 3D object manufacturing method and powder material used therefor

Country Status (2)

Country Link
JP (1) JP7205492B2 (en)
WO (1) WO2019117015A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517414A (en) * 2014-04-30 2017-06-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Calculation model and three-dimensional (3D) printing method
WO2017180166A1 (en) * 2016-04-15 2017-10-19 Hewlett-Packard Development Company, L.P. Composite particulate build materials
JP2017193090A (en) * 2016-04-19 2017-10-26 コニカミノルタ株式会社 Powder material, manufacturing method of powder material, manufacturing method of solid molded article and solid molding device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958217B2 (en) * 2017-01-12 2021-11-02 株式会社リコー Manufacturing method of resin powder for three-dimensional modeling and three-dimensional modeling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517414A (en) * 2014-04-30 2017-06-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Calculation model and three-dimensional (3D) printing method
WO2017180166A1 (en) * 2016-04-15 2017-10-19 Hewlett-Packard Development Company, L.P. Composite particulate build materials
JP2017193090A (en) * 2016-04-19 2017-10-26 コニカミノルタ株式会社 Powder material, manufacturing method of powder material, manufacturing method of solid molded article and solid molding device

Also Published As

Publication number Publication date
WO2019117015A1 (en) 2019-06-20
JP7205492B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
US9707717B2 (en) Thixotropic, thermosetting resins for use in a material extrusion process in additive manufacturing
JP6791165B2 (en) Manufacturing method of powder material, 3D model and 3D model
Blok et al. An investigation into 3D printing of fibre reinforced thermoplastic composites
JP2015231741A (en) System and method of addition production
Sola Materials requirements in fused filament fabrication: a framework for the design of next‐generation 3D printable thermoplastics and composites
JP7014174B2 (en) Manufacturing method of three-dimensional model
JP2015189007A (en) Production method of shaped article
JP6798326B2 (en) Powder material, manufacturing method of three-dimensional model using this, and three-dimensional modeling device
JP6421546B2 (en) Method for producing green molded body and method for producing inorganic sintered body
Mantelli et al. Direct ink writing of recycled composites with complex shapes: process parameters and ink optimization
JP6874531B2 (en) Manufacturing method of three-dimensional model, powder material used for it, and fluid for bonding
Zhakeyev et al. Photoactive resin formulations and composites for optical 3D and 4D printing of functional materials and devices
JP2018141224A (en) Composition for producing three-dimensional molded article, method for producing three-dimensional molded article, and apparatus for producing three-dimensional molded article
JP7111111B2 (en) 3D object manufacturing method and powder material used therefor
Alo et al. 3D‐Printed functional polymers and nanocomposites: defects characterization and product quality improvement
JPWO2019117015A1 (en) Manufacturing method of three-dimensional model and powder material used for it
Xu et al. Unleashing the potential of 3D printing soft materials
JP6806088B2 (en) Manufacturing method of powder material, 3D model and 3D model
WO2018181275A1 (en) Three-dimensional object production method
CN203063127U (en) Rapid laser prototyping machine capable of uniformly heating liquid resin
WO2019013069A1 (en) Powder material and method for producing three-dimensional model
Simpson Additive Manufacturing of Short-Fiber Composites via Stereolithography
JP7099473B2 (en) A resin composition and a method for producing a three-dimensional model using the resin composition.
Zhai et al. A review on process parameter influence and optimization for 3D printing of fiber-reinforced thermoplastic composites
JP6958149B2 (en) Powder material and three-dimensional model obtained from it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7205492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150